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Abstract—The variability of wind generation introduces 
uncertainty in the optimal scheduling of the system. 
Consequently, it is difficult for the system operator to determine 
the optimal amount of conventional generation that should be 
committed and its corresponding power production in order to 
reduce generation costs. Incorporation of forecasting error on 
the optimal unit scheduling has been extensively suggested in the 
literature. However, it strongly depends on the probability 
distribution adopted to represent wind power forecasting error. 
Cauchy distribution has demonstrated to be an adequate tool to 
represent forecasting error. In this paper, an analytical model to 
solve dynamic economic dispatch is presented. The proposed 
model is based on discretization of Cauchy distribution, so that 
its incorporation in the optimization problem is successfully 
done. This is illustrated by analyzing a representative case study 
and the results are compared to a Monte Carlo Simulation 
approach in order to show the accuracy of the proposed method. 

Index Terms—Economic dispatch, Cauchy distribution, wind 
generation, forecasting error 

I. INTRODUCTION 

The variability of renewable power sources, and wind 
generation specifically, is one of the most important technical 
limitations to its full integration with the power system. Under 
high integration of wind generation, the uncertainty related to 
the forecasting error includes difficulties to determine the 
optimal amount of power generation that should be committed 
and the output power of these units in order to minimize the 
operating costs of the entire system. The problem of 
determining the optimal scheduling of conventional generation 
units of a determine power system provided of wind 
generation is currently solved by applying scenario 
generation/reduction-based techniques; a representative study 
was presented in [1], where a set of possible scenarios of wind 
power generation is generated by using an autoregressive 
moving average (ARMA) model, while the optimal 
scheduling for this scenario set is determined by solving the 
equivalent optimization problem by means of stochastic 
programming approach formulated as a mixed-integer linear 
programming (MILP) problem. However, this approach can 
be applied over a limited amount of scenarios, which could be 
a source of error; in order to overcome this problem, in [2] the 
incorporation of reserve requirements for each scenario into 

the stochastic programming approach was proposed; so that, 
the robustness of the obtained solution is increased. Other 
approaches based on Markov process to model wind power 
uncertainty have been developed. In [3], a model that 
combines a Markov process with dynamic programming was 
proposed; in order to overcome the problems related to the 
analysis of large scale systems, a unit aggregation method 
based on MILP was incorporated. In a similar way, in [4] 
Markov process is used to formulate scheduling problem 
based on MILP in terms of possible states of wind generation 
instead of scenarios; so that, the complexity of the 
optimization problem is reduced by interpreting the behavior 
of wind generation since a probabilistic point of view through 
the transition matrix of the Markov process. Other approach 
consists on the application of chance constrained 
programming; in this sense, in [5] a model that includes a risk 
constraint in the scheduling problem was presented, this 
technique allows incorporating several sources of uncertainty 
such as forecasting error of wind generation and demand 
changing the probabilistic constraints to determinate ones; so 
that, traditional optimization techniques can be implemented. 

Techniques based on probabilistic analysis have been 
carried out by several authors, this approaches consist on the 
study of the optimization problem considering the 
mathematical expression of the probability distribution that 
models wind power forecasting error instead of the analysis of 
a determined set of scenarios generated from this probability 
distribution. A representative study of this type of methods 
was presented in [6], where wind power generation is 
represented by using a Weibull distribution (to model wind 
speed characteristics) evaluated on a power curve with linear 
behavior (to model wind farm power production), while 
economic dispatch (ED) problem is formulated in terms of 
fuel consumption cost and reserve costs. In a similar way, in 
[7] wind power generation is modeled as in [6], while the 
analysis of the optimization problem is carried out in terms of 
the wind power penetration factor, scale factor, and shape 
factor of Weibull distribution. In our previous work [8] 
forecasting error is modeled by using a beta distribution; so 
that,  probability distribution of output power of conventional 
generators and generation cost can be estimated with a 
reasonable accuracy.  



As a continuation of the research work presented in [8]; in 
this paper, wind power forecasting error is modeled by using 
Cauchy distribution, which has been suggested as a reasonable 
mathematical model to forecasting error since an operational 
point of view. The paper is organized as follow: section II 
describes the probabilistic model used to determine the power 
dispatch; then, in section III the proposed approach is 
illustrated through the analysis of a representative power 
system of 10 generators, and conclusions are presented in 
section IV. 

