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Abstract—This paper presents a contingency-based stochastic
security-constrained unit commitment to address the integration
of wind power producers to the joint energy and reserve markets.
The model considers ancillary services as a solution to cope with
the uncertainties of the problem. In this regard, a comprehensive
model is considered that maintains the profit of supplementary
services. The contingency ranking is a popular method for re-
ducing the computation burden of the unit commitment problem,
but performing the contingency analysis changes the high-impact
events in previous ranking methods. This paper employs an
intelligent contingency ranking technique to address the above
issue and to find the actual top-ranked outages based on the
final solution. The proposed algorithm simultaneously clears the
energy and reserve based on the mechanism of the day-ahead
market. The main idea of this paper is to develop a framework
for considering the most effective outages in the presence of the
uncertainty of wind power without a heavy computation burden.
Also, energy storage systems are considered to evaluate the
impact of the scheduling of storage under uncertainties. Also, an
accelerated Benders decomposition technique is applied to solve
the problem. Numerical results on a six-bus and the IEEE 118-
bus test systems show the effectiveness of the proposed approach.
Furthermore, it shows that utilizing both wind farms and storage
devices will reduce the total operational cost of the system, while
the intelligent contingency ranking analysis and enough reserves
ensure the security of power supply.

Index Terms—Intelligent contingency ranking, wind power
intermittency, scheduling energy storage, accelerated Benders
decomposition, stochastic security-constrained unit commitment.

NOMENCLATURE
Indices & Sets
b, B, slack Indices of buses, the base case, and slack bus.
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c, g, w Indices of storage, generator, and wind units.
Co/Ge Indices of compression/generation modes.
D, l, k Indices of load, generator blocks, and lines.
e, s, t Indices of contingencies, scenarios, and time.
max/min Indices of maximum/minimum values.
U/D Indices of upward/downward reserves.
Λ, γ, ψ, φ Sets of lines, generators, wind farms, and

storage devices connected to bus b.
Parameters
K,X Base power [MW], reactance of lines [p.u.].
rc Realization price of reserve [$/MWh].
RC Cost of reserve capacity [$/MW].
RU,RD Ramp up/down limits of generators [MW].
SRU, SRD Strat-up/shut-down ramp of generators [MW].
SC,DC,NC Start-up, shut-down and no-load costs [$].
UE Binary status of units in contingencies.
W,CW Available and curtailable wind power [MW].
α Shift of lines’ flow based on re-dispatches.
Ω, η Scenarios’ probability, storage efficiency [%].
λ Incremental cost of units [$/MWh].

Variables
CI Contingency impact variable (ranking index).
I, J Generator, storage on/off binary variables.
S, S(1/2/3) Slack variables of load curtailment [MW].
P, PL Dispatched power and lines’ flow [MW].
R, r Reserve capacity and its realization [MW].
su, sd Start-up and shut-down binary variables.
SE Stored energy of storage [MWh].
T On/off duration of units [h].
δ Voltage angle of different buses [rad].
µ(1/· · · /7) Dual variables in subproblems.

I. INTRODUCTION

ECONOMY and safety are principal concerns of energy
markets. The intermittency of renewable energy sources

(RESs) and unscheduled outage of the components (UOCs)
threaten the security cause many challenges for an optimal
operation [1], [2]. Moreover, the near real-time horizon needs
to introduce effective and straight methods to solve security-
constrained unit commitment (SCUC) and incorporate such
uncertainties. The operation under uncertainty has been inves-
tigated in many studies, but the complexity and computation
burden are their consequences. Additionally, the SCUC prob-
lem becomes more complex while dealing with uncertainties
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TABLE I
TAXONOMY OF PUBLICATIONS IN THE AREA

References Model Optimization Sys.
Uncertainty Reserve Storage

RES Load UOC Check RAC RDC ROC Type CSU

[1] Stochastic MOPSO X X – – – – – – –
[2] Robust Benders X – – – – – – – –
[3] Robust CPLEX – – X X X X X – –
[4] Stochastic CPLEX – – Pre-selected – – – – – –
[5] Economic Dispatch Neural Network – – Online Ranking – – – – – –
[6] Stochastic Decomposed Model X X Pre-selected X – – X – –
[7] Robust Bi-level – X Ranking – – – – – –
[8] Economic Dispatch Ant colony – – Online Ranking – – – – – –
[9] Economic Dispatch Gurobi MATLAB – – Real-time – – – – – –

[10] Stochastic CPLEX X – X – – – – – –
[11] Robust Decomposed Model X – – X X X X ESS X
[12] Robust Benders X X – X X X X – –
[13] Robust-CCG Benders X X X – X – – – –
[14] Deterministic SPEA 2+ X X X X – – X – –
[15] Stochastic ε-constraint – X X X – – – – –
[16] Stochastic Multi-objective X – – X – – – – –
[17] Stochastic Benders X – – X X X – – –
[18] Deterministic – – – X X X X X – –
[19] Robust-CCG Lagrangian X – X X X – – Battery X
[20] Robust CPLEX – – – – – – – PEVs X
[21] Deterministic Gurobi – – – X – – – Battery –
[22] Deterministic Benders – – – X – – – CAES –
[23] Stochastic Benders X – X X – – – PEV x
[24] Stochastic Benders X X X X – – – Battery x
[25] Stochastic Multi-objective X – X X – – – ESS x
[26] Stochastic Decomposed Model X X X X X X X Battery X
[27] Robust Benders X X – – – – – – –
[28] Stochastic Benders X – X X X X X ESS x
[29] Stochastic Benders X X X X X X X – –
[30] Stochastic Accelerated Benders – – X – – – – Battery X
[31] Stochastic Accelerated Benders X – – – X X X – –

This paper CS-SCUC ABD X X ICRA X X X X CAES X

at large-scale, and the solution time is a big issue for the
comprehensive models. This paper proposed an exhaustive
model considering the uncertainties of RESs and unscheduled
outages, while the tailored framework guarantees the accuracy
and maintains the solution time within a reasonable range.
Also, the proposed framework enhances the robustness of
the solution by finding the actual high-impact contingencies
through the solving process. Furthermore, the model uses
storage devices to improve the solutions under contingencies
and in normal conditions.

