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ABSTRACT As amain flexible resource, energy storage helps smooth the volatility of renewable generation
and reshape the load profile. This paper aims to characterize the impact of energy storage unit on the
economic operation of distribution systems in a geometric manner that is convenient for visualization. Posed
as a multi-parametric linear programming problem, the optimal operation cost is explicitly expressed as a
convex piecewise linear function in the MW/MWh parameter of the energy storage unit. Based on duality
theory, a dual linear programming based algorithm is proposed to calculate an approximate optimal value
function (OVF) and critical regions, circumventing the difficulty of degeneracy, a common challenge in
the existing multi-parametric linear programming solvers. When the uncertainty of renewable generation
is considered, the expected OVF can be readily established based on OVFs in the individual scenarios, which
is scalable in the number of scenarios. The OVF delivers abundant sensitivity information that is useful in
energy storage sizing. Leveraging the OVFs, a robust stochastic optimization model is proposed to determine
the optimal MW-MWh size of the storage unit subject to a given budget, which gives rise to a simple linear
program. Case study provides a clear sketch of the outcome of the proposed method, and suggests that the
optimal energy-power ratio of an energy storage unit is between 5 and 6 from the economical perspective.

INDEX TERMS Distribution system, energy storage unit, multi-parametric programming, optimal value
function approximation.

NOMENCLATURE
A. INDICES
i, j Index of buses.
l Index of lines.
t Index of time periods.
c(i) Set of downstream buses of bus i.
(·)i Symbol associated with bus i.
(·)lij Symbol associated with line l.

B. PARAMETERS
bgi Generator cost coefficient.
ct Electricity price at the upstream grid.

pdit , q
d
it Fixed active and reactive power demand.

r lij, x
l
ij Resistance and reactance of line l.

prit Renewable power output.
zlij Impedance of line l, (zlij)

2
= (r lij)

2
+ (x lij)

2.
ηci , η

d
i Charging/discharging efficiency of ESU.

PSmi Maximum charging/discharging power of ESU.
ESmi Energy capacity of ESU.

C. VARIABLES
Eit State-of-charge of ESU.
pgit/p

n
it Active power generation/injection at bus i.
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pcit/p
d
it Charging/discharging power of ESU.

Plijt Active power flow in line l.
qgit/q

n
it Reactive power generation/injection at bus i.

Qlijt Reactive power flow in line l.
Uit Squared voltage magnitude at bus i.

I. INTRODUCTION

THE penetration of renewable generation in distribution
systems is growing rapidly [1]. The gap between peak

and valley demands is also widened due to the development of
industry and economy. The volatility of renewable generation
and the increasing peak-valley gap imposes great challenges
on the operation of distribution systems, where the dispatch-
able resource is rare. Deploying energy storage units (ESUs)
is an effective mean to cope with these challenges [2]–[4].
Among existing work, storage planning and operation have
attracted the most attention.

The planning problem entails the determination of the
optimal site and size of ESU. In some instances, the location
is given and the size is to be optimized. In either case,
the biggest challenge for sizing ESU is the volatility of
renewable power. To address this issue, a stochastic opti-
mization (SO) model is suggested in [5], [6] for planning a
stand-alone power supply system. Since the system is small,
network power flow is neglected. A comprehensive model
for expansion planning of distribution system, renewable
plant, and ESU is proposed in [7] and reformulated as a
mixed-integer linear program. The stochastic ESU planning
approach is applied in the Western Electricity Coordinat-
ing Council (WECC) interconnected system [8], showing its
ability in large-scale instances. A stochastic model predic-
tive control method is developed in [9] to consider receding
horizon operation of ESU and ultra-short-term wind power
forecast. In this way, the dynamic nature of power system
dispatch is captured. Nevertheless, the model entails the con-
sideration of all horizons over the entire planning horizon in
all scenarios at the same time, imposing a big challenge for
computation.

For the purpose of scenario generation, SO approach
requires the exact probability distribution of uncertain factors,
which may be difficult to acquire. Without the information
on the probability distribution, a robust optimization method
is proposed in [10] to size ESU in power grids, in which
the uncertainty set is the convex hull of several extreme
scenarios restricting the range of uncertain data. The robust
optimization (RO) model is further developed in [11] to
coordinate the investment in transmission lines and ESUs and
consider long-term and short-term uncertainties. Although
RO approach requires very little distributional information
on uncertainty and tackles the worst-case situation, it usu-
ally provides conservative results because the worst case
rarely happens. An alternative approach is the point estimate
method, which is used in the storage planning problem in
distribution networks in [12]. Point estimate method needs
a probabilistic renewable power forecast, which is comprised

of a few scenarios together with their probabilities. So the
performance relies on the accuracy of the input probability
distribution. Distributionally robust optimization (DRO) is an
emerging technique that inherits the advantages from both SO
and RO. Uncertainty is described by a family of probabil-
ity distributions around an empirical one. The performance
under the worst-case distribution is guaranteed. A compre-
hensive tutorial on DRO can be found in [13]. This approach
has been employed to sizing the ESU in stand-alone solar-
powered charging stations [14] as well as in the energy hub
connecting a power distribution grid and a district heating
system [15], where network flow constraints are considered.
It is shown that DRO offers less conservative planning strate-
gies than the traditional RO, and the out-of-sample perfor-
mance outperforms the traditional SO. Finally, the storage
planning problem is considered in a competitive environment
in [16]. The uncertainty is modeled via probability distribu-
tion, and the Nash equilibrium of storage planning strategies
demonstrates that competition does not harm the expected
effect of ESU.

