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Abstract—A Real-Time Price (RTP) based Automatic Demand 

Response (ADR) strategy for PV-assisted Electric Vehicle (EV) 
Charging Station (PVCS) without Vehicle to Grid (V2G) is 
proposed. The charging process is modeled as a Dynamic Linear 
Program (DLP) instead of the normal day-ahead and real-time 
regulation strategy, to capture the advantages of both global and 
real-time optimization. Different from conventional price 
forecasting algorithms, a Dynamic Price Vector Formation Model 
(DPVFM) is proposed based on a clustering algorithm to form a 
RTP vector for a particular day. A Dynamic Feasible Energy 
Demand Region (DFEDR) model considering grid voltage profiles 
is designed to calculate the lower and upper bounds. A deduction 
method is proposed to deal with the unknown information of 
future intervals, such as the actual stochastic arrival and departure 
times of EVs, which make the DFEDR model suitable for global 
optimization. Finally, both the comparative cases articulate the 
advantages of the developed methods and the validity in reducing 
electricity costs, mitigating peak charging demand, and improving 
PV self-consumption of the proposed strategy are verified through 
simulation scenarios. 

 
Index Terms—Automatic demand response, charging station, 

electric vehicle, real-time price, PV system. 

 

I.  NOMENCLATURE 

Abbreviations 
ADR	 Automatic Demand Response	
EV Electric Vehicle 
PV Photovoltaic 
DFEDR Dynamic Feasible Energy Demand Region 
DPVFM Dynamic Price Vector Formation Model 
SOC State of Charge. 
DLP Dynamic Linear Programming 

Variables	
∆𝑡 The length of a time interval 
𝜉! •  Optimal energy demand in a time interval  
𝜉!" •  Lower bound of 𝜉! •  in a time interval 
𝜉!" •  Upper bound of 𝜉! •  in a time interval 
𝛃!"	

The tendency vector of RTP from interval 1 to 
current interval 

𝜃	 The degree of charging demand completeness 

𝛽!"!  The tendency vector of the i-th center from 
interval 1 to the current interval	

𝑨 Coefficient vector in the dynamic linear 
programming algorithm 

𝐶!"#!  Maximum charging rate of the i-th EV 
𝐶!"#!  Minimum charging rate of the i-th EV 
𝑫 Distance vector between RTP and price centers 
𝑑!.! Distance between RTP and the i-th price center  
𝐸!!!! •  Energy supplemented of the 𝑖-th EV in a time 

interval  
𝐸!"#!  Energy demand of the 𝑖-th EV 
𝐸!!"# • 	 The minimum charging demand of PVCS	
𝐸!!"# •  The maximum charging demand of PVCS 
𝐸! •  Total energy demand of the charging station in a 

time interval 
𝐸!"#$% 

The total amount of energy supplemented for all 
EVs 

𝑬!! Lower bounds vector from interval 𝑛 to 𝑁! 
𝑬!! Upper bounds vector from interval 𝑘 to 𝑁! 
𝐸!" •  PV energy in a time interval 

𝑬!!  Vector of the optimal energy schedule of each 
time interval from interval 𝑛 to 𝑁! 

𝐸!(•) 
Electricity purchased from the grid in a time 
interval 

𝑓!(•) Real-time price in a time interval 
𝐅! The vector of revealed RTP 

𝐅𝒓
𝒏→𝑵𝑺 	

The newly formed RTP vector from time 
interval n to time interval 𝑁𝑠 

𝑁𝑠 Number of time intervals 
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𝑁!"(•) Number of charging EVs in a time interval 
𝑄!" The capacity of the PV system 
𝑆! •  Battery SOC of the 𝑖-th EV in a time interval 
𝑆!"#!  Objective SOC of the 𝑖-th EV 
𝑡!!  Start charging time of the 𝑖-th EV 
𝑡!!  Departure time of the 𝑖-th EV 

𝑢!" Membership grade of the 𝑘-th sample that 
belongs to the 𝑖-th class 

𝑼! Initial membership grade matrix 
𝑽 Center matrix of m price classes 
𝒗! Center vector of	r-th	price	class 
𝒗𝒎 Center vector of minimum price class 
𝑿 Set of real-time price data 
𝑦 𝑛 	 The parabola function	
𝑧 Total cost of electricity bought from the grid 

II.  INTRODUCTION 
lectric Vehicles (EVs) have been considered as an effective 
means to realize low-carbon economic transportation and 

have developed quickly in many countries. However, increasing 
EVs are expected to change the load profile greatly in 
distribution networks, which may cause grid reliability issues due 
to the less predictable large charging demands [1]. The direct 
integration of solar photovoltaic (PV) with EV charging 
infrastructure is a possible way to accommodate more clean 
energy, reduce carbon emissions, and alleviate peak charging 
loads [2]. PV can be used to produce electric energy locally 
wherever there is a good solar radiation resource, including urban 
areas that are the locations for EV applications [3] [4], such as 
PV-assisted Charging Stations (PVCS). For the PVCS, energy 
generated from the integrated PV system is only regarded as a 
portion of the electric energy supply, so the remaining demand 
must be purchased from the grid. One of the overriding concerns 
of the PVCS operator (PO) is to minimize the electricity 
purchasing costs. However, one of the main concerns of the 
distribution system operator (DSO) is to flatten the peak power 
demand.  

For EV charging stations, many problems need to be studied 
from the different perspectives of the PO or DSO, such as 
coordinated charging strategy [5], the impact on grid and 
congestion alleviation of the grid [6, 7], the control strategy for 
grid active and reactive power support [8, 9], and ancillary 
services provision [10]. In the studies of coordinated charging 
strategy, the main concern is focused on how to allocate charging 
power effectively, from the user’s perspective. In the area of 
impact studies, the purpose is to analyze the impact on the grid 
caused by large-scale EV charging activities. For the active and 
reactive power support area, the research is concerned with the 
strategy of providing voltage support. The idea of vehicle to grid 
(V2G) technologies is very relevant in this area. Concerning 
ancillary service provision, EVs may also need to work in V2G 
mode to provide voltage and frequency regulation services to the 
grid under market mechanisms. However, the lifetime and cost of 
EVs batteries is an issue that restricts V2G application. The main 
concern of this paper is to study an automatic demand response 
(ADR) strategy for the PVCS without V2G to improve its 
economic performance and reduce the charging peak load 
simultaneously. 