A. Literature Survey

Generally, uncertainties from the operators’ point of view
can be divided into two categories. The first one is UOC,
and the second one includes the stochastic behavior of RESs
and loads. The markets usually consider outages of equipment
through the contingency analysis (CA), and the scenario-based
and RO models are regularly suggested for the second one.

Regarding the first, the N-1 contingency analysis is consid-
ered in [3] with an RO approach for a zonal reserve deploy-
ment. Considering all possible N-1 component outages impose
a significant burden on the problem. To reduce the complexity,
authors of [4] evaluate a set of possible line outages. Also,
reference [6] uses a decomposed model to address pre-selected
contingencies with reserve capability as the free capacity of
generation. The machine learning methods are widely applied
for selecting contingencies [5]. However, these methods use an

offline calculation based on historical dispatches of units, and
they are not suitable for large systems. Reference [7] applies
a contingency ranking analysis based on clustering outages of
lines and transformers. The authors define subsets based on
the potential danger of contingencies regarding the required
preventive/corrective actions, and the solution is protected
against the worsed case situation. A method for selecting
high-impact contingencies near real-time is proposed in [8],
which does not depend on large offline calculations. The
main issue of the contingency ranking method is that after
considering the selected events, the operation point of units
may be changed by preventive actions; consequently, the high-
impact events can be changed based on new dispatches. In
this way, there is no guarantee that selected events provide
acceptable security against possible outages. Reference [9]
selects the top-ranked contingencies for the economic dispatch
problem by solving the model within a loop in order to secure
the final solution against the most important outages based on
resulting dispatches. But, this method is not suitable for the
SCUC problem because repetitive solving large scale systems
will be a time-consuming process.

Regarding the second category, some of the studies intro-
duce stochastic methods that consider scenarios for uncertain-
ties [10]. The other popular method is robust optimization
(RO) that chooses the worst case in a range for uncertainty
[11], [12]. Although the RO approach addresses the uncer-
tainties, even the advanced version has a challenge on the
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distribution of uncertainty budgets. Reference [13] employs an
RO approach considering the uncertainties of wind and load,
but the model does not reflect the cost of ramping services for
compensation. These services are used as a remedy to offset
system uncertainties. The usage of ancillary services like spin-
ning reserves lead to introduce joint energy and reserve market,
that considers the explicit cost of reserves. Reference [14]
presents a deterministic model for the joint energy and reserve
market based on the operators point of view. A similar market
with the explicit cost of energy and reserves is considered
as a self-scheduling stochastic model in [15]. Similar to the
uncertainty of RESs, load forecasting errors can be evaluated
within scenarios. However, the magnitude of load fluctuations
is low, and authors of [16] assume that the margin of deployed
reserves is sufficient for the corresponding variations.

Based on the literature, the most important aspects of re-
serve deployments can represent with three features. The joint
energy and reserve market considers the first one as reserve
optimality check (ROC). Also, the reserve adequacy check
(RAC) and reserve deliverability check (RDC) are the other
important factors. The RAC means that the values of reserves
should be wisely assigned to be enough at required situations.
The RDC checks if the reserve values are deliverable through
the network at the corresponding situations. Reference [17]
suggests a Benders method for solving the stochastic model.
The authors employ reserves to address wind uncertainties,
but the cost of corrective actions (the ROC) is not considered.
Reference [18] presents a deterministic model for considering
the ROC, RAC, and RDC in deploying zonal reserves for
first and second emergency outages. Reference [19] explores
a Lagrangian-based RO with uncertainties of RESs and con-
tingencies, where the proposed model performs the RAC.

One of the most attractive options for enhancement of
operational efficiency is utility-scale energy storage systems
(ESSs) [20], [21]. The scheduling reserve to alleviate wind
uncertainty with considering bulk storage devices is proposed
in [11]. Reference [22] presents a deterministic-based model
using compressed air energy storage (CAES) units as one of
the popular storage systems in the world. A similar model was
investigated in [23] for the plug-in electric vehicles (PEVs).
The model of [23], [24] considers the ancillary services
for storage devices without checking the interdependency of
storage dispatches between hours. It should be noted that any
re-dispatches of the storage in different scenarios have an
impact on its available energy level, and this case is ignored
in their work. This concept can be defined as the commitment
of storage under uncertainties (CSU). In [25], storage devices
are used to address the forecasting error of wind power, but
the sufficiency of their stored energy is not guaranteed in that
work. Reference [26] evaluates the CSU with the definition
of a feasible range for storage compensation over a 24 hours
operation. However, the feasibility of the solution over a longer
horizon is not guaranteed.