Operation is another important issue of renewable energy
and storage integrated power systems. Uncertainty handling
remains one of the central targets of research. SO, RO,
and DRO methods are utilized in the ESU scheduling prob-
lem under the framework of unit commitment [17]–[19],
economic dispatch [20]–[24], and demand response [25],
[26]. Recently, the potential benefits of ESU participating in
energy and auxiliary service markets have been recognized.
In [27], self-scheduling of a price-taker virtual power plant,
which consists of wind power plants and ESU, is studied
via SO. Uncertainties of wind generation and market prices
are modeled by scenarios. The arbitrage strategy of ESU
in day-ahead and real-time markets is investigated in [28].
Market prices are assumed to be uncertain and modeled by
scenarios. It is found that compared with quantity-only bid-
ding, simultaneous price and quantity bidding gives higher
profits on average and also leads to a higher risk. To better
simulate the market power of ESU, the strategic bidding of
ESU is modeled via bilevel programs in [29]. The market
clearing problem in the lower level gives the clearing price.
By replacing the market clearing problem with KKT opti-
mality condition and perform linearization, the final prob-
lem reduced to a mixed-integer linear program. In ref. [30],
the lower level is decomposed into a day-ahead market and
a balancing market, accounting for compensating real-time
imbalance.

The grid contribution of ESU largely depends on its
parameters, including the efficiency, maximum charging-
discharging power (MW), and energy capacity (MWh). The
impact of these parameters and other system configurations
are investigated by numeric simulation, which requires solv-
ing an optimization problem (usually unit commitment or
multi-period dispatch) repeatedly with different parameter
sets. Evaluation of cost saving brought by ESU can be traced
back to [31]. At that time, the optimization algorithm was
less developed, and renewable generation was not considered.
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The value of ESU for managing wind power volatility is dis-
cussed in [32] with a unit commitment model with spinning
and standing reserve. A stochastic unit commitment model is
outlined in [33] to evaluate the short-term economic benefits
of deploying ESU with different penetration levels of renew-
able generation, in which the uncertainty is better treated.
In [34], a model predictive control scheme is presented for
minimizing the operation cost of a distribution system, based
on which the contribution of ESU on improving reliability
and reducing the cost is quantified. Recently, flexibility is
acknowledged as the key resource for coping with power
fluctuation in different time scales. A dedicated flexibility
metric is defined in [35], which can be calculated from a unit
commitment problem. An optimization problem is proposed
to maximize the flexibility metric. The effect of ESU on
alleviating congestion in a distribution network is studied in
[36], based on a multi-period dispatch model. In [37], a SO
model is set forth to optimize the topology of the distribution
network and ESU dispatch to evaluate system performance
under N − 1 contingency conditions.

Conceptually, evaluation of the economic impact of ESU
requires expressing the optimal cost as a function in MW
and MWh parameters of ESU, called the optimal value func-
tion (OVF). Solving the economic dispatch problem with
changing parameter can provide the costs on the sampled
parameters, but does not offer the subtle structure of the
OVF and deeper insights on how such sensitivity information
can help decision making in practice. This paper proposes a
thorough mathematical method to quantify and visualize the
economic impact of ESU parameters on distribution system
operation. The contributions are twofold:

1) The distribution system operation is formulated as
a multi-parametric linear programming (mp-LP) problem,
where the parameter is MW/MWh configuration of ESU.
Using duality theory, the OVF is shown to be convex and
piecewise linear (PWL), and a dual LP based algorithm is
developed to solve the mp-LP approximately; it circumvents
the common difficulty of degeneracy. Compared with the
traditional parameter sampling based approaches, the pro-
posed method reveals the geometric structure of the OVF,
and the sensitivity to parameter change is explicitly reflected
by the coefficients constructed from dual variables. Such
information can be easily visualized and could help engineers
determine a proper energy-power ratio of energy storage.

2) The method is generalized to a stochastic setting with
a large number of scenarios. An optimization model for
storage sizing is established under the framework of DRO.
Uncertain factors are modeled by scenarios associated with
inexact probability values. Based on the obtained OVF under
each scenario, a decompositionmethod is designed to retrieve
the OVF of the DRO model in the worst-case distribution.
Afterwards, the storage sizing strategy under a given bud-
get can be retrieved from a simple LP. Although DRO can
provide a single optimal solution without the need of an
OVF, the parametric optimal solution and optimal value are
extremely useful when engineers concern how the optimal

solution is influenced by parameter perturbation, and also
provide an alternative mean to solve bilevel decision-making
problems in power markets.

