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Abstract: Electricity price forecast is key information for successful operation of electricity market participants. However, 10 

the time series of electricity price has nonlinear, non-stationary and volatile behaviour and so its forecast method should 11 

have high learning capability to extract the complex input/output mapping function of electricity price. In this paper, a 12 

Combinatorial Neural Network (CNN) based forecasting engine is proposed to predict the future values of price data. The 13 

CNN-based forecasting engine is equipped with a new training mechanism for optimizing the weights of the CNN. This 14 

training mechanism is based on an efficient stochastic search method, which is a modified version of chemical reaction 15 

optimization algorithm, giving high learning ability to the CNN. The proposed price forecast strategy is tested on the real-16 

world electricity markets of Pennsylvania-New Jersey-Maryland (PJM) and mainland Spain and its obtained results are 17 

extensively compared with the results obtained from several other forecast methods. These comparisons illustrate 18 

effectiveness of the proposed strategy. 19 

Keywords–Price Forecast, Modified Chemical Reaction Optimization, Feature Selection 20 

 21 

1. Introduction 22 

With the restructuring of electric power industry, electricity price has become the focus of all activities in the power 23 

market [1]. In order to plan efficient operation and economical capital expansion of deregulated electricity markets, the 24 

Generating Companies (GENCO) should be able to adjust their bidding strategies to achieve the maximum benefit and 25 

hedge themselves against the financial risks. Also, the consumers should have a plan to purchase electricity from the pool 26 

market, or use their own generation facilities when high prices occur. For these purposes, the key information for both 27 

GENCOs and consumers is electricity price forecast. However, electricity has distinct characteristics compared to other 28 

commodities. Electricity generation and consumption must be continuously matched, while electricity storage is still 29 

expensive. Moreover, transmission constraints may limit electricity exchange between power systems. Thus, the time series 30 

of electricity price can exhibit a major volatility and the application of forecasting techniques used in other markets can lead 31 

to large errors in electricity price forecasting [2].  32 
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The key role of electricity price forecasting for the market participants and its complexity have been the driver of many 1 

recent research works. In [2], combination of Adaptive Wavelet Neural Network (AWNN) and Generalized Auto-2 

Regressive Conditional Heteroscedastic (GARCH) time series is presented for electricity price prediction. In [3], a day-3 

ahead forecasting approach for prediction of electricity price and load considering their correlation has been presented. 4 

Their approach is composed of wavelet packet transform, generalized mutual information and least square support vector 5 

machine. Probabilistic electricity price forecasting to provide prediction intervals for electricity price has been presented in 6 

[4]. The model of [4] consists of active learning method and variational heteroscedastic Gaussian process. A bat-neural 7 

network multi-agent system is proposed in [5] for forecasting stock price. Combination of Support Vector Regression 8 

(SVR) and Auto-Regressive Integrated Moving Average (ARIMA) models is introduced in [6] for electricity price 9 

forecasting. In [7], an Enhanced Probability Neural Network (EPNN), composed of Probability Neural Network (PNN) and 10 

Orthogonal Experimental Design (OED), is presented as a price forecasting system for electricity market participants. The 11 

OED is used to smooth parameters in the EPNN to improve the forecasting error. A hybrid electricity price forecast method, 12 

composed of WT, ARIMA and Radial Basis Function Neural Network (RBFNN), is proposed in  [8]. Also, particle swarm 13 

optimization is used to optimize the RBFNN structure in [8]. In [9], it has been discussed that electricity price prediction by 14 

only one model is a hard task. Then, the authors of [9] propose a forecasting model that detaches high volatility and daily 15 

seasonality of electricity price based on empirical mode decomposition, seasonal adjustment and ARIMA. In [10], one 16 

dimensional Discrete Cosine Transform (DCT) input featured Feed-Forward Neural Network  (FFNN) is proposed for 17 

electricity price forecasting. The authors of [10] have tested their price forecast approach on the mainland Spain and New 18 

York electricity markets.  19 

An electricity price forecast method composed of wavelet transform and a hybrid prediction technique is proposed in 20 

[11]. The hybrid technique includes a set of cascaded forecasters such that each forecaster is a combination of NN and an 21 

evolutionary algorithm. In [12], a feature selection algorithm composed of Mutual Information (MI) and Information Gain 22 

(IG) criteria is introduced to refine the input features of electricity price spike forecast process. Also, combination of 23 

probabilistic NN and hybrid neuro-evolutionary system is presented as the price spike forecast method in [12]. Combination 24 

of modified version of relief algorithm for feature selection and a hybrid NN for electricity price forecast is presented in 25 

[13]. In [14], a prediction method for next-day electricity prices based on ARIMA methodology is proposed. In [15], a 26 

three-layered feed-forward NN is presented for prediction of next-week electricity prices over mainland Spain and 27 

California electricity markets. The NN forecast method of [15] is trained by the Levenberg-Marquardt algorithm. An 28 

electricity price forecast method based on Fuzzy NN (FNN) is proposed in [16]. In this reference, combination of fuzzy 29 

logic and an efficient learning algorithm is presented for capturing the non-stationary behaviour and outliers of the price 30 

time series. A price forecast technique based on WT and ARIMA model is presented in [17]. In this method, the price data 31 

is first decomposed by WT and then the ARIMA model predicts the future values of each WT component. An electricity 32 
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price prediction method based on the combination of NN and Similar Days (SD) techniques is proposed in [18]. A review of 1 

different electricity price forecast methods can be found in [19-21]. 2 

Despite the performed research works in the area, more accurate price forecast methods are still demanded. This paper 3 

focuses on electricity price prediction for the next day, which is the price forecast process frequently used by the electricity 4 

market participants to prepare their bids. The new contributions of this research work can be summarized as follows: 5 

1) A new stochastic search method, which is a modified version of chemical reaction optimization algorithm, is 6 

proposed. It is shown that this method can benefit from uni-individual and multi-individual as well as local and 7 

global search operators arranged in a coordinated manner. Distinct features of the proposed stochastic search 8 

method enhances its exploration capability for finding optimum solutions in complex search spaces. 9 

2) The proposed modified chemical reaction optimization algorithm is adapted as the training mechanism of a 10 

Combinatorial Neural Network (CNN) based forecasting engine. The CNN is composed of different Neural 11 

Networks (NNs) arranged in a cascaded manner. The proposed training mechanism can search the solution space 12 

of the CNN's training problem in different directions in parallel and avoid being trapped in local optima as well as 13 

overfitting problem. Moreover, each NN of the CNN is trained to improve the price forecast of the previous NN. 14 

    The remaining parts of the paper are organized as follows. In the second section, the proposed CNN-based forecasting 15 

engine and its training mechanism based on the modified chemical reaction optimization algorithm are introduced. The 16 

numerical results obtained from the proposed price forecast strategy for real-world electricity markets are presented in 17 

section three and compared with the results of several other recently published price forecast methods. Finally, section four 18 

concludes the paper. 19 

 20 

2. Proposed Combinatorial Neural Network (CNN) based Forecasting Engine 21 

Architecture of the suggested forecasting engine, i.e. CNN, is shown in Fig. 1(a), which is composed of cascaded NNs. 22 

For simplicity only three NNs are shown in Fig. 1, but in general CNN can have any number of cascaded NNs. Each 23 

cascaded NN has multi-layer perceptron structure, which is an efficient structure for estimating neural networks. The first 24 

NN, i.e. NN1 in Fig. 1(a), is fed by the inputs selected by the double-filter feature selection method of [12], which is based 25 

on the information theoretic criteria of MI and IG. This feature selection method, denoted by MI-IG, has two cascaded 26 

filters to filter out irrelevant candidate features (i.e. the inputs that have low mutual information with the output variable) 27 

and redundant candidate features (i.e. the inputs that have high mutual information with the other inputs), respectively. Only 28 

the relevant non-redundant candidate inputs, constituting a minimum subset of the most informative features for predicting 29 

the output variable, are selected by the feature selection method. As this feature selection method is not the focus of this 30 

paper, it is not further discussed here. The interested reader can refer to [12] for details of this technique. The output layer of 31 