As expected, including different types of uncertainties im-
pose an extra burden to the NP-hard SCUC problem, and it
even gets worse in large-scale systems. In this regard, decom-
position techniques are popular to reduce complexity [27].
Reference [24] studies a stochastic model for battery-based

energy storage transportation system with considering the
uncertainty of the wind, load, and component outages. The
complexity of the decomposed model increases when it con-
siders the scenarios for different uncertainties. The scenarios
of both component outages and wind power are considered
as a probabilistic decomposed SCUC model in [28], but
the solution time is significantly increased in that model.
Reference [29] incorporates the scenarios of wind and load
uncertainties and also N-1 contingencies in a Benders based
decomposed model. However, the model became very com-
plex and needed too much computing efforts. An accelerated
Benders decomposition technique is suggested to reduce the
computing time of the stochastic model of component outages
in [30]. Authors of [31] consider acceleration techniques for
a stochastic model of wind uncertainties.

The solution time is a big issue of the exhaustive models
which deal with uncertainties of both RESs and UOCs. Also,
the previous methods for contingency ranking faces the is-
sue of missing the actual high-impact events by performing
preventive actions. This paper covers the above gaps by
introducing a well-tuned framework with low complexity, and
it is secured against the actual high-impact UOCs based on the
final solution, and wind power fluctuations will be addressed
by deploying reserve services.

B. Contributions
Table I presents a taxonomy of existing approaches and

reviews the previous researches. The last row of this table
represents the specifications of this paper. In this study, we
intended to develop a contingency-based stochastic security-
constrained unit commitment (CS-SCUC) that addresses sce-
narios for wind power and different load levels. An intelligent
contingency ranking analysis (ICRA) is developed to secure
the CS-SCUC against the high-impact outages, and it does
not impose a heavy computation burden while it is considered
within the solving process. Unlike previous ranking methods
that use pre-selected contingencies, the proposed technique
uses the commitment of units of the final solution to cal-
culate the ranking index and select the top-ranked outages.
The model contains all concept of RAC, RDC, and ROC
for reserve deployment to enhance the system security.Also,
CAES units are employed as storage devices with considering
the CSU concept. An accelerated Benders decomposition
(ABD) method with some modifications is used to reduce the
complexity. A six-bus and the IEEE 118-bus test systems have
been evaluated to analyze the performance of the intended
model,. In brief, the main contributions of this paper can be
recapitulated as follows:
• Proposing a comprehensive stochastic model with rela-

tively low computation burden and high accuracy;
• Considering an intelligent contingency ranking analysis

to address the actual high-impact contingencies calculated
based on the resulting schedule.

Section II provides the wind speed model while the intel-
ligent contingency ranking method presented in section III.
The proposed CS-SCUC model is designated in section IV.
Case studies and numerical results are given in section V, and
section VI concludes the paper.
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Fig. 1. Flowchart of solving decomposed CS-SCUC

II. SCENARIOS OF THE WIND SPEED

The output power of wind turbines varies with wind speed.
Each turbine has an output power curve based on its manu-
facturing characteristic. Probability distribution functions are
commonly used to address wind power uncertainties. For
example, Weibull function in [23], and Beta function in [24]
are considered as the distribution of wind speed. As expanding
a new distribution model is beyond the scope of this paper,
regular Weibull distribution is considered for the generation
of wind speed scenarios.

In this article, the meteorological prediction of wind speed
is used as the mean value [32], and the standard deviation
increases from 1% to 20% through the operation period. First,
1000 samples with the above conditions are generated, and
a scenario reduction method based on probability distance is
used based on [33]. After this stage, the output power of a wind
turbine is calculated by the power curve and is multiplied by
the number of turbines to calculate a wind farm production.

This paper considers the stochastic behavior of wind power
as a source of uncertainty to evaluate the performance of the
model dealing with both contingencies and scenarios of vari-
able resources. However, other types of renewable generations
can be incorporated in the same way.

III. INTELLIGENT CONTINGENCY RANKING METHOD

As mentioned, a massive computation burden is forced
to the CS-SCUC problem by performing N-1 contingency
analysis. To reduce the model complexity, we employed an
intelligent ranking method, in which the outages of generators
are considered as contingencies. The proposed model evaluates
the failure impact of dispatched generators on lines’ conges-
tion and prepares a priority list. First, the parameter “αlg” is
calculated for all generators [33]. This parameter represents the
change in line flows due to 1 MW change in the generation of
units. By multiplying this parameter to normalized line flow
and unit output power, the impact of outages on the loading

of lines can be obtained as CIg,t in (1). By sorting CIg,t of
generators, we choose the top-ranking outages for ICRA.

CIg,t =
∑
l

(PLtl/PL
max
l ) · αlg ·

∑
k

P kg,t. (1)

The main difference of the intelligent contingency ranking
method with the previous ranking method is that selected
contingencies are calculated and updated using the last dis-
patches during the solving process, as it is illustrated in Fig. 1.
Hence, the proposed method can ensure the selected high-rank
contingencies are matched to the final solution because the
algorithm terminates only if the solution is safe against the
calculated contingencies.

IV. PROPOSED CS-SCUC FORMULATION

In this section, a CS-SCUC formulation is presented based
on the Benders algorithm. The original problem is decomposed
into a master problem and three subproblems. The subprob-
lems check the master solution with the network constraints
for each t, c, and s.