The rest of this paper is organized as follows. The mp-LP
model of distribution system operation is introduced in Sect.
II, following which the algorithm for retrieving the deter-
ministic OVFs is presented, and the properties of OVF is
discussed. The extension in stochastic cases and the DRO
method for storage sizing are presented in Sect. III; Case stud-
ies are conducted in Sect. IV; Finally, conclusions are sum-
marized in Sect. V.

II. PROPOSED METHOD
We will first present an mp-LP model for quantifying the
impact of ESU on economic dispatch of distribution system,
and then we discuss the OVF and its property using compact
form; Finally, we raise the algorithm for solving the mp-LP.

A. MULTI-PERIOD ECONOMIC DISPATCH AS AN MP-LP
The power flow in a distribution system with radial topology
can be exactly described by the branch flow model (BFM) or
Dist-Flow originally developed in [38]. By neglecting lossy
terms, the BFM becomes linear [39]:

Plijt + p
n
jt =

∑
k∈π(j)

Pljkt , ∀j (1a)

Qlijt + q
n
jt =

∑
k∈π(j)

Qljkt , ∀j (1b)

Vjt = Vit −
r lijP

l
ijt + x

l
ijQ

l
ijt

V0t
, ∀(l, i, j) (1c)

where pnjt/q
n
jt is the active/reactive power injection depending

on the output of gas-fired units pgjt/q
g
jt , renewable generation

prjt , load pdjt/q
d
jt , and the output of ESU pcjt/p

d
jt , if there is

any. For nodes without an ESU, pcjt and pdjt are set to 0.
Equality (1a)/(1b) is active/reactive power balancing condi-
tion at each bus; (1c) describes voltage drop along each line.
Model (1) will be referred to as linearized BFM in context and
Cons-BFM[t] in mathematical formula hereinafter. Com-
pared with the traditional direct-current (DC) power flow
model, model (1) considers reactive power and bus voltage,
which are either neglected or fixed in the DC model. So the
linearized BFM better captures the operating characteristics
of the distribution system, although network loss is neglected.

The operation model the ESU can be described by

Ejt+1 = Ejt + ηcj p
c
jt − p

d
jt/η

d
j , ∀j, ∀t (2a)

0 ≤ pcjt ≤ P
S
mj, 0 ≤ p

d
jt ≤ P

S
mj, ∀j, ∀t (2b)

αESmj ≤ Ejt ≤ ESmj,∀j, ∀t (2c)

where (2a) depicts the SoC dynamics; (2b) and (2c) set lower
and upper bounds on charging/discharging power and SoC,
where PSm and Em are the main parameters whose impact will
be investigated, α is a constant indicating the minimum SoC.
Condition pct ·p

d
t = 0 naturally holds if the locationalmarginal

price at storage-connected bus is positive [40], which is met in
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the distribution system. ESUmodel (2) will be cited asCons-
ESU in mathematical formula later on. It couples with the
linearized BFM (1) through (1a).

The objective of distribution system dispatch is to mini-
mize the total operation cost

fDN =
∑
t

ξtP
l0
t +

∑
j,t

bgi p
g
jt (3)

where Pl0t stands for the active power in the line connect to
the slack bus, so the first term is the purchase cost paid to the
upstream power grid; the second term is the fuel cost of local
generators.

The distribution system operation model is cast as

min fDN
s.t. Cons− BFM[t], ∀t

Cons− ESU, Cons− BND (4)

where Cons-BND denotes lower and upper bounds of deci-
sion variables except those included in (2).

A few discussions are given as follows.
1) In (3), the generator cost function is linear. There

are two ways to consider a quadratic cost function. One
option is to approximate it with a PWL function; one viable
formulation is available in [41]. The other is to employ
the multi-parametric quadratic programming theory. We rec-
ommend the first one because the objective function of a
multi-parametric quadratic program must be strictly convex,
which is a strong assumption.

2) In formulation (5), the location of the ESU is fixed.
To examine how the site will influence system performance,
we can change the location of ESU, calculate (9) for each case
and compare the corresponding v(θ).
3) In many cases, a distribution system possesses only one

large ESU, so the dimension of parameter space is two, and
the OVF and critical regions can be visualized. The proposed
method has no limitation in coping with multiple ESUs.
In such circumstances, because the dimension of parameter is
higher than 2, visualization of v(θ ) is non-trivial. An example
with two ESUs is given in the case study. In this case, we fix
the ratio Em/PSm, so that the dimension of θ remains two.

