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     Abstract–This paper presents a self-scheduling model for home energy management 

systems (HEMS) in which a novel formulation of a linear discomfort index (DI) is proposed, 

incorporating the preferences of end-users in the daily operation of home appliances. The 

HEMS self-scheduling problem is modelled as a mixed-integer linear programming (MILP) 

multi-objective problem, aimed at minimizing the energy bill and DI. In this framework, the 

proposed DI determines the optimal time slots for the operation of home appliances while 

minimizing end-users’ bills. The resulting multi-objective optimization problem has then been 

solved by using the epsilon-constraint technique and the VIKOR decision maker has been 

employed to select the most desired Pareto solution. The proposed model is tested considering 

tariffs in the presence of various price-based demand response programs (DRP), namely time-

of-use (TOU) and real-time pricing (RTP). In addition, different scenarios considering the 

presence of electrical energy storage (EES) are investigated to study their impact on the optimal 

operation of HEMS. The simulation results show that the self-scheduling approach proposed in 

this paper yields significant reductions in the electricity bills for different electricity tariffs.  

 

Keywords: Home Energy Management System; Discomfort Index; Self-scheduling; MILP; 

Price-Based Demand Response. 
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Nomenclature  

Acronyms 

ABC  Artificial bee colony 

BSA  Backtracking search algorithm 

DA Dragonfly algorithm 

DER Distributed energy resource 

DI  Discomfort index 

DR  Demand response 

DSO Distribution system operator 

EES  Electrical energy storage 

EH Energy hub 

ELPSO Enhanced leader particle swarm optimization 

GSA  Gravitational search algorithm 

HEMS Home energy management system 

IBR Inclining block rate 

IoT Internet of things 

MILP  Mixed-integer linear programming 

MINLP          Mixed-integer non-linear programming 

P2P Peer-to-peer 

PSO Particle swarm algorithm 

PV Photovoltaic  

RTP Real-time pricing 

TOU Time-of-use 

VPP Virtual power plant 

Indices 

t Index for the time intervals of scheduling 

i  Index for home appliances 

j  Index for EES devices 

Variables 

Si,t   Binary variable showing the status of operation of appliance i at time slot t 

ω  Penalty factor for discomfort index 
2G H

tP    Delivered power from grid to home at time slot t 

iDI    Discomfort index regarding usage of the appliance i before the scheduled time 

iDI    Discomfort index regarding usage of the appliance i after the scheduled time 
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.
,
Ch
j tP    Charging power of EES j at time slot t 

.
,
Disch
j tP   Discharging power of EES j at time slot t 

,j tE   Stored energy at EES j at time slot t 

.
,

Ch
j tI    Charging status of EES j at time slot t 

.
,

Disch
j tI    Discharging status of EES j at time slot t 

 Parameters 
Tariff
t   Electricity price at time slot t based on Tariff 

Pi Rated power of appliance i 
D

tP   Hourly demand of home appliances 

t   Operation time interval  

Bi,t  The end-user’s preferred usage status of the appliance i at time slot t 

Ti  Total number of time intervals of the operation  

LBi,b  The lower band of baseline operation time slot  

UBi,b  The upper band of baseline operation time slot 

 LBi,s  The lower band of allowable operation time slot  

UBi,s  The upper band of allowable operation time slot 
.maxCh

jP       Maximum charging power of EES j  
.maxDisch

jP   Maximum discharging power of EES j  
.Ch

j        Charging efficiency of EES j  
.Disch

j        Discharging efficiency of EES j  
min
jE          Minimum acceptable energy stored at EES j  
max
jE         Maximum acceptable energy stored at EES j  
1
jE             Initial energy stored at EES j  
T
jE         Final energy stored at EES j  

Sets 

NT       Scheduling period 

NA       Set of shiftable home appliances  

NS            Total number of EES devices  
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1. Introduction 

A. Motivation 

In recent years, there has been a proliferation in the use of smart meters in residential 

households (Martinez-Pabon, Eveleigh, & Tanju, 2018), providing highly granular data on their 

energy usage. These meters, being a vital element of smart grids, allow for new forms of 

communication, control, and automation of electrical power flow between the grid and the 

household. This unlocks the great potential for residential users to be active participants in smart 

grids. For instance, according to the Federal Energy Regulatory Commission (FERC), 

residential demand response (DR) offers the largest unused DR resource of all sectors 

(residential, commercial, and transport) (Albadi & El-Saadany, 2007).  

To exploit this potential, home energy management systems (HEMS) have been 

developed to assist in the optimal scheduling of home appliances to lower the electricity cost, 

while keeping the user’s comfort within an acceptable range (Al-Ali, Zualkernan, Rashid, 

Gupta, & Alikarar, 2017; Jordehi, 2019; Z Yahia & Pradhan, 2018). This paper builds upon this 

research and presents a novel self-scheduling model which uses a linear penalty function to 

mitigate customers’ discomfort resulting from HEMS operation. According to (Siano, 2014), a 

smart grid is an electrical grid which can connect various sources of generation and consumers 

in a controllable manner, and it is “smart” in the sense that it allows the consumers to adjust 

their actions according to various signals received. A universal definition of a smart grid is not 

agreed-upon since the concept covers a wide scope and can mean different things to different 

people. One of the more general definitions of the smart grid is given by (Tuballa & Abundo, 

2016), stating that the smart grid is an intelligent grid, which is capable of storing, 

communicating, and making decisions concerning energy and the smart grid increases the 

capability to cooperate and the capability to be responsive to fluctuations.  

The smart grid concept provides the communication and flexibility required to enable 

improved management of the grid and through these aspects like DR and demand-side 

management (DSM) have become prevalent (Jalali & Kazemi, 2015). The U.S. Department of 

Energy defines DR as either a tariff or a program which aims to motivate changes in the usage 

of electricity by the end-use customers due to changes in the price of electricity or relevant 

incentives whose goal is to lower the electricity consumption at peak periods or periods when 

the grid is stressed. The Department of Energy also recognizes DR as a cost-effective and 

reliable technique for altering the customers’ load profile (Balijepalli, Pradhan, Khaparde, & 

Shereef, 2011; Estahbanati, 2014). The residential sector consumes a significant portion of 
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electrical energy while existing research has shown that up to 30% of overall electricity is used 

within the residential sector (Lokeshgupta & Sivasubramani, 2019). Thus, any means to manage 

or reduce this electricity consumption within the residential sector should be investigated (H. 

X. Li, Patel, Al-Hussein, Yu, & Gül, 2018).   

One of the main techniques that have been used to manage residential (aside from 

commercial and industrial) electricity consumption has been DR. DR programs bring about a 

wide host of well-known benefits, including electricity bill reduction, reduction of the peak load 

demand, improving load profile of the system, and increased utilization of renewable energy 

sources (RES). In addition, there are also benefits to the electrical utility which can include 

improved power quality, reliability, and energy efficiency (Lokeshgupta & Sivasubramani, 

2019). DR can be thought of as a flexibility mechanism as it enables load profiles to be modified 

according to various signals sent from the system operator (Celik, Roche, Suryanarayanan, 

Bouquain, & Miraoui, 2017). Traditionally, DR has generally been operated in a top-down 

manner where the consumption of numerous individual agents is aggregated into a single load 

which is then optimized. This approach has worked well up until recent years as it was simple 

enough to use the aggregate data. However, with the increased abundance of smart devices, 

there is a loss of information granularity when this approach is used, and the ability to precisely 

control the load of individual agents is lost (Celik et al., 2017).  

In contrast with top-down strategies, bottom-up DR strategies are becoming more 

prevalent in their use. This type of DR program uses the consumption profile of each agent but, 

these models suffer from the inability to gather such granular data and then, should the data be 

available, the computing requirements to run these models are significant. Both DR models aim 

to modify the load profile of an agent through the use of incentives and signals from the 

electrical utility (Lotfi, Joao Catalao, Javadi, Nezhad, & Shafie-khah, 2019). This is in contrast 

with DSM programs which aim to increase the efficiency of electrical usage (Gelazanskas & 

Gamage, 2014). In this paper, the impacts of different price-based demand response regimes, 

time-of-use (TOU) and real-time pricing (RTP), have been evaluated. 

B. Literature Review 

The combination of smart grid and the incentives offered by DSM and DR has led to the 

development of HEMSs. The HEMS concept has been studied extensively in the existing 

literature. In (Setlhaolo, Xia, & Zhang, 2014), a mixed-integer non-linear programming 

(MINLP) case was formulated, including a penalty factor for inconveniencing customers. The 
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paper took a set of 10 appliances, which could be controlled and allowed the customer to decide 

on the operational time frames and the power limits. The paper also included incentives to 

encourage electricity usage early in the morning and again after the evening peak period. The 

paper showed that the customers could save 25% of their electricity bill relative to a baseline 

scenario. Incentives were used again in (Wu et al., 2014), where the model was based on the 

conditional value-at-risk (CVaR) methodology.  

Batteries and photovoltaic (PV) systems were included and uncertainty associated with 

prices, water usage, PV output, and load profiles were modelled stochastically. The incentives 

were used to increase the number of customers participating in DR programs and the results 

showed that the customers in such programs can save 18% of their baseline electricity bill.  

A HEMS is developed in (Martinez-Pabon et al., 2018) using a novel limited memory 

algorithm and TOU pricing to optimize the scheduling of various residential appliances across 

24 hours. The authors used clustering techniques to group 247 households and results show that 

customers could save approximately 33% of their daily electricity costs. A HEMS with battery 

energy storage systems and a PV system is presented in (Hemmati & Saboori, 2017). The model 

provides three flexible operating regimes, one which exports energy to the grid, one that imports 

energy from the grid, and the third one relates to an islanded state for standalone operation. The 

system uses a Gaussian probability density function to develop an MINLP problem, solved by 

the advanced adaptive particle swarm optimization (APSO) technique. Results from this paper 

show that the HEMS can reduce the annual electricity bill by 27.8%. Other metaheuristic 

approaches have been applied to the HEMS concept successfully, in particular, the authors of 

(Javaid et al., 2017) examine a host of heuristic approaches with significant cost savings and 

peak load reductions seen. A multi-objective mixed-integer linear programming (MILP) model 

to solve a HEMS model with an integrated battery energy storage system was developed in 

(Lokeshgupta & Sivasubramani, 2019). The TOU tariff was used to incentivize the customer’s 

participation in the DSM program. The results indicate that across all of the six different 

scenarios studied, the HEMS mitigate the customer’ bill while reducing the peak demand, 

benefiting the electric utility (Lokeshgupta & Sivasubramani, 2019). Another approach to 

model the HEMS by using the multi-objective optimization approach was proposed by (Yahia 

& Pradhan, 2020). The authors investigate three multi-objective approaches which were the 

Normalised Weighted Sum, Pre-emptive Optimisation, and Compromise Optimisation. Also, 

the TOU tariff was included as well as user preferences for the starting and ending operation 

time of various appliances. The obtained Results show a significant reduction in electricity costs 



7 
 

as well as user’s discomfort and also the reduction and flattening of the aggregated load from 

the various consumers. Another multi-objective model for self-scheduling of home appliances 

has been developed by (Mohammad, Lotfi, Osório, et al., 2020) addressing the demand response 

programs in the mentioned study. The model is investigated based on MILP optimization model 

with predefined time intervals for shiftable appliances. Another multi-objective optimization 

model based on standard MILP model has been investigated by (Zakaria Yahia & Pradhan, 

2020) applying TOU to minimize the objectives, i.e. the electricity bills, peak load reduction as 

well as discomfort raised by changing the usage of the appliances in both coordinated and 

aggregated fashion. The obtained results confirmed that the peak load reduction is considerably 

lower in the coordinated mode rather than the aggregated one. A modified shuffled frog leaping 

algorithm for optimal day-ahead scheduling of microgrids has been studied by (H. Li, Rezvani, 

Hu, & Ohshima, 2021) in the presence of renewable power generation, electric vehicles, and 

storage systems providing superior solutions in scenario-based stochastic optimization. 