DR is a valid solution to deal with both reducing electricity bill 
for the consumer and preventing network overloading [11] from 

the system perspective. DR is often a cost effective technique that 
can provide the flexibility required to time shift loads either 
through prices or incentive policies [12]. The price based DR 
usually contains Real-Time Prices (RTP) or Time of Use (TOU) 
tariffs. A comparison of TOU and RTP indicates that high 
resolution RTP signals will bring more benefits to power systems 
in terms of flattening the system load profile and reducing the 
peak demand as compared to TOU rates [13]. Therefore, in this 
paper, the focus is on RTP based DR. 

Many previous works have examined DR programs with 
different system applications. A significant amount of the 
literature deals with residential DR [14-16]. In [14], in order to 
manage the trade-off between minimum cost and waiting time, a 
price prediction based optimal residential energy scheduling 
framework is proposed. In [15], a DR framework is proposed to 
control HVAC loads to reduce peak load by responding to a real-
time price signal. In [16], an optimization model is proposed to 
adjust the consumer load in response to hourly electricity prices.  

Besides residential DR, research works on EV charging 
strategies considering DR are also a popular topic. An automated 
DR mechanism for a fleet of EVs is proposed in [17], which 
facilitates vehicle charging to meet the needs of EVs and satisfy a 
load scheduling obligation. The dynamic algorithm depends only 
on knowledge of driving behaviors from previous similar days, 
and uses a simple adjusted pricing scheme to instantly assign 
feasible and satisfactory charging schedules to thousands of EVs 
in a fleet as they plug-in. An intelligent method to control EV 
charging loads in response to time-of-use price in a regulated 
market is proposed in [18]. The method is mainly based on an 
optimized charging model in order to minimize the charging cost, 
and a heuristic method is implemented to minimize the charging 
cost considering the relationship between the acceptable charging 
power of an EV battery and the state of charge (SOC). An 
optimization model of demand response management integrating 
EVs and distributed renewable generators is proposed in [19]. The 
costs of the local utility company and users’ daily bills can be 
reduced concurrently. In the context of the smart grid, a DR 
strategy is proposed to minimize the impact of charging EVs on 
the distribution network in [20]. Choices of customers are taken 
into account and the peak demand is kept unchanged while 
accommodating EV charging. A comprehensive bi-level model to 
derive the equilibrium price of energy and reserve trading of a 
parking lot has been proposed considering the preferences of the 
PEV owners in [21]. It presented a model for the interactions of 
the parking lot with the market through an aggregator while 
considering the restrictions that the preferences of plug-in EV 
owners impose on its behavior. 

However, the recent research on EVs or charging stations 
participating in DR programs are mainly concerned with charging 
stations without renewable energy generation systems or 
households with EVs.  Much less attention has focused on DR for 
PVCS from the perspective of the PO. 

Different from the aforementioned areas, an automatic demand 
response (ADR) strategy for PVCS from the perspective of the 
PO is proposed based on some previous work [22]. A comparative 
study is conducted between the fuzzy C-means (FCM) clustering 
algorithm and the K-means (KM) clustering algorithm in dealing 
with historic price data. Then, a new model is proposed to extract 
features of the historic price data and form a price vector for a 
particular day based on KM. The grid voltage magnitude profile is 
taken into consideration through a dynamic feasible energy 
demand region (DFEDR) model. A deduction method is proposed 

E 
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to deal with the unknown information for future time intervals 
considering stochastic arrival and departure times. The ADR 
strategy aims to minimize the electricity bill of the PVCS, while 
the self-consumption of PV energy and completeness of EV 
charging demand is guaranteed, and peak charging load is reduced. 
The novel contributions include the following aspects: 

1) The RTP based ADR strategy for PVCS is studied without 
V2G, which does not harm the lifetime of the EV batteries, which 
is beneficial to the consumer  

2) For conventional price forecasting algorithms to reach good 
prediction accuracy many other resources are need besides 
historic price data, such as: demand profiles, weather information. 
This information can be difficult to obtain for the PVCSs so a 
Dynamic Price Vector Formation Model (DPVFM) is proposed 
that functions only with historic price data, based on the KM 
clustering algorithm. The centers obtained by the KM can be 
designed to be updated every week or another relevant timescale. 
The price vector formation method is also much more simple than 
conventional forecasting algorithms.  

3) In order to offer a proper search region for the solution of 
future time intervals in the DLP, a deduction method is proposed 
to enhance the ability of the DFEDR model to deal with upper and 
lower bounds of future time intervals considering stochastic 
arrival and departure times of EVs. Additionally, the grid voltage 
magnitude profile is taken into consideration to mitigate the 
charging impact on the grid voltage. 

The content of this paper is organized as follows. Section III 
introduces the market conditions, typical structure, and the main 
function of PVCS. Section IV describes the main function of the 
ADR strategy, including the objective function, the DFEDR 
model, the DPVFM model based on the KM clustering algorithm, 
and the model of dynamic linear programming (DLP). The case 
study and related analysis of comparative case results are 
presented in Section V. At last, the conclusions are drawn in 
Section VI. 

III.  MARKET CONDITIONS AND TYPICAL STRUCTURE OF PVCS  
Conventionally in most locations, users consume electricity 

without centralized coordination and with the same cost no 
matter the time. Therefore, the load curve is determined by 
consumers’ behavior, which results in large peak loads during 
some certain concentrated time periods. Simultaneously, the 
DSO should satisfy the entire load whenever it occurs, even the 

short time large peak demand which appears but a few times per 
year. This results in large investments in expanding the 
generation and transmission capacity that will be idle most times 
during the year. With the development of smart grid technology 
in the future electricity distribution system and electricity market 
the bidirectional interaction and control between the DSO and 
users is enabled by advanced metering infrastructure (AMI), such 
as smart meters, which can provide RTP information to users 
[23]. Under market conditions, RTP based DR is an efficient 
mechanism to manage users’ consumption behavior. By 
providing RTP to users through AMI, the DSO could realize 
some distributed control over users’ behavior, which is preferable 
to peak shaving or involuntary load shedding. RTP also allow 
users the possibility to save money, so there is the possibility that 
there is a benefit for both the users and the DSO. 