Fig. 1 shows the proposed algorithm. First, the master prob-
lem is solved. After that, the base case subproblem is solved
with fixed values of the master’s solution. After that, using the
calculated power flow of the base case and dispatches of the
master solution, the high ranked outages are selected. After
that, the emergency case subproblem checks the feasibility
of decision variables under top-ranked events. Finally, the
scenario case subproblem checks the feasibility under different
scenario realizations. In each case, the corresponding Benders
cut is generated for infeasible subproblems. The subproblems
are defined based on [31] to generate strong cuts. Also, the
subproblems are independent and are solved in each loop from
the beginning, and it will accelerate the convergence of the
proposed algorithm. The algorithm will continue until any new
cuts are not generated.

A. Master Problem

The objective function of master problem (2) is to minimize
total operation costs including start-up and shut-down costs,
no-load cost, reserve cost, regeneration cost of storage devices,
the expected value of generation and lost opportunity costs.
The lost opportunity cost (LOC) is a payment for contracted
energy that is not utilized in operation. Also, the hourly cost
of generators’ production “P k,sg,t ” is considered in a stepwise
form. The master problem constraints consist of (3)–(28).

min
I, st, sd
J, P, Q

∑
t

∑
g

(SCtstg,t +DCgsdg,t +NCgIg,t+

RC+
g R

+,max
g,t +RC−g R

−,max
g,t )+

∑
t

∑
c

(λGec ζtPGec,t )

+
∑
t

∑
s

∑
g

Ωs(rc
−
g r
−,s
g,t +

∑
k

λkgP
k,s
g,t ) (2)

s.t: (3)-(28)

The constraints of conventional generators are presented
by (3)–(17). Constraint (3) indicate the start-up/shut-down
variables, (4) and (5) check the minimum online and offline
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durations, (7)–(10) are generation limits, and (11) and (12) are
related to the ramp rate limits.

stg,t − sdg,t = Ig,t − Ig,(t−1) (3)

stg,t ≤ Ig,τ ∀t ≤ τ ≤ t+ T on,min
g − 1 (4)

sdg,t ≤ 1− Ig,τ ∀t ≤ τ ≤ t+ T off,min
g − 1 (5)

P sg,t =
∑
k

P k,sg,t (6)

P k,sg,t ≤ P k,max
g Ig,t (7)

Pg,t ≤ Pmax
g Ig,t (8)

Pg,t ≥ Pmin
g Ig,t (9)

P sg,t ≥ Pmin
g Ig,t (10)

Pg,t − Pg,(t−1) ≤ RUgIg,t + SRUgstg,t (11)
Pg,(t−1) − Pg,t ≤ RDgIg,t + SRDgsdg,t. (12)

The following constraints calculate the adequate reserves
regarding the scenarios of wind power fluctuations.

P sg,t = Pg,t + rU,sg,t − r
D,s
g,t (13)

RU,max
g,t ≥ rU,sg,t (14)

RD,max
g,t ≥ rD,sg,t (15)

rU,sg,t ≤ RUgIg,t (16)

rD,sg,t ≤ RDgIg,t. (17)

The wind generation is limited by available wind power as
follows:

P sw,t ≤W s
w,t (18)∑

s

ψs(W
s
w,t − P sw,t) ≤ CWw,t. (19)

Constraints (20) and (21) represent total generation and
consumption balance for base and scenario cases, respectively.∑

g

P sg,t +
∑
c

Pc,t +
∑
w

P sw,t =
∑
b

PDb,t (20)∑
g

Pg,t +
∑
c

Pc,t +
∑
s

Ωs
∑
w

P sw,t =
∑
b

PDb,t. (21)

As stated, the CAES units are considered as storage devices,
and the corresponding constraints are presented by (22)-
(28). The efficiency of CAESs is 95% in the charging and
discharging processes [22].

JCoc,t + JGec,t ≤ 1 (22)

SEc,(t+1) = SEc,t + PCoc,t η
Co
c − PGec,t /ηGec (23)

SEmin
c,t ≤ SEc,t ≤ SEmax

c,t (24)

SEc,t0 = SEc,t24 (25)

Pmin
c,GeJ

Ge
c,t ≤ PGec,t ≤ Pmax

c,GeJ
Ge
c,t (26)

Pmin
c,CoJ

Co
c,t ≤ PCoc,t ≤ Pmax

c,CoJ
Co
c,t (27)

Pc,t = PGec,t − PCoc,t . (28)

B. Base Case Subproblem

The base case includes the predicted scenario of wind
power. This subproblem checks the solution if any violations
come to the network constraints in the base case. The objective

function and the constraints are presented as (29)-(33). If the
objective function gets a positive value, a Benders cut will
be generated based on (34). Also, µ1Bb,t and µ2Bb,t are dual
variables of (32) and (33), respectively.

min StB (29)
s.t: (30)-(33)
− PLmax

l ≤(PLtl =K(δtfrom(l) − δtto(l))/Xl)≤PLmax
l (30)

− π/2 ≤ δtb ≤ π/2 ; δtbslack
= 0 (31)∑

l∈Λ

PLtl+P
D
b,t−StB≤

∑
g∈γ

P̂g,t+
∑
c∈φ

P̂c,t+
∑
s

Ωs
∑
w∈ψ

P̂ sw,t (32)∑
l∈Λ

PLtl+P
D
b,t+S

t
B ≥

∑
g∈γ

P̂g,t+
∑
c∈φ

P̂c,t+
∑
s

Ωs
∑
w∈ψ

P̂ sw,t (33)

StB+
∑
b

(µ1Bb,t−µ2Bb,t)
[∑
g∈γ

(Pg,t−P̂g,t)+
∑
c∈φ

(Pc,t−P̂c,t)