NN1 has one neuron. Multi-period forecast, e.g. prediction of electricity price for the next 24 hours, is reached through 32 
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recursion, i.e. by feeding the input variables with the output feature of the forecasting engine. For instance, predicted 1 

electricity price for the first hour is used as P(t–1) for the price forecast of the second hour if P(t–1) is among the selected 2 

candidate inputs of NN1. The MLP structure of the next NNs of CNN, e.g. NN2 and NN3 in Fig. 1(a), is similar to the 3 

structure of NN1, except for an additional input devoted to receive the forecast of the previous NN. In other words, NN1 is 4 

trained to learn the mapping function between the selected inputs by the feature selection method and electricity price of the 5 

next hour. Each of the next NNs is trained to learn the mapping function between the selected inputs + price forecast of the 6 

previous NN and electricity price of the next hour. In this way, each of the next NNs can employ the forecast of the previous 7 

NN, as an input close to the output, to better learn the variations and patterns of the price signal and improve its forecast. 8 

The output of the last NN constitutes the price forecast of the CNN.  9 

Fig. 1(b) illustrates the historical data used for training the NNs of the CNN. In this figure, it is assumed that each NN 10 

requires 50 days historical data including 50×24=1200 hourly training samples [13,22]. Thus, the whole CNN of Fig. 1(b) 11 

requires 3×50=150 days historical data. At first, NN1 is trained by the historical data from 150 days ago to 101 days ago, 12 

denoted by –150 to –101, included in the sliding window 1. After this training phase, NN1 predicts 24 hourly electricity 13 

prices of the day –100. Subsequently, the sliding window 1 proceeds by one day such that NN1 is trained by the historical 14 

data of the days –149 to –100 and predicts the electricity prices of the day –99. This cycle of train-forecast is repeated until 15 

NN1 predicts the electricity prices of the days –100 to –51. These price forecasts plus the selected features are included in 16 

the sliding window 2, shown in Fig. 1(b), by which NN2 is trained and predicts the electricity prices of the day –50. The 17 

cycle of train-forecast is repeated for NN2 until it predicts the electricity prices of the days –50 to –1. By means of the 18 

predicted prices and selected features for the days –50 to –1, included in sliding window 3, NN3 is trained and predicts the 19 

electricity prices of the forecast day or day 0 in Fig. 1(b).  20 

To train each NN of the CNN, a new stochastic search technique is proposed in this paper, which optimizes the weights 21 

of the NN to learn its associated input/output mapping function. The stochastic search method is a modified version of 22 

chemical reaction optimization algorithm. In the following, the chemical reaction optimization algorithm is first introduced 23 

briefly. Then, the proposed modified version is presented and its different operators are detailed. Finally, the modified 24 

chemical reaction optimization algorithm is adapted as the training mechanism of the CNN-based forecasting engine.  25 

2.1. Chemical Reaction Optimization Algorithm 26 

Chemical Reaction Optimization (CRO) algorithm is a population-based stochastic search technique recently presented 27 

by Lam [23]. The underlying idea of CRO is taken from the natural chemical reactions. This algorithm mimics the 28 

procedure of high-energy molecules taking part in various types of elementary reactions to make the final products with 29 

stable low energy states. Without loss of generality, we focus on a minimization problem to introduce CRO algorithm (here, 30 

minimization of the training phase error for the CNN-based forecasting engine).  31 
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CRO algorithm consists of two main parts including molecules and elementary reactions. In nature, a molecule is 1 

composed of several atoms with different characteristics. In CRO algorithm, the structure of a molecule is considered as a 2 

solution in the search space. In nature, change of a molecular structure involves with Potential Energy (PE) and Kinetic 3 

Energy (KE). The PE quantifies the molecular structure in terms of energy. In the CRO algorithm, it is modelled as the 4 

objective function OF(.) of the associated solution, denoted by ω: 5 

OF(ω)=PEω                                                                                                                                                                               (1)  6 

Physically, a molecule ω can change to another form ω', if PEω≥PEω'. Otherwise, if PEω+KEω≥PEω', this change can still 7 

be happened, i.e., KE allows the molecules to move to higher potential states. In the mathematical modelling of CRO, KE of 8 

a molecule (or similarly KE of a solution of CRO) characterizes its ability for escaping from local minima [24].  9 

As in any population-based stochastic search technique, the individuals of CRO population are evolved to obtain better 10 

solutions, i.e. solutions with lower objective function values for the minimization problem. In nature, molecules are changed 11 

through elementary reactions toward more stable states with lower PE values. While molecules constitute the individuals of 12 

CRO population, the elementary reactions are modelled as the evolutionary operators of the individuals. A chemical 13 

reaction process includes a set of elementary reactions caused by the collisions among the molecules or between the 14 

molecules and the walls of the container. Four types of the elementary reactions are considered in CRO algorithm including 15 

on-wall ineffective collision, decomposition, inter-molecular ineffective collision, and synthesis, which are described below. 16 

1) On-Wall Ineffective Collision: In this elementary reaction, a molecule hits the wall of the container and returns back. This 17 

reaction is not vigorous and usually there is a small change in the molecular structure ω and its PE. This reaction is 18 

modelled in CRO algorithm as follows: 19 

( )N                                                                                                                                                                                 (2) 20 

where N(.) is a neighbourhood search operator, which returns the new solution ω' in the vicinity of the original one ω. PE of 21 

the new solutions is obtained through the objective function of the optimization problem as shown in equation (1). If PEω+ 22 

KEω≥PEω', the original solution ω and its PE (i.e. PEω) are replaced by the new solution ω' and its PE (i.e. PEω'). As the 23 

molecule hits the wall, some of its KE is lost. Thus, KE of the new solution is updated as: 24 

 ( ) ,  1KE PE PE KE Rand KELossRate                                                                                                                            (3) 25 

where Rand[KELossRate,1] is a random number with uniform distribution in the interval [KELossRate,1]; 26 

KELossRate (0,1) is a parameter of CRO limiting maximum percentage of the KE loss. Note that (1–Rand[KELossRate,1]) 27 

represents the fraction of KE lost to the environment. Otherwise, if the condition PEω+ KEω≥PEω' does not hold, the change 28 

is prohibited and the molecule retains its original ω, PE and KE. 29 

2) Decomposition: Decomposition happens when a molecule hits the container and decomposes into two or more molecules 30 

(two is assumed here). Despite the previous one, this change is vigorous. If the original molecular structure is represented by 31 

ω and the resultant ones are indicated by ω'1 and ω'2, the decomposition is shown by: 32 
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[ω'1,ω'2]=D(ω)                                                                                                                                                                          (4) 1 

This change occurs if equation (5) holds: 2 

1 2PE KE PE PE' '                                                                                                                                                          (5)  3 

In this case, considering 01 2PE KE PE PE' '       , KE of the newly generated molecules are obtained as follows: 
 

4 

 1 1 2
[0,1]' ' 'KE PE KE PE PE Rand                                                                                                                         (6) 5 

   
2 1 2

1 [0,1]' ' 'KE PE KE PE PE Rand                                                                                                                 (7)  6 

where Rand[0,1] is a random number with uniform distribution in the interval [0,1]. If the condition of equation (5) does not 7 

hold, the decomposition is prohibited and the original ω, PEω, and KEω are retained. If this condition frequently fails, the 8 

concept of buffer can be used to enhance its success rate [25]. 9 

3) Intermolecular Ineffective Collision: This elementary reaction consists of sudden collision between two or more 10 

molecules. Energy change of the molecules in intermolecular ineffective collision is similar to that in on-wall ineffective 11 

collision, but intermolecular ineffective collision involves more than one molecule (assume two molecules here). Thus, 12 

intermolecular ineffective collision is modelled as follows in the CRO algorithm: 13 

ω'1=N(ω1)                                                                                                                                                                                  (8) 14 