A stochastic HEMS model is presented by (Shafie-Khah & Siano, 2018) taking into 

consideration the uncertainties caused by renewable energy production. The results obtained 

from this research study show a reduction of up to 42% in the monthly electricity bill faced by 

consumers, although the authors clearly pointed out that the results are highly case-sensitive 

and dependent upon the relevant information relating to the building and the specific individual. 

A study by (Yu, Jiang, & Zou, 2019) sought to minimise the electricity cost and thermal 

discomfort of users through a HEMS which also considered HVAC energy demand. This was 

done through stochastic programming which considered uncertainties associated with 

electricity price, outdoor temperature, RE generation output, load demand, and occupancy state 

of the home. The model was solved using a novel Lyapunov optimisation technique 

A scheduling model has been presented in (Sharifi & Maghouli, 2019) to reduce the 

electricity bills as well as lower the peak-to-average (PAR) ratio while taking the comfort of 

the participants into account. This study makes use of a combination of RTP mechanism as well 

as the inclining block rate (IBR) tariff to limit the amount of high energy consumption during 

low-cost periods. Results reported in (Sharifi & Maghouli, 2019) show that the model helps 

lower the PAR so that the load profile is relatively flat assisting in keeping the electrical grid 

stable and reducing the need for expensive ramping resources. HEMSs are important as they 

can utilize and incentivize customer participation in the electricity market. Further research into 

the PAR was done by (Khalid et al., 2018) where a HEMS which uses a load shifting strategy 

to optimize the energy consumption of a home through demand-side management was 
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proposed. Notably, the objective function sought to minimize the cost to the consumer as well 

as the Peak-to-Average ratio experienced by the system all the while maintaining the comfort 

of the user. The problem was formulated through a knapsack problem and solved using dynamic 

programming. 

Customers are evolving from passive elements to active ones that can play an important 

role in electricity markets (Iwafune, Mori, Kawai, & Yagita, 2017; Jia et al., 2019; Mehrjerdi 

& Hemmati, 2020). Research by (Paridari, Parisio, Sandberg, & Johansson, 2016) presented a 

robust approach for a HEMS considering smart appliances and ESSs to reduce the electricity 

bill as well as emissions taking user behaviour into account. This was done to ensure that the 

proposed solution is less sensitive to unexpected changes in user behaviour. The approach 

modelled user behaviour uncertainties as uncertainty in the coefficients of the cost functions 

and results showed that the proposed system helped to reduce both electricity costs and 

emissions. In (Li et al., 2018), a self-learning HEMS  which considered DR, Demand-side 

management, as well as supply-side management was developed and tested in real-time in a 

smart home. Notable aspects of this study were the HEMS increased energy consumption 

awareness among its users and the system was customizable to take into account different types 

of smart homes.  A Local HEMS was formulated by (Joo & Choi, 2017) to schedule the energy 

use of several homes which use DERs. The HEMS scheduling problem is decomposed into a 

distributed bi-level optimisation problem which at the Local HEMS at the base level and a 

Global HEMS as the upper level. Results from the study show that the distributed algorithm has 

an almost equivalent performance when compared to a centralised algorithm in terms of energy 

cost and user comfort. In (Mondal, Misra, & Obaidat, 2017), HEMS which considered storage 

was developed using a multiple-leader-multiple-follower Stackelberg game theory model. The 

leaders were the microgrids within the system and the customers acted as followers. The results 

have shown an increased profit for the microgrids as well as an increase in the utilisation of 

energy produced by the microgrids by the consumers. The price paid by the consumers for 

energy from the microgrid was lower than buying energy from the existing grid. 

A HEMS is made up of many appliances, having different characteristics. Generally, 

electrical appliances within a household are classified into three categories as baseline loads, 

burst loads, and regular loads (Celik et al., 2017). Baseline loads are non-controllable and non-

deferrable meaning that their operation cannot be affected and they are also called must-run 

appliances. Some examples of baseline loads are lighting, ovens, and televisions. Burst loads 

are also called deferrable, shiftable or schedulable loads as the HEMS can shift these loads 

across time to manage the household energy consumption. These loads may also be interrupted 
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during their operation. This category includes washing machines and dryers. Regular loads are 

those whose load profile changes according to the environmental conditions and generally 

include thermal loads, such as water heaters, air-conditioners, and space heaters.  

These loads have their operating limits set according to the user’s preference (Choi & 

Xie, 2016). The load profile of each appliance, and thus, the load profile of the house, will 

depend on many factors, such as the size of the house, number of inhabitants, the climatic 

conditions of the surrounding area, and the income level of the inhabitants. This diversity of 

load profiles require bottom-up methods to ensure that each home is modelled as accurately as 

possible (Celik et al., 2017). The increasing use of distributed energy resources (DERs) in 

distribution grids can bring about issues for the distribution system operator (DSO). These 

problems can include power flow problems and voltage fluctuations.  

Electrical energy storage devices can assist in rectifying these issues (Bucciarelli, Paoletti, 

& Vicino, 2018). These devices are becoming more popular and widespread and can have 

significant benefits to the HEMS operation (Marzband, Alavi, Ghazimirsaeid, Uppal, & 

Fernando, 2017). The adoption of EES devices in HEMS is the result of the increase in active 

energy consumers known as prosumers, in distribution networks. EES systems allow the 

prosumer to take advantage of low energy price period or increased self-generation to store the 

energy to use at higher-cost periods or when the amount of self-generation is low (Sharifi & 

Maghouli, 2019). A stochastic, dynamic optimal energy management strategy for a smart home 

is presented by (Wu et al., 2018). The objective function is to minimize electricity cost and uses 

time-varying electricity tariffs and used probability distributions to account for the uncertainty 

associated with Electric Vehicles.  A HEMS which considered ESS and EVs was presented by 

(Hou, Wang, Huang, Wang, & Wang, 2019). The preferences of the users were considered and 

results show that costs are reduced and user comfort is maintained. Real-time pricing was used 

to provide incentives for the HEMS to optimally manage the ESS and EV to lower electricity 

cost and prolong the lifetime of the assets. 

A HEMS may have different energy carriers in the input and output, known as energy 

hub (EH) (Javadi et al., 2019). Together with HEMS, the EH concept has captured research 

interest in recent years. A definition for an EH is given by (Papadimitriou, Anastasiadis, 

Psomopoulos, & Vokas, 2019) which classifies an EH as a unit which converts, conditions, and 

stores multiple energy carriers and an EH acts as an interface between different energy 

infrastructure and loads. The inputs for EHs are generally electricity and natural gas and the 

output of an EH are various energy types, such as heating and cooling. By using a number of 
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energy carriers, the EH increases its flexibility and decreases the risk of its customers facing 

any discomfort caused by participating in DR programs. It should be noted that the concept of 

EH does not depend upon the type of input energy carriers, but rather there is some flexibility 

which allows the energy carriers to change over time. The EH can also be scaled according to 

the requirements of the customers using the energy output services (Mohammad, Lotfi, Nezhad, 

et al., 2020). The brief and detailed list of recent contributions in the field of HEMS is addressed 

in Table 1. 

Table 1  A detailed listing of all reviewed recent scientific articles related to the modelling of HEMS  

Ref. 
User 

comfort 
DR Tariff Type of loads 

Type of 
optimisation 

EV Sequence 

(Martinez-Pabon 
et al., 2018) 

  TOU 
Interruptible, 

Fixed 
MINLP   

(Lokeshgupta & 
Sivasubramani, 

2019) 
  TOU Shiftable, Fixed MO, MILP   

(Setlhaolo et al., 
2014) 

  TOU Shiftable, Fixed MINLP   

(Wu et al., 2014)   RTP Fixed MCS, CVaR   
(Hemmati & 

Saboori, 2017) 
  Fixed Fixed 

MCS, 
Metaheuristic 

  

(Shafie-Khah & 
Siano, 2018) 

  
RTP, TOU, 

CPP 
Shiftable, Fixed MILP   

(Sharifi & 
Maghouli, 2019) 

  
TOU, CPP, 

IBR 
Interruptible, 

Fixed 
NSGA II, Fuzzy   

(Mehrjerdi & 
Hemmati, 2020) 

  TOU 
Interruptible, 

Fixed 
MILP   

(Javadi et al., 
2019) 

  Fixed Fixed MINLP   

(Khalid et al., 
2018) 

  
RTP, TOU, 

CPP 
Interruptible, 

Fixed 
Hybrid 

Metaheuristic 
  

(Joo & Choi, 
2017) 

  TOU 
Interruptible, 

Fixed 
MILP   

(Li et al., 2018)   
Peak, Off-

Peak 
Shiftable 

Recurrent Neural 
Network 

  

(Yu et al., 2019)   RTP Shiftable, Fixed Lyapunov   
(Paridari et al., 

2016) 
  Fixed Shiftable, Fixed MILP    

(Wu et al., 2018)   ToU Fixed Stochastic DP   
(Hou et al., 

2019) 
  RTP 

Interruptible, 
Fixed 

MILP    

(Z Yahia & 
Pradhan, 2018) 

  TOU Shiftable MO   

Proposed   
RTP, TOU, 

CPP 
Shiftable, Fixed MILP   
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TOU, Time-of-Use; RTP, Real-Time Pricing; CPP, Critical Peak Pricing; IBR, Incline Block Rate; MO, Multi-objective; MCS, 

Monte Carlo Simulation; DP, Dynamic Programming; EV, Electric Vehicle; NSGA, Non-dominated Sorting Genetic 

Algorithm.  