B. GEOMETRIC DESCRIPTION OF THE IMPACT OF
STORAGE
Define PSm = [PSm1,P

S
m2, · · · ]

>, ESm = [ESm1,E
S
m2, · · · ]

>. Let
θ = [PSm,E

S
m]
> be the vector of parameter and x the vector

of all decision variables; then problem (4) has the following
compact matrix form

v(θ) = min c>x

s.t. Ax ≤ b+ Bθ (5)

where A, B are constant matrices and b, c constant vectors.
We assume that the parameter θ varies in a hypercube

K = { θ | 0 ≤ θ ≤ θmax } (6)

which is called the parameter space. The task is to find an
analytical form of the OVF v(θ) on the parameter space K .
For a fixed θ , suppose the set of active/inactive constraints

at the optimal solution is

A′x = b′ + B′θ

A?x < b? + B?θ

Then, the optimal solution and optimal value are

x = A′−1b′ + A′−1B′θ, θ ∈ CR (7)

v(θ ) = c>A′−1b′ + c>A′−1B′θ, θ ∈ CR (8)

where CR is called a critical region in which the set of
active constraints remains intact. Therefore, the analytical
expression of v(θ ) must take the following form

v(θ ) =


m1 + n>1 θ, θ ∈ CR1
m2 + n>2 θ, θ ∈ CR2

...

mN + n>N θ, θ ∈ CRN

(9)

where m1, · · · ,mN and n1, · · · , nN are constant scalars and
vectors; CR1, · · · ,CRN constitute a partition of K . Clearly,
(9) is a PWL function.

C. AN APPROXIMATE ALGORITHM FOR SOLVING MP-LP
Existing parametric programming methods solve a mp-LP
based on (7) and (8). However, they are ineffective because of
degeneracy [42], which is a common issue in large-scale engi-
neering problems. Degeneracy complicates the computation
of critical regions. To overcome this difficulty, we develop
a method that does not rely on the analysis of optimal basis
invariant set. First, we disclose the convexity of OVF v(θ ).
Claim: The OVF v(θ ) is convex in θ .
To see this, for a fixed θ , the dual problem of LP (5) is

v(θ)=max
µ∈U

µ>(b+Bθ ), U=
{
µ

∣∣∣A>µ = c, µ≤0
}

(10)

Because of strong duality, the optimal value of dual LP (10)
is equal to v(θ ) for any given θ . LP (10) shows that v(θ ) is the
point-wise maximum of affine functions µ>(b + Bθ ) when
the parameter µ takes all possible values in U , hence v(θ ) is
convex in θ , as point-wise maximum preserves convexity.

The form of LP (10) offers an alternative way to build an
approximation of v(θ ) without prior knowledge on critical
regions. Let vert(U ) be the set of vertices of set U . Since the
optimum is finite, the optimal solution can always be found
at some µ ∈ vert(U ), although U may contain extreme rays.
On this account, v(θ ) can be expressed as

v(θ ) = max
i

{
µ>i b+ µ

>
i Bθ

}
, ∀µi ∈ vert(U ) (11)

Compare (9) and (11), coefficients m and n can be retrieved
from dual variable via

mi = µ>i b, ni = µ
>
i B, for some γi ∈ vert(0) (12)
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Nevertheless, only a few vertices produce valid pieces in (9)
and (11), but they are not known in advance. We pro-
pose a heuristic method; the flow chart is summarized in
Algorithm 1.

Algorithm 1 PWL Approximation of OVF
1: Discretize the parameter set K into uniformly distributed

points, denoted by θi, i = 1, · · · , I .
2: Solve problem (10) for each θi; the corresponding opti-

mal solution is µi, i = 1, · · · , I .
3: Eliminate duplicated elements in the series {µi}Ii=1, and

compute coefficients mi and ni according to (12).
4: Remove redundant slice in v(θ ) (see Remark 3).
5: Recover critical regions from v(θ ) (see Remark 2).

Remark 1: The outcome of Algorithm 1 is an underesti-
mator of the true OVF, because some µi in vert(U ) may be
missed; otherwise, the approximation is exact. The outcome
of Algorithm 1 depends on the discretization for the param-
eter space K . We can compare the optimums offered by the
PWL approximation and the original problem (5) on a set of
sampled θ . If the maximum relative error is not satisfactory,
then we increase the density of discretization.
Remark 2: After obtaining the PWL expression of v(θ ),

we can construct the critical region for each piece. Recall (9)
and its point-wise maximum property, in CRi, the value of
mi + n>i θ must be greater than or equal to the values of other
affine functions, yielding

CRi =
{
θ

∣∣∣mi + n>i θ ≥ m[−i] + n>[−i]θ
}

(13)

where the subscript [−i] is a simple notation for i =
1, · · · , i − 1, i + 1, · · · ,N , so there are actually N − 1
inequalities in (13). Finally, redundant constraints should be
removed.
Remark 3: In Algorithm 1, steps 4 and 5 entail redundancy

elimination. The critical region has a polyhedral form ofH =
{θ |Hθ ≤ h}; the epigraph of v(θ )

epi[v(θ)] =
{
(z, θ)

∣∣∣z ∈ R, z ≥ mi + n>i θ, i = 1, · · · ,N
}

is also a polyhedron sharing the same compact form, so we
can address the problem using a unified method.