ω'2=N(ω2)                                                                                                                                                                                  (9) 15 

where N(.) is the neighbourhood search operator of equation (2); ω1 and ω2 are the original molecular structures; ω'1 and ω'2 16 

are generated molecules through intermolecular ineffective collision. The changes of the intermolecular ineffective collision 17 

are accepted if  18 

1 2 1 2 1 2PE PE KE KE PE PE' '                                                                                                                                 (10) 19 

In this case, KE of the new individuals ω'1 and ω'2 is determined as follows: 20 

 1 1 2 1 2 1 2
[0,1]' ' 'KE PE PE KE KE PE PE Rand                                                                                                (11)

 
21 

   
1 1 2 1 2 1 2

1 [0,1]' ' 'KE PE PE KE KE PE PE Rand                                                                                         (12)  22 

Otherwise, if the condition of equation (10) does not hold, the changes are prohibited and the original molecules ω1 and 23 

ω2 as well as their PE and KE are restored. 24 

4) Synthesis: In this elementary reaction, two molecules ω1 and ω2 collide with each other and combine to construct a new 25 

molecular structure ω'. In CRO, synthesis is described as follows: 26 

1 2( , )S                                                                                                                                                                           (13)  27 

The changes of the synthesis are accepted if  28 

1 2 1 2
PE PE KE KE PE                                                                                                                                             (14) 29 

In this case KE of the new solution ω' is set as 30 
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1 2 1 2
KE PE PE KE KE PE                                                                                                                                   (15) 1 

Otherwise, if the condition of equation (14) does not hold, the changes of the synthesis are not performed and the 2 

original solutions ω1 and ω2 as well as their PE and KE are retained. KEω' is usually higher than 
1

KE  and 
2

KE  as PEω' is 3 

expected to have a value similar to 
1

PE  and 
2

PE . Thus, the newly produced individual ω' will have higher ability to 4 

escape from local minima. 5 

    Based on the above explanations, the reasons of selecting CRO algorithm as the design framework of the training 6 

mechanism for the NNs of the CNN can be described as follows: 7 

1) CRO includes both uni-individual search operators including on-wall ineffective collision and decomposition and multi-8 

individual search mechanisms including intermolecular ineffective collision and synthesis. Thus, CRO can employ both the 9 

personal information of the individuals and the information generated from their interactions.  10 

2) CRO can simultaneously benefit from local and global search operators. While on-wall ineffective collision and 11 

intermolecular ineffective collision implement local searches around the current solutions, decomposition and synthesis 12 

apply great changes to the molecules. Thus, the individuals take the chance to jump to different areas of the solution space 13 

and so explore the other areas enhancing the exploration capability of the algorithm. Additionally, CRO with the aid of its 14 

decomposition and synthesis can implement a population-based stochastic search with variable size. Note that 15 

decomposition/synthesis increases/decreases the population size. 16 

3) CRO presents an open optimization framework that provides important degrees of freedom for the users to design their 17 

own specific models. While it is indicated that N(.), D(.) and S(.,.) are neighbourhood search, decomposition and synthesis 18 

operators, their specific functions are not specified in the original CRO algorithm. Indeed, these are considered as the 19 

changeable components of CRO [23-25]. 20 

    In the modified CRO, which will be presented in the next section, effective operators for the changeable components of 21 

CRO are first introduced. Then, a mechanism for coordinating the elementary reactions in the form of an evolution 22 

procedure is presented.  23 

2.2. Modified CRO 24 

The changeable components of CRO are designed in the modified CRO as follows: 25 

2.2.1) Neighbourhood search operator. This operator of the modified CRO, inspired from Particle Swarm Optimization 26 

(PSO) algorithm, is as below: 27 

1 , 2( ) .( ) .( )i i i best i gbest iN r r                                                                                                                            (16)  28 

where ωi,best is the best structure of the molecule ωi obtained so far and ωgbest is the best structure of all molecules obtained 29 

so far; r1 and r2 are two random numbers in the range of (0,1). Thus, the proposed N(ωi) searches around ωi using two 30 

difference vectors measuring the difference between the current position ωi and its previous best position in the solution 31 
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space as well as the difference between ωi and previous best solution of the whole population. In this way, the proposed 1 

N(ωi) can benefit from the information content of the past experiences of both ωi and the other individuals. Finally, it should 2 

be noted that although N(ωi) in equation (16) is inspired from PSO, it is not the same as the evolution strategy of PSO. 3 

While cognitive and social behaviours of individuals are used in PSO to update the velocity vectors, these information 4 

contents are directly used here, as the neighbourhood search operator, to update position of the individuals in the solution 5 

space. Additionally, to further enhance the search ability of N(.) operator, the random coefficients r1 and r2 are changed in 6 

each iteration according to chaotic variation patterns based on logistic map as follows: 7 

1 1
1 1 14 (1 )k k kr r r                                                                                                                                                             (17) 8 

1 1
2 2 24 (1 )k k kr r r                                                                                                                                                             (18)  9 

where k indicates iteration number of the modified CRO. To initialize the chaotic variation patterns of equations (17) and 10 

(18), 0
1r and 0

2r  are randomly selected within the interval (0,1) such that 0
1 {0.25,0.5,0.75}r   and 0

2 {0.25,0.5,0.75}r  . For 11 

every individual ωi, the initial seeds 0
1r  and 0

2r  are separately initialized and then the next r1 and r2 values in the chain are 12 

generated according to equations (17) and (18). In this way, these coefficients can adopt more diverse values and so the 13 

proposed N(.) operator can better cover the neighbourhood area around every individual.  14 

2.2.2) Decomposition Operator. Suppose that the decomposition operator is shown by: 15 

D(ωi) =[ω'i1,ω'i2]                                                                                                                                                                     (19) 16 

where the argument of D(.) function, i.e. the individual ωi, is a vector of decision variables of the optimization problem by 17 

the number of ND. The proposed D(ωi) randomly selects a position j within the vector of ωi (0<j<ND) and decomposes ωi 18 

to two sub-vectors including the decision variables of ωi from 1 to j and from j+1 to ND. The first and second sub-vectors 19 

are assigned to the resultant molecules ω'i1 and ω'i2, respectively. The remaining part of ω'i1 (i.e. its decision variables from 20 

j+1 to ND) and the remaining part of ω'i2 (i.e. its decision variables from 1 to j) are randomly selected within their allowable 21 

ranges, similar to the initialization of the molecules. The performance of the proposed decomposition operator is graphically 22 

shown in Fig. 2. Thus, the proposed D(ωi) operator can benefit from both the information content of ωi and randomization 23 

technique. Moreover, the decomposition point is randomly and separately selected for each ωi, which enhances the search 24 

diversity of this operator. 25 

2.2.3) Synthesis operator. The proposed synthesis operator, inspired from uniform crossover of Genetic Algorithm (GA), is 26 

as follows: 27 

1 2( , )i i iS                                                                                                                                                                        (20) 28 

This operator randomly selects a position j (0<j<ND) and decomposes each of ωi1 and ωi2 to two parts including the 29 

decision variables from 1 to j and from j+1 to ND. Then, the second parts of ωi1 and ωi2 are swapped as shown in Fig. 2. In 30 

this way, two molecules are generated, among which the individual with lower PE value is selected as ω'i as illustrated in 31 
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Fig. 2. Through this operator, two molecules can share their information in a stochastic manner with the aid of generating a 1 

better individual. 2 

    Another important aspect of the proposed modified CRO is coordination of its elementary reactions (including the 3 

changeable components designed as mentioned above) in the form of a comprehensive evolution strategy to produce better 4 

individuals as the algorithm proceeds. 5 

Here, the roulette wheel mechanism is proposed for this purpose. In this mechanism, the whole probability domain, i.e. 6 

the interval [0,1], is divided to four segments such that each segment indicates chance of selection of one elementary 7 

reaction as shown in Fig. 3. If a priori knowledge about the search characteristics required for solving the optimization 8 

problem is available, higher probability can be considered for the associated elementary reactions. For instance, if we know 9 

the approximate position of the optimal solution such that higher local search ability is required, larger segments can be 10 

given to the On-Wall Ineffective Collision and Intermolecular Ineffective Collision so that these elementary reactions with 11 

neighbourhood search behaviour are selected more. Otherwise, equal segments, i.e. equal chance of selection, can be 12 

considered for all elementary reactions. Then, a random number with uniform distribution in the interval [0,1] is generated. 13 