C. Novel Contributions 

A novel approach is proposed in this paper to determine the optimal daily scheduling of 

home appliances, aiming at reducing the end-users’ bills and DI, while sacrificing neither the 

comfort nor the computational efficiency. The proposed model is formulated as a single-

objective MILP problem. The main contributions of this work can be listed as follows: 

 Proposing a linear penalizing mechanism for shifted time slots (relative to ideal user 

preference) of scheduled appliances to calculate the discomfort index.  

 Presenting a MILP multi-objective model for the HEMS self-scheduling problem. 

This is a novel framework to minimize the end-users’ energy cost and DI.  

 Evaluating different time-based DR programs in the self-scheduling problem. The 

results of this evaluation will be very useful for tariff designers since they need to 

be ensured that their chosen tariff is as efficient as possible.  

 Assessing the impacts of the EES device on the self-scheduling problem. This is an 

important contribution as the penetration of EES devices is expected to grow rapidly 

and the effects of such devices need to be studied.  

D. Paper Organization  

This paper is laid out in the following manner: concepts relating to the HEMS are 

presented in Section 2. The problem formulation is presented in Section 3, while the 

descriptions of multi-objective optimization, epsilon-constraint technique, and VIKOR decision 

maker are given in Section 4. The simulation results are proposed and discussed in Section 5. 

Lastly, Section 6 comprises the relevant conclusions. 

2. Home Energy Management System 

HEMSs have increasingly become more common in recent years. A HEMS system was 

developed in the early 1980s (Shareef, Ahmed, Mohamed, & Al Hassan, 2018) and it has 

evolved into a growing field of study as consumer participation in the electricity market has 

increased. A HEMS system aims at optimizing the scheduling of various appliances in the home 
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to manage the energy consumption of the household. Also, the management of the appliances 

is carried out with the idea of reducing the electricity bill for the homeowner. 

The HEMS may assist in DR programs as the HEMS system can optimize the use of local 

resources, which can then participate in DR programs. With the rise of DERs, including battery 

energy storage systems, the scope for the HEMS has widened to include the management of 

such devices. The conceptual model of HEMS is addressed in Fig. 1.  

 

Fig. 1. Conceptual model of the HEMS. 

In addition, HEMS may incorporate additional devices, such as internet of things (IoT) 

connected devices, which have captured significant attention in the recent years, as well as smart 

homes which have become more prevalent in the society (Iqbal et al., 2018). Recently, there 

have been various projects aimed at investigating the concept of peer-to-peer (P2P) energy 

trading and this may provide a path for future research. Virtual power plants (VPPs) may also 

provide interesting research opportunities as the major part of HEMS research studies has so 

far been devoted to individual systems (Al-Ali et al., 2017). By aggregating several HEMSs 

into a community VPP, it may help reap further benefits. There are also challenges that future 

HEMS must address, relating to the privacy and amount of data they may collect during the 

operation. The secure and efficient handling of data will be of the utmost importance to the 

HEMS in the future (Al-Ali et al., 2017).  

There are already prominent examples of HEMSs or smart home systems being hacked 

(Baig et al., 2017) and with the number of smart devices expected to increase rapidly, it will be 

even more important that the HEMS is secure against any unauthorized access. With the number 

of HEMS and an ever-increasing number of appliances capable of interacting with the HEMS, 

the need for an efficient communication protocol is also extremely important and challenging 
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(Zhou et al., 2016), while the solution would be interoperability between the devices. 

Interoperability in this regard is defined as the capability of various systems to connect and 

exchange energy information, while still maintaining a suitable workflow concerning the 

existing constraints (Perumal, Ramli, & Leong, 2011).   

Self-scheduling of the appliances within the HEMS allows owners to view the impact of 

each appliance on the electricity bill and thus, it can help owners modify their behaviour to 

optimize the bill, taking into account their preferences (Kong, Sun, Kong, & Li, 2020). 

3. Problem Formulation 

The HEMS self-scheduling problem in this paper aims to minimize the daily bill of the 

end-user. The representation of the objective functions can be stated as below: 

Multi Objective Optimization  Single Objective Optimization  
Epsilon Constraint Approach Weighted Sum Approach 

1Min f  

2Min f  1 2.Min Z f f   

(1)  

1 ,
1 1

NA NT
Tariff
t i t i

i t

Electricity Bill

f S P t
 

 


 

2
1

NA

i i
i

Discomfort Index

f DI DI 



   


 

The objective functions are minimization the daily bill and the discomfort cost of shifting 

the usage of home appliances. The daily bill, f1, includes the total energy consumption by 

considering the tariffs of each time slot, Tariff
t . The tariff can be set as one of the price-based 

tariffs, i.e. RTP or TOU. The usage status of appliance i at time t is supposed to be a binary 

variable, Si,t, and the rated power of the corresponding appliance is Pi. The time slot for the 

scheduling problem is considered to be t  and the problem would be solved daily.  

The second objective function, f2, is the discomfort index related to the shifting the usage 

of home appliances. There is no difference between advancing and postponing usage. In the 

case of changing the time intervals of operation of appliances from the end-users’ preferences, 

the discomfort index is non-zero. Therefore, the total discomfort index should be applied to 

minimize the user’s convenience. In the weighted sum approach, the corresponding penalty is 

supposed to be ω. A larger penalty factor results in less shifting of operation. Therefore, the 
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trade-off between the minimization of daily bills and discomfort cost should be considered 

based on the end-user’s preferences. While, in the multi-objective framework, both objective 

functions should be minimized simultaneously, therefore, there is no need to considering the 

penalty factor for the DI.  

The daily bill based on the end-user’s preferences can be calculated by considering the 

baseline operation time intervals and corresponding hourly electricity price. The baseline 

operation time interval of the home appliances are subjected to the binary parameters, Bi,t, and 

the permissible bounds for each home appliance are available based on the end-user’s 

preferences. Equation (2) confirms that during the baseline time intervals, the operation status 

of the corresponding appliance would be ‘1’ and before the lower bound and after the upper 

bound of operation, this binary parameter would be ‘0’. The total operating time intervals for 

baseline operation must be equal to Ti.  

(2)  
,

, , , ,

,

0
1 {0,1}
0

i b

i t i b i b i t

i b

t LB
B LB t UB B

t UB


   
 

  

(3)  
,

1
1, 2,...,

NT

i t i
t

B T i NA


    

In the self-scheduling problem of HEMS, the flexible loads can be shifted to before or 

after the scheduled time intervals to reduce the daily bills. Since the hourly tariffs affect the 

total cost of operation, the end-user can benefit from the optimal self-scheduling based on the 

predefined tariffs. The task scheduling for the flexible home appliances can be achieved by 

changing the time intervals of their operation and it yields a reduction in the daily bills. In this 

regard, for each home appliance, the end-user can set the allowable time intervals. Equation (4) 

deals with the allowable time intervals for plunging in the appliances to the grid (Javadi et al., 

2020). 

(4)  
,

, , , ,

,

0
1 {0,1}
0

i s

i t i s i s i t

i s

t LB
S LB t UB S

t UB


   
 

  

It is noteworthy that for each home appliance, the operation duration should be the same 

Ti. It means that the end-user just changes the operation time intervals and the daily energy 

consumption should remain fixed after the scheduling implementation. Equation (5) shows this 

constraint.  
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(5)  
,

1
1, 2,...,

NT

i t i
t

S T i NA


    

The main drawback of the DI calculation based on the absolute subtraction method is that 

there is no difference between the shifting of the appliances to the other time intervals. The DI 

calculation according to the absolute subtraction is provided in (Rezaee Jordehi, 2019): 

(6)  
, ,

1

NT

i i t i t
t

DI B S


   

To properly address the DI for the shifted loads, a linear penalty has been considered in 

this paper. This model adopts the cumulative rolling mapping procedure for calculating the 

shifted time intervals (Sadegh et al., 2020).  

The corresponding DI for shifting each time slot can be easily calculated based on (7) and 

(8), respectively for changing the operation time intervals before and after the baseline time 

intervals. It is noted that both iDI  and iDI   are positive variables. Therefore, there is no conflict 

between them if the right-hand side of these equations is negative.  

(7)  
, ,

1 1

1 NT NT

i i t i t
t ti

DI t B t S
T



 

 
     

   

(8)  
, ,

1 1

1 NT NT

i i t i t
t ti

DI t S t B
T



 

 
     

   

For the sake of illustration, a simple case of shifting the load of a typical appliance is 

addressed. Fig. 2 illustrates how the proposed model addresses the DI calculation for both 

absolute subtraction method according to (Rezaee Jordehi, 2019) and Euclidean distance 

method proposed in this paper. In this case, the operation time of the target appliance is defined 

to be between {15-33} and for the base case, the customer’s preference is to use it for 2 hours 

as {19-22}. Therefore, in the case of baseline, the DI would be zero since the end-user decided 

to turn it on at the same time interval. In Case A, if the end-user defers the appliance usage to 

the time interval {22-25}, i.e. shifting three slots, the DI would be 6 and 3, according to the 

absolute subtraction and Euclidean distance, respectively. According to (Rezaee Jordehi, 2019), 

the DI will be calculated for different time slots. This means that for time slots {19-21} and 

{23-25} the binary variables are non-zero, therefore, the DI will be 6. However, in the Euclidean 

distance context, the DI is calculated according to |22-19|=|25-22|=3. In Case B, for changing 

the plugging in of the appliance to the grid at time interval {17-20}, the DI according to the 
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absolute subtraction method is 4, {17-18} and {21-22}. Consequently, based on the Euclidean 

distance method, the DI will be 2, {21-22}. The main pitfall of the absolute subtraction can be 

found in Case C and Case D. In these two cases, the DI according to the absolute subtraction 

would be 8. However, these two cases have different representation and insight for changing 

the usage of the target appliance. According to the Euclidean distance model, the DI for Case 

C and Case D would be 6 and 10, respectively. In Case C, the DI is |25-19|=|28-22|=6 and in 

Case D, the DI is |29-19|=|32-22|=10. It is worth mentioning that the DI for these two cases are 

the same according to the absolute subtraction calculation.  

Fig. 2 illustrates a graphical representation of the DI calculation. Table 2 represents the 

different DI values for the baseline case and Cases A to D addressed in Fig. 2.     

 

Fig. 2. Binary representation of HEMS for the baseline and four different cases 

Table 2 The DI calculation based on Euclidean distance and absolute subtraction 

Case Duration Start End Ref. (Rezaee Jordehi, 2019) Proposed 
Baseline 4 19 22 0 0 
Case A 4 22 25 6 3 
Case B 4 17 20 4 2 
Case C 4 25 28 8 6 
Case D 4 29 32 8 10 
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Since the usage status of appliance i at time t is supposed to be a binary variable, Si,t and 

the rated power of the corresponding appliance is Pi. Therefore, the total consumed energy for 

each time slot, D
tP by the shifted operation of home appliances can be represented as: 

(9)  
,

1

NA
D

i t i t
i

S P P


  

It is noteworthy that the total energy demand in each day has to equal before and after 

shifting the plugging in of the home appliances. Therefore, the total D
tP for all cases should be 

the same without the implementation of EES. In the presence of EES, the energy flow from the 

grid side to the HEMS should be modelled to reflect the role of EES.  