The i-th row of H is redundant if dropping off constraint
Hiθ ≤ hi does not alter the feasible region defined by H.
According to Farkas lemma, the i-th row is redundant if it is
a nonnegative combination of all remaining constraints in H
plus a positive offset. So we test feasibility of constraint set

Hi =
∑
j,j6=i

λjHj, hi =
∑
j,j6=i

λjhj + h0, λ ≥ 0, h0 > 0 (14)

If (14) is feasible, Hiθ ≤ hi is redundant and should be
removed from the critical region or the OVF.

III. IMPLICATIONS OF THE OVF
This section discusses some useful applications of the OVF
obtained in Sect. II.

A. EXPECTED OVF CONSIDERING UNCERTAINTY
LP (5) is deterministic. We adopt a stochastic approach
to consider uncertain renewable generation. Particularly,
we have a collection of renewable generation scenarios
and their probabilities ρs. Renewable output influences
the right-hand coefficient b. The stochastic extension of
problem (5) is

E[v(θ)] = min
∑
s

ρsc>xs

s.t. Axs ≤ bs + Bθ, s = 1, · · · , S (15)

where S is the number of scenarios. Uncertain purchase cost
ξt can be taken into account by vector cs associated with
scenario s without changing the solution approach.

Problem (15) remains an mp-LP, therefore, we can apply
Algorithm 1 to compute the expected OVFE[v(θ)]. However,
the problem size grows quickly if S is large. Next, we discuss
how to obtain E[v(θ )] from the OVF in each scenario. Notice
that in problem (15) the constraint in scenario s does not
depend on variable x and parameter b in other scenarios.
Define the OVF in scenario s by

vs(θ ) = min
x

{
c>xs

∣∣∣Axs ≤ bs + Bθ}
where vs(θ ) has the same form as (9) and can be computed in
parallel. The expected OVF under uncertainty is

E[v(θ)] =
∑
s

ρsvs(θ ) (16)

The epigraph form (please refer to [43], Sect 3.1.7 for the
definition of epigraph) of problem (16) is

min
∑
s

ρsys

s.t. ys ≥ msk + (nsk )
>θ, k = 1, · · · ,Ns, ∀s (17)

where Ns is the number of pieces in the OVF vs(θ ) in
scenario s. If we regard problem (17) as an mp-LP in param-
eter θ , the expected OVF E[v(θ)] can be solved by applying
Algorithm 1, which is very efficient because problem (17) is
much smaller than problem (15) in size. Through comparing
E[v(θ)] and individual vs(θ ), we can observe how uncertainty
impacts the operation cost.

B. A DRO MODEL FOR STORAGE SIZING
The OVF vs(θ ) carries useful information. This section will
discuss how the OVF can help determine the capacity of ESU.
We consider the storage sizing problem with a given budget
0. The total investment on the ESU depends on MW and
MWh parameters. For simplicity, we assume the investment
cost is a linear function in both parameters

α>E E
S
m + α

>
p P

S
m (18)

The first MWh-related component reflects the cost of battery
arrays, and the second MW-related components represents
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FIGURE 1. OVF and critical regions with 11 × 11 discretization.

the cost of power electronics convertors. We append the
budget constraint in the parameter set K in (6), resulting in

K (0) = { θ ∈ K | α>E E
S
m + α

>
p P

S
m ≤ 0 } (19)

For the deterministic model (5), we can compute v(θ ) over the
budget-restricted set K (0), denoted by v0(θ ). By optimizing
minθ v0(θ ), the optimal solution θ? gives the optimal size of
ESU, including MW and MWh parameters at the same time.
Apply this idea to the stochastic case (15), we should optimize
the expected OVF E[v(θ)].
Assume a collection of historical data with M samples is

available. Then we can create a histogram with S bins as an
estimation of the empirical distribution. LetM1,M2, · · · ,MS
be the numbers of samples fall in each bin, where

∑S
s=1Ms =

M , then the empirical distribution is given by

P0 = [ρ01 , · · · , ρ
0
S ], ρ

0
s = Ms/M , i = 1, · · · , S

In general, the historical data available at hand is not adequate
to fit the accurate distribution, so the probability ρ0s is inexact,
preventing the direct setup of problem (15).

