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The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its 
intermittency and volatility. Hence, good forecasting tools play a key role in tackling these challenges. In this paper, an adaptive 
neuro-fuzzy inference approach is proposed for short-term wind power forecasting. Results from a real-world case study are 
presented. A thorough comparison is carried out, taking into account the results obtained with other approaches. Numerical 
results are presented and conclusions are duly drawn. 
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1. Introduction 

Wind energy is gaining increasing importance throughout the 
world [1], and wind-driven power resources have become 
increasingly important in the planning and operation of electric 
power systems. 

In Portugal, the wind power goal foreseen for 2010 was 
established by the government as 3750 MW and that will 
constitute some 25% of the total installed capacity by 2010.   
This value has recently been raised to 5100 MW, by the most 
recent governmental goals for the wind sector. Hence, Portugal 
has one of the most ambitious goals in terms of wind power, and 
in 2006 was the second country in Europe with the highest wind 
power growth [2]. 

The wind energy is free, so all wind-generated electric energy is 
accepted as it comes, i.e. as it is available. However, the 
availability of the power supply generated from wind energy is not 
known in advance. Hence, the integration of a large share of wind 
power in an electricity system leads to some important challenges. 
Wind power forecasting plays a key role in tackling these 
challenges [3]. 

Short-term wind power forecasting is an extremely important 
field of research for the energy sector, as the system operators 
must handle an important amount of fluctuating power from the 
increasing installed wind power capacity. The time scales 
concerning short-term prediction are in the order of some days (for 
the forecast horizon) and from minutes to hours (for the time-step) 
[4]. 

In the technical literature, several methods to forecast wind 
power have been reported, namely physical and statistical 
methods.  

The physical method requires a lot of physical considerations to 
reach the best prediction precision. For a physical model the input 

variables will be the physical or meteorology information [5]. 
The statistical method aims at finding the relationship of the 

on-line measured power data. For a statistical model the historical 
data of the wind farm may be used. 

Physical method has advantages in long-term prediction while 
statistical method does well in short-term prediction [6]. 

Conventional statistical models are identical to the direct 
random time-series model, including auto regressive (AR), and 
auto regressive integrated moving average (ARIMA) [7] models. 
The persistence approach has proven to be a useful first 
approximation for short-term wind power forecasting and provides 
a benchmark against which to compare alternative technique. 

In the recent years, some new methods are catching researcher’s 
attention, namely neural networks (NN) [8]–[12], evolutionary 
algorithms [13], and some hybrid methods [14]–[16].  

The accurate comparison of all the methods is quite difficult 
because these methods depend on different situations and the data 
collection is a formidable task. However, it has been reported that 
artificial-based models outperformed others in short-term 
prediction [6]. 

A hybrid of NN and fuzzy logic, also known as adaptive 
neuro-fuzzy inference system (ANFIS), has been used in several 
modeling and forecasting problems. For instance, it has been 
applied for hydraulic plant generation forecasting [17], tip speed 
ratio prediction in wind turbines [18], solar radiation data 
forecasting [19], load forecasting [20], price forecasting [21], and 
control systems [22].  

In this paper, ANFIS is proposed for short-term wind power 
forecasting in Portugal, which is a new contribution. The proposed 
approach is compared with persistence, ARIMA and NN 
approaches, to demonstrate its effectiveness regarding forecasting 
accuracy and computation time. 

This paper is organized as follows. Section 2 presents the 
proposed neuro-fuzzy (NF) approach to forecast wind power. 
Section 3 provides the different criterions used to evaluate the 
forecasting accuracy. Section 4 provides the numerical results 
from a real-world case study. Finally, Section 5 outlines the 
conclusions. 

   a Correspondence to: Joaõ P. S. Catalão, catalao@ubi.pt. 
* Department of Electromechanical Engineering, University of Beira 

Interior, Covilha 6200-001, Portugal, and Center for Innovation in 
Electrical and Energy Engineering, IST, Lisbon 1049-001, Portugal 

** Department of Electrical Engineering and Automation, Instituto 
Superior de Engenharia de Lisboa, Lisbon 1950-062, Portugal

Paper



 

 2 IEEJ Trans 6: 1–7 (2011) 

2. Proposed Approach 

NN are simple, but powerful and flexible tools for forecasting, 
provided that there are enough data for training, an adequate 
selection of the input-output samples, an appropriated number of 
hidden units and enough computational resources available. 
Multi-layered feedforward NN are specially suited for forecasting, 
implementing nonlinearities using sigmoid functions for the 
hidden layer and linear functions for the output layer [23]. 