II. PROBABILISTIC MODEL FOR POWER DISPATCH 

Our simplified analysis only considers generation system 
without taking into account transmission constraints. The 
system under analysis is shown in Fig. 1, where output power 
of generator ݆ (݆ = 1, … ,  is represented by the probabilistic (ܬ
variable ܶ ܷ௧  ௧ is the available wind generationܨܹܨ ,
represented by a Cauchy distribution, ܨܹܦ௧  is the distribution 
of dispatched wind generation (obtained from the solution of 
ED problem), and ܮܪ௧  is hourly load at time ݐ. 

 
Figure 1.  Scheme of the simplified power system under study. 

The approach used in this paper consists of discretization 
process of Cauchy distribution and the solution of dynamic 
ED problem. Section II-A describes the discretization 
problem, while section II-B explains the solution of dynamic 
ED problem. 

A.  Discretization of the Cauchy Distribution 

Cauchy distribution has been previously suggested as an 
accurate model of wind power forecasting error. In [9], an 
extensive analysis was carried out by using information from 
real installations. The analysis presented consists of a 
comprehensive comparison between Normal distribution, Beta 
distribution, Weibull distribution, and Cauchy distribution to 
model persistence forecast error. Fitting each of the 
probability distributions aforementioned by using maximum-
likelihood estimator, the results shown that Cauchy 
distribution fit better than the others probability distributions 
in the majority of the cases (Cauchy distribution fits better 
than Beta distribution in 89% of the cases, and it fits better 
than Weibull distribution in 95% of the cases). 

Cauchy distribution is incorporated on ED problem 
through a discretization process. Discretization process used in 
this paper was proposed by Barbiero [10]. The first step 
consists on adjusting the number of intervals (ܹ) at which 
Cauchy distribution is discretized, each interval is represented 

by the index ݓ = 1, … , ܹ. The second step consists on 
defining a discrete representation of a normal distributed 
random variable (ߨ௪) according to (1), ߨ௪ = ߝ− − ܹߝ2 − 1 + ൬ ܹߝ2 − 1൰ ;ݓ ݓ  = 1, … , ܹ;    (1) 

where ߝ is a parameter to be adjusted by the used. In the third 
step, discretized representation of (1) is evaluated on the 
cumulative distribution function (CDF) of a normal 
distribution (ܨே) according to (2), ߬௪ = ;(௪ߨ)ேܨ ݓ  = 1, … , ܹ;                  (2) 

In the fourth step, the probabilities obtained from the 
application of (2) (߬௪) are evaluated in the inverse CDF of 
Cauchy distribution according to (3),  ܨܹܨ௪௧ = ିܨ ଵ(߬௪); ݓ  = 1, … , ܹ;                (3) 

From this step, discretized representation of forecasting 
error (ܨܹܨ௪௧) is obtained. In the final step, the probability 
( ܲሼܨܹܨ௧ = ௪௧ܨܹܨ ௪௧ሽ) that corresponds to each intervalܨܹܨ  
is obtained by application of (4)-(7), ߟ௪ = ௪௧ܨܹܨ + ௪ାଵ௧2ܨܹܨ ; ݓ  = 1, … , ܹ − 1;         (4) 

ܲሼܨܹܨ௧ = ଵ௧ሽܨܹܨ = ; (ଵߟ)ܨ ݓ  = 1;              (5) ܲሼܨܹܨ௧ = ௪௧ܨܹܨ ሽ = (௪ߟ)ܨ − ;(௪ିଵߟ)ܨ ݓ  = 2, … , ܹ − 1;  (6) ܲሼܨܹܨ௧ = ௐ௧ܨܹܨ ሽ = 1 − ;(ௐିଵߟ)ܨ ݓ  = ܹ;      (7) 

where ߟ௪ is an intermediate variable.  

B. Dynamic Economic Dispatch under Uncertainty 

In this sub-section is explained how ramp constraints are 
modeled and incorporated in the ED problem under 
uncertainty. In the methodology used in this paper, all 
stochastic variables are represented by discretized probability 
density functions (PDFs); in this sense, output power at time ݐ − 1 is represented by a discretized PDF for each generation 
unit ݆. In order to make the optimization problem 
mathematically tractable, power production at ݐ − 1 is 
simplified by using the quantile concept. First a determined 
amount of scenarios (ܵ) of power production at ݐ − 1 is 
selected by the user, each of this scenarios is represented by 
the index ݏ = 1, … , ܵ. Then, a determined significance level 
(߮) is selected and the interval [߮, 1 − ߮] is divided into 
several points (ߜ௦) with a determined step. After that, each 
point ߜ௦ is evaluated in the discretized CDF of power 
production of each generation unit ݆ and saved in the matrix of 
power production at time  ݐ − 1 (ܶ ܷ,௦௧ିଵ) according to Fig. 2. ܶ ܷ,௦௧ିଵ is a matrix of ܬ rows and ܵ columns, each column is a 
vector of possible output power of unit ݆ = 1, … , ݐ at time ܬ − 1. Finally, a weight factor ( ௦ܸ) for each of these columns is 
calculated according to (8),  