+
∑
s

Ωs
∑
w∈ψ

(P sw,t − P̂ sw,t)
]
≤ 0. (34)

C. Emergency Case Subproblem

This subproblem checks the master solution for NE top-
ranked emergency outages with the priority list that calculated
according to the base case lines flow. In each contingency, the
binary multiplier of the corresponding generator “UEeg,t” is set
to zero by the model. The objective function and constraints
of the subproblem are defined as (35)–(45). If the value of
the objective function becomes positive, a Benders cut will be
generated as (46). Here, µ1eg,t,. . . ,µ4eg,t,µ5eb,t,µ6eb,t, and µ7et
are dual variables of (38)–(44), respectively.

min (Ste = S1te + S2te + S3te) (35)
s.t: (36)-(45)
−PLmax

l ≤(PLt,el =K(δt,efrom(l)−δ
t,e
to(l))/Xl)≤PLmax

l (36)

− π/2 ≤ δt,eb ≤ π/2 ; δt,ebslack
= 0 (37)

P eg,t − P̂g,tUEeg,t ≤ RUg Îg,tUEeg,t (38)

P̂g,tUE
e
g,t − P eg,t ≤ RDg Îg,tUE

e
g,t (39)

P eg,t ≤ Pmax
g Îg,tUE

e
g,t (40)

P eg,t ≥ Pmin
g Îg,tUE

e
g,t (41)∑

l∈Λ

PLt,el + PDb,t − S1te ≤
∑
g∈γ

P eg,t+
∑
c∈φ

P̂c,t +
∑
w∈ψ

P ew,t (42)∑
l∈Λ

PLt,el + PDb,t + S1te ≥
∑
g∈γ

P eg,t+
∑
c∈φ

P̂c,t +
∑
w∈ψ

P ew,t (43)∑
g

P eg,t+
∑
w

P ew,t +
∑
c

P̂c,t + S2te − S3te =
∑
b

PDb,t (44)

P ewt ≤
∑
s

ΩsW
s
wt (45)

Ste+
∑
g

UEeg,t

[
(µ1eg,t − µ2eg,t)(Pg,t−P̂g,t)+(RUgµ1eg,t+

RDgµ2eg,t+P
max
g µ3eg,t−Pmin

g µ4eg,t)(Ig,t−Îg,t)
]
+
∑
b

(µ5eb,t−

µ6eb,t)
∑
c∈φ

(Pc,t−P̂c,t)−µ7et
∑
c

(Pc,t−P̂c,t) ≤ 0. (46)
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D. Scenario Case Subproblem

The scenario check subproblem with objective function and
constraints as (47)–(51) evaluates whether the master solution
makes any violations in network buses for each scenario or
not. It is to be noted here that, to reach a feasible CSU
for storage, the power “P̂c,t” has no index of scenarios.
This case checks the power of generators “P̂ sg,t” for different
scenarios. This parameter includes the energy and reserves
of the master problem. If the value of the objective function
becomes positive, a Benders cut will be generated as (52).
Here, µ1sb,t and µ2sb,t are dual variables of (50) and (51),
respectively.

min Sts (47)
s.t: (48)-(51)
−PLmax

l ≤(PLt,sl =K(δt,sfrom(l)−δ
t,s
to(l))/Xl)≤PLmax

l (48)

− π/2 ≤ δt,sb ≤ π/2 ; δt,sbslack
= 0 (49)∑

l∈Λ

PLt,sl + PDb,t −Sts ≤
∑
g∈γ

P̂ sg,t +
∑
c∈φ

P̂c,t +
∑
w∈ψ

P̂ sw,t (50)∑
l∈Λ

PLt,sl + PDb,t +Sts ≥
∑
g∈γ

P̂ sg,t +
∑
c∈φ

P̂c,t +
∑
w∈ψ

P̂ sw,t (51)

Sts+
∑
b

(µ1sb,t−µ2sb,t)
[∑
g∈γ

(P sg,t − P̂ sg,t)+∑
c∈φ

(Pc,t − P̂c,t) +
∑
w∈ψ

(P sw,t − P̂ sw,t)
]
≤ 0. (52)

V. COMPUTATIONAL RESULT

A six-bus and the IEEE 118-bus test systems are used to
examine the proposed CS-SCUC model that considers wind
speed uncertainties and unexpected outages. The algorithm
performance is analyzed in the term of security in contin-
gencies, and how wind and storage units affect system total
cost and peak shaving. The solver duality gap for solving the
master problem is set zero for the 6-bus test system, and we
decrease it between 0.001 and 0.0001 to increase the speed
in initial iterations for the IEEE 118-bus test system. All tests
were implemented using CPLEX, on a laptop with Intel 7-core
2.4 GHz and 8 GB of RAM.

A. Six-bus Test System

The six-bus test system of Fig. 2 is used to analyze the
proposed algorithm [34]. The system has three generators,
one wind farm and one CAES unit that both are added to
the bus number 4. The information of generators, lines, and

G1 

G3 

G2
1 

4 5  6

3  2

W1 C1 

Fig. 2. Single line diagram of six-bus test system [34]

TABLE II
SPECIFICATIONS OF ESSS (MW) IN SIX-BUS TEST SYSTEM

CAES P max
c,Ge P min

c,Ge P max
c,Co P min

c,Co SEmax
c SEmin

c SEct0

C1 110 5 110 5 500 50 60
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Fig. 3. Different load levels of six-bus test system

loads are given in [34]. In this study, the maximum permitted
re-dispatches of generators are assumed to be the same as
their ramp rate limits. The information of the applied CAES
unit is listed in Table II. The real forecasted values of the
wind speed on 27 November 2018 are used for modeling the
wind. As Fig. 3 shows, three load levels are considered to
address load variations. So, the system operator can choose
the corresponding schedule based on actual load levels. Fig. 4
presents five scenarios that are obtained based on the scenario
reduction method.

