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Abstract—This paper proposes a data-driven chance-
constrained optimal gas-power flow (OGPF) calculation method
without any prior assumption on the distribution of uncertain-
ties of wind power generation. The Gaussian mixture model
is employed to fit the uncertainty distribution, where the
Bayesian nonparametric Dirichlet process is adopted to tune the
component number. To facilitate the online application of the
proposed methods, an online-offline double-track distribution
construction approach is established, where the frequency
of training the relatively time-consuming Dirichlet process
Gaussian mixture model can be reduced. On account of the
quadratic gas consumption expression of gas-fired generators
as well as the linear decision rule based uncertainty mitigation
mechanism, the chance constraints would become quadratic
ones with quadratic terms of uncertainties, which makes the
proposed model more intractable. An equivalent linear sep-
arable counterpart is then provided for the quadratic chance
constraints, after which the intractable chance constraints could
be converted into traditional linear ones. The convex-concave
procedure is used to crack the nonconvex Weymouth equation
in the gas network and the auxiliary quadratic equalities.
Simulation results on two test systems validate the effectiveness
of the proposed methods.

Index Terms—Chance-constrained optimization, Dirichlet
process, Gaussian mixture model, optimal gas-power flow, wind
power uncertainty.

NOMENCLATURE

A. Sets and Indices

b ∈ B Electrical buses.
c ∈ C Gas compressors.
dp ∈ Dp Electrical loads.
dg ∈ Dg Gas loads.
g ∈ G Gas-fired generators.
lg ∈ Lg Gas pipelines.
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lp ∈ Lp Power transmission lines.
n ∈ N Gas nodes.
r ∈ R Renewable generation (Wind farms).
s ∈ S Gas storage tanks.
t ∈ T Time periods.
u ∈ U Non-gas generators.
w ∈ W Gas wells.
T Number of time periods.

B. Parameters

a′g, a
′′
g , a
′′′
g Energy conversion coefficients of gas-fired

generators.
Cdp/Cdg Electrical/gas load shedding costs.
C+
s , C

−
s Gas storage charge/discharge costs.

C+
u , C

−
u Upward/downward reserve cost of non-gas

generators.
Cw Gas well production costs.
Pdpt Electrical load demands.
P g/P g Generation capacity of gas-fired genera-

tors.
P+
g , P

−
g Ramping capacity of gas-fired generators.

P lp Upper limits of transmission lines.
Pu/Pu Generation capacity of non-gas genera-

tors.
P+
u , P

−
u Ramping capacity of non-gas generators.

p̂rt Forecasted outputs of wind generation.
Qdgt Gas load demands.
Qs/Qs Max/Min gas storage volume.
Q+
s , Q

−
s Charge/discharge rate of gas storage.

Qw/Qw Max/Min production of gas wells.
Zn/Zn Gas node pressure limits.
αgt/αut Affine coefficients of gas-fired/non-gas

generators.
βc Fuel consumption coefficients of compres-

sors.
χlg Weymouth equation coefficients.
ε Violation probability of chance con-

straints.
ηlg Line pack coefficients.
λgt/λut Operating status of gas-fired/non-gas gen-

erators.
πdplp Power transfer distribution factor of elec-

trical loads.
πglp/πrlp/πulp Power transfer distribution factors of gas-

fired/renewable/non-gas generators.
Γclg Compression factor.
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C. Decision Variables

mlgt Average gas mass of pipelines.
pdpt/qdgt Electrical/gas load shedding.
pgt/put Outputs of gas-fired/non-gas generators.
plpt Actual power flow.
qgt Gas consumption of gas-fired generators.
q+
lgt
, q−lgt In-/out-flows of gas pipelines.

qst Gas storage volume.
q+
st, q

−
st Base-case storage charge/discharge.

qwt Gas production of gas wells.
r+
gt, r

−
gt Up-/down-ward reserves of gas-fired genera-

tors.
r+
st, r

−
st In-/out-flow bound of uncertain gas storage.

r+
ut, r

−
ut Up-/down-ward reserves of non-gas genera-

tors.
znt Gas node pressure.
θbt Bus angles.

D. Random Variables

p̃rt Actual outputs of wind generation.
∆q̃gt Gas consumption deviations of gas-fired genera-

tors.
∆q̃st Gas storage outputs deviations.
Ωt Sum of forecast deviations of wind power.

I. INTRODUCTION

INTEGRATED energy system (IES) is one of the most
promising forms of future energy systems, where the

energy consumption can be carried out in a more efficient,
reliable and eco-friendly manner [1]. Based on the energy
coupling modes and geographic sizes, quite a few variations
have been developed under the concept of the IES, such as
the integrated electric-gas system (IEGS) and the integrated
electric-heat system (IEHS). Due to the technical break-
throughs in shale gas mining and turbine technologies as well
as emerging power-to-gas (P2G) facilities [2], the IEGS has
been driving the attentions from academic communities in
recent decades, including the operation [3], planning [4] and
marketing [5] perspectives.

Optimal gas-power flow (OGPF) is one of the most
fundamental problems in the area of IEGS operation, which
has been addressed by many inspiring works. A steady-state
OGPF model was proposed in [6], where the computational
challenging Weymouth equations were replaced with their
mixed integer linear program (MILP) based approximation.
In [7], the simplified gas flow dynamics was incorporated
in the OGPF model, which can still be converted into a
tractable problem by employing the mixed integer based
piecewise linearization. To alleviate the computation burden
brought by the large-scale of auxiliary binary variables, a
convex optimization based solution procedure is devised in
[8] for the OGPF with predetermined gas flow directions,
where only a series of second-order cone programs (SOCPs)
is require to be solved.

With the fast development of the renewable power gen-
eration, such as wind and photovoltaic power generation,
new challenges have been imposed on the operation of
the IEGS, as the original variability and uncertainty in the
electrical power network would be transmitted to the gas
network via gas-fired generators and P2G facilities, giving
rise to the urgent need of designing effective decision-making

frameworks for the OGPF problem. The two important steps
of solving the OGPF with uncertainties is to model the
uncertainty properly and to select a proper model to char-
acterize the impacts of uncertainties on the OGPF problem.
In recent years, data-driven uncertainty modeling methods
have been drawn more and more attention, including the
interval model [9], [10], [11], uncertainty set model [12],
analytical distribution model [13], [14], scenario set model
[15] and fuzzy set model [16]. Accordingly, various advanced
decision-making frameworks and optimization methods have
been developed and applied along with the aforementioned
uncertainty models, such as the interval optimization [11],
robust optimization [17], chance-constrained programming
[14], scenario-based stochastic optimization [15] and distri-
butionally robust optimization [18] methods. In what follows,
their applications in OGPF problem would be reviewed.

In [15], a scenario-based stochastic OGPF model is pro-
posed considering the electricity demand response mecha-
nism. To overcome the inherent defect of the scenario-based
method, which is the unguaranteed operation feasibility of
the solution w.r.t. unselected scenarios, robust optimization
becomes a popular choice for OGPF problem with uncer-
tainties. A two-stage robust OGPF model is constructed in
[17], where the Weymouth equations are approximated by
second-order cone (SOC) constraints and the indirect adverse
effect of wind generation uncertainty is mitigated locally by
distributed gas storages. Based on the work of [17], the linear
decision rule for controllable generators and a multi-slack-
node scheme for gas network regulation are employed in
[19], which can not only make the two-stage decision-making
structure reduce to a single-level one but also guarantee the
solution feasibility. However, the OGPF solution generated
from robust models may be conservative.