The power balance for each time slot is as follows: 

(10)  2 . .
, ,

1 1

NS NS
G H D Ch Disch

t t j t j t
j j

P P P P
 

     

The EES devices have their associated constraints in terms of operation in the planning 

horizon, i.e. daily operation in this study. The corresponding constraints for EES devices are as 

follows: 

(11)  . . .,max
, ,
Ch Ch Ch
j t j t jP I P  

(12)  . . .,max
, ,
Disch Disch Disch
j t j t jP I P   

(13)  . .
, ,0 1Ch Disch

j t j tI I    

(14)  . . .
, , 1 , ,.

1Ch Ch Disch
j t j t j j t j tDisch

j

E E P P
     

(15)  
,1 ,j j TE E  

(16)  min max
,j j t jE E E    

Binary variables which represent each of the charging and discharging modes are 

introduced to ensure that the EES can only be in either the charging or discharging mode at any 

one time. These variables are shown in (11)-(13). The energy stored in the EES at a specific 

period is a function of the energy stored in the EES in the previous period plus the effects of 

any charging or discharging that occurred [10.1109/IECON.2019.8927263]. This is shown in 

(14) which also includes an efficiency factor for charging and discharging. It is assumed that 
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the stored energy in the EES in the initial and final period of the day should be equal. This 

constraint is addressed in (15). The energy stored in the EES is constrained by the upper and 

lower limits and these limits are captured in (16).  

4. Multi-Objective  

A typical optimization problem of multi-objective form is stated as follows:  

     

 
 

1 2, , ,

0, 1, 2, ,

0, 1, 2, ,

T
P

i ueq

i eq

Min F f x f x f x

subject to
g x i N

h x i N

   

 

 







                                                                            (17) 

It is noteworthy that the number of inequality, equality and objective functions are indicated by 

eqN , ieqN , and P, respectively. Furthermore, x shows the vector of decision variables. The 

objective functions of the problem would be of any type, either minimization or maximization. 

In general, solving an optimization problem with more than one objective function gives a 

number of optimal solutions, each including P members, known as the Pareto optimal set. The 

Pareto front includes a set of solutions that are all non-dominated and it would not be possible 

to move from one solution to another one without losing the superiority in any of the objective’s 

values (Collette & Siarry, 2004). There are too many approaches, thus far developed to tackle 

multi-objective optimization problems, among which the epsilon-constraint method has shown 

a rational performance, particularly when compared to the weighting sum method (WSM) 

(Sadegh Javadi, Saniei, Rajabi Mashhadi, & Gutiérrez-Alcaraz, 2013; Simab, Javadi, & 

Nezhad, 2018). By applying the WSM, the objective functions of the problem are all given a 

weighting factor and a unified objective function is constructed (Mavrotas, 2009; Roman & 

Rosehart, 2006). Nevertheless, there are some controversial issues with the epsilon-constraint 

method that need more attention. In case, the problem includes P objective functions, the range 

of the P-1 objectives should be determined since they are added to the problem, but as 

constraints. In this respect, the lexicographic optimization has been deployed in this study to 

determine the range of every objective function. Another issue that should be taken into 

consideration is the efficiency of the derived solutions and if they are all non-dominated 

solutions. To this end, this paper employs the augmented version of epsilon-constraint method 

along with the lexicographic optimization to propose efficient, non-dominated Pareto optimal 

solutions. The explanations and mathematical model of the epsilon-constraint method have been 
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given in the following (Javadi & Esmaeel Nezhad, 2019; Nezhad, Javadi, & Rahimi, 2014). 

This method assigns one of the objectives as the main objective function and assigns all others 

to the problem as constraints as below. 

 
      pp exfexfexftosubject

xfMin
 ,,, 3322

1


                                                                  (18) 

It should be noted that the objective functions are all set to be minimized and accordingly, the 

range of each of the P-1 objectives are specified using the lexicographic optimization and pay-

off table. A multi-stage procedure should be taken to obtain the pay-off table. In the first step, 

the ranges of all objective functions would be obtained by individually optimizing each 

objective function if . As a result, the optimal value of objective function i, i.e.  **
ii xf  and the 

associated decision variables vector, i.e. *
ix  are specified. In the second step, the single 
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   It is worth mentioning that the resulting pay-off table is a P×P matrix and the optimal value 

of every objective function nf  is included in the nth column while the difference between 

smallest and largest values gives the range of the related objective function. There are also some 

key concepts that need to be explained in detail. In case it is desirable to minimize all objective 

functions, the Utopia point illustrated by Uf represents a point outside the feasible region, 

where all objectives would take their weakest value as below: 

        *****
1

*
11 ,,,,,,,, ppii

U
p

U
i

UU xfxfxfffff                                                         (20) 
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Unlike the Utopia point, the Nadir point, i.e. Nf , shows a point in the feasible region, where 

all objective function have their most superior value.  

 N
p

N
i

NN ffff ,,,,1                                                                                                        (21) 

where: 

 


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xtosubject

xfMaxf i
N

i x

                                                                                                                  (22) 

The feasible space is addressed by Ω. A point, having almost the same concept as Nf , is the 

Pseudo Nadir point, i.e. SNf , stated as follows: 

 SN
p

SN
i

SNSN ffff ,,,,1                                                                                                       (23) 

where, 

      ****
1 ,,,, piiii

SN
i xfxfxfMaxf                                                                               (24) 

According to the following relationship, SNf and Uf  determine the range of each objective 

function.  

   SN
ii

U
i fxff                                                                                                                     (25) 

The dimension of objective functions is used to show the objective space. Fig. 3 depicts a typical 

bi-objective Pareto front.               
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Fig. 3. A typical bi-objective Pareto front. 

Afterwards, the range of the P-1 objectives from the pay-off table is used and converted to 

equidistance intervals by employing the intermediate grid points, i.e. )1(,),...1( 2  pqq . By 

assuming the first objective as the main one to be optimized, 
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   The above expressions imply that every single sub-problem is subject to the constraint (26) 

along with the constraints of the original problem. Tackling the mentioned sub-problems would 

lead to the desired Pareto set, including only efficient and non-dominated solutions. Any 

inefficiency that may occur would be avoided by converting the expression (26) to equalities 

by using the slack variable method (Bard, 1998; Javadi & Esmaeel Nezhad, 2019):    
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                                                                              (29) 

It is noteworthy that pss ...,,2  indicate the slack variables, added to the problem for the 

constraints in (26). In this respect, )/(1 irisr  has been taken into account in the second part of 

the objective function to prevent any issues due to the objectives’ scale, where USN
ififir  . 

By applying this technique, the slack variables would be scaled to the range of the main 

objective function. In this regard, expression (29) shows the augmented epsilon-constraint 

technique as a result of the improvement, made in the objective function 1f  by the second part. 

Fig. 4 depicts the conceptual flowchart of the proposed augmented epsilon-constraint technique.  
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Fig. 4. The conceptual flowchart of the augmented epsilon-constraint method. 
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4-2 VIKOR 

The VIKOR decision-making method as a promising technique was first developed in 

1998 to tackle the multi-criteria decision making problems (Opricovic & Tzeng, 2004). The 

principle of this technique is on the basis of defining positive ideal and negative ideal values to 

properly determine the relative interval, existing between the solution and the Pareto optimal 

solution. The next step would be specifying the importance of the members of Pareto set by 

ranking the solutions, using xj, while j denotes the members of the Pareto set and it continues 

to P  (Tavana, Kiani Mavi, Santos-Arteaga, & Rasti Doust, 2016): 

Step 1. Utilizing the rating function that are used to calculate the value of criterion i for 

the solution xj. Subsequently, if   and if  , which denote the best and worst values of the 

objective function would be specified through the following formulas:  

max ( ) | 1,2,...,i ijf f j m      (30) 

min ( ) | 1,2,...,i ijf f j m      (31) 

Step 2. Calculating Rj and Sj, which respectively indicate the individual regret measure 

and group utility measure by using the following relationships: 
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f f
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


  (33) 

It is noteworthy that the weighting factor of the objective functions has been shown by wi 

and sum of the weighting factors should be strictly equal to 1. Accordingly, Qj will be calculated 

by using (34), which uses the value of weighting factors, the individual regret measure along 

with its maximum and minimum values, determined by (35) and (36), respectively, and also the 

group utility measure along with its maximum and minimum values, determined by (37) and 

(38) respectively.  

(1 )j j
j j j

S S R R
Q w w

S S R R

 
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     

       
 (34) 
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( ) | 1,2,...,jR Min R j m      (35) 

( ) | 1,2,...,jR Max R j m      (36) 

( ) | 1,2,...,jS Min S j m      (37) 

( ) | 1,2,...,jS Max S j m      (38) 

Step 3. Making a ranking list of the Pareto solutions based on the values of Qj, where the 

solution with the minimum value of Qj is the most desired one (Sayadi, Heydari, & Shahanaghi, 

2009).      

5. Simulation Results 

To evaluate the proposed MILP framework for solving the self-scheduling problem of the 

HEMS, four scenarios have been considered in two categories in this paper. The first two 

scenarios have been considered to compare the obtained results by the MILP model with those 

reported in (Rezaee Jordehi, 2019). The next two scenarios are considered to address the effects 

of the EES in another benchmark considering both fixed and shiftable loads.  

The specifications of shiftable home appliances for all case studies in this paper are listed 

in Table 3. In this study, the time slots are considered to be in the order of 30 minutes. Therefore, 

there are a total of 48 time slots in the daily operation. The baseline operating time slots for 

each appliance as well as the allowable operating ranges are shown in Table 3. In this study, the 

self-scheduling of 29.05 kWh energy consumption of 10 shiftable appliances are studied to 

show the effects of different price-based DR programs on the daily bill before and after 

implementation of the self-scheduling of HEMS. The hourly tariffs based on TOU and RTP 

tariffs are provided in Table 4.  