The segment that the random number falls in it indicates the selected elementary reaction as shown in Fig. 3. In each 14 

iteration, the proposed roulette wheel mechanism is separately implemented for every molecule so that the elementary 15 

reaction that should be performed on it is selected. If an elementary reaction with two arguments (i.e. Intermolecular 16 

Ineffective Collision or Synthesis) is selected, the other argument is randomly chosen from the remaining population. Pseudo 17 

code of the proposed modified CRO is shown in Fig. 4. In this pseudo code various modules of the modified CRO are 18 

specified.  19 

2.3. Application of the proposed modified CRO as the training mechanism of the CNN 20 

    To effectively train each NN of CNN by the modified CRO, its generalization capability should be carefully monitored 21 

along the training process to avoid overfitting, which is a serious problem for NN training [21,26]. Generalization is a 22 

measure of how well the NN performs on the actual problem once training is complete [27]. When overfitting occurs in 23 

training phase, the NN training error continues to decrease and it seems that the training process progresses, while indeed 24 

the generalization capability of the NN degrades and it loses its prediction ability for unseen forecast samples. However, as 25 

the forecast error is not available in the training phase, error of validation samples or validation error is used as an 26 

approximation of it to measure the generalization performance of the NN along its training process. Validation samples are 27 

a subset of training samples, which are not used for the optimization of the NN's weights and retained unseen for the NN. 28 

Thus, error of validation samples can give an estimate of the NN error for unseen forecast samples (here, electricity prices 29 

of the next day). Validation error is a better tool for measuring generalization capability of a NN and coping with overfitting 30 

problem, compared to training error [27]. To enhance the effectiveness of the validation error, validation samples should be 31 

as similar as possible to forecast samples so that the validation error can give a true estimate of the prediction error. 32 
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Considering short-run trend characteristic of electricity price time series [11,12], the samples of the day before the forecast 1 

day (i.e. the closest samples to the forecast samples) are taken into account as the validation samples in this paper. Some 2 

other choices such as the same day in the previous week may be considered as the validation set instead of the previous day, 3 

but the short-run trend characteristic of electricity price time series is usually stronger than its weekly periodicity [21]. Thus, 4 

the 50 days historical data of each NN of CNN, shown in Fig. 1(b), are divided to a training subset including the first 49 5 

days or 49×24=1176 hourly samples used as the training samples and a validation subset including 24 hourly samples of the 6 

last day employed as the validation samples. 7 

    Using the produced training and validation samples, the proposed modified CRO can train each NN of the forecasting 8 

engine or CNN. To do this, training phase of the NN is modelled as an optimization problem for the modified CRO, in 9 

which the objective function is the error of the constructed training samples or training error. Also, decision variables of the 10 

optimization problem are the weights of the NN. At the beginning of the training phase, the modified CRO population is 11 

initialized by randomly generating the decision variables (i.e. the weights) of each individual within the range [-1,+1]. In 12 

each iteration, the elementary reactions of the modified CRO, based on the proposed changeable components and 13 

coordination mechanism, so changes the individuals that the training error decreases. At the end of the iteration, validation 14 

error of the NN is also evaluated. Whenever the validation error starts to increase, the generalization performance of the NN 15 

begins to degrade (i.e. overfitting problem starts to affect the training process), and thus the NN's training phase should be 16 

terminated at the corresponding iteration. The weights of the NN are set according to the decision variables of the best 17 

individual of the modified CRO in this iteration. In this way, every NN of CNN can be trained. Afterward, the trained CNN 18 

can predict the future values of the electricity price for the next day. 19 

  20 

3. Numerical Results 21 

    The suggested price forecast strategy is tested on the well-known Ackley's benchmark function and the real-world day-22 

ahead electricity markets of PJM in US and mainland Spain in Europe. The results obtained from these numerical 23 

experiments are presented in the following sections, respectively. 24 

3.1 Comprehensive Example: Ackley's Benchmark Function 25 

    Ackley's benchmark is a well-known test function, which is frequently used for evaluating the performance of stochastic 26 

search methods. This test function is as below [28]:  27 

2,1,2020,2,2.0,20
.),( 12

).cos(

2
21

2

1

2

1

2












ixcba
eaeeaxxf

i

xcx
b i

i
i

i



                                                                                                (21)  28 

The aim of this benchmark is finding the minimum value of f(x1,x2) given above. The shape of Ackley's benchmark function 29 

is shown in Fig. 5. It is seen that Ackley's benchmark is a multi-modal test function including many local minima. Thus, 30 
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obtaining its global minimum, which is zero as shown in Fig. 5, is a complex optimization task. The results obtained from 1 

the proposed modified CRO for this test function are shown in Table 1 and compared with the results of five other well-2 

known stochastic search methods including Evolutionary Algorithm (EA) [29], GA [30], Differential Evolution (DE) [31], 3 

Ant Colony (ACO) [32] and PSO [33]. These five stochastic search methods have been implemented according to the 4 

procedures given in their corresponding references and tested on the Ackley's benchmark function. For the sake of a fair 5 

comparison, all methods of Table 1 have 10 individuals and 50 iterations. Additionally, the settings of each method are fine-6 

tuned based on 10 trial runs. Subsequently, the best, average and worst results, i.e. the objective function values, obtained 7 

among 30 other trial runs are reported for every method in Table 1. Table 1 shows that the best, average and worst results of 8 

the modified CRO are better than the best, average, and worst results of all other methods. Additionally, it is seen that only 9 

the modified CRO finds the global optimum of Ackley's benchmark function, i.e. zero, as its best result among all methods 10 

of Table 1. These comparisons clearly illustrate the optimization capability of the proposed modified CRO. 11 

    Fig. 6 shows the distribution of the 10 individuals in the first and last iterations for the proposed modified CRO (A1 and 12 

B1), PSO (A2 and B2), DE (A3 and B3), ACO (A4 and B4), GA (A5 and B5), and EA (A6 and B6). The best result of each 13 

method among the 30 trial runs is selected for this figure. The subplots A1 to A6 illustrate that all stochastic search methods 14 

begin from random initial points, i.e. their 10 individuals are randomly distributed in the solution space in the first iteration. 15 

On the other hand, the subplots B1 to B6 show that at the end of the search process, the 10 individuals of the proposed 16 

modified CRO concentrate on the global optimum solution of this benchmark function (i.e. zero) much better than the 10 17 

individuals of the five other methods. Fig. 6 clearly illustrates higher search ability of the proposed modified CRO for 18 

finding global optimum solution. In Fig. 7, convergence graph of the proposed modified CRO is demonstrated. In this 19 

figure, the evolution of the best individual of the modified CRO is shown. Fig. 7 clearly shows high convergence rate of the 20 

proposed algorithm. 21 

3.2. PJM Market 22 

    As PJM electricity market is well recognized in the U.S. and beyond, the proposed price forecast strategy is tested using 23 

the real data of day-ahead energy market of PJM. This market is one of the Regional Transmission Organizations, which 24 

plays a vital role in the U.S. electric system. Data of PJM electricity market is obtained from [34].  25 

    To evaluate the impact of number of cascaded NNs on the performance of the forecasting engine, CNN with different 26 

NNs ranging from 1 to 6 is implemented for price forecast of the sample day of November 20, 2006 in PJM electricity 27 

market. The obtained validation errors, measured in terms of mean squared error (MSE), and training times are shown in 28 