For the normal consumer the following problems could occur 
in PVCS without coordination or control: 1) the peak charging 
demand would be large; 2) the PV-self consumption could be 
very low; 3) the electricity bill could be high. However, the PO 
would prefer to realize coordination and control of EV charging 
activity, PV output and electricity purchasing activity by the 
potential benefits of RTP based DR under advanced electricity 
market conditions. 

The time characteristic of PV output and the charging 
demand of EVs may overlap during the day. Therefore, 
coordinated management of EV charging activities according to 
PV output can result in obviously synergistic effects. In this 
paper, a low voltage (LV) PVCS near to commercial building is 
studied, and the typical structure and information flows of PV-
assisted EV charging stations are shown in Fig. 1. A PV 
generation system that performs Maximum Power Point Tracking 
(MPPT) control is integrated into the system through DC/DC 
converter. It provides electricity to EVs during the day. The 
bidirectional power conversion between the grid and the PVCS is 
realized through the AC/DC inverter. An EV is connected to the 
DC bus through a charger that can regulate the charging power 
smoothly according to the charging command. The monitoring 
and control system collets information and controls other 
components. Parameters including control permission, departure 
time, and other information can be set through the human 
interface panel of the charger.  
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Fig. 1  Typical structure and information flows of PV-assisted EV charging station. 
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In Fig.1, three roles are involved, the DSO, PO and EVs users. 
The DSO is not only the main power supplier, but also the 
policy maker, deciding the RTP policy. The PO is the operator 
of the PVCS who is the provider of charging service and builds 
its own PV generator system. EV users are the final consumer 
of the charging service. The PO is not only an important role in 
integrating PV with EV charging facilities, but also the main 
role in managing the charging behavior of EVs. Economics is 
one of the main concerns of the PO, so how the PVCS perform 
with RTP based DR is studied in this paper. 

RTP based DR is a generalized distributed control program. 
RTP is like indirect control information, which could make 
users change their consumption behavior individually. The 
information interaction between the PVCS and the DSO is 
enabled by AMI, including RTP information. Thus, the 
monitoring and control system of PVCS is able to get RTP 
information from the DSO in cycle. There are at least two ways 
for PVCS to obtain RTP information from the DSO.  

1) At the beginning of each cycle, the PVCS send a request 
message to the DSO. The DSO then sends the RTP information 
to the PVCS after receiving the request.  

2) The DSO sends the RTP information to all users by 
broadcasting it. 

After getting the RTP information from the DSO, the 
monitoring and control system collects other information from 
other components, such as PV output, battery SOC, and then 
performs optimal power allocation considering DR. 

IV.  AUTOMATIC DEMAND RESPONSE STRATEGY 

A.  Objective function 
During the day, part of the charging demand of the charging 

station is met by the PV system and the remaining part of the 
charging demand is purchased from the grid. Since the price of 
electricity varies with time, the cost of purchasing electricity 
from the grid is determined by the price and energy amount. 
However, due to the number of EVs varies with time, it results 
in different energy demands at each different time interval. 
Therefore, for the PVCS, the objective is to satisfy the energy 
demand of EVs of the current time interval at a minimum cost, 
which are described in equations (1) and (2) as follows. The 
energy demand at the current time interval will be satisfied from 
the current time interval to the end of the charging process. 

min 𝑧 = 𝑓!

!!

!!!

𝑛 𝐸! 𝑛 , 𝑘 ∈ (1,𝑁!)                      1  

s. t. 

𝐸!"#$%(𝑘) = (𝐸!" 𝑛 + 𝐸! 𝑛 )  
!!

!!!

= 𝐸!!!! 𝑛
!!"(!)

!!!

!!

!!!

  (2) 

where k indicates the current time interval;  E!(n) is the energy 
purchased from the grid at time interval n;  f!(n) represents the 
RTP of the time interval n ; z  indicates the total cost of 
purchasing energy from the grid;  E!"#$%(k) represents the total 
amount of energy demand of all EVs at the current time interval;  
 E!"(n) is the energy supplied by the PV system at time interval 
n; N!  represents the number of time intervals; N!"(k) is the 
number of EVs at the current time interval; E!"#! n  represents 
the charging energy of the i-th EV of time interval n. 

B.  Model of dynamic feasible energy demand region (DFEDR) 
In order to perform DR, characteristics of energy demand 

should be studied to guarantee the charging demand. During the 
charging process, the energy supplied to all EVs in time interval 
n is the summation of the charging energy of all EVs, shown in 
(3).  

𝐸!(𝑛) = 𝐸!!!! 𝑛
!!" !

!!!

                                3   

where 𝐸!(𝑛) represents the energy supplied to all EVs in time 
interval  𝑛 . 

During the charging process, the degree of charging demand 
completeness is defined in (4).  

𝜃 =
𝐸!!!! 𝑛!!" !

!!!
!!
!!!

𝐸!"#!!"#
!!!

                            4  

where 𝜃 is the degree of charging demand completeness; 𝑁𝑈𝑀 
is the total number of EVs of during the charging process; 𝐸!"#!  
is the energy demand of the i-th EV. 

The charging energy are supplied by the PV system and the 
grid together. The power balance of PVCS at time interval n can 
be described as (5). 

𝐸! 𝑛 =  𝐸!" 𝑛 + 𝐸! 𝑛                              (5) 
Assume that 𝐶!"#!  is the minimum charging rate of the i-th 

EV and 𝐶!"#!  represents the maximum charging rate of i-th EV. 
𝐶!"#!  is a constant value determined by the charger. 𝐶!"#!  is 
determined by the target State of Charge (SOC) of the EV 
battery, current SOC of the EV battery and charging duration of 
EV, calculated by (6). Then the minimum charging demand 
𝐸!!"#(n) and maximum charging demand 𝐸!!"#(n) of the PVCS 
in time interval n can be calculated by (7) and (8) respectively. 

𝐶!"#! = (𝑆!"#! −  𝑆! 𝑛 )/(𝑡!!  − 𝑡!! )            (6) 

𝐸!!"# n = 𝐶!"#! ∆𝑡
!!" !

!!!

                              7  

𝐸!!"#(n) = 𝐶!"#! ∆𝑡
!!"(!)

!!!