Following the paradigm of DRO, we resort to ambiguity
set of probability distribution in [44], which allows the prob-
ability ρs to vary around the empirical value ρ0s , giving rise to

D∞ =
{
P ∈ RS

+

∣∣∣‖P− P0‖∞ ≤ γ
}

=

{
ρ ∈ 1S

∣∣∣∣ γ ≥ ρs − ρ0s , s = 1, · · · , S
γ ≥ ρ0s − ρs, s = 1, · · · , S

}
(20)

where 1S = {ρ ∈ [0, 1]S : 1>ρ = 1}, ρ = [ρ1, · · · , ρS ]>.
Parameter γ reflects a confidence level on the distance
between the empirical distribution and the true one. Appar-
ently, more historical data can generate an empirical distribu-
tion P0 with higher accuracy. The proper value of γ can be
determined from the following relation [44]

Pr{‖P− P0‖∞ ≤ γ } ≥ 1− 2Se−2Mθ (21)

Therefore, if we want to maintain (20) with a confidence level
of β, parameter γ should be selected as

γ =
1
2M

ln
2S

1− β
(22)

As the size of sampled data approaches infinity,
γ decreases to 0, and the empirical distribution converges to
the true one. If we have limited data, the ambiguity set D∞
contains infinitely many probability distributions.

Let vs0(θ ) denote the OVF vs(θ ) in scenario s over K (0).
In view of the distributional uncertainty described in (20),
we consider the expected performance under the worst-case
distribution, leading to the following DRO model

max
ρ∈D∞

min
θ∈K (0)

∑
s

ρsvs0(θ ) (23)

Formulation (23) means that once the optimal sizing strategy,
which incurs a budget of 0, is deployed, the expected opera-
tion cost in the worst-case scenario will be minimum.

To solve problem (23), we first write out the epigraph form
of the inner minimization problem

min
θ,y

∑
s

ρsys

s.t. ys ≥ msk + (nsk )
>θ : νsk , ∀k, ∀s

α>θ ≤ 0 : η, θ ≥ 0 (24)

where msk and n
s
k are scalar and vector associated with vs0(θ )

in scenario s, the second constraint corresponds to the budget
limit. Greek letters after the colon are dual variables.
The dual problem of LP (24) reads

max
ν,η

0η +
∑
s

∑
k

mskν
s
k

s.t.
∑

k
νsk = ρs, ∀s, ν ≥ 0∑

k
νskn

s
k + αη ≤ 0, η ≤ 0 (25)

Substituting (25) into (23), we obtain

max
ρ,ν,η

0η +
∑
s

∑
k

mskν
s
k

s.t.
∑

k
νsk = ρs, ∀s∑

k
νskn

s
k + αη ≤ 0

ν ≥ 0, η ≤ 0, ρ ∈ D∞ (26)

Problem (26) remains an LP.
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Finally, we would like to clarify that a detailed invest-
ment problem may have to consider practical factors such as
multi-stage investment and net present values. The purpose of
this paper is to pose a tool for quantifying and visualizing the
impact of storage parameters as well as its implications which
are not restricted to storage sizing. Most existing evaluation
methods, if not all, may not offer such abundant implications.

The parameterized optimal solution (7) and optimal
value (8) are also desired in electricity market problems. For
example, in a capacity market, a merchant energy storage
unit first submits how much capacity it would like to offer,
and then the market is cleared according to an economic
dispatch problem in the form of (5). The bidding strategy
and the market clearing results are contained in the parameter
θ and the optimal solution x, respectively. The profit of the
merchant storage unit F(x), which is a function of x and thus
influenced by θ , is to be maximized. This problem gives rise
to a bilevel program. The traditional method is to replace the
market clearing problem with its KKT optimality conditions
and further linearize the complementarity and slackness con-
dition, resulting in amixed-integer linear program.As the size
of the market clearing problem grows with the scale of the
power system, solving the bilevel decision-making problem
may take some time. The parametric perspective in this paper
offers an alternative way to solve the strategic bidding prob-
lem in the capacity market. As disclosed in (7), the optimal
solution x can be explicitly expressed as a piecewise linear
function in θ , so the analytical expression of F(x(θ )) in θ can
be retrieved. As a result, the optimal bidding strategy can be
searched in the parameter set K whose dimension is much
lower than x, if the market involves only one or just a few
periods.

If multiple energy storage units or multiple time periods
are involved, the dimension of parameter θ in the lower-level
problem grows higher, complicating the solution of mp-LP.
This is an intrinsic difficulty of multi-parametric programs.
Another issue arises in the nodal price based markets. Nodal
price is the dual variable of the economic dispatch problem,
which is not included in the analysis in Section II. To over-
come this difficulty, a strictly convex quadratic programming
model is used in [45]. The parametric analysis is based on the
KKT optimality condition, which simultaneously offers the
analytical expressions of the primal variable, dual variable,
and optimal value. As the parametric program can be solved
offline, such a methodology has potential in online applica-
tions and is a promising direction in power market studies.

IV. CASE STUDIES
A. SYSTEM CONFIGURATION
The proposed method is tested on a modified IEEE 33-bus
system shown in Fig. 2. The peak demand is 9.39 MW. Wind
and solar generation with a total capacity of 2.8 MW is
integrated at bus 3; real weather data in Qinghai Province,
China are used to produce renewable power output. An ESU
with ηc = ηd = 0.95 is placed at bus 3. A gas-fired unit with a

FIGURE 2. Topology of the 33-bus system.

capacity of 8MW connects to bus 6; the marginal production
cost is 1000 CYN/MWh. The time-of-use electricity price
at the slack bus is 800 CNY/MWh from 7 a.m. to 8 p.m.
and 400 CNY/MWh in the remaining periods of the day. All
experiments are implemented on a laptop with Intel i57267U
CPU and 8 GB memory. Optimization problems are coded
in MATLAB environment with YALMIP interface [46] and
solved by CPLEX 12.8.