Fig. 8(a) and 8(b), respectively. Fig. 8(a) shows that the validation error first decreases for CNN with 1, 2 and 3 NNs, but 29 

then increases for CNN with 4, 5 and 6 NNs. After CNN with 3 NNs, leading to the minimum validation error, overfitting 30 

problem with respect to the cascaded NNs occurs such that further NNs cannot learn more the input/output mapping 31 

function of the electricity price. Similar results for the number of NNs are obtained for the other test cases of the paper. 32 
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Thus, three NNs are considered for the CNN in the next numerical experiments to avoid this kind of overfitting (although 1 

the optimum number of NNs may slightly change in different test cases). The CNNs of Fig. 8 begin from the same 2 

validation error, i.e. 4.3e-1. Thus, the CNN with 3 NNs, leading to minimum validation error of 4.8e-6, decreases the 3 

validation error by about 105 times, indicating effectiveness of the training process of the CNN. From Fig. 8, it is seen that 4 

the training time of the CNN increases by the number of NNs, but with three NNs, the training time is just 8.21×102 s, i.e. 5 

13m and 41s. This training time, measured on a 64-bit windows-based server with 16 GB of RAM and 24 Intel Xenon 6 

processors clocking at 3.33 GHz, is completely reasonable within a day-ahead decision making framework.  7 

    In the next numerical experiments of this section, the prediction accuracy of the proposed price forecast strategy is 8 

evaluated. 9 

    For the PJM market, four test weeks corresponding to four seasons of year 2006 are considered to provide representative 10 

results for the whole year. The four considered weeks are Feb. 15 to Feb. 21, May 15 to May 21, August 15 to August 21 11 

and Nov. 15 to Nov. 21 (months 2, 5, 8, and 11). Price prediction results of the proposed forecasting engine for these test 12 

weeks are presented in Tables 2 and 3 and compared with the results of six other forecast methods including ARIMA time 13 

series, three NNs trained by LM (Levenberg–Marquardt), BFGS (Broyden, Fletcher, Goldfarb, Shanno) and BR (Bayesian 14 

Regularization) learning algorithms denoted by NN-LM, NN-BFGS and NN-BR, Mutual Information (MI) feature selection 15 

plus composite NN (MI + composite NN) [35] and two-stage MI plus composite NN (MI-MI + composite NN) [35]. These 16 

six benchmark methods are frequently used price forecast techniques, which their results for this test case are quoted from 17 

[35]. In Tables 2 and 3, Weekly Mean Error (WME) and Weekly Peak Error (WPE), as measures of price forecast accuracy 18 

and stability, are given, respectively. The last row of Tables 2 and 3 presents the average results of the four test weeks. 19 

WME and WPE are defined as follows: 20 
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where true
iP  and forecast

iP  represent true and forecast value of electricity price of ith hour, respectively; NW=168, which is 23 

number of hours of a week. It is noted that this research work focuses on day-ahead price forecast in which the forecast 24 

horizon is one day or 24 hours. At the end of each day, the historical data is updated by the latest available data and then 25 

price forecast is performed for the next day. However, to more accurately evaluate price forecast performance of each 26 

method, its mean and peak errors for the longer period of one week, including different weekdays and weekend, are 27 

presented, which are obtained from seven day-ahead price forecasts. From Tables 2 and 3 it can be seen that not only 28 

average WME and WPE, but also WME and WPE of each test week of the proposed strategy are better than those of all 29 

other methods, illustrating better price forecast accuracy and stability of the proposed CNN-based forecasting engine.  30 
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    The proposed CNN-based forecasting engine is compared with eight other price forecast methods including NN [36], 1 

naïve predictor [36], ARIMA [36], Wavelet Transform (WL) [36], Transfer Function (TF) [36], Dynamic Regression (DR) 2 

[36], MI + composite NN [35] and MI-MI + composite NN [35] in Tables 4 and 5. The results of the eight benchmark 3 

methods are quoted from the corresponding references [35,36]. The error criteria of Tables 4 and 5, i.e. weeke and 2
,e week , 4 

are defined as follows:
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where 8 
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weeke is a weekly error measure similar to WME defined in equation (22). The only difference between these two error 10 

criteria is that the weekly average of true prices, denoted by ave trueP   and defined in (26), is used in the denominator of 11 

weeke  instead of true
iP to avoid the adverse effect of the prices close to zero [35,36]. Also, 2

,e week  in (25) is error variance 12 

as a measure of the forecast stability. As weeke  and 2
,e week  are used in [35,36], they are also used here for the sake of a fair 13 

comparison. Moreover, the same test periods of [35,36], i.e. the last week of all months of year 2002, in PJM market are 14 

also considered for the proposed price forecast strategy. The 2
,e week  values of MI + composite NN and MI-MI + composite 15 

NN are not presented in their corresponding reference [35] and so cannot be compared in Table 5. Tables 4 and 5 show that 16 

the proposed strategy outperforms all other methods. The proposed method has both the lowest weeke  value and lowest 17 

2
,e week  value among all methods of Tables 4 and 5 in all test periods. Additionally, the average results for the 12 test weeks 18 

are reported in the last row of these tables, which again illustrate superiority of the CNN. Thus, the proposed strategy has 19 

both more accurate and more stable price forecasts than all eight other methods. Real hourly prices, predicted prices by the 20 

CNN and its forecast error for the last week of February are shown in Fig. 9 to graphically illustrate detailed price forecast 21 

performance of the proposed method for a typical test week. Closeness of the forecast and real curves (except for some 22 

minor deviations) as well as low values of the error curve can be observed from this figure.      23 

In Tables 6 and 7, the proposed strategy is compared with five other price forecast methods, including combination of 24 

Similar Day and NN techniques (NNSD) [18], combination of Wavelet Transform, Firefly Algorithm and Fuzzy ARTMAP 25 

(WT+FF+FA) [37], Hybrid Neuro-Evolutionary System (HNES) [38], AWNN plus GARCH times series 26 

(AWNN+GARCH) [2] and Cascaded Neuro-Evolutionary Algorithm (CNEA) [39] on five test days and two test weeks. 27 
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Since these test periods are considered in the mentioned references, they are also used here for the proposed price forecast 1 

method. For the test days in Tables 6 and 7, the error criteria of daye  and 2
,e day  are used instead of weeke  and 2

,e week . The 2 

error criteria daye  and 2
,e day  are similar to weeke  and 2

,e week  in equations (24) and (25) except that NW=168 hours for a test 3 

week should be replaced by 24 hours for a test day. The last row of Tables 6 and 7 shows that the average results of the 4 

proposed forecasting engine are better than all other methods. Additionally, except for slightly higher daye  than 5 

AWNN+GARCH in the test day of Feb. 10th (Table 5) and slightly higher 2
,e week  than HNES in the test week of February 6 

22-28 (Table 6), all results of the proposed forecasting engine are better than the results of five other methods.  7 

3.3. Spanish Electricity Market 8 

    In this numerical experiment, performed on the Spanish electricity market, four weeks corresponding to four seasons of 9 

year 2002 (including the fourth week of February, May, August, and November) are considered. Although this test period 10 

seems relatively old, it is a very well-known test case and several other recently published price forecast methods have used 11 

it, which include ARIMA [14], mixed model [40], MLP [15], wavelet-ARIMA [17], Weighted Nearest Neighbors (WNN) 12 

technique [41], Fuzzy Neural Network (FNN) [16], Hybrid Intelligent System (HIS) [42], Adaptive Wavelet Neural 13 

Network (AWNN) [43], Neural Network with Wavelet Transform (NNWT) [44], Simple Recurrent Network (SRN) [45], 14 

WT with ARIMA and Radial Basis Function NN (RBFN) [8], Cascaded Neuro-Evolutionary Algorithm (CNEA) [39], 15 