Another viable way to capture the impacts of uncertainties
on the OGPF problem is chance-constrained modeling, where
each constraint containing random variables has a probabilis-
tic guarantee to be satisfied and the overall framework can be
extended to a fully data-driven one [20]. In [14], a chance-
constrained optimization model for the multi-energy flow
calculation is established, where the probabilistic distribution
functions (PDFs) for solar and wind generation outputs
are set as Beta and Weibull distributions, respectively. In
addition, multivariate Gaussian [13] and Chi-square [21]
distributions have been selected as prior distributions for
uncertainty modeling in chance-constrained optimal power
flow (CC-OPF) problems. To overcome the subjectivity
of choosing the prior distribution for the uncertainties, a
distributionally robust chance-constrained OGPF model is
proposed in [18], in which the probabilistic guarantee holds
for the family of candidate distributions with the same mean
and covariance as the reference one formed by a sample set.
According to [22] and [23], the consumed gas of gas-fired
generators can be approximated by quadratic functions w.r.t.
their outputs, which would increase the difficulty of solving
chance-constrained OGPF models, as nontrivial quadratic
random variable terms would appear in the chance constraints
describing the impacts of renewable generation uncertainties
on gas systems.

Gaussian mixture model (GMM) is the distribution with
multiple Gaussian components and supposed to fit arbitrary
data samples with a given number of Gaussian components
theoretically. With the development of data measurement
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and storage techniques, huge amount of historical data of
uncertainty realization would be available, which would
facilitate the application of data-driven uncertainty modeling
methods, such as GMM. Recent applications of GMM on the
CC-OPF demonstrate its fitting ability and better posterior
results than Monte Carlo simulation, multivariate Gaussian
and other common distributions [24], [25]. However, the
number of components in GMM needs to be predetermined,
which indicates overfitting or underfitting may occur if the
component number is chosen inappropriately.

Fortunately, a Bayesian nonparametric method named
Dirichlet process mixture model (DPMM) is developed to
determine the component number of mixture models by
a posterior process [26]. In [27], DPMM is adopted to
set the component numbers for basic uncertainty sets in
the robust unit commitment problem. In [28], a variational
Bayesian interference (VBI) based DPMM method is applied
in wind generation uncertainty modeling, overcoming the
time-consuming shortcoming of Markov chain Monte Carlo
(MCMC) based one. However, DPMM is solved by posterior
calculation and the time cost is inevitable, whatever on
account of MCMC or faster VBI. For high-dimension and
large-size data sets, the time-consuming issue will become
more prominent [29], especially in the online scenario.

One possible avenue to mitigate the time-consuming issue
of the DPGMM based fitting method is to design a double-
track fitting method, which includes an online track and an
offline one. In fact, the online-offline double-track framework
has been employed in many applications of the power system
operation. In [30], the framework is designed with offline
training and online prediction in online voltage stability
assessment, where the offline part is to establish the model
based on database and the online part is updated adaptive
to system changes. To overcome the difficulties of online
learning model update and offline training data preparation,
an active learning solution is proposed to enhance existing
applications by actively interacting with the online prediction
and offline training process in [31]. Based on the mechanism
of knowledge transition and extension, an online search
method for representative risky fault chains is proposed in
[32], where the knowledge in past runs is accumulated offline
and then applied online. Likewise, other works of online-
offline application are also based on the online decision with
the offline reference [33], [34], with a concern the online
model cannot fully represent the real scenario. However, the
online-offline double-track framework has not been applied
to data-driven PDF fitting problems.

In this paper, a Bayesian nonparametric chance-
constrained optimal gas-power flow (CC-OGPF) model along
with its solution procedure are proposed considering the un-
certainty of wind generation outputs. Compared with existing
works, the salient features are summarized as follows.

1) An online-offline double-track approach is proposed to
fit the PDF and cumulative distribution function (CDF) of
the wind generation outputs uncertainty, which is suitable
for rolling horizon OGPF calculation with high-dimension
and large-size data sets. In the offline track, the relatively
time-consuming Dirichlet process Gaussian mixture model
(DPGMM) is employed to determine the reference value of
Gaussian distribution component number; while in the online
track, GMM with different component numbers around the
latest reference value are performed and the fitted distribution

with the minimum Akaike information criterion (AIC) value
is selected as the candidate distribution for chance constraint
conversion.

2) The proposed model is not readily solvable due to the
intractable quadratic chance constraints. An equivalent form
is established for the quadratic chance constraints, where
the decision and random variables become linear separable.
Then, the reformulated chance constraints are converted into
tractable ones with parameterized quantiles of the multivari-
ate GMM according to the results of [35], and the quantiles
can be obtained by the inverse of multiple CDF superposition
function. Hereinafter, the original problem is reformulated
as a computational challenging nonlinear program. A local
optimal and feasible solution can be obtained by solving a se-
ries of mixed integer second-order cone program (MISOCP)
based approximation model sequentially.

II. MATHEMATICAL FORMULATION

A. Objective Function

The objective function of the proposed CC-OGPF model is
to minimize the total out-of-pocket costs of the IEGS, shown
as (1) [6], [7], [36].

F = min
∑
t∈T



∑
u∈U

Cu (put) +
∑
u∈U

C+
u r

+
ut

+
∑
u∈U

C−u r
−
ut +

∑
w∈W

Cwqwt

+
∑
s∈S

C+
s max {0, q+

st − q−st + r+
st}

+
∑
s∈S

C−s max {0, q−st − q+
st + r−st}

+
∑

dg∈Dg

Cdgqdgt +
∑

dp∈Dp

Cdppdpt


. (1)

In (1), the first term represents the generation costs of
the non-gas generators, where Cu(·) is a quadratic function;
the second and third terms are the upward and downward
reserve costs of the non-gas generators, respectively; the
fourth term denotes the production costs of gas wells; the
fifth and sixth terms express the bidirectional regulation costs
of gas storages, including both the base-case and worst-case
scenarios; the last two terms give the penalties for unserved
gas and electrical loads, respectively. It should be noted that
the max{} operator in (1) is convexity-preserving, which can
be easily eliminated by introducing a non-negative auxiliary
variable and a linear constraint [37].

B. Deterministic Constraint Modeling

The constraints of the CC-OGPF model could be classified
into deterministic and chance constraints in terms of the
appearance of random variables. Hereinafter, the constraints
with no random variable are denoted as deterministic con-
straints.

1) Power system operation constraints: Equations (2a)-
(2g) summarize the deterministic constraints of electric
power system [6], [7]. Specifically, equation (2a) gives the
generation capacity of gas-fired and non-gas generators;
equation (2b) describes the ranges of committed reserves
considering the base-case operation points of generators;
equations (2c) and (2d) impose the extreme requirements
of ramping capability of generators with the consideration
of reserve utilization; equation (2e) states the system-level
power balancing condition; equation (2f) demonstrates the
upper bound of the power flow in each transmission line;
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equation (2g) guarantees the non-negativity of the electrical
load shedding.