௦ܸ = ∏ ൫ ܲ൛ܶ ܷ௧ିଵ = ܶ ܷ,௦௧ିଵൟ൯∑ ∏ ൫ ܲ൛ܶ ܷ௧ିଵ = ܶ ܷ,௦௧ିଵൟ൯௦ ; ݏ = 1, … , ܵ;     (8) 

where the factors ܲ൛ܶ ܷ௧ିଵ = ܶ ܷ,௦௧ିଵൟ can be estimated by 
evaluating discretized PDF of unit ݆.  

Unit j

Wind farm

Demand



 
Figure 2.  Discretized CDF of power production of unit j at time t-1. 

Once ܶ ܷ௧ିଵ has been described and the available wind 
power generation has been modeled through discretization 
process aforementioned, dynamic ED problem. Dynamic ED 
problem is shown in (9)-(14),   ܿ௦,௪ =  ቄߙ + ൫ܶߚ ܷ,௦௧ ൯ + ൫ܶߛ ܷ,௦௧ ൯ଶቅ +  (9)    ;(௦௧ܵܰܧ)ܮܮܱܸ

 ܶ ܷ,௦௧ + ௪௧ܨܹܦ = ௧ܮܪ ;                      (10) 

ܶ ܷ,௦௧ − ܶ ܷ,௦௧ିଵ ≤ ܶ ;                            (11)ߠ ܷ,௦௧ିଵ − ܶ ܷ,௦௧ ≤ ;ߣ                             (12) ܶ ܷ ≤ ܶ ܷ,௦௧ ≤ ܶ ܷ௫;                        (13) 0 ≤ ௪௧ܨܹܦ ≤  ௪௧;                          (14)ܨܹܨ

where ߙ, ߚ, and ߛ are coefficients of fuel consumption cost 
of unit ݆, ܶ ܷ,௦௧  is power production of unit ݆ that corresponds 
to the point ݏ at time ܮܮܱܸ ,ݐ is the value of lost load, ܵܰܧ௦௧ is 
the energy not supplied that corresponds to the point ݏ at time ߠ ,ݐ and ߣ are ramp-up and ramp-down limits, respectively, ܶ ܷ  and ܶ ܷ௫  are minimum and maximum output 
power, while ܨܹܦ௪௧  and ܨܹܨ௪௧  are dispatched and forecasted 
(available) wind power generation; finally, ܿ௦,௪ is the 
generation cost that corresponds to the point ݏ and interval ݓ. 
For the solution of dynamic ED problem described in (9)-(14), 
for each point (ݏ) of power generation at time ݐ − 1, the 
optimization problem is solved for all the intervals ݓ =1, … , ܹ of wind generation and discretized PDF of each 
variable of interest is built; then, all the probabilities of 
discretized PDF are multiplied by the weight factor ௦ܸ and 
added to the result obtained for the previous point ݏ − 1; so 
that, the effects of ramp constraints and wind power 
uncertainty are represented in a single discretized PDF. In 
order to obtain discretized PDF of a determined variable of 
interest, for example generation cost (ܥ௧), first a scale must be 
built, this is carried out by considering a determined maximum 

 value for the variable, and a (ܥ) and minimum (௫ܥ)
determined number of intervals (ܭ) required to represent the 
variable with reasonable precision. The scale is composed by 
the succession of numbers from ܥ until ܥ௫ in step 
௫ܥ) − ܭ)/(ܥ − 1). Then, the probability of occurrence 
of each value of the scale is represented by a vector with the 
same number of elements that the scale; so that, if a 
determined value needs to be represented, the corresponding 
bin is located in the scale and the probability is added to the 
corresponding position in the vector of probabilities. All this 
procedure is carefully described in [8]. 