Modified Relief (MR)-Mutual Information (MI) feature selection and neural network (MR-MI+NN) [46], HNES [38], MI + 16 

composite NN [35], Wavelet-PSO-ANFIS (WPA) [47], and MI-MI + composite NN [35]. The forecast accuracy and 17 

stability of the proposed forecasting engine, in terms of weeke and 2
,e week , are compared with these 17 methods in Tables 8 18 

and 9, respectively. The results of the other methods are directly quoted from their corresponding references. For the 19 

methods of mixed model, WNN and SRN, only weeke  values are presented in their references, while 2
,e week  values are not 20 

given and so cannot be compared in Table 9.  21 

    The results of the methods in Tables 8 and 9 are sorted in terms of average weeke  and average 2
,e week , respectively. It can 22 

be seen that the proposed forecasting engine has considerably lower average weeke  and lower average 2
,e week  than all other 23 

methods, leading to its higher forecast accuracy and stability considering all test weeks. Considering the test weeks 24 

individually, there are 68 comparative cases in Table 8: 25 

4 (number of test weeks) × 17 (number of comparative methods) = 68 (comparative cases) 26 

and 56 comparative cases in Table 9: 27 

4 (number of test weeks) × 14 (number of comparative methods) = 56 (comparative cases) 28 

Among the 68 comparative cases of Table 8, weeke  of the proposed method is slightly higher than weeke  of MI-MI + 29 

composite NN in the fall test week. However, the proposed strategy has lower weeke  in all remaining 67 comparative cases. 30 
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Also, 2
,e week of the proposed method is slightly higher than 2

,e week of NNWT and WPA in the winter test week. However, 1 

the proposed CNN-based forecasting engine has lower 2
,e week in all remaining 54 comparative cases of Table 9. These 2 

comparisons illustrate that the proposed forecast strategy outperforms the other methods of Tables 8 and 9 based on all test 3 

periods. Real hourly prices, predicted prices by the proposed strategy and its forecast error for the winter test week are 4 

shown in Fig. 10 to also give a graphical view about the price forecast performance of the proposed method in this test case. 5 

It is seen that the forecast curve accurately follows the trend and ramps of the real curve and only small deviations from the 6 

real curve are seen in it. Also, consistently low values of the error curve throughout the forecast horizon illustrate good price 7 

forecast accuracy and stability of the proposed method. 8 

 9 

4. Conclusion 10 

    In this paper, an effective CNN-based forecasting engine is proposed to predict the price of electricity markets. The 11 

forecasting engine is equipped with a new training mechanism based on modified CRO. The traditional NN learning 12 

algorithms usually search the solution space of NN's weights in a specific direction (such as the steepest descent direction in 13 

gradient-based learning algorithms) and so may be trapped in local optima. On the other hand, the proposed modified CRO 14 

can search the solution space in various directions in parallel with high exploration capability and search diversity avoiding 15 

being trapped in local optima as much as possible. Moreover, the modified CRO has both uni-individual and multi-16 

individual as well as local and global search operators, which enhances the chance of finding optimal solution for the 17 

weights of the CNN-based forecasting engine. The proposed price prediction strategy is extensively tested on the well-18 

known Ackley's benchmark function and real-world electricity markets of PJM in US and mainland Spain in Europe. Four 19 

performance evaluation criteria including WME, WPE, weeke and 2
,e week  are mathematically described. These performance 20 

evaluation criteria are frequently used in the literature to compare different price forecast methods. The obtained results 21 

clearly show that the proposed method outperforms all 36 other price forecast methods on both the electricity markets in 22 

terms of WME, WPE, weeke and 2
,e week . Moreover, the proposed modified CRO has been compared with five other 23 

methods on the Ackley's benchmark function in terms of three performance evaluation criteria, including best result, 24 

average result and worst result for the objective function. The attained results show that the proposed modified CRO 25 

outperforms all five other methods in terms of all three evaluation criteria. These exhaustive evaluations and comparisons 26 

clearly confirm the validity of the proposed method and its results.  27 

5. Acknowledgements 28 
 29 

The work of M. Shafie-khah and J.P.S. Catalão was supported by FEDER funds (European Union) through COMPETE, and 30 

by Portuguese funds through FCT, under Projects FCOMP-01-0124-FEDER-020282 (Ref. PTDC/EEA-EEL/118519/2010) 31 



 16

and UID/CEC/50021/2013. Also, the research leading to these results has received funding from the EU Seventh 1 

Framework Programme FP7/2007-2013 under grant agreement no. 309048. 2 

 3 

6. References 4 
 5 
[1]. M. Shahidehpour, H. Yamin, and Z. Li, “Market Operations in Electric Power Systems”, New York: Wiley, April 2002. 6 

[2]. L. Wu,  M. Shahidehpour, “A Hybrid Model for Day-Ahead Price Forecasting, Power Systems”, IEEE Transactions on 7 

Power System, vol. 25,  no. 3, pp. 1519-1530, August 2010. 8 

[3]. H. Shayeghi, A. Ghasemi, M. Moradzadeh, M. Nooshyar, Simultaneous day-ahead forecasting of electricity price and 9 

load in smart grids, Energy Conversion and Management, vol. 95, pp. 371–384, May 2015. 10 

[4]. P. Kou, D. Liang, L. Gao, J. Lou, Probabilistic electricity price forecasting with variational heteroscedastic Gaussian 11 

process and active learning, Energy Conversion and Management, vol. 89, pp. 298–308, January 2015. 12 

[5]. R. Hafezia, J. Shahrabi, E. Hadavandi, A bat-neural network multi-agent system (BNNMAS) for stock price prediction: 13 

Case study of DAX stock price, Applied Soft Computing, vol. 29, pp. 196–210, April 2015. 14 

[6]. J. Che, J. Wang, Short-term electricity prices forecasting based on support vector regression and Auto-regressive 15 

integrated moving average modeling, Energy Conversion and Management, vol. 51, no. 10, pp. 1911-1917, October 2010. 16 

[7]. W. M. Lin, H. J. Gowa, M. T. Tsai, Electricity price forecasting using Enhanced Probability Neural Network, Energy 17 

Conversion and Management, vol. 51, no. 12, pp. 2707–2714, December 2010. 18 

[8]. M. Shafie-khah, M. Parsa Moghaddam, M.K. Sheikh-El-Eslami, Price forecasting of day-ahead electricity markets 19 

using a hybrid forecast method, Energy Conversion and Management, vol. 52, no. 5, pp. 2165-2169, May 2011. 20 

[9]. Y. Dong, J. Wang, H. Jiang, J. Wu, Short-term electricity price forecast based on the improved hybrid model, Energy 21 

Conversion and Management, vol. 52, no. 8-9, pp. 2987–2995, August 2011. 22 

[10]. S. Anbazhagan, N. Kumarappan, Day-ahead deregulated electricity market price forecasting using neuralnetwork input 23 

featured by DCT, Energy Conversion and Management, vol. 78, pp. 711–719, February 2014. 24 

[11]. N. Amjady and F. Keynia, “Day-ahead Price Forecasting of Electricity Markets by a Mixed Data Model and Hybrid 25 

Forecast Method”, International Journal of Electrical Power & Energy Systems, vol. 30, no. 9, pp. 533-546, November 26 

2008. 27 

[12]. N. Amjady, F. Keynia, “A New Prediction Strategy for Price Spike Forecasting of Day-Ahead Electricity Markets,” 28 

Applied Soft Computing, vol. 11, no. 6, pp. 4246-4256, September 2011. 29 

[13]. N. Amjady, A. Daraeepour, F. Keynia, “Day-ahead electricity price forecasting by modified relief algorithm and 30 

hybrid neural network”, IET Generation, Transmission & Distribution, vol. 4, no. 3, pp. 432-444, March 2010. 31 

[14]. J. Contreras, R. Espinola, F.J. Nogales, A.J. Conejo, “ARIMA models to predict next-day electricity prices”. IEEE 32 

Transaction on Power System, vol. 18, no. 3, pp. 1014-1020, August 2003. 33 



 17

[15]. J. P. S. Catalão, S. J. P. S. Mariano, V. M. F. Mendes, & L. A. F. M. Ferreira, “Short-term electricity prices forecasting 1 

in a competitive market: A neural network approach”, Electric Power System Research, vol. 21, no. 10, pp. 1297-1304, 2 