λ{·}tP {·} ≤ p{·}t ≤ λ{·}tP {·}, {·} = {g, u} ,∀g,∀u,∀t,
(2a)

0 ≤ r+
{·}t ≤ λ{·}tP {·} − p{·}t,

0 ≤ r−{·}t ≤ p{·}t − λ{·}tP {·},
{·} = {g, u}, ∀g,∀u,∀t,

(2b)

(
p{·},t+1 + r+

{·},t+1

)
−
(
p{·}t − r−{·}t

)
≤ λ{·}tP+

{·}
+(1− λ{·}t)P {·}, {·} = {g, u},∀g,∀u,∀t,

(2c)(
p{·}t + r+

{·}t

)
−
(
p{·},t+1 − r−{·},t+1

)
≤ λ{·},t+1P

−
{·}

+(1− λ{·},t+1)P {·}, {·} = {g, u}, ∀g,∀u,∀t,
(2d)∑

g

pgt +
∑
u

put +
∑
r

p̂rt =
∑
dp

(Pdpt − pdpt),∀t, (2e)

−P lp ≤ plpt ≤ P lp , plpt=
∑
r
πrlp p̂rt +

∑
u
πulpput

+
∑
g
πglppgt +

∑
dp

πdplp
(
Pdpt − pdpt

)
,∀lp,∀t, (2f)

0 ≤ pdpt ≤ Pdpt,∀dp,∀t. (2g)

2) Natural gas system operation constraints: Similarly,
equations (3a)-(3l) give the deterministic constraints of nat-
ural gas network [6], [7], [36]. Equation (3a) limits the gas
production of gas wells; equations (3b) and (3c) illustrate the
gas storage model, which includes the storage volume capac-
ity constraint (3b) and the maximum gas charge/discharge
limit (3c); equation (3d) depicts the nodal gas balancing
condition, where Φw (n),Φs (n),Φg (n),Φdg (n) represent
the sets of gas wells, storage tanks, gas-fired generators
and gas loads connected to node n, and Φl1g (n),Φl2g (n)
represent the set of pipelines whose initial or terminal node
is node n; equation (3e) is the Weymouth equation [7], which
describes the relationship between gas node pressure and
the average pipeline flow; equation (3f) shows the nodal
pressure limit; equation (3g) is the simplified gas compressor
model [7], [36], where Φlg (c) represents the set of gas
pipelines equipped with compressors; equation (3h) indicates
the relationship between in-/out-flow of a pipeline with a
compressor, where the fuel consumption rate is usually sub-
ject to [0.03, 0.05]; equation (3i) provides the simplified line
pack model [36], which specifies the relationship between
gas mass and nodal pressures; equation (3j) expresses the
charging and discharging of line pack during operation;
equation (3k) represents the gas consumption of gas-fired
generators [38], where fg(·) denotes the gas consumption
function; equation (3l) guarantees the non-negativity of the
gas load shedding.

Q
w
≤ qwt ≤ Qw,∀w,∀t, (3a)

Q
s
≤ qst = qs,t−1 + q+

st − q−st ≤ Qs,∀s,∀t, (3b)

0 ≤ q+
st ≤ Q+

s , 0 ≤ q−st ≤ Q−s ,∀s,∀t, (3c)∑
lg∈Φl2g

(n)

q−lgt −
∑

lg∈Φl1g
(n)

q+
lgt

+
∑

w∈Φw(n)

qwt −
∑

g∈Φg(n)

qgt

=
∑

dg∈Φdg (n)

(
Qdgt − qdgt

)
−

∑
s∈Φs(n)

(
q−st − q+

st

)
,∀n,∀t,

(3d)

q̄lgt
∣∣q̄lgt∣∣ = χlg

(
z2
l1gt
− z2

l2gt

)
, q̄lgt =

(
q−lgt + q+

lgt

)
/2,∀lg,∀t,

(3e)
Zn ≤ znt ≤ Zn,∀n,∀t, (3f)

zl2gt ≤ Γclgzl1gt, lg ∈ Φlg (c) ,∀c,∀t, (3g)

(1− βc)q+
ct − q−ct = 0,∀c,∀t, (3h)

mlgt = ηlg

(
zl1gt + zl2gt

)
,∀lg,∀t, (3i)

mlgt = mlg,t−1 + q+
lgt
− q−lgt,∀lg,∀t, (3j)

qgt = fg(pgt) = a′gλgt + a′′gpgt + a′′′g (pgt)
2,∀g,∀t, (3k)

0 ≤ qdgt ≤ Qdgt,∀dg,∀t. (3l)

C. Chance-constrained Modeling

To mitigate the deviation of actual outputs of wind genera-
tion from their predicted values, reserves are committed from
both gas-fired and non-gas generators and utilized based on
the linear decision rule [13]. Meanwhile, the hard constraints
with random variables are relaxed as chance constraints, as
shown in (4a)-(4d), in order to reduce the conservativeness
of the OGPF solution.

∆p̃rt := p̃rt − p̂rt,∀r, Ωt :=
∑
r∈R

(p̃rt − p̂rt) ,∀t, (4a)

Pr
(
−α{·}tΩt ≤ r+

{·}t

)
≥ 1− ε, {·} = {g, u} ,∀g,∀u,∀t,

(4b)
Pr
(
α{·}tΩt ≤ r−{·}t

)
≥ 1− ε, {·} = {g, u} ,∀g,∀u,∀t,

(4c)

Pr


∑
r∈R

πrlp∆p̃rt +
∑
u∈U

πulp(−αutΩt)

+
∑
g∈G

πglp(−αgtΩt) + plpt ≤ P lp

 ≥ 1− ε,

Pr


∑
r∈R

πrlp∆p̃rt +
∑
u∈U

πulp(−αutΩt)

+
∑
g∈G

πglp(−αgtΩt) + plpt ≥ −P lp

 ≥ 1− ε,

∀lp,∀t.
(4d)

In this formulation, (4a) defines the individual and total
deviation of wind generation outputs; (4b) and (4c) manifest
the outputs adjustment of generators, i.e. −α{·}tΩt, should
fall in the scope of the committed reserves with the probabil-
ity higher than (1−ε); (4d) indicates the overload probability
of each transmission line should not exceed ε considering the
deviation of wind generation outputs as well as utilization of
reserves.

Considering the affine rule of reserve regulation, the actual
outputs of gas-fired generators become random along with
the outputs of wind generation. Consequently, the uncertainty
of wind generation outputs in the power network would be
transmitted to the gas network via the energy conversion
devices, which are the gas-fired generators in this work,
considering the mapping between the outputs of gas-fired
generators and their gas consumption. In fact, the deviation
of actual gas consumption of gas-fired generators from their
base-case values could be easily obtained by parameterizing
(3k) with pgt and (pgt − αgtΩt), respectively, as shown in
(5).

∆q̃gt = a′′′g α
2
gtΩ

2
t − a′′gαgtΩt − 2a′′′g αgtΩtpgt,∀g,∀t. (5)
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Considering the relative slow gas flow dynamics, the
uncertain gas fuel demands of the gas-fired generators may
not be fully mitigated by merely regulating the outputs of
gas wells. Therefore, gas storages are usually equipped at
the same gas node as the gas-fired generators so as to buffer
the impacts of gas fuel uncertainties on the gas network
operation [17], [19], which is captured by (6).

∆q̃st = ∆q̃gt, s ∈ Φs (g) ,∀g,∀t. (6)

As the gas reserve providers in the gas network, the op-
eration of gas storages should obey the charging/discharging
rate and capacity constraints under the worst-case reserve
utilization scenarios, which are depicted by (7) and (8),
respectively.