Just like NN, a fuzzy logic system is a nonlinear mapping of an 
input vector into a scalar output, but it can handle numerical 
values and linguistic knowledge. In general, a fuzzy logic system 
contains four components: fuzzifier, rules, inference engine, and 
defuzzifier.  

NN have the advantage over the fuzzy logic models that 
knowledge is automatically acquired during the learning process. 
However, this knowledge cannot be extracted from the trained 
network behaving as a black box. Fuzzy systems, on the other 
hand, can be understood through their rules, but these rules are 
difficult to define when the system has too many variables and 
their relations are complex [24]. 

A combination of NN and fuzzy systems has the advantages of 
each of them. In a neuro-fuzzy system, neural networks extract 
automatically fuzzy rules from numerical data and, through the 
learning process, the membership functions are adaptively 
adjusted. 

ANFIS is a class of adaptive multi-layer feedforward networks 
[25], applied to nonlinear forecasting where past samples are used 
to forecast the sample ahead. ANFIS incorporates the self-learning 
ability of NN with the linguistic expression function of fuzzy 
inference [20]. The ANFIS architecture is shown in Fig. 1. 

The ANFIS network is composed of five layers. Each layer 
contains several nodes described by the node function. The node 
function is described next. Let j

iO  denote the output of the ith 
node in layer j. 

In layer 1, every node i is an adaptive node with node function: 

2,1),(1 == ixAO ii μ  ...................................................  (1) 

or 
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where x  (or y ) is the input to the ith node and iA  (or 2−iB ) is a 
linguistic label associated with this node. 

Thus, 1
iO  is the membership grade of a fuzzy set A  

(= 1A , 2A , 1B , or 2B ) and it specifies the degree to which the 
given input x  (or y ) satisfies the quantifier A . The 
membership functions for A  and B  are usually described by 
generalized bell functions, e.g.: 
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where ),,( iii rqp  is the parameter set. As the values of these 
parameters change, the bell-shaped function varies accordingly, 
thus exhibiting various forms of membership functions on 
linguistic label iA .  

In fact, any continuous and piecewise differentiable functions, 
such as triangular-shaped membership functions, are also qualified 
candidates for node functions in this layer [26]. Parameters in this 
layer are referred to as premise parameters. 

 
Fig. 1.  ANFIS architecture. 

 
In layer 2, each node ∏  multiplies incoming signals and sends 

the product out: 
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Hence, each node output represents the firing strength of a rule. 
In layer 3, each node N computes the ratio of the ith rules’s firing 

strength to the sum of all rules’ firing strengths: 
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The outputs of this layer are called normalized firing strengths. 
In layer 4, each node computes the contribution of the ith rule to 

the overall output: 
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where iw  is the output of layer 3 and ),,( iii cba  is the parameter 
set. Parameters of this layer are referred to as consequent 
parameters. 

In layer 5, the single node ∑  computes the final output as the 
summation of all incoming signals: 
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Thus, an adaptive network is functionally equivalent to a 
Sugeno-type fuzzy inference system.  

The ANFIS considered in this study uses a hybrid learning 
algorithm to identify parameters of Sugeno-type fuzzy inference 
systems. ANFIS uses a combination of the least-squares method (to 
determine consequent parameters) and the backpropagation 
gradient descent method (to learn the premise parameters). The 
training process allows the system to adjust its parameters as 
inputs/outputs submitted. The training process stops whenever the 
designated number of times is reached or the objective of training 
error is achieved. The number of epochs used is 20. The 
knowledge acquired through the learning process is tested by 
applying new data that it has never seen before, called the testing 
set. The network should be able to generalize and have an accurate 
output for this unseen data. It is undesirable to overtrain the 
network, meaning that it would only work well on the training set, 
and would not generalize well to new data outside the training set. 
Thus, very large training sets should not be used to avoid 
overtraining during the learning process. 