                             (8) 

where 𝑆!"#!  is the target SOC of the i-th EV; 𝑆! 𝑛  is the SOC in 
time interval n of the i-th EV; 𝑡!!  is the departure time of the i-th 
EV;  𝑡!!  is the arrival time of the i-th EV; ∆𝑡 is the time length of 
an time interval in hours. 

For the PVCS near a commercial building, most of the EVs 
arrive at the parking lot and start charging in the morning. 
However, the PV output is not sufficient to satisfy the large 
amount of charging demand in the morning, which results in an 
extra peak load to the grid and high cost. Meanwhile, the PV 
energy in the afternoon cannot be consumed locally and must be 
exported to the grid. 

In order to deal with this problem, the maximum charging 
power should be limited in a reasonable range to reduce extra 
peak load and make full use of PV energy without decreasing 
the degree of charging completeness.  

Considering the characteristic of PV output in summer, the 
effective start time, maximum power point time and end time of 
PV output is often around 6:30, 13:00 and 19:00 respectively, as 
shown in Fig. 2. The curve of PV output is similar to a parabola, 
so a parabola function is proposed to calculate the upper bound 
of the charging energy of each time interval. 

The charging duration is from 7:00 to 18:00 and can be 
divided into 𝑁! = 660 time intervals when a single interval is 1 
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minute. Since the charging duration matches the PV output 
characteristics, the rectangular coordinates system is created 
regarding (7:00, 0 kW) as the coordinate origin (0, 0). Therefore, 
a parabola 𝑦 𝑛  described as (9) is generated to simulate the PV 
output characteristic. 𝑦 𝑛  is taken as the basic upper bound 
curve. 

(6:30,0)
(-30,0)

(7:00,0)
(0,0)

(12:45,ŋ Qpv)
(345,ŋ	Qpv)

(19:00,0)
(720,0)

(12:45,0)
(345,0)

t

P

 
Fig. 2 Parabola model of upper bound. 

𝑦 𝑛 = (𝑎𝑛! + 𝑏𝑛 + 𝑐)/60, ( 𝑛 = −30,··· ,720)   (9) 
where 𝑎, b, and  c are parameters tuned by characteristics of PV 
output. As shown in Fig. 2, three points are utilized to calculate 
parameters 𝑎, b, and  c, which are (-30, 0), (345, ηQPV) and (720, 
0), and represent (6:30, 0), (12:45, ηQPV), (19:00, 0) 
respectively. QPV is the capacity of the PV system; η is the 
typical output efficiency of the PV generation system in summer. 
In this paper η =0.85 and QPV =100 kW, thus a=-17/28125, 
b=0.4171 and c=13.06 are obtained by solving the equation. 

PV output energy 𝐸!" 𝑛  of time interval n, maximum energy 
demand 𝐸!!"#(𝑛)  of time interval n and minimum energy 
demand 𝐸!!"#(𝑛) of time interval n are also utilized to calculate 
the upper bound 𝜉!" 𝑛 , as shown in (10).  

1) If 𝐸!!"#(𝑛) is the maximum value and 𝑦 𝑛  is the second, 
then the upper bound equals 𝑦 𝑛 . This means that 
setting 𝑦 𝑛  as the upper bound is large enough to 
guarantee the charging demand and can make full usage 
of PV output. 

2) If  𝐸!!"#(𝑛) is the maximum value and 𝐸!" 𝑛  is the 
second, then the upper bound equals 𝐸!" 𝑛 . It means 
that EVs are able to consume all of the PV output. 

3) If 𝐸!!"#(𝑛) is less than 𝐸!" 𝑛  and 𝑦 𝑛 , it indicates that 
EVs are not able to consume all of the PV output. So 
charge EVs at maximum value to consume PV output as 
much as possible. 

4) If 𝐸!!"# n  is the largest value, It means that the charging 
demand cannot be satisfied by PV output, so PVCS 
should purchase electricity from the grid. In order to cut 
down the peak-charging load and reduce cost, 𝐸!!"# n  is 
set as the upper bound to guarantee the minimum 
charging demand. 

𝜉!" 𝑛

=

𝑦 𝑛 ,𝐸!!"# n > 𝑦 𝑛 > 𝐸!" 𝑛 >  𝐸!!"# n                
𝐸!" 𝑛 ,𝐸!!"# n > 𝐸!" 𝑛 >  𝑦 𝑛 >  𝐸!!"# n            

𝐸!!"# n ,min 𝐸!" 𝑛 , 𝑦 𝑛 > 𝐸!!"# n >  𝐸!!"# n  

𝐸!!"# n ,𝐸!!"# n > max 𝐸!" 𝑛 , 𝑦 𝑛                        
                                

(10) 

To satisfy the charging demand of all EVs in the PVCS, the 
allocated charging energy should not be lower than the 
minimum charging demand. Thus the lower bound 𝜉!" 𝑛 =
𝐸!!"#(n).  

However, at time interval 𝑛 the information of PV output and 
charging demand at future times are unknown. How to 
determine the upper and lower bounds of time intervals  (𝑛 + 1) 
to 𝑁!  is a problem. By (10), 𝑦(𝑛 + 1)  to 𝑦(𝑁!)  can be 

calculated and they are regarded as the upper bound of time 
interval  (𝑛 + 1)  to time interval 𝑁! . The lower bound is 
determined by the minimum charging demand of EVs. Because 
the number of EVs in future time intervals is uncertain, the 
actual minimum charging demand in future time intervals are 
also uncertain. In this paper, a deduction method is adopted to 
obtain an approximation of the lower bound.  

Assume that all EVs are charging at the minimum charging 
rate and no new EVs arrive at PVCS in future time interval. 
Then calculate the SOC of each EV. If there are EVs meeting 
the target SOC, update the number of charging EVs 𝑁!"(𝑘) of 
time interval 𝑘. Calculate the minimum charging demand of 
time interval 𝑘 and set it as the lower bound. The flow chart is 
shown in Fig. 3. 

k=n+1

Calculating SOC            of each EV( )iS n

( )i i
objS n S≥

Assuming that all EVs are charging at 
minimum charging rate min

iC

Calculating the minimum energy demand of 
PVCS in time interval n                  by (8)min ( )SE k

( ) ( ) 1EV EVN k N k= −
Y

N

orSk N== ( ) 0EVN k ==
N

Set min( ) ( )lb Sk E kξ =

Over
Y

 
Fig. 3 Flow chart calculating the lower bound of future time interval. 
 