0 ≤ r+
st ≤ Q+

s − q+
st, 0 ≤ r−st ≤ Q−s − q−st,∀s,∀t, (7)

Q
s
≤ qst −

t∑
τ=1

r−sτ , qst +
t∑

τ=1

r+
sτ ≤ Qs,∀s,∀t. (8)

Similarly, the gas reserve adequacy constraints are relaxed
as chance constraints, as shown in (9).

Pr
(
∆q̃st ≤ r−st

)
≥ 1− ε,∀s,∀t, (9a)

Pr
(
∆q̃st ≥ −r+

st

)
≥ 1− ε,∀s,∀t. (9b)

As the uncertainty of gas storage outputs adjustment
originate from the uncertainties of wind generation outputs,
∆q̃st in (9) can be substituted by the expressions containing
Ωt in (5) and (6), and the chance constraints in the gas
network can be reformulated as

Pr
(
a′′′g α

2
gtΩ

2
t − a′′gαgtΩt − 2a′′′g αgtΩtpgt ≤ r−st

)
≥ 1− ε,

s ∈ Φs (g) ,∀g,∀t,
(10a)

Pr
(
a′′′g α

2
gtΩ

2
t − a′′gαgtΩt − 2a′′′g αgtΩtpgt ≥ −r+

st

)
≥ 1− ε,

s ∈ Φs (g) ,∀g,∀t.
(10b)

It should be noted that (10) admits a set of nontrivial
constraints, owing to the existence of nonlinear terms of
random variables.

Remark: It should be highlighted that the gas load uncer-
tainty could be considered and its impacts on the gas network
operation would also be described by chance constraints.
New variables should be defined as follows: Q̃dgt represents
the actual gas load demands, ∆Q̃dgt represents the gas
load deviation from the predicted value Qdgt, r

g+
st and rg−st

represent the committed reserve for gas load uncertainty, rp+st
and rp−st represent the committed reserve for the uncertainty
of gas-fired generator fuel consumption.

The chance constraints brought by the gas load uncertainty
model are shown in (11).

Pr
(

∆Q̃dgt ≤ r
g−
st

)
≥ 1− ε,∀s,∀t, (11a)

Pr
(

∆Q̃dgt ≥ −r
g+
st

)
≥ 1− ε,∀s,∀t. (11b)

Accordingly, the chance constraints (9) originated from
the gas demand uncertainty of gas-fired generators should
be modified as (12).

Pr
(
∆q̃st ≤ rp−st

)
≥ 1− ε,∀s,∀t, (12a)

Pr
(
∆q̃st ≥ −rp+st

)
≥ 1− ε,∀s,∀t. (12b)

In addition, the following auxiliary constraints for the gas
reserves should be considered.

rg+st + rp+st = r+
st, r

g−
st + rp−st = r−st,

rg+st , r
p+
st , r

g−
st , r

p−
st ≥ 0, ∀s,∀t.

(13)

III. SOLUTION METHODOLOGY

Though the CC-OGPF model has been established in
Section II, three major challenges need to be addressed
before importing the proposed model to commercial solvers.
(1) How to construct a precise and analytical PDF for the
uncertainty? (2) How to equivalently convert the chance con-
straints, especially the quadratic ones, into normal ones? (3)
How to solve the reformulated CC-OGPF model considering
the computational challenging Weymouth equations? These
three challenges would be overcome in the three subsections
of Section III, whose layout is shown in Fig.1.

Quadratic equalities 

Linear constraints
Linear separable 

chance constraints 

Quadratic chance 

constraints Quadratic equalities

Section III. C  Solving the 

reformulated CC-OGPF

Taylor expansion

Second-order cone

Feasibility 

recovery
Fitted 

distribution

DPGMM

Online track

Section III. A  Data-driven PDF fitting

Section III. B  Chance constraint conversion

Offline track

Second-

order cone

Nonconvex 

inequalities

GMM+AIC

Fig. 1. Layout of Section III.

A. DPGMM based Distribution Construction

As aforementioned, GMM could be adopted to generate
a candidate distribution for the uncertainties. However, the
component number for GMM training, which is a crucial
parameter on the performance of the training results, has
to be predetermined. For the ease of analysis, the general
expression for GMM for multivariate vector X is presented
as follows.

GMMX =
I∑
i=1

πiNi (µi,Σi),
I∑
i=1

πi = 1, (14)

where I and i are the component number and index, respec-
tively; πi denotes the component weight; Ni represents the
multivariate Gaussian distribution with µi and

∑∑∑
i as the

mean and the covariance, respectively.
Dirichlet process (DP) is a random process for the

Bayesian nonparametric model, which is commonly used for
the prior of DPGMM. It can be viewed as a probability
distribution over the space of distributions [39] to draw
the distribution as a sample, while its margin distribution
of finite dimensions is the Dirichlet distribution. Suppose
a random distribution G follows the DP denoted as G ∼
DP (α,G0), where α represents the concentration parameter,
G0 is a base measurement over space Θ. For any atom
location (θ1, · · · , θi) of Θ, holds (G(θ1), · · · , G(θi)) ∼
Dirichlet (αG0(θ1), · · · , αG0(θi)), where Dirichlet repre-
sents the Dirichlet distribution.

To overcome the subjectivity while choosing the compo-
nent number of the Gaussian mixture model, a DPGMM
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based distribution construction method is proposed. Follow-
ing the stick-breaking process, the random sampling from DP
is supposed to be G =

∑∞
i πiδθi , where δθi is Dirac delta

measurement and πi = βiΠ
i−1
j=1(1−βj) is the weight on atom

θi ∈ Θ, βj ∼ Beta(1, α), the atom location θi subjects to
base probability measurement G0 [40]. Drawing from DP
with hierarchical label lk, the formulation of DPGMM is
presented in equations (15a)-(15c).

{πi, θi}∞i=1 ∼ DP (α,G0) , (15a)

lk ∼ Cate ({πi}∞i=1) , (15b)

ok ∼ F (θlk) . (15c)

In this formulation, DP denotes the Dirichlet process;
G0 is the inverse Wishart distribution; α represents the
concentration parameter and determines the distribution of
πi; θi consists of a mean vector µi and a covariance matrix
Σi; Cate is a multinomial distribution; lk represents the
hierarchical label of observations; k is the hierarchical index;
F is the likelihood of θlk , which is a multivariate Gaussian
distribution; ok represents the datapoint in the dataset of
F (θlk).

By performing DPGMM, the number, mean vectors and
covariance matrices of the multivariate Gaussian distributions
Ni can be obtained. It should be noted that it would be
much more time-consuming if DPGMM is employed to
construction the uncertainty distribution instead of GMM.
The reason is that additional sampling procedure has to
be performed in the posterior process of DPGMM. Com-
mon sampling methods include Markov chain Monte Carlo
(MCMC) and automatic differentation variational inference
(ADVI), where the latter is much faster. However, DPGMM
with ADVI could still be time-consuming while the size
and dimensionality of the data set are huge, making it less
attractive to real-world online applications. Therefore, an
online-offline double-track approach is proposed to fit the
distributions of the uncertainties combining the benefits of
GMM and DPGMM, whose schematic diagram is shown in
Fig.2. The solution process is shown as Algorithm 1.

In the offline track of proposed PDF fitting approach, a
series of DPGMMs are sequentially performed with the latest
data set, where each DPGMM could provide a reference
value of the component number, denoted as Nj . Simulta-
neously, a series of GMMs are generated in parallel with the
given component number range [Nj−k,Nj+k] in the online
track, and the GMM with the minimum AIC value would be
selected to construct the uncertainty distribution [41], [42].
Especially, this approach is also effective for the uncertainty
characterization of wind farms, load demands, photovoltaic
generation outputs, and the line ratings of overhead lines.