B. VISUALIZATION OF THE OVF
Using the load and renewable generation profiles in a typical
day, the OVF is constructed by Algorithm 1. The parameter
set is K = {(PSm,E

S
m)|0 ≤ PSm ≤ 10MW, 0 ≤ ESm ≤

50MWh}, and the initial discretization has 11×11 uniformly
distributed points in K . The obtained OVF is

v(θ ) =



67091− 15654.4PSm [PSm,E
S
m] ∈ CR1

66996− 2789.17PSm [PSm,E
S
m] ∈ CR2

66681− 2571.56PSm [PSm,E
S
m] ∈ CR3

66996− 857.19PSm − 169.47ESm [PSm,E
S
m] ∈ CR4

66681− 639.57PSm − 169.47ESm [PSm,E
S
m] ∈ CR5

66996− 380.83PSm − 253.04ESm [PSm,E
S
m] ∈ CR6

66681− 163.21PSm − 253.04ESm [PSm,E
S
m] ∈ CR7

67091 − 452.21ESm [PSm,E
S
m] ∈ CR8

67002 − 338.95ESm [PSm,E
S
m] ∈ CR9

65346 − 253.04ESm [PSm,E
S
m]∈CR10

The OVF and critical regions are displayed in Fig. 1; the gray
scale is associated with the slope of the OVF. To validate this
OVF, we discretize K into 101 × 101 uniformly distributed
points, and solve problem (5) for each point; the correspond-
ing optimum vp(θ ) is exact. Among the 101 × 101 samples,
the maximum relative error |vp(θ ) − v(θ )|/vp(θ ) = 0.0011,
because of missing some vertex µ in (11). Nevertheless,
the uniform discretization is hopeful to allocate most active
vertices that corresponds to a slice in the PWL function v(θ ),
so the relative error is generally very small. A simple way to
improve accuracy is to employ more samples in a finer initial
discretization.

C. IMPLICATIONS ON MARGINAL COST REDUCTION
The OVF v(θ ) contains abundant sensitivity information.
Take CR8 for example, in this critical region, v(θ ) is
independent of PSm, because ESm ≈ 0 and there is
nowhere to store energy. In addition, ∂v(θ )/∂ESm achieves the
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maximum among all the 10 critical regions, implying that
increasing ESm brings the largest marginal benefit, which is
452.21CNY/MWh. Similarly, if PSm is very small, such as in
CR1, v(θ ) is independent of Em, due to the lack of adequate
charging and discharging ability. The marginal benefit of
increasing PSm is 15654.4 CNY/MW, which is the largest
among all the critical regions. By and large, when either PSm
or ESm is very small, improving PSm brings larger benefit. If PSm
andESm research some certain values, such as in CR5 and CR7,
both of their values affect v(θ ); however, the marginal benefit
decreases.

Sometimes, the energy-power ratio κ = ESm/P
S
m is kept

constant in engineering practice. From the cost reduction
perspective, critical values of κ are represented by the slopes
of the solid lines passing the origin, which are κ ≈ 11, κ ≈ 5,
and κ ≈ 2 in Fig. 1. When κ varies in either [2, 5] or [5, 11],
the marginal benefit is constant.

D. IMPACT OF UNCERTAINTY AND DISCRETIZATION
We test the proposed method with fewer initial discretiza-
tion points. Specifically, we use 9 × 9 and 6 × 9 lattices,
and the results are shown in Fig. 3. Compared with those
in Fig. 1, most critical regions remain unchanged, except for
some small ones; the maximum relative errors in these two
cases are 0.0011 and 0.0013, respectively, which is accurate
enough for assessment or planning related applications. This
observation demonstrates that the discretization needs not to
be very dense.

FIGURE 3. Critical regions of OVF with 9 × 9 (left) and 6 × 9
(right) grid.

To investigate the impact of renewable generation uncer-
tainty, using wind and solar output data in spring, summer,
autumn, and winter, we create 20 scenarios (5 for each sea-
son) with equal probability of 0.05. The OVF in each scenario
is obtained, and then mp-LP (17) is solved by Algorithm 1
with 21 × 21 and 11 × 11 lattice sampling. The OVFs and
critical regions are plotted in Fig. 4. The maximum relative
errors are 6.6 × 10−4 in both discretization patterns. Since
renewable generation and load in multiple seasons are con-
sidered, the critical regions show different shapes compared
with those in Fig. 1. Nevertheless, the critical values of κ are
still between 2 and 12.