Therefore, the DFEDR model in time interval 𝑛 for optimal 
solution can be defined as (11). Because of the stochastic nature 
of EV charging and PV output, the DFEDR is updated in each 
time interval. 

𝐸! 𝑘 ∈
𝜉!" 𝑘 , 𝜉!" 𝑘 , 𝑘 = 𝑛                 
𝐸!!"# 𝑘 , 𝑦 𝑘 , 𝑘 ∈ 𝑛 + 1,𝑁!

          (11) 

As a new type and relative large load integrating into the 
distribution network, it is reasonable to take the grid voltage 
into consideration during the charging procedure for the sake of 
alleviating the possible negative effects of the PVCS on grid 
voltage. In order to avoid deteriorating the grid voltage, an 
adjustment coefficient is introduced in this paper to control the 
upper bound and lower bound, therefore, updating the DFEDR 
model.  

The normal operating condition of the per unit value of grid 
voltage magnitude is 𝑉! ∈ [0.9, 1.1]  (this range can be set 
differently depends on the requirement for specific real case, 
such as  0.9 to 1.05) [24]. The normal grid voltage magnitude 
range is divided into two parts [0.9, 0.95) and [0.95, 1.1]. 
Thereby the adjustment coefficient 𝜌 is defined as (12). 

𝜌 =
1 ,                    𝑉! ∈ [0.95, 1.1] 
𝑙𝑜𝑔10!(!!),   𝑉! ∈ [0.9, 0.95) 

             (12) 

where 𝑓(𝑉!) is a function mapping 𝑉! ∈ [0.9, 0.95) to [1,10) for 
the sake of 𝜌 ∈ 0,1  . So function 𝑓(𝑉!) is defined as (13) 

𝑓 𝑉! = 1 + 180(𝑉! − 0.9), 𝑉! ∈ [0.9, 0.95)         (13) 
   The DFEDR model considering the grid voltage deviation is 
defined as (14). 
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𝐸! 𝑘

∈
max (𝜌𝜉!" 𝑘 ,𝐸!" 𝑘 ),max (𝜌𝜉!" 𝑘 ,𝐸!" 𝑘 )

, 𝑘 = 𝑛
 (𝜌𝐸!!"# 𝑘 , 𝜌𝑦 𝑘 ) , 𝑘 ∈ 𝑛 + 1,𝑁!

(14) 

Therefore, with the adjustment coefficient 𝜌  the DFEDR 
model can be used to curtail the charging power reasonably if 
the grid voltage exceeds the normal range. 

C.  Dynamic price vector formation model (DPVFM)  
RTP is the most important outside command information for 

DR, which varies with time in each period and each day. 
Although RTP varies stochastically, the RTP of most days tends 
to follow a similar pattern. Many research works have been 
conducted to deal with these kinds of randomness based on 
smart prediction algorithms [25-27]. In this paper, the clustering 
algorithm is applied to deal with the stochastic RTP features.  
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Fig. 4 One year historic RTP data from 7:00 through 18:30. (Subplot (a) 
represents days on which the maximum RTP value is larger than 2000 $/MWh; 
subplot (b) provides the days on which the maximum RTP value is larger than 
500 $/MWh but less than 2000 $/MWh; subplot (c) shows the days on which the 
maximum RTP value is larger than 200 $/MWh but less than 500 $/MWh; 
subplot (d) illustrates the days on which the maximum RTP value is less than 
200 $/MWh.) 
 

Historical data of one year of RTP (in 30 minutes intervals) 
is utilized to depict the range of variations that may occur and 
was obtained from the Australia Energy Market Operator 
(AEMO) [28]. As shown in subfigure (d) of Fig. 4, most days 
with the RTP less than 200 $/MWh (the number is 315 days). 
There are 24 days with maximum RTP value between 200 
$/MWh and 500 $/MWh (see subfigure (c)) and 26 days with 
price spikes larger than 500 $/MWh (see subfigure (b) and (a)).  
RTP varies stochastically and the price spikes appear at 
different times, so clustering algorithms have been utilized to 
capture the features of RTP in this paper. 

There are many clustering algorithms that have been applied 
to different applications. Considering the application of this 
paper and computational complexity of algorithms, fuzzy C-
means (FCM) and K-means (KM) algorithm are utilized. 

Ø Application of the FCM clustering algorithm 
 In this part the FCM algorithm is taken into consideration, 

the steps are as follows. 
Assume that 𝑿 is the RTP dataset, 𝑽 is the center matrix of 𝑟 

classes. They can be described as (15) and (16) respectively. 
                      𝑿 = 𝑥!, 𝑥!,···, 𝑥!          (15) 
                       𝑽 = 𝑣!, 𝑣!,···, 𝑣!             (16) 

where 𝑥! is the price vector of 𝑛-th day, 𝑣! is the center vector 
of 𝑟-th class. 

Assume that 𝑢!"  is the membership grade of that the 𝑘-th 
sample belongs to the 𝑖-th class.                       

0 ≤ 𝑢!" ≤ 1, 𝑢!" = 1
!

!!!

                         (17) 

Define the objective function: 

𝑚𝑖𝑛 𝐽 𝑼,𝑽 = 𝑢!" !
!

!!!

!

!!!

𝑑!" !                 (18) 

where 𝑑!" = 𝑥!!𝑣!  is Euclidean distance. 
The steps to solve the fuzzy C-means clustering problem are 

as following: 
1) Select the value of 𝑟 and the initial membership grade 

matrix 𝑼!, set the iteration count 𝐼 = 0; 
2) Calculate the center 𝑽 by (20);                       

𝑣!
(!) = 𝑢!"

! !
!

!!!

𝑥! 𝑢!"
! !

!

!!!

, (𝑖 = 1,…，𝑚)    (19) 

3) Correct the membership grade matrix;  

𝑢!"
!!! = 1 𝑑!"/𝑑!"

!
!

!!!

,∀𝑖,∀𝑘                  (20) 

4) If 𝜀 > 0, calculating till 𝑚𝑎𝑥 𝑢!"! −𝑢!"!!! < 𝜀, else, set 
𝑙 = 𝑙 + 1 and jump to step 2).  