B. Reformulations of Chance Constraints with DPGMM

The chance constraints in the proposed model include two
parts, namely (4b)-(4d) and (10a)-(10b), where the former
part admits a relatively simple structure, as the random and
decision variables are linear separable, and the latter one is
more complex, due to the appearance of continuous linear
products of random and decision variables as well as the
quadratic terms of random variables.

Algorithm 1 Online-offline double-track PDF fitting.
1: Initialization Prepare the initial training data set. Set

value for k. Set i = 1 and j = 1. Set the online track
activation flag Λ = 0.

2: Offline
i. Update the training data
set.
ii. Run jth DPGMM.
Record the component
number Nj . Set Λ = 1.
Send Nj to the online
track.
iii. Set j = j + 1 and re-
peat Step 2.i of the offline
track.
Online
i. If Λ = 1, go to Step 2.ii
of the online track; other-
wise, go to Step 2.i of the

online track.
ii. Update the training data
set and Nj .
iii. Run a series of GMMs
with component range
[Nj−k, Nj+k]. Calculate
the AIC index for the fitted
GMMs. Select the GMM
with the least AIC index
as the fitted PDF for ith

decision.
iv. Set i = i + 1 and re-
peat Step 2.ii of the online
track.

Using the method of completing square, equivalent forms
of (10a)-(10b) can be derived as

Pr

(
r−st
a′′′g

+

(
pgt +

a′′g
2a′′′g

)2

≥
(
pgt − αgtΩt +

a′′g
2a′′′g

)2
)

≥ 1− ε, s ∈ Φs (g) ,∀g,∀t,
(16a)

Pr

((
pgt − αgtΩt +

a′′g
2a′′′g

)2

≥
(
pgt +

a′′g
2a′′′g

)2

− r+
st

a′′′g

)
≥ 1− ε, s ∈ Φs (g) ,∀g,∀t.

(16b)

Proposition 1. The linear separable chance constraints
(17a)-(17b) together with the corresponding auxiliary con-
straints (17c)-(17d) are equivalent to (10a)-(10b).

Pr
(
pgt − αgtΩt + a′′g/2a

′′′
g ≤ h−gt

)
≥ 1− ε,∀g,∀t, (17a)

Pr
(
pgt − αgtΩt + a′′g/2a

′′′
g ≥ h+

gt

)
≥ 1− ε,∀g,∀t, (17b)

(h−gt)
2 = r−st/a

′′′
g +
(
pgt + a′′g/2a

′′′
g

)2
, s ∈ Φs (g) ,∀g,∀t,

(17c)
(h+
gt)

2 = −r+
st/a

′′′
g +
(
pgt + a′′g/2a

′′′
g

)2
, s ∈ Φs (g) ,∀g,∀t.

(17d)
In (17), h+

gt, h
−
gt are auxiliary variables.

The proof of Proposition 1 can be found in the Appendix.
Then the chance constraints in the proposed model can be

summarized as the compact form as follows.

Pr
(
a>x+ b>ξ ≤ e

)
≥ 1− ε, (18)

where a, b, e are coefficients; x and ξ are the decision and
random variables, respectively.

Thanks to the results in [35], (18) can be equivalently
reformulated as

e− a>x ≥ G−1
b>ξ

(1− ε) , (19)

if the PDF of ξ admits a multidimensional GMM and
ε ≤ 0.5. In (19), G is the CDF of the random variable
b>ξ and G−1 represents the quantile of b>ξ with the
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Fig. 2. Schematic diagram of the proposed double-track PDF fitting approach.

violation probability ε. According to [24], the CDF of b>ξ
equals to a weighted sum of the CDFs of standard Gaussian
distributions, which is

Gb>ξ (y) =
I∑
i=1

πiGN

(
y − b>µi√
b>Σib

)
. (20)

In (20), GN is the CDF of standard Gaussian distribution and
the rest notations are the same as (14). Given the constraint
violation probability ε, the quantile can be easily calculated
based on the results of DPGMM.

C. Approximations of the Quadratic Equalities

In the previous subsection, the intractable chance con-
straints have been converted into a set of linear inequalities
and quadratic equalities. The remaining difficulties would be
the nonconvex Weymouth equation (3e), the quadratic gas
consumption equality of gas-fired generators (3k), and the
auxiliary quadratic equalities (17c)-(17d), where the Wey-
mouth equation suggests more computation efforts, due to the
existence of absolute value signs and the quadratic equality
feature. In fact, (3e) has the the Big-M based equivalent form,
as shown by (21) [19].

M
(
ψlgt − 1

)
≤ zl+g t−zl1gt ≤M

(
1− ψlgt

)
,∀lg,∀t, (21a)

−Mψlgt ≤ zl+g t − zl2gt ≤Mψlgt,∀lg,∀t, (21b)

−Mψlgt ≤ zl−g t − zl1gt ≤Mψlgt,∀lg,∀t, (21c)

M
(
ψlgt − 1

)
≤ zl−g t−zl2gt ≤M

(
1− ψlgt

)
,∀lg,∀t, (21d)

q̄2
lgt = χlg

(
z2
l+g t
− z2

l−g t

)
,∀lg,∀t, (21e)

where ψlgt is the binary variable; zl+g t and zl−g t are auxiliary
variables representing the head and tail pressure of the actual
gas flow; M is a sufficient large number. Further, (21e) can
be divided into a pair inequalities as (22a) and (22b).

q̄2
lgt + χlgz

2
l−g t
− χlgz2

l+g t
≤ 0,∀lg,∀t, (22a)

χlgz
2
l+g t
≤ q̄2

lgt + χlgz
2
l−g t
,∀lg,∀t. (22b)

It should be noted that (22a) is convex and can be cast
into a standard SOC constraint, while (22b) is nonconvex.

Therefore, the first-order Taylor expansion at the given point
{q̄∗lgt, z

∗
l−g t
} is employed to approximate the right side of

(22b), which reads

q̄2
lgt

+ χlgz
2
l−g t
≈
(

2q̄∗lgtq̄lgt − (q̄∗lgt)
2
)

+ · · ·

+χlg

(
2z∗
l−g t
zl−g t − (z∗

l−g t
)2
)
,∀lg,∀t.

(23)

By adding positive slack variables to the approximated
counterpart of (22b), penalizing their weighted sum in the
objective function, and solving a series of MISOCPs sequen-
tially, a local optimal but feasible solution can be obtained.
Similar treatment can be found in [8] and [38].

For (3k), it can be directly relaxed as the following convex
inequality

qgt ≥ a′gλgt + a′′gpgt + a′′′g (pgt)
2,∀g,∀t, (24)

due to the fact that the gas fuel costs are minimized in the
objective function (1) [38].

The auxiliary quadratic equalities (17c)-(17d) can be con-
verted to (25) and (26) with auxiliary variables h′gt and
h′′gt, which is similar to the treatment for equality (21e).
The details of the solution feasibility recovery algorithm for
quadratic equalities can be found in Algorithm 2.