The simulation results for all scenarios are obtained by CPLEX solver formulated by IBM 

and activated using the General Algebraic Modelling System (GAMS). Using the CPLEX 

solver in GAMS allows large and difficult problems to be formulated and solved in a high-level 

modelling system.  
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Table 3 The specifications of home appliances in the HEMS self-scheduling study (Rezaee Jordehi, 2019) 

Appliance Pi Ti LBb UBb LBs UBs 

Dishwasher 2.5 4 19 22 15 33 
Washing Machine 3.0 3 19 21 16 23 
Spine Dryer 2.5 2 27 28 25 35 
Cooker Hub 3.0 1 17 17 16 17 
Cooker Oven 5.0 1 37 37 36 37 
Microwave 1.7 1 17 17 16 17 
Laptop 0.1 4 37 40 33 47 
Desktop Computer 0.3 6 37 42 31 47 
Vacuum Cleaner 1.2 1 19 19 18 33 
Electric Vehicle 3.5 6 37 42 31 47 

 

Table 4 Daily tariffs for different price-based demand response programs (Rezaee Jordehi, 2019) 

Hour TOU RTP Hour TOU RTP 
00:00-01:00 0.02 0.014 12:00-13:00 0.02 0.034 
01:00-02:00 0.02 0.015 13:00-14:00 0.02 0.033 
02:00-03:00 0.02 0.015 14:00-15:00 0.02 0.040 
03:00-04:00 0.02 0.013 15:00-16:00 0.02 0.047 
04:00-05:00 0.02 0.010 16:00-17:00 0.02 0.047 
05:00-06:00 0.02 0.014 17:00-18:00 0.02 0.047 
06:00-07:00 0.02 0.017 18:00-19:00 0.08 0.043 
07:00-08:00 0.02 0.019 19:00-20:00 0.08 0.034 
08:00-09:00 0.02 0.024 20:00-21:00 0.02 0.038 
09:00-10:00 0.08 0.024 21:00-22:00 0.02 0.037 
10:00-11:00 0.08 0.025 22:00-23:00 0.02 0.024 
11:00-12:00 0.02 0.037 23:00-00:00 0.02 0.018 

5.1 Self-scheduling of HEMS for shiftable loads 

In this subsection, the self-scheduling problem is studied to show the effectiveness of the 

proposed MILP model to find the optimal operation of the HEMS under three different price-

based DR programs. The following scenarios are considered during validation of the proposed 

model, considering the effects of different penalty factors as the monetizing coefficient factor 

in the objective function. It is noteworthy that in the subsequent scenarios, there is no EES 

device available for storing energy during off-peak hours. In such scenarios, the global optimum 

can be assessed for the corresponding tariffs.  

The hourly tariffs for each time-based DRPs are provided in Table 4. In the TOU, four 

hours, two hours in the morning (9:00-11:00) and two hours in the evening (18:00-20:00), are 

the peak hours. The daily RTP are extracted from Commonwealth Edison Company on 14 May 

2018 and reported in the (Rezaee Jordehi, 2019), as well. The total energy demand of the 
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shiftable loads in this paper for the three studied scenarios is 29.05 kWh. Since this paper seeks 

to optimally shift loads to off-peak hours, the total amount of the energy demand is the same 

for the three scenarios, i.e. TOU and RTP. The EV with a demand of 10.5 kWh, i.e. 36.14% of 

the total demand has the highest contribution to the energy demand while shifting its load 

demand can significantly reduce the cost. This section excludes the EES system, so its impacts 

have been neglected and only those relating to shiftable loads are taken into account. It is 

noteworthy that the EES system is different from the EV, but its functionality is similar to 

Vehicle-to-Grid (V2G) and Grid-to-Vehicle (G2V) capabilities of EVs. The next subsection 

discusses the performance of the EES system. 

5.1.1 Self-scheduling problem for shiftable loads considering TOU tariff 

This section investigates the self-scheduling problem with shiftable loads based on the 

TOU tariff. The load procurement cost before applying the TOU mechanism is 1.805 $/day. It 

is noted that 20.4 kWh of the total energy demand which is 29.05 kWh relates to the peak hours 

and the remaining demand, i.e. 8.65 kWh occurs at off-peak hours. In this regard, the total cost 

drops to 0.5810 $/day by optimally shifting the energy demand to off-peak hours. Consequently, 

the global optimal solution(s) can be obtained. The optimal solution in this paper has converged 

to 0.581 $/day. It is noted that the stated problem has more than one global optimal solution 

where the costs derived using the heuristic algorithms and the CPLEX solver are all the same 

at 0.581 $/day. Table 5 represents the simulation results while neglecting the penalty factor. As 

it can be observed, the load procurement cost is the same using all methods with small 

differences in the operating hours leading to different DIs obtained from the CPLEX solver and 

other algorithms. For example, the DI calculated using the Euclidean distance of the TOU in 

this paper is 21, while the one calculated based on the absolute subtraction of the binary variable 

(Rezaee Jordehi, 2019) is 42.  
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Table 5 The optimal results for shiftable home appliances self-scheduling based on TOU tariff. 

  Meta-heuristic (Rezaee Jordehi, 2019) MILP 
Appliance Base DA GSA BSA ABC PSO ELPSO CPLEX 
Dishwasher 19-22 30-33 28-31 15-18 23-26 29-32 24-27 15-18 
Washing Machine 19-21 16-18 16-18 16-18 16-18 16-18 16-18 16-18 
Spine Dryer 27-28 34-35 29-30 31-32 33-34 26-27 32-33 27-28 
Cooker Hub 17 17 16 16 17 16 17 17 
Cooker Oven 37 36 36 36 36 36 36 36 
Microwave 17 17 16 17 17 17 17 17 
Laptop 37-40 42-45 41-44 42-45 41-44 43-46 41-44 33-36 
Desktop Computer 37-42 42-47 41-46 42-47 42-47 41-46 41-46 41-46 
Vacuum Cleaner 19 33 28 18 23 28 28 18 
Electric Vehicle 37-42 41-46 41-46 41-46 41-46 31-36 41-46 41-46 
Daily Bill ($) 1.805 0.5810 0.5810 0.5810 0.5810 0.5810 0.5810 0.5810 
DI-Calculated * 0 48 50 50 48 50 46 42 
DI-Proposed 0 50 38 28 31 41 35 21 
* According to the approach presented in (Rezaee Jordehi, 2019) 

 

 
Fig. 5 The contribution of each shiftable appliance for baseline and self-scheduling based on TOU. 

 

Fig. 5 depicts the contribution of each shiftable load to the daily energy bill. As it is 

expected, by shifting the load demand relating to the EV, the dishwasher, and the dryer to off-

peak hours, the cost reduces from $0.63, $0.4, and $0.36 to $0.21, $0.1, and $0.09, respectively. 

Fig. 5 shows the energy cost of each load before and after applying the self-scheduling.  
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Table 6 represents the results of a sensitivity analysis carried out to assess the impact of 

the penalty factor on the consumer’s DI when facing the load shifting. The reduction in the 

energy bill would be associated with the increase in the DI due to the load shifting. This 

relationship holds until the objective function and the base cost are equal at 1.805 $/day. The 

DI is calculated in this paper and (Rezaee Jordehi, 2019) by penalty factors 0.15 and 0.08 to the 

base case, respectively. In other words, the level of discomfort tolerated by the consumer has 

increased in the proposed method. It is noted that the mentioned results are obtained using 

weighted sum approach. 

 

Table 6 The effects of different monetizing coefficient factors of the penalty associated with the DI –TOU tariff.  

Absolute Subtraction Euclidean Distance Absolute Subtraction Euclidean Distance 

߱ 
Optimal 

Bill 
DI 

Optimal 
Bill 

DI ߱ 
Optimal 

Bill 
DI 

Optimal 
Bill 

DI 

0.000 0.5810 50 0.5810 21 0.040 0.9650 16 0.6650 12 
0.001 0.5810 42 0.5810 21 0.045 1.2350 10 0.6650 12 
0.002 0.5930 34 0.5810 21 0.050 1.2350 10 0.6650 12 
0.003 0.5930 34 0.5900 18 0.060 1.6550 2 0.6650 12 
0.004 0.5930 34 0.5930 17 0.070 1.6550 2 0.6650 12 
0.005 0.6290 26 0.5930 17 0.080 1.8050 0 0.9650 8 
0.010 0.6290 26 0.6290 13 0.090 1.8050 0 1.2350 5 
0.015 0.6290 26 0.6290 13 0.100 1.8050 0 1.2350 5 
0.020 0.6650 24 0.6290 13 0.110 1.8050 0 1.6550 1 
0.025 0.6650 24 0.6290 13 0.120 1.8050 0 1.6550 1 
0.030 0.6650 24 0.6290 13 0.140 1.8050 0 1.6550 1 
0.035 0.6650 24 0.6290 13 0.150 1.8050 0 1.8050 0 

 

Table 7 represents the results, obtained by using the epsilon-constraint technique and VIKOR 

decision-maker. Each Pareto solution of the derived Pareto set includes a pair of solutions 

including the DI and bill. The values of individual regret measure and group utility measure 

along with the associated value of Q have been shown in the last columns of this table, 

respectively.   
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Table 7 The Pareto optimal front and VIKOR results_ shiftable loads and considering TOU tariff. 

Plan DI Bill ($) R S Q 
Plan 1 0 1.805 Plan 1 0.800000 Plan 1 0.800000 Plan 1 1.000000 
Plan 2 1 1.655 Plan 2 0.701961 Plan 2 0.711485 Plan 2 0.860856 
Plan 3 2 1.550 Plan 3 0.633333 Plan 3 0.652381 Plan 3 0.765671 
Plan 4 3 1.445 Plan 4 0.564706 Plan 4 0.593277 Plan 4 0.670486 
Plan 5 4 1.340 Plan 5 0.496078 Plan 5 0.534174 Plan 5 0.575301 
Plan 6 5 1.235 Plan 6 0.427451 Plan 6 0.475070 Plan 6 0.480116 
Plan 7 6 1.145 Plan 7 0.368627 Plan 7 0.425770 Plan 7 0.399584 
Plan 8 7 1.055 Plan 8 0.309804 Plan 8 0.376471 Plan 8 0.319052 
Plan 9 8 0.965 Plan 9 0.250980 Plan 9 0.327171 Plan 9 0.238519 

Plan 10 9 0.890 Plan 10 0.201961 Plan 10 0.287675 Plan 10 0.172640 
Plan 11 10 0.815 Plan 22 0.200000 Plan 11 0.248179 Plan 11 0.106761 
Plan 12 11 0.740 Plan 21 0.190480 Plan 12 0.208683 Plan 22 0.103250 
Plan 13 12 0.665 Plan 20 0.180950 Plan 22 0.200000 Plan 21 0.090532 
Plan 14 13 0.629 Plan 19 0.171430 Plan 21 0.192440 Plan 20 0.077818 
Plan 15 14 0.620 Plan 18 0.161900 Plan 20 0.184870 Plan 19 0.065104 
Plan 16 15 0.611 Plan 11 0.152940 Plan 19 0.177310 Plan 18 0.052390 
Plan 17 16 0.602 Plan 17 0.152380 Plan 18 0.169750 Plan 17 0.042717 
Plan 18 17 0.593 Plan 16 0.142860 Plan 13 0.169190 Plan 12 0.041486 
Plan 19 18 0.590 Plan 15 0.133330 Plan 17 0.166110 Plan 16 0.033045 
Plan 20 19 0.587 Plan 14 0.123810 Plan 16 0.162460 Plan 15 0.023372 
Plan 21 20 0.584 Plan 13 0.114290 Plan 15 0.158820 Plan 13 0.017709 
Plan 22 21 0.581 Plan 12 0.104760 Plan 14 0.155180 Plan 14 0.013699 

5.1.2. Self-scheduling problem for shiftable loads considering RTP tariff 

This section includes the results obtained from applying the RTP tariff to study the load 

shifting in the HEMS. In this scenario, the energy price changes over the hours of the day. Thus, 

the signals required for the self-scheduling of shiftable loads must be determined based on the 

hourly price variations. The base case cost without applying the self-scheduling of shiftable 

loads is equal to $0.9375. The cost disregarding the DI is calculated as $0.8004.  