The ANFIS architecture and training parameters used in this 
study are shown in Table I.  
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Table I.  ANFIS architecture and training parameters 

 Architecture Training parameters 

Number of layers 5 - 

Number of inputs  

and output 
Input: 2/ Output: 1 - 

Type of membership 

functions 
Triangular-shaped - 

Learning rule - 

Hybrid learning algorithm: 

Backpropagation for parameters 

(pi, qi, ri) and least square errors 

for parameters (ai, bi, ci)

Number epochs - 20 

Momentum constant - 0.98 

Sum-squared error - 0.001 

 
The proposed NF approach is studied comparatively to 

persistence, ARIMA and NN approaches. The persistence 
approach assumes that the predicted value of the next step in the 
future is the last measured value. The ARIMA approach is 
developed using SPSS software. Parameter estimation is 
performed with the aid of this software. The configuration 
considered corresponds to an ARIMA (1,2,1). The NN approach is 
developed using MATLAB. The configuration considered 
corresponds to a three-layered feed-forward network: one input 
layer with four units, one hidden layer with nine units considering 
hyperbolic tangent sigmoid transfer function, and one output layer 
with one unit considering pure linear transfer function. A scaled 
conjugate gradient algorithm is employed for training, and the 
training epoch is set to 100.  

3. Forecasting Accuracy Evaluation 

To evaluate the accuracy of the proposed NF approach in 
forecasting wind power, different criterions are used. This 
accuracy is computed in function of the actual wind power that 
occurred.  

The mean absolute percentage error (MAPE) criterion, the sum 
squared error (SSE) criterion, and the standard deviation of error 
(SDE) criterion, are defined as follows. 
The MAPE criterion is defined as follows: 
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where hp̂  and hp  are respectively the forecasted and actual 
wind power at hour h , p  is the average wind power of the 
forecasting period and N  is the number of forecasted hours. 

The SSE criterion is given by: 
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The SDE criterion is given by: 
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where he  is the forecast error at hour h  and e  is the average 
error of the forecasting period. 

A measure of the uncertainty of a model is the variability of what 
is still unexplained after fitting the model, which can be measured 
through the estimation of the variance of the error. The smaller this 
variance, the more precise is the prediction [27]. 

Consistent with definition (8), daily error variance can be 
estimated as 
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4. Numerical Results  

The proposed NF approach has been applied for wind power 
forecasting in Portugal. Historical wind power data are the main 
inputs for training. For the sake of clear comparison, no 
exogenous variables are considered. Our forecaster predicts the 
value of the wind power subseries for 3 hours ahead, taking into 
account the wind power data of the previous 12 hours with a 
time-step of 15 minutes. This procedure is repeated until the next 
24 hours values are predicted. The following days are randomly 
selected: July 3, 2007, October 31, 2007, January 14, 2008, and 
April 2, 2008, corresponding to the four seasons of the year. 
Hence, days with particularly good wind power behavior are 
deliberately not chosen. This results in an uneven accuracy 
distribution throughout the year that reflects reality. 

Numerical results with the proposed NF approach are shown in 
Figs. 2 to 5 respectively for the winter, spring, summer and fall 
days. Each figure shows the actual wind power, solid line, together 
with the forecasted wind power, dash-dot line. 
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Fig. 2.  Winter day: actual wind power (solid line) together with 

the forecasted wind power (dash-dot line), in megawatt. 



 

 4 IEEJ Trans 6: 1–7 (2011) 

0 3 6 9 12 15 18 21 24
0

175

350

525

700

Hour

W
in

d 
Po

w
er

 
Fig. 3.  Spring day: actual wind power (solid line) together with 

the forecasted wind power (dash-dot line), in megawatt. 
 

Table II presents the values for the criterions to evaluate the 
accuracy of the proposed NF approach in forecasting wind power. 
The first column indicates the day, the second column presents the 
MAPE, the third column presents the square root of the SSE, and 
the fourth column presents the SDE. 

Table III shows a comparison between the proposed NF 
approach and three other approaches (persistence, ARIMA, and 
NN), regarding the MAPE criterion. A good accuracy of the 
proposed NF approach was ascertained. The MAPE has an 
average value of 6.64%. The proposed approach the two 
advantages against the other existing methods in this study. First, 
it reduces possible difficulties in the modeling and analysis of 
complex data. Second, it is appropriate for incorporating the 
qualitative aspects of human experience within its mapping rules. 
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Fig. 4.  Summer day: actual wind power (solid line) together with 

the forecasted wind power (dash-dot line), in megawatt. 
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Fig. 5.  Fall day: actual wind power (solid line) together with the 

forecasted wind power (dash-dot line), in megawatt. 
 