August 2007. 3 

[16]. N. Amjady, “Day-ahead price forecasting of electricity markets by a new fuzzy neural network”, IEEE Transaction on 4 

Power System, vol. 21, no. 2, pp. 887-896, May 2006. 5 

[17]. A. J. Conejo, M. A. Plazas, R. Espinola, A. B. Molina, “Day-ahead electricity price forecasting using the wavelet 6 

transform and ARIMA models”, IEEE Transaction on Power System, vol. 20, no. 2, pp. 1035-1042, May 2005. 7 

[18]. P. Mandal, T. Senjyu, N. Urasaki, T. Fundabashi, and A. K. Srivastava, “A novel approach to forecast electricity price 8 

for PJM using neural network and similar days method”, IEEE Transaction on Power System,, vol. 22, no. 4, pp. 2058-9 

2065, November 2007. 10 

[19]. S. Kumar Aggarwal, L. Mohan Saini, A. Kumar, “Electricity price forecasting in deregulated markets: A review and 11 

evaluation, ” Electrical Power and Energy Systems, vol. 31, no. 1, pp. 13–22, January 2009. 12 

[20]. R. Weron, “Electricity price forecasting: A review of the state-of-the-art with a look into the future, International 13 

Journal of Forecasting, ” vol. 30, pp. 1030–1081, October-December 2014. 14 

[21]. N. Amjady, “Electric Power Systems: Advanced Forecasting Techniques and Optimal Generation Scheduling”, 15 

Chapter 4, CRC Press, Taylor & Francis, 2012. 16 

[22]. G. J. Tsekouras, N. D. Hatziargyriou, E. N. Dialynas, “An Optimized Adaptive Neural Network for Annual Midterm 17 

Energy Forecasting”, IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 385-391, February 2006. 18 

[23]. A. Y. S. Lam and V. O. K. Li, “Chemical-reaction-inspired metaheuristic for optimization”, IEEE Transaction on 19 

Evolutionary Computation, vol. 14, no. 3, pp. 381-399, June 2010. 20 

[24]. J. J. Q. Yu, A. Y. S. Lam, and V. O. K. Li, “Evolutionary artificial neural network based on chemical reaction 21 

optimization”, in Proc. IEEE CEC, pp. 2083-2090, June 2011. 22 

[25]. A. Y. S. Lam, V. O. K. Li, and J. J. Q. Yu, “Real-Coded Chemical Reaction Optimization”, IEEE Transactions on 23 

Evolutionary Computation, vol. 16, no. 3, pp. 339-353, June 2012. 24 

[26]. H. Mao, X. J. Zeng, G. Leng, Y. J. Zhai, J. A. Keane, “Short-Term and Midterm Load Forecasting Using a Bilevel 25 

Optimization Model”, IEEE Transaction on Power System, vol. 24, no. 2, pp. 1080-1090, May 2009. 26 

[27]. D. R. Hush, B. G. Horne, “Progress in supervised Neural Networks”, IEEE Signal Processing Magazine, vol. 10, no. 1, 27 

pp. 8-39, January 1993. 28 

[28] H. Narasimhan, “Parallel Artificial Bee Colony (PABC) Algorithm,” World Congress on Nature & Biologically 29 

Inspired Computing. NaBIC 2009, pp. 306-311, December 2009. 30 

[29] G. S. Hornby and J. B. Pollack, “Creating high-level components with a generative representation for body-brain 31 

evolution,” Artificial Life, vol. 8, no. 3, pp. 223-246, August 2002. 32 



 18

[30] X. J. Zeng, J. Tao, P. Zhang, H. Pan and Y. Y. Wang, “Reactive Power Optimization of Wind Farm based on Improved 1 

Genetic Algorithm,” 2nd International Conference on Advances in Energy Engineering, vol. 14, pp. 1362–1367, August 2 

2011. 3 

[31] K. V. Price, S. Rainer, and L. Jouni, “Differential Evolution: A Practical Approach to Global Optimization,” Springer-4 

Verlag, Berlin, December 2005. 5 

[32] R. S. Parpinelli, H. S. Lopes and A. A. Freitas, “Data mining with an ant colony optimization algorithm,” IEEE 6 

Transaction on Evolutionary Computation, vol. 6, no. 4, pp. 321-332, August 2002. 7 

[33] O. Abedinia, N. Amjady, A. Ghasemi, Z. Hejrat, “Solution of economic load dispatch problem via hybrid particle 8 

swarm optimization with time-varying acceleration coefficients and bacteria foraging algorithm techniques,” European 9 

Transactions on Electrical Power, vol. 23, no. 8, pp. 1504-1522, November 2013. 10 

[34]. PJM Electricity Market Data. [Online]. Available: http://www.pjm.com/. 11 

[35]. F. Keynia, “A new feature selection algorithm and composite neural network for electricity price forecasting”, 12 

Engineering Applications of Artificial Intelligence, vol. 25, no. 8, pp. 1687-1697, December 2012. 13 

[36]. A. J. Conejo, J. Contreras, R. Espinola, M. A. Plazas, “Forecasting electricity prices for a day-ahead pool-based 14 

electric energy market”, International Journal of Forecast, vol. 21, no. 3, pp. 435-462, July–September 2005. 15 

[37] P. Mandal, AU. Haque, J. Meng, A. Srivastava, R. Martinez, A novel hybrid approach using wavelet, firefly algorithm, 16 

and fuzzy ARTMAP for day-ahead electricity price forecasting. IEEE Trans Power Syst, vol. 28, no. 2, pp. 1041–51, 2013. 17 

[38] N. Amjady, F. Keynia, Application of a new hybrid neuro-evolutionary system for day-ahead price forecasting of 18 

electricity markets. Appl Soft Comput, vol. 10, no. 3, pp. 784–92, 2010. 19 

[39]. N. Amjady, F. Keynia, “Day-ahead price forecasting of electricity markets by mutual information technique and 20 

cascaded neuro-evolutionary algorithm”, IEEE Transaction on Power System, vol. 24, no. 1, pp. 306-318, February 2009. 21 

[40]. C. Garcia-Martos, J. Rodriguez, and M. J. Sanchez, “Mixed models for short-run forecasting of electricity prices: 22 

Application for the Spanish market,” IEEE Transaction on Power System, vol. 22, no. 2, pp. 544-552, May 2007. 23 

[41]. A. T. Lora, J. M. R. Santos, A. G. Expósito, J. L. M. Ramos, and J. C. R. Santos, “Electricity market price forecasting 24 

based on weighted nearest neighbors techniques”, IEEE Transaction on Power System, vol. 22, no. 3, pp. 1294-1301, 25 

August 2007. 26 

[42]. N. Amjady, M. Hemmati, “Day-ahead price forecasting of electricity markets by a hybrid intelligent system”, 27 

European Transactions on Electric Power. vol. 19, no. 1, pp. 89-102, January 2009. 28 

[43]. N. M. Pindoriya, S. N. Singh, & S. K. Singh, “An adaptive wavelet neural network-based energy price forecasting in 29 

electricity markets”, IEEE Transaction on Power Systems, vol. 23, no. 3, pp. 1423-1432, August 2008. 30 

http://www.pjm.com/.