Table 8 indicates the comparative results while assigning the penalty factor to the model 

as zero. It is noted that only the enhanced leader particle swarm optimization (ELPSO) 

algorithm results in the same solution as the obtained cost. The DI has been derived 27 in this 

paper while it has been reported 48 in (Rezaee Jordehi, 2019). Besides, the operational 

schedules using both the CPLEX solver and ELPSO algorithm are the same with a difference 

in the operating hour of the vacuum cleaner in hour 9:30-10:00 (time slot 18) and then, hour 

10:30-11:00 (time slot 20). The price of energy purchased from the grid is 0.024 $/kWh in both 

methods. Consequently, both solutions are global optimal and valid. It should be noted that the 
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time shift of this asset’s usage is exactly one slot, i.e. one slot before and one slot after the 

baseline. Hence, the DI is calculated as 26 and 46 using the Euclidean distance and absolute 

subtraction methods, respectively. As it is expected, shifting the energy demand of the EV has 

the highest contribution to the cost reduction so that the cost decreases from $0.403 to $0.312 

for the EV charging.   

     

Table 8 The best results for shiftable home appliances self-scheduling based on RTP tariff 

 Meta-heuristic (Rezaee Jordehi, 2019) MILP 
Appliance Base DA GSA BSA ABC PSO ELPSO CPLEX 
Dishwasher 19-22 15-18 15-18 15-18 15-18 15-18 15-18 15-18 
Washing Machine 19-21 16-18 16-18 16-18 16-18 16-18 16-18 16-18 
Spine Dryer 27-28 27-28 27-28 25-26 26-27 27-28 27-28 27-28 
Cooker Hub 17 16 16 16 16 16 16 16 
Cooker Oven 37 37 37 37 37 37 37 37 
Microwave 17 16 16 16 16 16 16 16 
Laptop 37-40 39-42 40-43 34-37 44-47 39-42 44-47 44-47 
Desktop Computer 37-42 42-47 39-44 42-47 42-47 42-47 42-47 42-47 
Vacuum Cleaner 19 19 25 18 19 18 18 19 
Electric Vehicle 37-42 42-47 42-47 42-47 42-47 42-47 42-47 42-47 
Daily Bill ($) 0.9375 0.8025 0.8146 0.8069 0.8016 0.8025 0.8004 0.8004 
DI-Calculated*  0 42 40 50 48 44 48 46 
DI-Proposed 0 21 25 25 27 22 27 26 
* According to the approach presented in (Rezaee Jordehi, 2019) 

 

Table 9 represents the simulation results relating to the load shifting based on different 

penalty factors using the RTP tariff. The consumer’s discomfort tolerance using the Euclidean 

distance method is double than that of the absolute subtraction method. In other words, when 

the penalty factor equals 0.02 in the proposed method, the consumer’s tendency to change his 

usage pattern would be zero. While using the absolute subtraction method the tendency to shift 

usage is zero when the penalty factor equals 0.01. Consequently, the consumer tends to act 

according to his preferences. Table 10 represents the Pareto optimal front along with the results, 

obtained from the VIKOR decision maker.   
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Table 9 The effects of different monetizing coefficient factors of the penalty associated with the DI –RTP tariff. 

Absolute Subtraction Euclidean Distance Absolute Subtraction Euclidean Distance 
߱ Optimal Bill DI Optimal Bill DI ߱ Optimal Bill DI Optimal Bill DI 

0.000 0.8004 48 0.8004 26 0.006 0.8465 10 0.8390 6 
0.001 0.8107 28 0.8029 19 0.007 0.8465 10 0.8390 6 
0.002 0.8347 14 0.8107 14 0.008 0.8465 10 0.8465 5 
0.003 0.8390 12 0.8197 11 0.009 0.8465 10 0.8465 5 
0.004 0.8465 10 0.8347 7 0.010 0.9375 0 0.8465 5 
0.005 0.8465 10 0.8390 6 0.020 0.9375 0 0.9375 0 

 

Table 10 The Pareto optimal front and VIKOR results_ shiftable loads considering RTP tariff. 

Plan DI Bill ($) R S Q 
Plan 1 0 0.9375 Plan 1 0.800000 Plan 1 0.800000 Plan 1 1.000000 
Plan 2 1 0.9270 Plan 2 0.738731 Plan 2 0.746423 Plan 2 0.914312 
Plan 3 2 0.9165 Plan 3 0.677462 Plan 3 0.692846 Plan 3 0.828623 
Plan 4 3 0.8990 Plan 4 0.575346 Plan 4 0.598423 Plan 4 0.681797 
Plan 5 4 0.8815 Plan 5 0.473231 Plan 5 0.504000 Plan 5 0.534970 
Plan 6 5 0.8465 Plan 6 0.269001 Plan 6 0.307462 Plan 6 0.235297 
Plan 7 6 0.8390 Plan 7 0.225237 Plan 7 0.271391 Plan 7 0.175811 
Plan 8 7 0.8347 Plan 8 0.200438 Plan 8 0.254284 Plan 8 0.144711 
Plan 9 8 0.8333 Plan 25 0.200000 Plan 9 0.253223 Plan 9 0.137629 

Plan 10 9 0.8300 Plan 24 0.192310 Plan 10 0.241951 Plan 10 0.115263 
Plan 11 10 0.8240 Plan 9 0.191680 Plan 11 0.214633 Plan 25 0.101920 
Plan 12 11 0.8197 Plan 23 0.184620 Plan 25 0.200000 Plan 24 0.094744 
Plan 13 12 0.8183 Plan 10 0.172720 Plan 24 0.197850 Plan 23 0.086427 
Plan 14 13 0.8150 Plan 22 0.161540 Plan 12 0.197530 Plan 11 0.068878 
Plan 15 14 0.8107 Plan 21 0.153850 Plan 13 0.196470 Plan 22 0.053712 
Plan 16 15 0.8099 Plan 20 0.146150 Plan 23 0.194240 Plan 21 0.043339 
Plan 17 16 0.8089 Plan 19 0.138460 Plan 14 0.185190 Plan 12 0.037777 
Plan 18 17 0.8074 Plan 11 0.137710 Plan 22 0.173500 Plan 19 0.035151 
Plan 19 18 0.8060 Plan 18 0.130770 Plan 17 0.172970 Plan 20 0.032967 
Plan 20 19 0.8029 Plan 17 0.123080 Plan 18 0.171910 Plan 13 0.030696 
Plan 21 20 0.8027 Plan 16 0.115380 Plan 19 0.170850 Plan 18 0.030487 
Plan 22 21 0.8024 Plan 12 0.112910 Plan 16 0.170530 Plan 17 0.025822 
Plan 23 24 0.8020 Plan 15 0.107690 Plan 15 0.168090 Plan 14 0.018905 
Plan 24 25 0.8013 Plan 13 0.104160 Plan 21 0.167270 Plan 16 0.018418 
Plan 25 26 0.8004 Plan 14 0.100000 Plan 20 0.161030 Plan 15 0.011013 

5.2 Self-scheduling of HEMS in the presence of EES 

This scenario discusses a case study with both shiftable and non-shiftable loads, such as 

the lighting system in the presence of an EES system with a capacity of 3 kWh. Tables 13 and 

14 show the data of the EES system and the fixed loads of the consumer, respectively. As the 
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EES system can supply a fraction of the load demand, both shiftable and non-shiftable loads 

have been taken into consideration in this case. The energy purchased from the grid can be 

directly consumed by the home appliances and the EV or to used charge the EES system. 

Moreover, the EES system can supply a fraction of the load over peak hours and it is not 

necessary to purchase electricity from the grid. It is noteworthy that the refrigerator with 0.35 

kW for the entire day and the TV with 0.1 kW demand over hours 18:00-23:00 are the non-

shiftable loads besides the lighting system. The load demand for the lighting system varies over 

the hours of the day. It is worth mentioning that due to the constant demand of the above 

mentioned loads, the base and the permitted intervals are the same.   

Table 13 Technical parameters of the EES. 

maxE  
minE  

.,maxChP  
.,maxDischP  

.Ch  .Disch  1 TE E  
(kWh) (kWh) (kW) (kW) % % (kWh) 
3.00 0.200 0.500 0.500 0.95 0.95 0.5 

 

Fig.6 shows the total daily load demand of the studied system, including both shiftable 

and non-shiftable loads in scenario 2. The refrigerator with a demand of 0.35 kW has the highest 

consumption. It should be noted that the performance of the compressor of the refrigerator over 

different hours has been neglected and this appliance has been considered a fixed load. 

 

Table 14 The specifications of non-shiftable loads in the HEMS self-scheduling study. 

Appliance Pi Ti LBb UBb LBs UBs 

Refrigerator (W) 350 48 1 48 1 48 
TV (W) 100 12 35 46 35 46 
Lighting 1 (W) 150 2 11 12 11 12 
Lighting 2 (W) 100 2 13 14 13 14 
Lighting 3 (W) 50 2 15 16 15 16 
Lighting 4 (W) 50 2 37 38 37 38 
Lighting 5 (W) 100 2 39 40 39 40 
Lighting 6 (W) 150 2 41 42 41 42 
Lighting 7 (W) 180 4 43 46 43 46 
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Fig. 6. The total daily load demand in scenario 2. 

Fig. 7 depicts the tariffs used in this study applied using a 30-minute resolution. Utilizing 

the TOU tariff, three price levels as 0.01 $/kWh, 0.02 $/kWh, and 0.04 $/kWh have been 

applied. During time slots 19-40, the energy price is 0.04 $/kWh, during the slots 15-18 and 41-

44 the price is 0.02 $/kWh, and for the remaining hours, the price is 0.01 $/kWh. For the RTP 

case, the energy price at each time slot is the same as the previous scenario. 