The absolute values of forecast errors, considering ARIMA, NN 

and NF approaches, are shown in Figs. 6 to 9 respectively for the 
winter, spring, summer and fall days. The proposed NF approach 
provides smaller errors compared with ARIMA and NN 
approaches. 

In addition to the MAPE, stability of results is another 
important factor for the comparison of forecast approaches. 
Table IV shows a comparison between the proposed NF approach 
and the three other approaches (Persistence, ARIMA and NN), 
regarding daily error variances. The average error variance is 
smaller for the proposed NF approach, indicating less uncertainty 
in the predictions. Improvement in the average error variance of 
the proposed NF approach with respect to the three other 
approaches is 81.5%, 46.3% and 15.7%, respectively. 

 
 

Table II.  Statistical analysis of the daily forecasting error 

Day MAPE SSE  SDE 

Winter 8.85 558.93 33.47 

Spring 8.96 520.42 38.15 

Summer 5.63 211.73 15.93 

Fall 3.11 187.61 12.82 

 
 

Table III.  Comparative MAPE results 

 Winter Spring Summer Fall Average 

Persistence 13.89 32.40 13.43 16.49 19.05 

ARIMA 10.93 12.05 11.04 7.35 10.34 

NN 9.51 9.92 6.34 3.26 7.26 

NF 8.85 8.96 5.63 3.11 6.64 
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Fig. 6. Winter day: absolute value of forecast errors considering 

ARIMA (dashed line), NN (dash-dot line) and  
NF (solid line) approaches. 
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Fig. 7. Spring day: absolute value of forecast errors considering 

ARIMA (dashed line), NN (dash-dot line) and  
NF (solid line) approaches. 

 
 
Furthermore, the four plots of Fig. 10 provide hourly errors for 

the four days, considering ARIMA, NN and NF approaches, 
respectively. 

Overall, the performance of the proposed NF approach is 
generally better than the performance of ARIMA and NN 
approaches. Moreover, the average computation time required by 
the proposed NF approach is less than 5 seconds, using MATLAB 
on a PC with 1 GB of RAM and a 2.0-GHz-based processor. 

Hence, the proposed NF approach provides a powerful tool of 
easy implementation for short-term wind power forecasting.  
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Fig. 8. Summer day: absolute value of forecast errors considering 

ARIMA (dashed line), NN (dash-dot line) and  
NF (solid line) approaches. 
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Fig. 9. Fall day: absolute value of forecast errors considering 

ARIMA (dashed line), NN (dash-dot line) and  
NF (solid line) approaches. 

 
 

Table IV.  Daily forecasting error variance 

 Winter Spring Summer Fall Average 

Persistence 0.0074 0.0592 0.0085 0.0179 0.0233 

ARIMA 0.0025 0.0164 0.0090 0.0039 0.0080 

NN 0.0044 0.0106 0.0043 0.0010 0.0051 

NF 0.0041 0.0086 0.0038 0.0008 0.0043 
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Fig. 10.  Hourly errors corresponding to ARIMA (black 
rectangle), NN (grey rectangle) and NF (white rectangle) 

approaches for the days analyzed: (a) Winter, (b) Spring, (c) 
Summer, and (d) Fall. 

 
The proposed approach can be applied in other problems related 

with electricity markets. For instance, to predict electricity prices 
in order to support informed decision-making by market agents. 
 

5. Conclusions 

As the penetration level of wind power in power systems 
increases, the accurate prediction of the wind behaviour and the 
corresponding electric energy production will be increasingly 
important. In this paper, an adaptive neuro-fuzzy inference 
approach is proposed for short-term wind power forecasting in 
Portugal. The proposed NF approach outperforms persistence, 
ARIMA and NN approaches, regarding the MAPE criterion and 
the average error variance. Moreover, the average computation 
time is less than 5 seconds. Hence, the results confirm the 
considerable value of the proposed NF approach in forecasting 
wind power. 
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