III. CASE STUDY 

In order to illustrate the proposed methodology the 
analysis of a representative power system with 10 generators 
was carried out (ܬ = 10). All information about the thermal 
units can be found in [11].The accuracy of the results obtained 
from the proposed methodology was measured by comparison 
with those obtained from Monte Carlo simulation (MCS) 
approach. As the proposed methodology in this paper requires 
the discretized PDF of power generation at time ݐ − 1 for each 
generator ݆, these were estimated by MCS approach. In this 
sense, three time intervals were defined: ݐ − ݐ ,2 − 1, and ݐ. 
At time ݐ − 2 the power production was assumed to be 
constant for each unit, at time ݐ − 1 random scenarios of wind 
power generation were generated and discretized PDF of each 
unit was obtained by MCS approach, these PDFs were used as 
an input to our proposed methodology; finally, at time ݐ − 3 
random scenarios of wind power generation were generated 
and discretized PDF of each unit was obtained by MCS 
approach, these PDFs were used for comparative purposes in 
order to evaluate the accuracy of the proposed approach. Wind 
power generation was modeled by using a Cauchy distribution 
according to (15), ܨ(ܨܹܨ௧) = 12 + ଵି݃ݐ ቆܨܹܨ௧ − ܾܽ ቇ ߨ1 ;          (15) 

where parameters ܽ and ܾ were assumed to be 0 and 0.5, 
respectively; while the value of forecasted wind power 
generation with highest probability was assumed to be 
200MW. Cauchy distribution with aforementioned parameters 
was divided into 50 intervals (ܹ = 50), the parameter ߝ 
adjusted to 3, the significance level ߮ was adjusted to 1% and ߜ௦ was obtained by evaluating the interval [0.01,0.99] with a 
step of 0.49; obtaining three points for the representation of 
power production at ݐ − ݏ) 1 = 1,2,3). Discretized PDF of 
thermal power generation was created to represent values 
between 0MW and 500MW using 1500 bins, while discretized 
PDF of dispatched wind generation was created to represent 
values between 0MW and 318MW using 2000 bins; in similar 
way, discretized PDF of generation cost was created to 
represent values between 14,791$ and 38,365$ using 1500 
bins. All these values can be adjusted by the user in a free 
manner according to magnitudes to be represented and 
required accuracy. Load was assumed to be ܮܪ௧ =  ܹܯ1,600
Fig. 3 shows discretized PDF of available wind power 
generation (ܨܹܨ௧) and dispatched wind generation (ܨܹܦ௧); 
as can be observed wind power generation is completely 
integrated in the power system due to its relatively low value.   
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Figure 3.  Available and dispatched wind generation. 

Fig. 4 presents the comparison between the results 
obtained from the proposed method and MCS approach, as 
can be observed the proposed method can represent dispatched 
wind generation with a good accuracy. 

Depending on the rated capacity, type and fuel 
consumption cost, as well as ramping capabilities, some 
generation units are able to respond to the fluctuations of wind 
generation in order to maintain power balance, while others 
maintain their power production in a stable level. Fig. 5 shows 
discretized PDF of power generation of  
unit 1, which maintains its power output at 455MW, this 
behavior can be found in other generation units of the system.  

Fig. 6 presents discretized PDF of output power of 
generator 5 which regulates its power generation in a similar 
way according to the dispatched wind generation. As can be 
noted, proposed method presents a good agreement with the 
results obtained from MCS approach.  

Fig. 7 presents discretized PDF of generation cost, which 
is highly influenced by wind power generation, showing a 
PDF with a similar shape that dispatched wind generation.   

 
Figure 4.  PDF of wind power generation.  

 
Figure 5.  PDF of power production of unit 1. 

 

 
Figure 6.  PDF of power production of unit 5. 

 

 
Figure 7.  PDF of generation cost. 
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The capabilities of the proposed method to represent 
behavior of power dispatch according to a determined wind 
generation can be evaluated by comparing the expected value 
of all the variables of interest. For our case study these results 
are presented in Table I, where a good agreement can be easily 
recognized. 

TABLE I.  EXPECTED VALUE OF POWER GENERATION AND COST 

n MCS Proposed 

1 454.969980 454.969980 

2 454.969980 454.969980 

3 130.086724 130.086724 

4 130.086724 130.086724 

5 155.009006 154.569683 

6 20.055904 20.368411 

7 25.016678 25.016678 

8 10.006671 10.080719 

9 10.006671 10.024427 

10 10.006671 10.006671 

E{DFTt} 199.948766 200.000000 

E{Ct} 31503.692155 31503.361480 
 

IV. CONCLUSIONS 

In this paper, a probabilistic model to solve the ED 
problem incorporating ramp constraints of thermal units and 
wind power forecasting error represented by a Cauchy 
distribution was presented. The proposed approach discretized 
Cauchy distribution into several intervals which were 
incorporated into the optimization problem in order to find 
discretized PDF of dispatched wind generation, thermal power 
production and generation cost. The proposed methodology 
was illustrated by analyzing a power system of 10 units and 
the obtained results were compared to those obtained from 
MCS approach. A good agreement between both methods was 
observed.   
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