 
 Fig. 7. Different time tariffs based on TOU and RTP 
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5.2.1 Self-scheduling problem for fixed and shiftable loads considering TOU tariff 

This scenario implements the self-scheduling problem to determine the best schedule for 

using shiftable-load assets based on the TOU tariff. The simulation results show that the total 

load demand procurement cost is equal to $1.287. In this regard, applying the load shifting 

capability would reduce the cost to $0.871 and employing the EES system beside the load 

shifting can help lower the cost to $0.832. It is noteworthy that the EES system is not ideal; 

thus, charging/discharging would occur only if it tangibly reduces the cost. As this system can 

supply a fraction of the load over some hours of the day, it is not required to purchase energy 

from the grid. The amount of the energy purchased from the grid is 39.01 kWh in the absence 

of the EES system and in the presence of the EES system it increases to 39.15 kWh. Due to the 

difference in the energy tariff over the day and the efficiency of the EES which is 95%, the 

amount of the energy purchased from the grid is almost the same, but the bill would be different. 

It can be observed that the battery system operates according to the energy tariff and load 

demand variations.  

The EES system charges to its maximum capacity, i.e. 3kWh over the light load hours 

with low energy prices to supply the load during peak hours and reduce the energy purchased 

from the grid. However, simulation results show that smart load shifting would be much more 

effective compared to installing an EES system. A non-ideal EES system cuts the total cost by 

4.4%. Fig. 8 illustrates the contribution of each of the shiftable loads to the energy bill both in 

the base case and after self-scheduling. Table 15 represents a sensitivity analysis to highlight 

the impact of the penalty factor on HEMS scheduling. The Pareto optimal front along with the 

decision making result by using the VIKOR in this case with the TOU tariff, without and with 

the EES system have been represented in Table 16 and Table 17, respectively.     

Table 15 The sensitivity analysis based on TOU tariff considering the effects of EES on the DI. 

 With ESS Without ESS  With ESS Without ESS 
߱ Cost DI Cost DI ߱ Cost DI Cost DI 
0.000 0.8324 25 0.8709 25 0.015 1.0464 12 1.0849 12 
0.001 0.8559 21 0.8944 22 0.020 1.1039 11 1.1424 11 
0.002 0.8734 17 0.9119 17 0.025 1.1589 10 1.1974 11 
0.003 0.8904 17 0.9289 17 0.030 1.1939 5 1.2324 7 
0.004 0.9064 13 0.9449 13 0.035 1.2139 4 1.2524 4 
0.005 0.9194 13 0.9579 13 0.040 1.2339 4 1.2724 4 
0.010 0.9844 13 1.0229 13 0.045 1.2489 0 1.2874 0 
Cost=Electricity Bill + DI* ω 
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 As this figure shows, the EV, the dishwasher, and the washing machine have the highest 

contributions in the daily bill. The energy stored in the EES system has been indicated in Fig. 9 

when =0. It is noted that there is a strict constraint on the initial and final energy storage at 0.5 

kWh.  

 

Fig. 8. The contribution of each shiftable load using the TOU tariff. 

 
Fig. 9. The energy stored in the EES system using the TOU tariff when =0. 
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Table 16 The Pareto optimal front and VIKOR results_ without EES and considering TOU tariff. 

Plan DI Bill ($) R S Q 
Plan 1 0 1.2874 Plan 1 0.800000 Plan 1 0.800000 Plan 1 1.000000 
Plan 2 1 1.2524 Plan 2 0.732773 Plan 2 0.740773 Plan 2 0.906955 
Plan 3 2 1.2174 Plan 3 0.665546 Plan 3 0.681546 Plan 3 0.813911 
Plan 4 3 1.1649 Plan 4 0.564706 Plan 4 0.588706 Plan 4 0.671284 
Plan 5 4 1.1124 Plan 5 0.463866 Plan 5 0.495866 Plan 5 0.528658 
Plan 6 5 1.0824 Plan 6 0.406242 Plan 6 0.446242 Plan 6 0.449780 
Plan 7 6 1.0524 Plan 7 0.348619 Plan 7 0.396619 Plan 7 0.370901 
Plan 8 7 1.0224 Plan 8 0.290996 Plan 8 0.346996 Plan 8 0.292023 
Plan 9 8 0.9974 Plan 9 0.242977 Plan 9 0.306977 Plan 9 0.227310 

Plan 10 9 0.9724 Plan 26 0.200000 Plan 10 0.266958 Plan 10 0.162600 
Plan 11 10 0.9474 Plan 10 0.194960 Plan 11 0.226939 Plan 26 0.114970 
Plan 12 11 0.9224 Plan 25 0.192000 Plan 26 0.200000 Plan 25 0.103900 
Plan 13 12 0.9049 Plan 24 0.184000 Plan 25 0.192960 Plan 11 0.097886 
Plan 14 13 0.8929 Plan 23 0.176000 Plan 12 0.186920 Plan 24 0.092836 
Plan 15 14 0.8899 Plan 22 0.168000 Plan 24 0.185920 Plan 23 0.081770 
Plan 16 15 0.8869 Plan 21 0.160000 Plan 23 0.178880 Plan 22 0.071439 
Plan 17 16 0.8824 Plan 20 0.152000 Plan 22 0.172800 Plan 21 0.061107 
Plan 18 17 0.8779 Plan 11 0.146940 Plan 21 0.166720 Plan 20 0.050776 
Plan 19 18 0.8764 Plan 19 0.144000 Plan 13 0.161310 Plan 19 0.040445 
Plan 20 19 0.8754 Plan 18 0.136000 Plan 20 0.160640 Plan 12 0.033173 
Plan 21 20 0.8744 Plan 17 0.128000 Plan 19 0.154560 Plan 18 0.030848 
Plan 22 21 0.8734 Plan 16 0.120000 Plan 16 0.150730 Plan 17 0.025658 
Plan 23 22 0.8724 Plan 15 0.112000 Plan 17 0.150090 Plan 16 0.020468 
Plan 24 23 0.8719 Plan 14 0.104000 Plan 18 0.149450 Plan 15 0.013075 
Plan 25 24 0.8714 Plan 12 0.098920 Plan 15 0.148490 Plan 13 0.011510 
Plan 26 25 0.8709 Plan 13 0.096000 Plan 14 0.146260 Plan 14 0.005682 

 

Table 17 The Pareto optimal front and VIKOR results_ with EES and considering TOU tariff. 

Plan DI Bill ($) R S Q 
Plan 1 0 1.2489 Plan 1 0.800000 Plan 1 0.800000 Plan 1 1.000000 
Plan 2 1 1.2139 Plan 2 0.732773 Plan 2 0.740773 Plan 2 0.906955 
Plan 3 2 1.1789 Plan 3 0.665546 Plan 3 0.681546 Plan 3 0.813911 
Plan 4 3 1.1264 Plan 4 0.564706 Plan 4 0.588706 Plan 4 0.671284 
Plan 5 4 1.0739 Plan 5 0.463866 Plan 5 0.495866 Plan 5 0.528658 
Plan 6 5 1.0439 Plan 6 0.406242 Plan 6 0.446242 Plan 6 0.449780 
Plan 7 6 1.0139 Plan 7 0.348619 Plan 7 0.396619 Plan 7 0.370901 
Plan 8 7 0.9839 Plan 8 0.290996 Plan 8 0.346996 Plan 8 0.292023 
Plan 9 8 0.9589 Plan 9 0.242977 Plan 9 0.306977 Plan 9 0.227310 

Plan 10 9 0.9339 Plan 26 0.200000 Plan 10 0.266958 Plan 10 0.162598 
Plan 11 10 0.9089 Plan 10 0.194960 Plan 11 0.226939 Plan 26 0.114970 
Plan 12 11 0.8839 Plan 25 0.192000 Plan 26 0.200000 Plan 25 0.103900 
Plan 13 12 0.8664 Plan 24 0.184000 Plan 25 0.192960 Plan 11 0.097886 
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Plan 14 13 0.8544 Plan 23 0.176000 Plan 12 0.186920 Plan 24 0.092836 
Plan 15 14 0.8514 Plan 22 0.168000 Plan 24 0.185920 Plan 23 0.081770 
Plan 16 15 0.8484 Plan 21 0.160000 Plan 23 0.178880 Plan 22 0.071439 
Plan 17 16 0.8439 Plan 20 0.152000 Plan 22 0.172800 Plan 21 0.061107 
Plan 18 17 0.8394 Plan 11 0.146940 Plan 21 0.166720 Plan 20 0.050776 
Plan 19 18 0.8379 Plan 19 0.144000 Plan 13 0.161310 Plan 19 0.040445 
Plan 20 19 0.8369 Plan 18 0.136000 Plan 20 0.160640 Plan 12 0.033173 
Plan 21 20 0.8359 Plan 17 0.128000 Plan 19 0.154560 Plan 18 0.030848 
Plan 22 21 0.8349 Plan 16 0.120000 Plan 16 0.150730 Plan 17 0.025658 
Plan 23 22 0.8339 Plan 15 0.112000 Plan 17 0.150090 Plan 16 0.020468 
Plan 24 23 0.8334 Plan 14 0.104000 Plan 18 0.149450 Plan 15 0.013075 
Plan 25 24 0.8329 Plan 12 0.098920 Plan 15 0.148490 Plan 13 0.011510 
Plan 26 25 0.8324 Plan 13 0.096000 Plan 14 0.146260 Plan 14 0.005682 

 

  

5.2.2 Self-scheduling problem for fixed and shiftable loads considering RTP tariff 

This section investigates the self-scheduling problem of fixed and shiftable loads, taking 

into account the RTP mechanism. As this case depends strongly on the real-time prices, there 

should be smart communication infrastructure for the HEMS to receive the price signals. The 

compatibility with the real-time prices mainly relates to the existence of such infrastructure. 

Simulation results show that the daily energy bill would be $1.2209 in case the consumer tends 

to use energy according to his preferences. In the case of applying self-scheduling, this cost will 

drop significantly. The cost of energy purchased from the grid in the absence of the EES system 

is $1.0838 and it will reduce further to $1.0404 when the EES system is added.  

Moreover, the total amount of energy purchased from the grid in the absence of the EES 

system is 39.01 kWh, including 9.96 kWh fixed load and 29.05 kWh shiftable load. In the 

presence of the EES system, the total energy demand is 39.24 kWh, while this increase is due 

to the non-ideal EES system. However, installing the EES system decreases the cost by 4%. 

Fig. 10 indicates the impact of the self-scheduling of HEMS on the optimal operation of the 

home appliances and the EV. As this figure shows, the load shifting from the peak hours to off-

peak hours has been optimally done. It is noteworthy that the total energy demand without the 

EES system is the same as the base case and the consumption pattern is following the self-

scheduling.  