(h′gt)
2 +

(
pgt + a′′g/2a

′′′
g

)2 ≤ (h−gt)
2,∀g,∀t, (25a)

(h−gt)
2 ≤ (h′gt)

2 +
(
pgt + a′′g/2a

′′′
g

)2
,∀g,∀t, (25b)

(h′gt)
2 ≤ r−st/a′′′g , s ∈ Φs (g) ,∀g,∀t, (25c)

r−st/a
′′′
g ≤ (h′gt)

2, s ∈ Φs (g) ,∀g,∀t, (25d)

(h′′gt)
2 + (h+

gt)
2 ≤

(
pgt + a′′g/2a

′′′
g

)2
,∀g,∀t, (26a)(

pgt + a′′g/2a
′′′
g

)2 ≤ (h′′gt)
2 + (h+

gt)
2,∀g,∀t, (26b)

(h′′gt)
2 ≤ r+

st/a
′′′
g , s ∈ Φs (g) ,∀g,∀t, (26c)

r+
st/a

′′′
g ≤ (h′′gt)

2, s ∈ Φs (g) ,∀g,∀t. (26d)

IV. CASE STUDY

In this section, simulation results on two test systems
are provided to validate the effectiveness of the proposed
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Algorithm 2 CCP based Solution Feasibility Recovery.
1: Taking the general form of the quadratic equality as an

example, it can be approximated by (27a) and (27b),
where x is the one-dimension decision variable, y is the
n× 1 decision vector, j and t are indexes.

yTjtyjt ≤ x′jtx′′jt,∀j,∀t, (27a)

x′jtx
′′
jt ≤ yTjtyjt ≈ 2yTjty

0
jt − (y0

jt)
Ty0

jt,∀j,∀t. (27b)

An initial point can be obtained by solving the reformu-
lated CC-OGPF model with (27a). Then, (27b) can be
derived with the initial point.

2: Set iteration index n = 1. Select values for δ1, δ2, ρ1,
ρmax, nmax and κ > 1.

3: Set the values of ynjt, ς
n
jt as the solution of following

problem. Compared with (1), the penalty term for ςnjt
has been considered.

FnSSA = min

F + ρn
∑
t

∑
j

ςnjt

 .

s.t. basic constraints excluding (27b),

(x′jt)
n(x′′jt)

n − 2(ynjt)
Tyn−1

jt + (yn−1
jt )Tyn−1

jt ≤ ςnjt,

ςnjt ≥ 0, ∀j,∀t.

4: Set ρn+1 = min (κρn, ρmax). If convergence criteria
(28) and (29) are satisfied, then quit; else if n > nmax,
then quit; else, set n = n+ 1 and go back to Step 3.∣∣FnCCP − Fn−1

CCP

∣∣ ≤ δ1, (28)

ςnjt ≤ δ2 ·min

{ ∣∣(x′jt)n(x′′jt)
n
∣∣ ,∣∣2(ynjt)

Tyn−1
jt − (yn−1

jt )Tyn−1
jt

∣∣ },∀j,∀t. (29)

methods. All tests are implemented on a laptop with Intel
Core i5 and 4 GB RAM. DPGMM is coded in Python with
PyMC3 and the rest are coded in MATLAB with YALMIP
toolbox. The reformulated CC-OGPF model is solved by
Gurobi.

A. Test System Configuration

The first test system consists of a 5-bus power network and
a 7-node gas network, denoted as TS-I hereinafter. It has 1
non-gas generator, 2 gas-fired generators, 2 wind farms, 3
electrical loads, 2 gas wells, 1 compressor, 3 gas storages
and 3 gas loads. The topology of TS-I is shown in Fig.3.
The gas fuel of the two gas-fired generators G1 and G2

come from gas nodes 4 and 7, respectively. The parameters of
TS-I, operation status of generators, wind generation outputs
curves and the demand curves can be found in [43].

The second test system includes a modified IEEE 118-
bus power network and a 48-node gas network, which is
denoted as TS-II. There are 44 non-gas generators, 10 gas-
fired generators, 9 wind farms, 30 electrical loads, 9 gas
wells, 8 compressors, 19 gas storages and 11 gas loads in TS-
II. Refer to [43] for the topology of TS-II and the modeling
parameters of CC-OGPF.
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Dg1
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W: Gas well     C: Gas compressor     S: Gas storage tank     Dg: Gas load 

Fig. 3. Topology of TS-I.

B. Simulation Results

TS-I is selected as the testbed to verify the effectiveness of
the proposed methods. The number of time periods is set as
T = 24. 3,000 samples are generated, where 2,000 of them
are used to construct the reference distribution and the rest
1,000 are employed to validate the effectiveness. As there
are two wind farms in TS-I, each sample is a 48-dimension
vector. The constraint violation probability is selected as 5%.

1) Comparison with other uncertainty related decision-
making models: Other than the adopted chance-constrained
modeling approach, the scenario-based stochastic optimiza-
tion (SO) and the uncertainty set based robust optimization
(RO) methods are also common methods for uncertainty
quantification. The scenario-based SO method proposed in
[44] and the RO method proposed in [45] are reproduced
for comparison, where 20 of the 2,000 training samples
are randomly selected as the representative scenarios in the
SO method and the boundaries of the uncertainty set in
the RO method are chosen as the boundaries of training
samples, respectively. The operation costs and constraint
average violation rates are gathered in Table I. It can be
observed that the operation costs and constraint average
violation rate of the robust method are the highest and lowest,
respectively, as it can provide feasibility guarantee for all
the data samples, resulting in over-conservative operation
strategy. The scenario-based SO method can offer the most
economic operation strategy, however, its constraint violation
rate is the highest, due to the limited description capability
of the selected scenarios. The operation costs of the chance-
constrained modeling method is moderate, as all the histori-
cal data samples are employed in constructing the uncertainty
distribution.

TABLE I
SIMULATION RESULTS UNDER DIFFERENT UNCERTAINTY

QUANTIFICATION METHODS.

Methods Operation costs ($) Average violation rate (%)

Robust 2.6227×106 0
Scenario-based 2.0170×106 12.37

Chance-constained 2.1818×106 5.03

2) Comparison with parametric fitting models: The fitting
performances of different models are demonstrated in Fig.4,
where only the PDFs of the two wind farms at period 1
are shown due to space limitation. In those two figures,
GMM-2 and GMM-3 denote the Gaussian mixture model
with 2 and 3 components, respectively. It can be observed
that the fitted PDFs of Gaussian, GMM-2 and GMM-3
are significantly different from the histogram of reference
distribution, while the PDF constructed by the DPGMM
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Fig. 4. Fitted PDFs of the two wind farms at period 1.

is quite close to the reference distribution. Though there
are three or four observable peaks in the PDFs of the
reference distribution, the component number calculated by
the DPGMM is 7, reflecting the difficulty of choose a proper
component number for the GMM.

The numerical performances of different fitting methods
are summarized in Table II. According to (14), the number
of tuned parameters would grow along with the number of
components in GMM, suggesting the increment of fitting
time as well. The results in the second column of Table
II are consistent with the above analysis. The fitting time
of the DPGMM is the longest, as its component number
is 7. The costs of the decisions and their aftermath are
gathered in the third and fourth columns of Table II, where
the performances of the DPGMM and the Gaussian distri-
bution are the best and the worst, respectively. The reserve
commitment results under the four PDFs are shown in Fig.5
and Fig.6, which explain the differences of decision costs
and constraint violation probabilities. In Fig.5 and Fig.6, the
reserve commitment strategy of the Gaussian distribution
driven model is significantly different from the rest three,
while the differences among GMM-2, GMM-3 and DPGMM
are small. The last column of Table II exhibits the AIC index,
which characterizes the statistical distance between the fitted
distribution and the reference one. As the AIC of DPGMM
is the smallest, the fitted PDF would be the “closest” to the
reference distribution, resulting in fair performances in both
decision costs and constraint violation probability.