The power curve of the Lagerwey 750 KW wind turbine
is used to calculate the output power according to [35]. In
this case, 134 wind turbines of this type are considered for the
wind farm. The parameter CWw,t is considered to be 90% of
forecasted wind power in each hour. The multiplier “ζ” is the
normalized inverse of the hourly load by the inverse value of
the peak-load and multiplied to the storage cost to reach an
optimized CSU. Two cases are defined for this test system.

Case 1: this case analyzes the result of the one-hour
operation. Table III shows the generation, re-dispatch of units,
the LOC, and the cost of different scenarios at hour 15. It can
be seen that the corrective dispatch is prepared by G1, and
the sum of production of generators and wind farms is equal
to the constant value of 289.1 MW in different scenarios. The
constant production of storage is 9.5 MW because it does not
participate in scenarios. So, the total production will be 298.6
MW, which is equal to the load value at hour 15. Therefore,
the generation/consumption is balanced at scenario-level, and
the model successfully obtained decision variables.

Case 2: this case evaluates the 24-hour results of the
proposed CS-SCUC model. Fig. 5 compares the cost of total
operation in different conditions of the presence of the wind
farm and CAES unit at the middle-load level. Adding the stor-
age device to the basic SCUC reduces 4.3% of the total cost.
The wind farm reduces 10.8% alone, and the simultaneous
deployment of CAES unit and wind farm decrease more than
13% of the total cost, and it falls to $97670.
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TABLE III
GENERATION DISPATCHES IN DIFFERENT SCENARIOS AT HIGH-LOAD

Parameter Scen1 Scen2 Scen3 Scen4 Scen5 Base
Probability 0.208 0.173 0.238 0.212 0.169 1
G1 (MW) 203.2 180.1 191.4 180.1 182.4 188
G2 (MW) 33.4 33.4 33.4 33.4 33.4 33.4
G3 (MW) 20 20 20 20 20 20
W1 (MW) 32.5 55.6 44.3 55.6 53.2 47.7
Sum (MW) 289.1 289.1 289.1 289.1 289.1 289.1
∆G1 (MW) 15.2 -7.9 3.4 -7.9 -5.5 0

Curt-W1 (MW) 0 20.8 0 8.1 0 5.3
LOC ($) 0 32.4 0 32.4 22.7 16.3

Gen. Cost ($) 6377.4 5723 6043.2 5723 5789.8 5946.6
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Fig. 5. Comparison of the operation cost in different conditions at middle-load

The CS-SCUC results with ICRA at high-load is presented
in Fig. 6. The system generators supply the high-load, and
the wind farm is dispatched over 90%. Also, the CAES unit
is mainly charged at the off-load hours of 1 to 9, and it
regenerates the power at peak-load hours of 15 to 22. The
corresponding operational cost is $137710. With considering
both wind farm and CAES unit, the system peak-load is
significantly reduced, and also the valley is filled at different
load levels. The efficient pricing of storage leads to a flat curve
for the operation of generators. The peak of generators’ total
production decreases 67.3 MW or 21.9% of initial peak-load.

The penetration of utilized wind power is expressed in
Fig. 7. Wind energy penetration is the fraction of energy
produced by wind compared to the total generation. It can be
seen the wind penetration is about 20% in 4 hours. Fig. 8
shows sufficient hourly reserves for covering wind power
fluctuations. The reserve’s value is defined as the maximum of
re-dispatches needed in scenarios. For example, at hour 15 the
upward reserve is equal to 15.2 MW and the downward reserve
is 7.9 MW, and they are sufficient to cover all scenarios based
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TABLE IV
ANALYSIS OF DIFFERENT LOAD LEVELS AND UNITS’ COMBINATIONS

Load level Low Middle High
ICRA No Yes No Yes No Yes
Basic 78252 78252 112285 INF INF INF

ESS added 77987 77987 107429 108218 149219 INF
Wind added 69881 69881 100159 INF INF INF
C&W added 69502 69502 97670 97851 134905 137710
*INF= problem is infeasible

on Table III. Hence, the result shows the RAC is checked
for all scenarios. These reserves will be bought in the day-
ahead market as capacities at a lower price compared to
the energy prices. The realization cost of reserves as energy
is settled in the clearing markets. With the intended model
for reserves, the ROC is successfully guaranteed. Also, the
scenario case subproblem performs the RDC for all scenarios,
and all reserves are deliverable at the corresponding time and
scenario.

Table IV represents values of the objective function in
different combinations of adding wind farm and CAES unit to
the basic SCUC to analyze the impact of considering ICRA
and different load levels on total operational cost. At low-
load, the ICRA has no impact on the operational cost in
different conditions because the optimal solution for the base
case is satisfying the constraints of contingencies. At middle-
load without ESS, the operation is infeasible with ICRA. In
this case, adding the wind farm is just lowering the total cost,
and adding the storage device makes system operation feasible
with ICRA. Although the CAES unit is not participating
in contingencies, the corresponding extra capacity adds a
preventive action capability to shift the base dispatches. At
high-load, the additional cost of considering ICRA is $2805
and about 2% compared to the non-secured case.