The net load demand in the HEMS is zero over some hours in the presence of the EES 

system. This means that the EES system alone supplies the entire load demand, independently 

from the grid which is under the optimal operation of such a device. 
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Fig. 10. The daily energy consumption before/after the self-scheduling with RTP tariff. 

 

The sensitivity analysis in this scenario, shown in Table 18, has revealed that the 

consumer would not tend to shift his load for  equal to or greater than 0.02. Consequently, the 

load procurement cost in the absence of the EES system for =0.02 is the same as the base case, 

i.e. $1.2209. Moreover, the total cost with only the EES system is $1.1776 showing a 3.55% 

reduction in the cost. The Pareto optimal front along with the decision making result by using 

the VIKOR in this case with the RTP mechanism, without and with the EES system have been 

represented in Table 19 and Table 20, respectively.     

Table 18 The sensitivity analysis based on RTP tariff considering the effects of EES on the DI. 

 With ESS Without ESS  With ESS Without ESS 
߱ Cost DI Cost DI ߱ Cost DI Cost DI 
0.000 1.0405 26 1.0838 26 0.006 1.1151 6 1.1584 6 
0.001 1.0621 19 1.1054 19 0.007 1.1211 6 1.1644 6 
0.002 1.0789 14 1.1222 14 0.008 1.1266 5 1.1699 5 
0.003 1.0929 11 1.1362 14 0.009 1.1316 5 1.1749 5 
0.004 1.1029 7 1.1462 7 0.010 1.1366 5 1.1799 5 
0.005 1.1091 6 1.1524 6 0.020 1.1776 0 1.2209 0 
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Table 19 The Pareto optimal front and VIKOR results_ without EES and considering RTP tariff. 

Plan DI Bill ($) R S Q 
Plan 1 0 1.1776 Plan 1 0.800000 Plan 1 0.800000 Plan 1 1.000000 
Plan 2 1 1.1671 Plan 2 0.738731 Plan 2 0.746423 Plan 2 0.914312 
Plan 3 2 1.1566 Plan 3 0.677462 Plan 3 0.692846 Plan 3 0.828623 
Plan 4 3 1.1391 Plan 4 0.575346 Plan 4 0.598423 Plan 4 0.681797 
Plan 5 4 1.1216 Plan 5 0.473231 Plan 5 0.504000 Plan 5 0.534970 
Plan 6 5 1.0866 Plan 6 0.269001 Plan 6 0.307462 Plan 6 0.235297 
Plan 7 6 1.0791 Plan 7 0.225237 Plan 7 0.271391 Plan 7 0.175811 
Plan 8 7 1.0749 Plan 8 0.200438 Plan 8 0.254284 Plan 8 0.144711 
Plan 9 8 1.0734 Plan 25 0.200000 Plan 9 0.253223 Plan 9 0.137629 

Plan 10 9 1.0701 Plan 24 0.192310 Plan 10 0.241951 Plan 10 0.115263 
Plan 11 10 1.0641 Plan 9 0.191680 Plan 11 0.214633 Plan 25 0.101920 
Plan 12 11 1.0599 Plan 23 0.184620 Plan 25 0.200000 Plan 24 0.094744 
Plan 13 12 1.0584 Plan 10 0.172720 Plan 24 0.197850 Plan 23 0.086427 
Plan 14 13 1.0551 Plan 22 0.161540 Plan 12 0.197530 Plan 11 0.068878 
Plan 15 14 1.0509 Plan 21 0.153850 Plan 13 0.196470 Plan 22 0.053712 
Plan 16 15 1.0500 Plan 20 0.146150 Plan 23 0.194240 Plan 21 0.043339 
Plan 17 16 1.0491 Plan 19 0.138460 Plan 14 0.185190 Plan 12 0.037777 
Plan 18 17 1.0476 Plan 11 0.137710 Plan 22 0.173500 Plan 19 0.035151 
Plan 19 18 1.0461 Plan 18 0.130770 Plan 17 0.172970 Plan 20 0.032967 
Plan 20 19 1.0431 Plan 17 0.123080 Plan 18 0.171910 Plan 13 0.030696 
Plan 21 20 1.0428 Plan 16 0.115380 Plan 19 0.170850 Plan 18 0.030487 
Plan 22 21 1.0426 Plan 12 0.112910 Plan 16 0.170530 Plan 17 0.025822 
Plan 23 24 1.0422 Plan 15 0.107690 Plan 15 0.168090 Plan 14 0.018905 
Plan 24 25 1.0415 Plan 13 0.104160 Plan 21 0.16727 Plan 16 0.018418 
Plan 25 26 1.0405 Plan 14 0.100000 Plan 20 0.16103 Plan 15 0.011013 

 

Table 20 The Pareto optimal front and VIKOR results_ with EES and considering RTP tariff. 

Plan DI Bill ($) R S Q 
Plan 1 0 0.9375 Plan 1 0.800000 Plan 1 0.800000 Plan 1 1.000000 
Plan 2 1 0.9270 Plan 2 0.738731 Plan 2 0.746423 Plan 2 0.914312 
Plan 3 2 0.9165 Plan 3 0.677462 Plan 3 0.692846 Plan 3 0.828623 
Plan 4 3 0.8990 Plan 4 0.575346 Plan 4 0.598423 Plan 4 0.681797 
Plan 5 4 0.8815 Plan 5 0.473231 Plan 5 0.504000 Plan 5 0.534970 
Plan 6 5 0.8465 Plan 6 0.269001 Plan 6 0.307462 Plan 6 0.235297 
Plan 7 6 0.8390 Plan 7 0.225237 Plan 7 0.271391 Plan 7 0.175811 
Plan 8 7 0.8347 Plan 8 0.200438 Plan 8 0.254284 Plan 8 0.144711 
Plan 9 8 0.8333 Plan 25 0.200000 Plan 9 0.253223 Plan 9 0.137629 

Plan 10 9 0.8300 Plan 24 0.192310 Plan 10 0.241951 Plan 10 0.115263 
Plan 11 10 0.8240 Plan 9 0.191680 Plan 11 0.214633 Plan 25 0.101920 
Plan 12 11 0.8197 Plan 23 0.184620 Plan 25 0.200000 Plan 24 0.094744 
Plan 13 12 0.8183 Plan 10 0.172720 Plan 24 0.197850 Plan 23 0.086427 
Plan 14 13 0.8150 Plan 22 0.161540 Plan 12 0.197530 Plan 11 0.068878 
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Plan 15 14 0.8107 Plan 21 0.153850 Plan 13 0.196470 Plan 22 0.053712 
Plan 16 15 0.8099 Plan 20 0.146150 Plan 23 0.194240 Plan 21 0.043339 
Plan 17 16 0.8089 Plan 19 0.138460 Plan 14 0.185190 Plan 12 0.037777 
Plan 18 17 0.8074 Plan 11 0.137710 Plan 22 0.173500 Plan 19 0.035151 
Plan 19 18 0.8060 Plan 18 0.130770 Plan 17 0.172970 Plan 20 0.032967 
Plan 20 19 0.8029 Plan 17 0.123080 Plan 18 0.171910 Plan 13 0.030696 
Plan 21 20 0.8027 Plan 16 0.115380 Plan 19 0.170850 Plan 18 0.030487 
Plan 22 21 0.8024 Plan 12 0.112910 Plan 16 0.170530 Plan 17 0.025822 
Plan 23 24 0.8020 Plan 15 0.107690 Plan 15 0.168090 Plan 14 0.018905 
Plan 24 25 0.8013 Plan 13 0.104160 Plan 21 0.167270 Plan 16 0.018418 
Plan 25 26 0.8004 Plan 14 0.100000 Plan 20 0.161030 Plan 15 0.011013 

 

Regarding the computational burden, the self-scheduling problem is solved for the 

mentioned case studies and the comparative results are reported in Table 21. For the non-linear 

representation of DI, the problem has been solved by the standard branch and bound (SBB) 

solver, while the proposed linear model has been solved by CPLEX solver. For the sake of 

comparison, the results reported in the corresponding tables mentioned in this paper are 

organized in Table 21.  

Table 21. Computational burden analysis for studied cases 

Case Study DI-TOU (Table 6) DI-RTP (Table 9) TOU-EES (Table 15) RTP-EES (Table 18) 
Model MILP MINLP MILP MINLP MILP MINLP MILP MINLP 

Number of Cases 24 24 12 12 28** 28** 24** 24** 
Average Time (Sec) 0.220 14.175 0.215 13.575 0.292 18.354 0.311 19.875 

Maximum Time (Sec) 0.233 15.169 0.232 15.227 0.411 21.375 0.423 22.341 
Minimum Time (Sec) 0.201 0.738* 0.205 0.725* 0.203 0.875* 0.222 0.915* 

* The results are obtained for the case with =0, i.e. excluding the nonlinear DI 
** The simulations have been performed for both cases (with and without EES) 

As can be seen from the simulation results, the computational burden for the non-linear 

DI function is considerably high. In the case of excluding the non-linear function (=0), the 

convergence time is less than one second.  

6. Conclusion  

This paper investigated a home energy management system (HEMS) with shiftable loads. 

This problem was studied in the context of a self-scheduling problem with different tariffs and 

an electrical energy storage (EES) system. The proposed model was formulated in a mixed-

integer linear programming (MILP) multi-objective framework. In this respect, the discomfort 

index (DI) of the consumer was introduced as a linear function proportional to the amount of 
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load shifted to before or after the consumer’s desired time. The proposed DI can smoothly shift 

the operation time of home appliances close to the desired intervals. Therefore, the proposed 

index works precisely and efficiently in shifting the consumption of energy considering 

different energy tariffs. The most desired Pareto solution among the Pareto set was also selected 

using the VIKOR decision maker as a promising method.   

In this study, the effectiveness of the HEMS on the daily bill reduction is confirmed. 

Moreover, a sensitivity analysis was carried out in each scenario to show to what extent the 

consumer tolerates the load shifting and to show the total discomfort reduction. By 

implementing the proposed Euclidean distance framework in the DI calculation, the total 

discomfort index is less than the absolute subtraction strategy in all case studies. The simulation 

results revealed that deferring the shiftable loads to off-peak hours can considerably decrease 

the consumer’s bill in both scenarios. The simulation results in the second scenario, in the 

presence of EES devices, confirm that the effectiveness of using demand response programs to 

reduce the energy bill is much more than the installation of EES devices. In the presence of 

energy storage devices, smart homes can effectively benefit from the optimal operation of such 

storage devices. In such a way, the self-scheduling can be optimally achieved by utilizing the 

storage devices. Moreover, to achieve the best results from an economic point of view, it is 

necessary to assess the capital cost of such storage devices as well as their variable costs 

associated with their charging and discharging operating modes. 
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