TABLE II
PERFORMANCE OF DIFFERENT PDF FITTING METHODS.

Methods Time (s) Objective ($)
Violation

AICrate (%)

Gaussian 0.827 2.1952× 106 12.75 3.1644× 104

GMM-2 1.824 2.1917× 106 4.85 2.9637× 104

GMM-3 2.651 2.1821× 106 5.55 2.8956× 104

DPGMM 7.348 2.1818× 106 4.85 2.8167× 104

3) The feasibility of the OGPF solution: The feasibility
of the solution from the relaxed model and the proposed
one is shown in Table III. It can be observed that the
maximum relative gap of the relaxed solution w.r.t the
original constraints, defined as (30), could be 48.41%, which
is obviously infeasible. After performing the CCP based
feasibility recovery algorithm, the maximum relative gap re-
duces to 6.55×10−5%, and the solution could be regarded as
a feasible one, demonstrating the effectiveness of Algorithm
2.
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Fig. 5. Committed electrical upward reserves.
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Fig. 6. Committed electrical downward reserves.

max

∣∣∣∣∣x′jtx′′jt − yTjtyjtx′jtx
′′
jt

∣∣∣∣∣× 100%,∀j,∀t. (30)

The iteration criterion of CCP is shown in Fig.7, where the
left figure represents the iteration of the objective function
and the right one represents the iteration of the relative
gap defined as (30). It can be observed that the solution
becomes a feasible one after three iterations, reflecting the
well convergence performance of the devised algorithm.

Fig. 7. Iteration criterion of CCP.

4) The necessity of considering the gas network model:
Fig.8 shows the gas demands of the gas-fired generators
with/without the gas network. Fig.9 shows the nodal pressure
of the connecting nodes of the gas-fired generators, where
the initial and terminal nodes of the gas delivery pipeline for
gas-fired generator G1 are gas nodes n3 and n4, respectively,
and those for gas-fired generator G2 are gas nodes n6 and
n7, respectively.

In Fig.8, the impact of the gas network on power system
operation can be observed. Comparing the result without
the gas network model, the gas demands from gas-fired
generators would be decreased. The reason is that the oper-
ation constraints of the gas network would impose addition
limitations on the operation strategy of gas-fired generators,
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TABLE III
SOLUTION FEASIBILITY TEST RESULTS.

Maximum relative gap (%)

Solution of the relaxed model Solution with feasibility recovery

48.41 6.55×10−5
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Fig. 8. Gas demands of the gas-fired generators.

which would affect their gas demands in return. If we take
a look at the nodal pressure curves, it can be found that the
pressures of the initial and terminal nodes of gas delivery line
for gas-fired generation G1 have simultaneously reached its
upper and lower bounds after period 7, respectively, which
leads to the maximum pressure drop and also reflects the
gas delivery bottleneck. Thus, the available gas for gas-fired
generator G1 would decrease after adding the gas network
model. At this moment, the nodal pressure of the gas delivery
for gas-fired generator G2 are far away from their boundaries.
Therefore, its gas delivery is much more flexible. In some
time periods, say period 15 to period 19, the consumed
gas is even more after considering the gas network model,
though its total consumed gas throughout the 24 periods has
decreased as well.

C. The Effectiveness of the Double-track Fitting Approach

The proposed double-track PDF fitting method is imple-
mented on a rolling-horizon decision-making case, where the
time interval and the number of time periods are chosen
as 5 minutes and 24, respectively, so as to coordinate
with the one-short runtime of DPGMM. The simulation
for the rolling-horizon operation lasts for 100 times. The
initial PDF-training sample set has 2, 000 samples and the
constraint violation rate is set as 5%.
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Fig. 9. Nodal pressure of the gas delivery pipelines for gas-fired generators.

Fig.10 shows the trajectory of the Gaussian component
reference number from the DPGMM. It can be observed
that the component number stays at 4 in the first 13 runs
and becomes 6 at the 14th run, reflecting the impacts of the
recent accumulated data. After that, the component number
starts fluctuating in the interval of [5, 9] and stops at 6
when the simulation terminates, demonstrating the necessity
of persistent run of DPGMM on the offline-track.

Fig. 10. The trajectory of the GMM component reference number using
DP.

The constraint violation rates of the DPGMM based CC-
OGPF model and the other three GMM-based ones are
displayed in Fig.11, where the component numbers of GMM
models are chosen as 1, 2 and 3, respectively. The constraint
violation rate of the Gaussian case is always far beyond
the predetermined value, which is consistent with the result
in Table II. Among the other models, DPGMM-based CC-
OGPF still outperforms GMM-2 and GMM-3 based ones, as
it has the lowest average constraint violation rate, which is
5.26%.
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Fig. 11. Comparison of constraint violation rates during rolling-horizon
decision-making.

D. Impacts of the Gas Load Uncertainty

The impact of gas load uncertainty on the upward reserves
of the IEGS is shown in Fig.12, where the first three sub-
figures describe the electric reserves and the last three depict
the gas reserves. If the gas load uncertainty is not considered,
there would be positive proportional relationship between
the electric reserve from the gas-fired generator and the gas
reserve from its connected gas storage, as reflected by the or-
ange bars in Fig.12b & Fig.12e and Fig.12c & Fig.12f. After
considering the gas load uncertainty, part of the regulation
capability of gas storages would be assigned to mitigating
the gas load uncertainty, resulting in the reduction of gas
reserve for gas-fired generators. Accordingly, the electric
reserve from gas-fired generators would decrease, and the
electric reserve from the non-gas generator would increase.
It should be highlighted that there is no gas-fired generator
connected to gas storage S1, therefore, the committed gas
reserve in the no-gas-load-uncertainty case is zero.

E. Sensitivity Tests

1) Impacts of Violation Probability: In what follows, the
impacts of violation probability on the OGPF strategy would
be analyzed. In Table IV, the total costs, operation costs of
the power network as well as the gas network would increase
while the violation probability decreases, as the impacts of
uncertainty can be broadcasted from the power network to
the gas-related part through energy conversion facilities.

TABLE IV
IMPACTS OF VIOLATION PROBABILITY ON OPERATION COSTS.

Violation
probability

Operation costs ($)

Power network Gas network Total

10% 7.3819× 105 1.2426× 106 1.9808× 106

5% 8.4020× 105 1.3416× 106 2.1818× 106

1% 1.0048× 106 1.5001× 106 2.5048× 106

The violation rates of different types of constraints under
different violation probability values are listed in Table V,
where the values in the 2nd to the 4th columns are quite close
to the expected violation rates. Two nontrivial observations
need to be highlighted: i. the random variables affect both
the line capacity and reserve constraints in an affine way
and the reserve costs have been considered in the operation
objective, therefore, the electrical reserve and gas storage
regulation inequality constraints would be tight. However,

the line capacity constraints may not be tight, which means
there might be extra capacity for transmission lines when
the reserve constraints become tight, resulting in smaller
violation rates for line capacity constraints; ii. the violation
rates for reserve and gas storage constraints are different due
to the quadratic relationship between the consumed gas and
outputs of the gas-fired units, which should be the same if
the fuel consumption of gas-fired units is linear w.r.t. their
outputs.

TABLE V
DETAILED CONSTRAINT VIOLATION RATES UNDER DIFFERENT

VIOLATION PROBABILITY VALUES.