5) If 𝑢!" = 𝑚𝑎𝑥 {𝑢!"} > 0.5, 𝑥! belongs to 𝑗-th class. 
Set 𝑟 = 7. Define 𝐕! as (21), it is the matrix consisting of the 

center vectors of 7 price classes.  
𝐕! = 𝐯!  𝐯!  ···  𝐯!          

𝐯! = 𝑣!,!, 𝑣!,!,···, 𝑣!,!!
!
,
𝑖 = 1,2,··· ,7      (21) 

where 𝐯! is the center vector of the i-th class. 
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Fig. 5 7 centers obtained by the FCM algorithm. 
 

The 7 centers obtained by FCM are shown in Fig. 5. Four of 
the 7 centers almost coincide, which indicates that FCM can 
easily be affected by the largest value of each time point. 
Compared with Fig. 3, the FCM does extract some features of 
historic price data, but the largest variation features of each time 
point are clustered to one class, which is much like the 
envelopes. This is inconsistent with the historic data presented. 

Ø Application of KM clustering algorithm 
In this part the KM clustering algorithm is utilized. The 

dataset of RTP and centers are defined in (15) and (16), 
respectively. The objective is to minimize the distance between 
the center points and data points, shown in (22).  

𝑚𝑖𝑛 𝐽 𝑽 = 𝑥! − 𝑣!
!

!!

!!!

!

!!!

                     (22) 

where r is the number of cluster center, 𝑛! is the number of data 
points in i-th cluster. 

The steps are as follows: 
1) Select the number r of clustering centers. 
2) Calculate the distance 𝑥! − 𝑣!

!
 between each data point 

and cluster centers. 
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3) Assign the data point to the cluster center whose distance 
to the center is the minimum of all the cluster centers. 

4) Recalculate the new cluster center by (23) 

𝑣! =
1
𝑛!

𝑥!

!!

!!!

                                        (23) 

5) Recalculate the distance between each data point and the 
newly obtained centers. 

6) Repeat 4) and 5), until the cluster centers converge to 
constant values. 

The same as in FCM, set 𝑟 = 7 and define 𝐕! as (21). 
The 7 centers obtained by KM are shown in Fig. 6. 

Compared with Fig. 5, more features are extracted from the 
historic RTP data. No centers coincide with each other and no 
envelope phenomenon occurs. The results are closer to the 
original feature shown in Fig. 4. So, the KM algorithm is 
regarded as the foundation of the DPVFM. In order to get more 
features from historic data, centers number r is set to 20 in this 
paper. 
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Fig. 6 7 centers obtained by KM algorithm. 
 

Ø Dynamic price vector formation model 
Let 𝐅!  represent the vector of revealed RTPs after time 

interval n, 𝑓! 𝑛  represents the price of time interval n, as 
shown in (24). 

𝐅! = 𝑓! 1   𝑓! 2  ···  𝑓! 𝑛 , (𝑛 ∈ 1,𝑁! )       (24) 
Define 𝛃!" as the tendency vector of RTPs at time interval n, 

𝛃𝒄𝒕𝒊  as the tendency vector of the i-th center, shown in (25) and 
(26) respectively. 

𝛃!" = 𝛽! 1   𝛽! 2  ···  𝛽! 𝑛
𝛽! 1 = 𝑓! 1                              

𝛽! 𝑖 = !! ! !!! !!!
!! !

                
, 𝑛 ∈ 1,𝑁!
𝑖 ∈ 2, 𝑛        (25) 

𝛃!"! = 𝛽!! 1   𝛽!! 2  ···  𝛽!! 𝑛
𝛽!! 1 = 𝑣!,!                                

𝛽!! 𝑗 =
!!,!!!!,!!!  

!!,!
                    

,
𝑛 ∈ 1,𝑁!
𝑖 ∈ 1,20
𝑗 ∈ 2, 𝑛

     (26) 

Therefore, the distance vector 𝑫 between the RTP tendency 
and 7 centers tendency can be defined as (27).                 

𝑫 = 𝑑!.!   𝑑!.!  ···    𝑑!.!           

𝑑𝒓.𝒊 = (𝛽! 𝑗 − 𝛽!! 𝑗 )!!
!!!

  , 𝑛 ∈ 1,𝑁!
𝑖 ∈ 1,7   (27) 

Let 𝐅𝒓
𝒏→𝑵𝑺 represent the newly formed RTP vector of time 

interval n. Then 𝐅𝒓
𝒏→𝑵𝑺 is formed as (28) based on the distance 

vector 𝑫. 
𝐅𝒓
𝒏→𝑵𝑺  = 𝑓! 𝑛    𝑣!,!!!, 𝑣!,!!!,···, 𝑣!,!!  , 𝑑𝒓.𝒊 ∈ 𝑚𝑖𝑛(𝑫) (28) 

D.  Model of DLP 
The flow chart for solving for the optimal solution of the DR 

problem in time interval n is shown in Fig. 7. 

The charging process is stochastic, not only the PV output, 
RTP, and charging demand, but also the number of time 
intervals varies from 𝑁! to 0, which results in the dimensions of 
variables varying with the time interval. In order to deal with 
the stochastic features of the charging process, each time 
interval is regarded as a state and the DR problem is modeled 
based on DLP, shown in (29).  

State_nState_1 State_NS

[ ]( ), ( 1), , ( )O O O Sn n Nξ ξ ξ+ !

Solving linear programming 
problem (25)

Data obtaining
( ( ), ( ), ( ), , )i i
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n=k

n=n+1

         n≥   SN

Calculating the maximum energy demand of 
PVCS in time interval n                  by (9)max ( )SE n

Calculating the minimum energy demand of 
PVCS in time interval n                  by (8)min ( )SE n

Generating the upper bound               by (11) 
and set 

( )ub nξ
min( ) ( )lb Sn E nξ =

Generating FEDR result            [ , ]n n
l uE E

Calculating 
SOC           of 
each EV
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objS n S≥
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Y
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Generating RTP vector of current 
state and future states            nF

 
Fig. 7 Flow chart of figuring out optimal charging energy vector based on DLP. 
 

𝑚𝑖𝑛 𝑧 = 𝐅𝒓
𝒏→𝑵𝑺𝑬!! , 1 ≤ 𝑛 ≤ 𝑁!                  

𝑨𝑬!! =  𝐸! 𝑛 → 𝑁!                                    
𝜉!" 𝑘 ≤ 𝜉! 𝑘 ≤ 𝜉!" 𝑘 , 𝑛 ≤ 𝑘 ≤ 𝑁!