In this test system, the worst-case situation (NE=1) is
considered for ICRA. This study assumes that only wind units
and conventional generators participate in corrective actions
for securing UOC, and storage devices have a fixed schedule.
Table V represents the hourly emergency outages at high-load
and the respective re-dispatch of generators. The result shows
that the worst outage is G2 at hour 1 and hour 15, and G3
during the rest hours.

As stated, previous methods of selecting high-impact con-
tingencies do not use the resulting dispatches of units, and
this issue is shown in Table VI. As a test, the calculated
high-ranked contingencies using the dispatches of units of the
case without contingency analysis is used as selected events
for contingency analysis. As can be seen, after performing
contingency analysis, the high-ranked events are changed
based on new dispatches. The reason is that preventive actions
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TABLE V
GENERATION RE-DISPATCHES (MW) WITH ICRA AT HIGH-LOAD

Hours Outage G1 G2 G3 W1
1 G2 +53.13 -53.15 0 +0.01
2 G3 -7.26 +34.86 -20 -7.6
3 G3 -7.05 +34.58 -20 -7.54
4 G3 -5.08 +29.66 -20 -4.58
5 G3 -1.94 +21.89 -20 +0.04
6 G3 -1.45 +21.29 -20 +0.16
7 G3 -4.57 +29.16 -20 -4.59
8 G3 +0.4 +19.33 -20 +0.27
9 G3 -0.45 +20.19 -20 +0.25

10 G3 +1.32 +17.79 -20 +0.89
11 G3 +6.06 +12.7 -20 +1.23
12 G3 +1.6 +50 -20 -31.6
13 G3 +19.13 -5.05 -20 +5.93
14 G3 +19.64 -4.62 -20 +4.98
15 G2 +28.05 -33.36 0 +5.3
16 G3 -6.25 +46.01 -20 -19.75
17 G3 +7.46 +10.9 -20 +1.65
18 G3 +9.91 +8.59 -20 +1.5
19 G3 -0.69 +27.61 -20 -6.92
20 G3 -1 +28.08 -20 -7.08
21 G3 +9.92 +9.05 -20 +1.02
22 G3 +4.91 +14.04 -20 +1.05
23 G3 +2.56 +16.61 -20 +0.83
24 G3 +4.61 +20.13 -20 -4.74

TABLE VI
COMPARISON OF SELECTED HIGH-RANKED CONTINGENCIES IN

PREVIOUS METHOD AGAINST THE ICRA

Previous method

IC
R

A Previous method

IC
R

A

Hours Befor CA After CA Hours Befor CA After CA

1 G2 G2 G2 13 G3 G3 G3
2 G3 G3 G3 14 G3 G3 G3
3 G3 G3 G3 15 G3 G2 G2
4 G3 G3 G3 16 G3 G2 G3
5 G3 G3 G3 17 G3 G2 G3
6 G3 G3 G3 18 G2 G3 G3
7 G3 G3 G3 19 G2 G3 G3
8 G3 G3 G3 20 G2 G3 G3
9 G3 G3 G3 21 G2 G3 G3
10 G3 G3 G3 22 G2 G3 G3
11 G3 G2 G3 23 G3 G3 G3
12 G3 G3 G3 24 G3 G3 G3

are performed, and the operation point is changed; conse-
quently, the evaluated events no longer stand as top-ranked
outages. The proposed ICRA cover this gap by performing
the selection of contingencies based on the updating indices
in each iteration. In this way, rather than considering different
contingencies in each iteration, the selected events are top
contingencies regarding the final solution.

A sensitivity analysis on different locations of the CAES
unit is performed for different cases with considering ICRA
in Table VII. It can be seen, the model is feasible only at
B4 and B5 at high-load, and the best location for CAES is
obtained besides the wind farm at B4.

The comparison of electricity price in different conditions
of considering ICRA and the presence of CAES unit and wind
farm at middle-load is shown in Fig. 9. As expected, consider-

TABLE VII
SENSITIVITY ANALYSIS ON LOCATION OF CAES UNITS

Electrical buses

Load level B1 B2 B3 B4 B5 B6
Low 69502 69502 69502 69502 69502 69502

Middle 99860 98291 98195 97851 97904 98154
High INF INF INF 137710 137780 INF
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Fig. 10. Prices of electricity and reserve with ICRA at high load

ing wind farm (case without CAES) lowering electricity price,
especially at windy hours of 11 to 15, but the prices are still
high at peak-load hours. The CAES unit reduces the electricity
price at peak-load, while it increases the price during low-load
hours of 2 to 5. The full model presents the best performance,
and the reason for lower electricity prices of the case with
ICRA in peak-load hours is that storage discharging more
energy in this case while the corresponding implicit cost of
charging power was paid at hours of 4 to 6. The hourly prices
of electricity and reserve at high-load is presented in Fig. 10,
and we can see the highest reserve prices happen at hours with
maximum available wind power at minimum electricity prices.
B. IEEE 118-bus Test System

The IEEE 118-bus test system [36] with 76 generators, 186
lines, and 91 loads is used to test the proposed model at large-
scale. Detailed information of this test system is given in [36].
The peak of high-load is 7200 MW and occurs at hour 21.
Also, the peak values of middle-load and low-load are 6000
MW and 4800 MW, respectively. As Fig. 11 shows, three wind
farms with a capacity of 500 MW, 600 MW, and 500 MW are
added to buses 15, 59, and 80, respectively. Also, next to each
of the wind farms, a CAES unit is considered. The information
of storage units is given in Table VIII. The same wind speed
data is considered for calculating the power of wind farms.