E. IMPLICATION ON STORAGE SIZING
Taking into account the capital cost of ESU, an addi-
tional inequality appears in the budget-constrained parameter

FIGURE 4. OVF and critical region with 20 scenarios and
different discretization.

set K (0), as in (19), where αE = 106CNY/MWh and
αp = 1.5 × 106CNY/MW. Wind and solar data in 100 days
are used in this test. Considering distributional uncertainty,
the expected daily operation cost in the worst distribution
{ρs}

100
s=1 can be found by solving LP (26). Given the worst dis-

tribution, we solve LP (24) to obtain the optimal MW/MWh
parameter. Such experiments are performed with different
values of 0. The case without ESU is the baseline, and the
optimum is 81010 CNY. We have found two worst distribu-
tions, one for 0 = 10, 20, 30 million CNY and the other
for 0 = 40, 50 million CNY. The minimum of OVF on the
edge induced by the budget constraint interprets the optimal
sizing strategy, which is shown through Fig. 5 (two OVFs
correspond to two worst distributions). Increase the value
of 0, the average daily operation cost decreases correspond-
ingly. Assume the lifespan of ESU is 12 years, the net profit,
which is the total saved cost during the service time minus
the budget 0, is exhibited in Table 1. For any fixed 0, we can
seek the optimum of v(θ ) with respect to PSm and ESm, denoted
by ES∗m /P

S∗
m = κ the optimal energy-power ratio. Results

obtained from Fig. 5 are provided in Table 1, indicating that
the optimal energy-power ratio is approximately 5.7. Larger
ESU costs more budget, but the marginal utility decreases.
On this account, the optimal investment on ESU is 40 million
CNY. Excessive investment leads to a lower net profit, which
can be observed in the last row of Table 1.
We examine the impact of the gap between peak and valley

prices under the budget 0 = 4 × 107CNY and the valley
price of 400 CNY/MWh. Results are given in Table 2, show-
ing that the peak price does not significantly influence the
energy-power ratio κ , which varies between 5 ∼ 6 in all the
instances.When the peak price is lower than 800CNY/MWh,
investing on ESU does not bring economical benefits; when
the peak price is higher than 800CNY/MWh, the sizing
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TABLE 1. Storage sizing strategy under different budgets.

FIGURE 5. Optimal sizing strategy under different budgets.

TABLE 2. Storage sizing strategy under different peak prices.

strategy is barely affected by the peak-valley price gap,
because we assume electricity cannot be sold back to the
transmission grid, prohibiting the additional income from
arbitrage.

F. TWO STORAGE UNITS
In this case, two ESUs connect to the 33-bus system at bus 3
and bus 6, respectively, and the peak demand is 11.27MW.
The energy-power ratio is kept at κ = 6, so the capacity
cost of ESU is α1 = α2 = 1.25 × 106 CNY/MWh, and
the parameter θ = [E1

m,E
2
m] has a dimension of 2. The

parameter set becomes K (0) = {θ ∈ K |α1 E1
m + α2 E

2
m ≤

0}. If the same 100 scenarios are used, the optimal choice
offered by problem (26) is to invest only one ESU at bus 3,
so we select the top 3 worst-case scenarios, each with a
probability of 1/3. The OVF and critical regions are plotted
in Fig. 6. It can be observed that the daily operation cost
decreases with the increase of E1

m and E2
m; when the bud-

get is sufficiently large, investing on the ESU at bus 3 is
more effective, because the marginal cost reduction brought
by the ESU at bus 6 decreases quickly. The optimal sizing
strategies corresponding to different budgets are obtained by
solving model (26). Results are presented in Table 3. Without
ESU, the optimal daily average operation cost is 82412 CNY.

FIGURE 6. Optimal sizing strategy under different budgets.

TABLE 3. Storage sizing strategy under different peak prices.

According to the last column of Table 3, the optimal invest-
ment decision is to build ESUs with capacities of 11MWh at
bus 3 and 5MWh at bus 6, respectively, spending 20 million
CNY. Across the ESU lifespan of 12 years, the net profit is
2.675 million CNY.

V. CONCLUSION
This paper proposes a multi-parametric linear programming
model to quantify the economic impact of energy storage
unit on distribution system operation. The duality-inspired
method to solve the multi-parametric model has two appeal-
ing features. First, it does not rely on the analysis of optimal
basis invariant sets, and thus is not influenced by model
degeneracy, a well-known difficulty in multi-parametric lin-
ear programming. Second, its accuracy is adjustable; when
a certain error tolerance is allowed, the computation entails
just a moderate number of linear programs in the dual form.
Computational experiments demonstrate that the proposed
method can solve problems with sizes of practical interests.
The obtained optimal value function carries abundant sensi-
tivity information that provides references for energy storage
sizing. By and large, when either charging capacity or energy
capacity is very small, investment on charging capacity brings
larger benefit; from the economical perspective, the optimal
energy-power ratio of energy storage is between 5 and 6.
Quantitative MW/MWh size can be obtained from the opti-
mal value function.
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