    (29) 

where the length of 𝐅𝒓
𝒏→𝑵𝑺 varies with time from 𝑁! to 0; 𝑬!!  is 

the vector of optimal energy allocation results of the PVCS 
from time interval 𝑛 to 𝑁!, shown as (30), 𝜉! 𝑛  is the optimal 
energy allocation of PVCS in time interval 𝑛. The length of 𝑬!!  
varies with time from 𝑁! to 0. 𝑨 is the coefficient vector of the 
equality, A=[1，1，…，1，1], and the length of 𝑨 varies with 
time from 𝑁! to 0. 𝐸! 𝑛 → 𝑁!  is the total energy demand of 
PVCS from time interval 𝑛 to time interval 𝑁!. 

𝑬!! = 𝜉! 𝑛     𝜉! 𝑛 + 1 ···  𝜉! 𝑁!  !                (30) 
The energy purchased from the grid at interval 𝑛 is calculated 

by (31). If PV output is sufficient, 𝐸! 𝑛  is negative. It indicates 
that the PVCS selling energy to the grid. Otherwise, 𝐸! 𝑛  is 
positive, and the PVCS purchases energy from the grid. 

𝐸! 𝑛 = 𝜉! 𝑛 − 𝐸!" 𝑛            (31) 
where 𝐸!(𝑛) is the energy purchased from the grid. 

To calculate the vector of optimal energy allocation the 
DFEDR model is designed to provide the feasible region. It is 
important in satisfying the energy demand and alleviating extra 
peak charging load. Assume that 𝑬!!  is the vector of lower 
bound and 𝑬!! is the vector of upper bounds, shown as (32) and 
(33) respectively. The length 𝑬!! and 𝑬!! are both vary from 𝑁! 
to 0.  
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𝑬!! = 𝜉!" 𝑛     𝜉!" 𝑛 + 1 ···  𝜉!" 𝑁!        (32) 
𝑬!! = 𝜉!" 𝑛     𝜉!" 𝑛 + 1 ···  𝜉!" 𝑁!         (33) 

where  𝜉!" 𝑛  represents the lower bound of time interval 𝑛; 
𝜉!" 𝑘  indicates the upper bound of time interval 𝑛. 
 

V.  CASE STUDIES 
A. Parameters of simulation 

In the following simulations, the rated capacity of the PV 
system is 100 kW, the irradiance data is obtained from the 
Measurement and Instrumentation Data Center (MIDC) of the 
National Renewable Energy Laboratory (NREL) online [29]. 
The number of EVs is 60, and the parameters of the EVs are 
shown in Table I.  

The initial SOCs of 60 EVs are generated randomly and 
shown in Fig. 8. The start time, departure time and charging 
duration of EVs are obtained from an actual parking lot, shown 
in Fig. 9. The simulation runs from 7:00 to 18:00 with 660 time 
intervals and the length of each time interval is 1 minute. The 
actual prices and the predicted prices of 7 consecutive days are 
shown in Fig. 10. 

TABLE I  
Parameters of PV-assisted charging station 

Objective 
SOC 

capacity  
Ah 

Capacity 
kWh 

Maximum 
charging rate 

Rated 
voltage 

0.85 70 22.4 0.223 320V 
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Fig. 8 Initial SOC of 60 EVs. 
 

 
Fig. 9 Start time, departure time and charging duration of 60 EVs. 
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Fig. 10 The detailed information of RTP. 
 

B. Analysis and comparison results 
To better analyze the validity of the proposed ADR strategy, 

five comparative cases are considered as the follows: 
Case 1: Uncontrolled Charging Strategy of a typical day. 

EVs are charged with constant power as soon as they arrive, 
until the SOCs reach the target values. 

Case 2: The DR strategy is formulated as a day-ahead 
horizon optimization problem. The day-ahead price is forecasted 
by the BPNN algorithm proposed in [25]. The charging demand 
is estimated at the beginning and the maximum charging power 

is bounded by the parabola proposed in this paper. Finally, the 
charging power is allocated according to the day-ahead optimal 
schedule and the actual charging demand by the earliest 
deadline first (EDF) method, which was shown to be the best in 
terms of missed requirement amounts in [30]. 

Case 3: The DR strategy is based on a real-time horizon. 
The price is forecasted at each time interval and the forecasting 
window is 10 time slots. The charging demand is calculated at 
each time interval and the maximum charging power is bounded 
by the parabola proposed in this paper. Finally, the charging 
power is allocated by the EDF method. 

Case 4: The DR strategy is based on predicted price. The 
prices of seven consecutive days is predicted by the BPNN 
algorithm [25], and the DLP and DFEDR, without considering 
the voltage deviation, for seven consecutive days are conducted.  

Case 5: In the proposed ADR strategy, all of the parameters 
and conditions are the same as in Case 4, except that voltage 
deviation is considered in the DFEDR and the DPVFM model is 
utilized to form the price vectors of seven consecutive days.  

The simulation results of five cases are shown in Figs. 11 - 
15, and some indices of performance are shown in Table II. 

In Case 1, since the charging power of EVs cannot be 
controlled, the large peak load comes along with the increasing 
number of EVs. In Fig. 11, the peak occurs about 8:00-10:00. 
During this period, the charging power is much larger than PV 
output, which means that most of the charging power needs to 
be supplied by the power grid. 
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Fig. 11 Simulation result of Case 1(UCS). 
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Fig. 12 Simulation results of the first day in Case 2. 
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Fig. 13 Simulation results of the first day in Case 3. 
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Fig. 14 Simulation results of the first day in Case 4. 
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Fig. 15 Simulation results of the first day in Case 5. 
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Fig. 16 PV self-consumption Comparison between Case 4 and Case 5. 
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Fig. 17 Cost comparison between Case 4 and Case 5. 
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Fig. 18 Simulation system topology. 
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Fig. 19 Load profile of node 10 and node 14. 
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Fig. 20 Voltage profile of node 14. 

The simulation results of Case 2 are shown in Fig. 12. In 
Case 2, the day-ahead optimal schedule is designed for seeking 
the global solution. The charging demand and the charging load 
profile can be estimated within a certain error. But the start 
charging time and departure time of EVs are stochastic, which 
would affect the power allocation. As shown in Fig 12, at the 
beginning and around 16:30, the day-ahead scheduled power is 
larger than the actual demand. Therefore, the actual charging 
power cannot follow the day-ahead schedule.  