Fig. 12 shows the CS-SCUC result at high-load. The CAES
units store the extra energy of wind farms and cheap generators
at low-load (valley filling) and generate at peak-load (peak-
shaving). The wind farms and CAES units decrease 16.5% of

TABLE VIII
SPECIFICATIONS OF ESSS (MW) IN THE IEEE 118-BUS TEST SYSTEM

CAES P max
c,Ge P min

c,Ge P max
c,Co P min

c,Co SEmax
c SEmin

c SEct0

C1 300 10 300 10 1200 40 60
C2 400 20 400 20 1600 50 60
C3 300 10 300 10 1200 40 60
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Fig. 11. Single line diagram of the IEEE 118-bus test system [36]
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Fig. 12. Generation dispatches with ICRA at high-load

system peak-load, and the total generation of system genera-
tors reach to 6010 MW. The system minimum load increases
27% from 2880 MW to 3667 MW. The total operational
cost at three load levels with and without considering ICRA
are given in Table IX. In this test system, the solution is
secured against the three high-impact outages (NE=3). Similar
to the six-bus test system, the result shows that the ICRA has
little impact at low-load. The same price of several groups
of generators in this test system is the reason for small
changes by considering contingency analysis. The obtained
most dangerous contingency events based on the ICRA are
reported in Table X.

Fig. 13 presents the value of reserves that the operator will
require in the day-ahead market. The requirements for the
operational reserve are increased with increasing penetration
of wind power and the forecasting error through the operation
horizon. Fig. 14 represents the penetration of wind power for
24 hours. The wind farms supply up to 30% of the total hourly
load. Fig. 15 illustrates the amount of wind power curtailment.
These values are lower than 10% during the operation period.

The hourly prices of the electricity and reserve for this test

TABLE IX
ANALYSIS OF DIFFERENT LOAD LEVELS

Load level ICRA=No ICRA =Yes

Low 1034879 1034879
Middle 1407574 1407598
High 1820535 1820566

TABLE X
HIGH-IMPACT OUTAGES WITH ICRA AT MIDDLE-LOAD

E1 E2 E3 E1 E2 E3

1 G39 G44 G45 13 G39 G27 G44
2 G39 G44 G45 14 G39 G27 G44
3 G39 G27 G28 15 G39 G43 G45
4 G39 G27 G28 16 G39 G44 G43
5 G39 G40 G27 17 G39 G43 G45
6 G39 G40 G43 18 G39 G44 G43
7 G39 G44 G45 19 G44 G45 G39
8 G39 G44 G45 20 G44 G39 G45
9 G39 G44 G43 21 G44 G39 G45

10 G39 G43 G45 22 G39 G44 G43
11 G39 G43 G45 23 G39 G43 G45
12 G39 G27 G28 24 G39 G27 G28
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Fig. 13. Sufficient hourly reserve with ICRA at high-load

system at high-load and with considering ICRA is presented in
Fig. 16. As can be seen, the curve of electricity prices follows
the pattern of the total production of generators in Fig. 12,
and the reserve price depends on available wind power and
coincidence with peak-load hours.

Table XI compares the overall time in two conditions to
evaluate the impact of the proposed method. In the six-bus
test system with ICRA at high-load, the computing time with
no acceleration was 79 seconds, and it converged in 12 itera-
tions. After performing the proposed ABD, the final solution
obtained in 7 iterations and 62 seconds. The computing time
of the IEEE 118-bus is 595 seconds, while this time was
921 seconds with no acceleration techniques. The number of
iterations was 25, and this number is reduced to 12 iterations
by applying the proposed ABD method.

VI. CONCLUSION

This paper presents a contingency-based SCUC that is con-
sidering wind uncertainty. The model is analyzed at different
load levels. An intelligent contingency ranking analysis is
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TABLE XI
EVALUATION OF SOLUTION TIME

Six-bus IEEE 118-bus
ABD=No ABD=Yes ABD=No ABD=Yes

Iterations 12 7 25 12
Time (sec) 79 62 921 595

adopted to address unpredicted outages. The model checks
the adequacy, deliverability, and optimality for reserve deploy-
ments. Numerical results of this paper on a six-bus and the
IEEE 118-bus test systems reveal the following conclusions:
• The deployed reserves are sufficient and deliverable to

cover all scenarios. Also, the optimality of reserves is
supported by considering both the expected value of LOC
and generation cost and also the cost of ancillary services.

• The proposed model captured different sources of uncer-
tainty, while a feasible solution for storage commitment
is ensured through the stochastic framework. Considering
storage beside the wind power reduce system peak-load
up to 21%, while it reduces the operational cost.

• The intelligent contingency ranking method covers the
gap of previous methods and successfully indicates that
the high-impact outages are calculated based on the
resulting commitment of units.

• Generators and wind farms successfully supplied the
corrective dispatches, and storage units participate in
preventive actions. The preventive dispatches of storage
devices are more highlighted at high-load.

• Changes in prices of electricity and reserves happen in
the opposite direction at windy hours, and they are both
increased at high-load. Also, CAES units decrease prices
at high-load and increase them at low-load hours.

• The acceleration techniques successfully reduced the
computing time and iterations with high accuracy for
solving the decomposed model.

Also, according to this study, the following question is of
great interest in future: What is the best possible strategy for
storage participation in emergency events?
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