Violation probability
Violation rate (%)

Line capacity Reserve Gas storage

10% 10.10 10.31 10.86
5% 4.79 5.09 5.04
1% 0.80 1.10 1.05

2) Impacts of Sample Set Size: Three different sizes of
samples are drawn from the original training data pool with
2,000 samples to construct the reference distribution, which
are chosen as 300, 500, and 1,000, respectively, and all the
fitted PDFs are tested by the same testing data set formed
by 1,000 samples. Specifically, the smaller sample set is the
subset of the larger one. The simulations are repeated 5 times
and the results are gathered in Table VI.

TABLE VI
IMPACTS OF SAMPLE SET SIZE ON CONSTRAINT VIOLATION RATES.

Sample Number
Violation rate (%)

Line capacity Reserve Gas storage

300

max 5.15 6.90 7.01
mean 4.66 5.91 5.99
min 4.23 5.14 5.26

500

max 5.04 5.87 5.95
mean 4.63 5.18 5.28
min 4.31 4.64 4.69

1000

max 5.03 5.99 5.94
mean 4.61 5.13 5.27
min 4.31 4.77 4.78

As the sample size grows, the ranges of the violation rates
of three different types of constraints decrease, which shows
the performance would become more stable with more avail-
able samples. Meanwhile, the two nontrivial observations in
from Table V can also be found in Table VI, confirming the
effectiveness of the proposed methods.

F. Scalability Tests

The proposed methods are performed on TS-II to check
their scalability. Similarly, 2,000 samples are imported to
the DPGMM model and the expected constraint violation
rate is selected as 5%. The simulation is repeated 20 times.
Table VII gathers algorithmic performances of solving the
CC-OGPF model. It can be observed that the calculation
time for a moderate test system is acceptable and the iteration
number of the SOC-based algorithm in Section III.C is quite
stable, revealing the promising performance of the proposed
methods on real-world cases.

The effectiveness of the proposed online-offline double-
track PDF fitting method is verified by a series of 100-time
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Fig. 12. Upward electric/gas reserves with/without gas load uncertainty.

TABLE VII
SIMULATIONS RESULTS OF TS-II.

Calculation time (s) Iteration number

max 638.325 4
mean 594.596 4
min 575.278 4

sequential decision-making, where the initial data set has
2, 000 samples and the expected constraint violation rate is
set as 5%. In this case, the dispatch time interval is set as
15 minutes, which is coordinated with CC-OGPF decision.
The marginal PDFs of the wind farm outputs with the initial
data set and the one in the 100th decision at time period 1 are
shown in Fig.13 and Fig.14, respectively, where only the first
three wind farms with the smallest index number are shown
for simplicity. It can be observed that the component numbers
of Gaussian distributions have changed significantly, as the
result of data accumulation, demonstrating the necessity of
the proposed non-parametric PDF fitting method.

Fig. 13. The initial marginal PDFs of the first three wind farms at time
period 1.

The variation curve of the Gaussian component reference
number during the 100 decisions is shown in Fig.15, where
the component number varies from 25 to 40. Meanwhile, no
obvious monotonicity pattern can be found in this curve,
as the result is completely data-driven. Therefore, it is
difficult to predetermine the reference number of Gaussian
distribution. The constraint violation rate curves w.r.t. the
testing data set with different PDF fitting methods, namely

Fig. 14. Marginal PDFs of the first three wind farms at time period 1 after
100 decision sequences.

Gaussian, GMM-2, GMM-10 and DPGMM are shown in
Fig.16. Similar with the results in Fig.11, the performance
of Gaussian distribution is far below expectation. The results
of GMM-2, which is quite close to the DPGMM in TS-
I, become worse, as component number is quite different
from the DPGMM. Even if the component number is set as
10, its average performance over the 100 decisions is still
worse than the DPGMM, revealing the effectiveness of the
proposed PDF fitting method.

Fig. 15. The trajectory of the GMM component reference number using
DP of TS-II.

V. CONCLUSION

This paper addresses two vital issues which are barely
discussed in the research works on CC-OGPF calculation: i.
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Fig. 16. Comparison of constraint violation rates during rolling-horizon
decision-making of TS-II.

how to fit the uncertainty distribution using analytical meth-
ods in a fully data-driven manner; ii. how to deal with the
difficulty of solving quadratic chance constraints originated
from the quadratic gas consumption terms of gas-fired units.
To this end, a double-track online-offline uncertainty PDF
fitting method is proposed, where the nonparametric feature
of DPGMM and the relatively fast fitting property of the
GMM are combined. The quadratic chance constraints are
equivalently transformed into linear separable regular ones
via reformulation and variable substitution. The remaining
solution difficulties, which are the quadratic equalities, are
handed over to the SOC-based convex-concave procedure.
Simulation results demonstrate better uncertainty PDF fitting
capability as well as closer-to-expectation operation perfor-
mances of the proposed DPGMM based CC-OGPF model
over the other GMM based ones. Future work would focus
on developing DP-based uncertainty models to facilitate the
decision-making of energy systems.

APPENDIX

Proof. According to [22] and [23], the parameters of fuel
consumption functions of gas-fired generators, namely a′′′g ,
a′′g and a′g , are positive.

The quadratic chance constraints of gas storage actually
describe the physical interdependency between the gas-fired
generators and the gas network, and they originate from the
random gas fuel consumption of gas-fired generators, which
means both the base-case and the actual gas fuel consumption
of gas-fired generators should be valid values. In other words,
the outputs of gas-fired generators should be valid values,
which is to say

λgtP g ≤ pgt, pgt − αgtΩt ≤ λgtP g,∀g,∀t. (31)

Then, the non-negativity of (pgt − αgtΩt) would hold
according to (31). The chance constraints of gas storages
could be viewed as conditional chance constraints, where
the random gas fuel demands of gas-fired generator are valid
values. However, it should be noted that we do not actu-
ally require (31) hold for any random wind generation
outputs.

Combining the non-negativity of (pgt − αgtΩt) and r−st,
we have

0 ≤ pgt − αgtΩt + a′′g/2a
′′′
g ,∀g,∀t, (32)

0 ≤ r−st/a′′′g +
(
pgt + a′′g/2a

′′′
g

)2
,∀g,∀t. (33)

Then, one can directly take the square roots of both sides
of the inequality inside the Pr(·) function of (16a). Hence,
(17a) and (17c) equal to (16a).

As r+
st represents the upper bound of the in-flow of gas

storages due to gas consumption decrement of gas-fired
generators, we have

r+
st ≤ fg(pgt)− fg(λgtP g)

= a′′′g p
2
gt + a′′gpgt − a′′′g (λgtP g)

2 − a′′gλgtP g.
(34)

Combining (34), the sign of the right-side of inequality inside
the Pr(·) function of (16b) can be obtained by the following
inequality.

−r+
st/a

′′′
g +
(
pgt + a′′g/2a

′′′
g

)2
=

1

a′′′g

(
a′′′g p

2
gt + a′′gpgt +

(a′′g )2

4a′′′g
− r+

st

)

≥ 1

a′′′g

(
a′′′g (λgtP g)

2 + a′′gλgtP g +
(a′′g )2

4a′′′g

)
≥ 0.

(35)

Consequently, an equivalent form of (16b) would be avail-
able by taking the square roots of both sides of the inequality
inside the Pr(·) function, which is (17b) and (17d).
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