The simulation results of Case 3 are shown in Fig. 13. In 
Case 3, it is supposed to cope with the variation of variables in a 
real-time regulation manner. However, due to the limitation of 
unknown information in the future hours, the schedule is only 
an optimal solution in a real-time window not a global one. So 
during the optimization window peak charging load would 
appear at those time slots with lower price (such as 7:00 to 9:00) 
or with larger charging demand (such as 15:30 to 17:30).  

In Case 4, at about 11:00 the number of charging EVs 
reaches the maximum value and the PV energy is not enough to 
fulfill this demand. In order to guarantee the degree of charging 
completeness, the lower bound calculated by the DFEDR model 
is larger than the proposed parabola value. According to 
equation (10), the upper bound equals the lower bound. In Fig. 
10, according to the forecasted value of the first day, the price 
before 16:30 is much lower, which results in charging power 
following the upper bound before 16:30. Therefore most of the 
EVs are scheduled to finish charging before 16:30, except those 
EVs who arrive at the PVCS at a late time and do not have 
enough time to finish charging before 16:30, as seen in Fig. 14. 
Therefore, the self-consumption of PV energy is decreased. 
Moreover, the actual price of the first day is larger than the 
predicted price, which results in a high cost ($10.39).  

The results of Case 5 are shown in Fig. 15, with the charging 
power is following the upper bound before 11 AM. The reason 
is the same as in Case 2. Because the price is high and PV 
energy is sufficient to satisfy the minimum charging demand 
between 11:00 to 12:00, charging power follows PV output. 
After 12:00 PM, charging power follows the upper bound, PV 
output and the lower bound dynamically due to the dynamic 
price. Especially after 15:00, the charging power follows the 
lower bound and PV output to avoid higher costs.  

TABLE II  
Indices Comparison of 5 cases 

Indices Case 1 Case 2 Case 3 Case 4 Case 5 
𝜽 (%) 93.08 90.8 85.24 92.7 92.5 
Cost ($) 17.98 8.42 4.92 10.39 8.98 
Purchased energy 
(kWh) 269.4 116.9 70.3 144.7 125.9 

PV self-
consumption (%) 73.48 98.49 99.75 95.6 98.94 

Peak load (kW) 128.2 43.03 43.03 54.13 46.78 
 
Case 1 is the regular strategy and is regarded as a benchmark 

here. Comparing the results of the five cases in Table II, the 
degree of charging demand completeness of Case 1 is the 
highest but does not reach 100%. This is because several EVs 
do not have enough time to finish charging, even under perfect 
conditions. Due to the lack optimal scheduling, the cost and the 
peak load is the highest but the PV self-consumption is the 
lowest. 

The cost of Case 3 is the lowest but the degree of charging 
demand completeness is also the lowest. Because the real-time 
optimal schedule is not within the global horizon to guarantee 
the charging demand due to the limited optimization window 
and limited information. The PV self-consumption is the highest 
because the charging schedule is adjusted according to the real-
time PV output and charging demand. 
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Case 2, Case 4, and Case 5 are aimed at obtaining the 
optimal solution in the global horizon, so the degree of charging 
demand completeness is higher than that in Case 3. The cost is 
also reasonable for satisfying charging demand. The reason that 
the degree of charging demand completeness of Case 2 is lower 
than that in Case 4 and Case 5 is that the day-ahead strategy in 
Case 2 lacks of real-time adjustment. 

In order to compare the performance of Case 4 and Case 5, 
the comparative indices of seven consecutive days are shown in 
Fig. 16 – Fig. 17. Both price prediction based DR and the 
proposed ADR strategy present good performance in PV self-
consumption promotion and cost reduction under different RTP 
conditions. But the proposed ADR is more stable than the price 
prediction based DR. This is because the KM algorithm has an 
excellent performance in price feature extraction. Moreover, the 
proposed ADR strategy is better in alleviating voltage 
deterioration, as seen in Fig. 20. 

To evaluate the impact on voltage magnitude profile and the 
voltage deterioration alleviation performance of proposed 
DFEDR, the IEEE 14-bus system is regarded as the basic 
network structure, as shown in Fig. 18. The load profile on node 
10 and node 14 are shown in Fig. 19 and there are 15 PVCS 
integrated into the system at node 14. The voltage profile of 
Case 1, Case 4, and Case 5 are shown in Fig. 20. In Case 1, the 
charging activity is uncontrolled, so the impact on the voltage 
magnitude profile is greater than that in the other two cases. 
Because the voltage magnitude is taken into consideration in the 
DFEDR model, the peak charging load is reduced (see Table II). 
So the voltage magnitude profile of Case 3 is better than it in 
Case 2. 

Comparing Case 5, Case 2, and Case 3, the proposed ADR 
strategy combines the advantages of global optimization and 
real-time adjustment. 

Comparing Case 5 and Case 4, the DPVFM presents good 
performance in dealing with the stochastic RTP, which lays a 
solid foundation for the proposed ADR strategy to present a 
more stable performance in cost reduction and PV self-
consumption improvement. 

The results of the five cases show that the proposed ADR 
strategy has good performance in coping with the compromises 
among the degree of charging demand completeness, electricity 
cost, PV self-consumption, and voltage magnitude deterioration 
alleviation. 

VI.  CONCLUSIONS 
The RTP based ADR strategy for PVCS is studied without 

V2G so as to will not harm the lifetime of EV batteries, a more 
realistic and practical assumption than many previous studies. It 
aims to minimize the cost of electricity purchased from the grid, 
while the self-consumption of PV energy and completeness of 
EV charging demand are both guaranteed, and the impact on the 
distribution network is reduced as well. The proposed ADR 
strategy is able to adapt to RTP and voltage magnitude 
variations because of the DPVFM and DFEDR model. The 
DPVFM model based on KM clustering algorithm is proposed to 
generate a price vector without forecasting algorithms. The 
DFEDR model guarantees charging demand and mitigates the 
peak load effectively. The comparative simulation results show 
that the proposed ADR strategy works well in reducing 
electricity costs, improving PV self-consumption, and 
mitigating the impacts on grid voltage magnitude. 
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