 19

[44]. J. P. S. Catalão, H. M. I. Pousinho, and V. M. F. Mendes, “Neural networks and wavelet transform for short-term 1 

electricity prices forecasting”, in Proc. 15th Int. Conf. Intelligent System Applications to Power Systems, Curitiba, Brazil, 2 

pp. 1-5, November 2009. 3 

[45]. S. Anbazhagan, N. Kumarappan, Day-ahead deregulated electricity market price forecasting using recurrent neural 4 

network. IEEE Syst Journal, vol. 7, no. 4, pp.866–72, 2013. 5 

[46]. N. Amjady, A. Daraeepour, Design of input vector for day-ahead price forecasting of electricity markets. Exp Syst 6 

Appl., vol. 36, no. 10, pp. 12281–94, 2009. 7 

[47]. J. P. S. Catalão, H. M. I. Pousinho, and V. M. F. Mendes, “Hybrid Wavelet-PSO-ANFIS Approachfor Short-Term 8 

Electricity Prices Forecasting,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 137-144, February 2011. 9 

10 



 20

 1 
Fig. 1) Representation of the proposed price forecasting engine (CNN): (a) Architecture, and (b) training windows 2 
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 8 

Fig. 2) Representation of the proposed decomposition and synthesis operators for the modified CRO 9 
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 13 
Fig. 3) Roulette wheel mechanism used for selection of the elementary reactions in modified CRO 14 
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Pseudo code of Modified CRO 
                        /* Input of the modified CRO algorithm */ 
1. Input objective function OF(.) and decision variables of the optimization problem 
                        /* Initialization of the modified CRO algorithm */ 
2. Set the settings including PopSize and KELossRate  
3. for each molecule ω do 
4. Randomly generate the elements of ω within the allowable ranges of the decision variables 
5. Calculate OF(.) of ω and assign as PEω  
6. Assign InitialKE of ω  
7. end for  
                        /* Evolution of the modified CRO algorithm */ 
8. while the stopping criteria is not satisfied do 
9. for each molecule ω do 
10. Generate a random number with uniform distribution in the interval [0,1] 
                        /* The module of On-Wall Ineffective Collision */ 
11. if the generated random number is within the segment of On-Wall Ineffective Collision then  
12. ω' = N(ω) 
13. if PEω+ KEω≥PEω' then 
14. The new molecule ω' replaces the original molecule ω 
15. end if 
16. else  
17. The original molecule ω is restored 
18. end if 
                        /* The module of Decomposition */ 
19. if the generated random number is within the segment of Decomposition then 
20. [ω'1,ω'2] = D(ω) 
21. if 1 2PE KE PE PE' '       then 
22. The new molecules ω'1 and ω'2 replace the original molecule ω 
23. end if 
24. else  
25. The original molecule ω is restored 
26. end if 
                        /* The module of Intermolecular Ineffective Collision */ 
27. if the generated random number is within the segment of Intermolecular Ineffective Collision then 
28. ω' = N(ω) 
29. Randomly select a molecule ν from the remaining population  
30. ν' = N(ν) 
30. if  PE PE KE KE PE PE' '          then 
31. The new molecules ω' and ν' replace the original molecules ω and ν 
32. end if 
33. else  
34. The original molecules ω and ν are restored 
35. end if 
                        /* The module of Synthesis */ 
36. if the generated random number is within the segment of Synthesis then 
37. Randomly select a molecule ν from the remaining population  
38. ω' = S(ω,ν) 
39. if  PE PE KE KE PE '        then 
40. The new molecule ω' replaces the original molecules ω and ν 
41. end if 
42. else  
43. The original molecules ω and ν are restored 
44. end if 
45. end for 
46. Specify the best solution in terms of OF(.) value 
47. end while 
/* Output of the modified CRO algorithm */ 
48. Output the best solution of the last iteration 
49. end 

 1 
Fig. 4) Pseudo code of the proposed modified CRO 2 

 3 
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 1 

Fig. 5) The shape of Ackley benchmark function 2 
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 5 

 6 
Fig. 6) Distribution of the 10 individuals in the first iteration for the proposed modified CRO (A1), PSO (A2), DE (A3), ACO 7 
(A4), GA (A5), and EA (A6); distribution of the 10 individuals in the last iteration for the proposed modified CRO (B1), PSO 8 

(B2), DE (B3), ACO (B4), GA (B5), and EA (B6) 9 
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 1 
Fig. 7) Convergence trend of the proposed modified CRO for Ackley benchmark function 2 

 3 
 4 
 5 
 6 

 7 
                (a)                                                                                             (b) 8 

Fig. 8) Validation error (a) and training time (b) of CNN with 1 to 6 NNs for November 20, 2006 of PJM electricity market 9 
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 1 
Fig. 9) Real hourly prices, predicted prices by the proposed method and price forecast error for the last week of February in 2 

year 2006 of the PJM test case 3 
 4 
 5 

 6 
Fig. 10) Real hourly prices, predicted prices by the proposed strategy and price forecast error for the winter test week in the 7 

Spanish test case 8 
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Table 1) Obtained results for Ackley's benchmark function 1 

Index EA [29] GA [30] DE [31] ACO [32] PSO [33] Proposed Modified CRO 

Best 3.14e-8 6.15e-9 5.21e-14 4.87e-14 4.63e-15 0.00 

Average 2.031 5.83e-1 5.02e-1 5.09e-1 4.22e-1 1.48e-2 

Worst 4.182 4.361 1.572 8.54e-1 1.482 5.73e-2 

 2 

 3 

 4 

 5 

Table 2) WME (%) for the four test weeks of the PJM electricity market in year 2006 6 

Test 

Week 

ARIMA 

[35] 

NN-LM 

[35] 

NN-BFGS 

[35] 

NN-BR 

[35] 

MI+ composite NN 

[35] 

MI-MI+ composite 

NN [35] 

Proposed 

Winter 11.21 9.82 12.90 13.22 4.40 4.33 3.97 

Spring 15.30 8.87 10.12 12.92 4.46 4.24 4.02 

Summer 13.56 10.43 11.46 11.98 4.81 4.52 4.04 

Fall 12.93 9.54 9.83 12.24 4.83 4.61 4.12 

Average 13.25 9.67 11.08 12.59 4.63 4.43 4.04 

 7 

 8 

 9 

 10 

 11 

Table 3) WPE (%) for the four test weeks of the PJM electricity market in year 2006 12 

Test 

Week 

ARIMA 

[35] 

NN-LM 

[35] 

NN-BFGS 

[35] 

NN-BR 

[35] 

MI+ composite NN 

[35] 

MI-MI+ composite 

NN [35] 

Proposed 

Winter 45.10 22.31 25.42 23.63 9.17 8.13 7.98 

Spring 34.32 18.45 21.39 20.13 8.02 7.78 7.56 

Summer 44.48 27.34 38.12 30.22 16.10 14.46 13.89 

Fall 55.81 32.12 29.23 33.11 19.04 18.33 18.02 

Average 44.93 25.05 28.54 26.77 13.08 12.17 11.86 

 13 
 14 
 15 
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Table 4) eweek (%) for the last week of all months of year 2002 in the PJM electricity market 1 

Month NN  

[36] 

NAÏVE 

 [36] 

ARIMA 

 [36] 

WL 

 [36] 

TF  

[36] 

DR 

 [36] 

MI+ composite NN 

 [35] 

MI-MI+ composite NN 

 [35] 

Proposed 

January 9.21 10.6 6.6 10.81 5.48 4.9 4.42 4.38 4.12 

February 8.73 9.3 7.71 8.06 4.45 4.54 4.40 4.35 4.14 

March 17.98 25.1 15.34 12.10 6.59 6.55 5.19 5.08 4.53 

April 32.54 14.22 15.36 14.89 9.49 9.23 5.47 5.38 4.95 

May 14.21 12.56 12.51 12.31 6.02 5.53 4.09 4.08 4.01 

June 27.33 21.27 17.53 12.94 6.89 6.41 4.93 4.77 4.72 

July 27.32 26.11 24.67 16.64 5.64 5.69 5.04 4.92 4.24 

August 18.45 25.41 16.14 22.36 6.07 6.03 5.85 5.58 4.16 

September 15.9 19.26 16.82 14.74 5.05 4.97 4.37 4.25 4.08 

October 12.78 7.45 10.71 10.64 5.72 5.29 4.76 4.62 4.31 

November 11.15 10.25 11.19 12.56 5.67 5.58 5.33 5.12 4.96 

December 32.53 22.61 27.77 25.70 9.72 7.33 6.11 5.85 5.74 

Average 19.01 17.01 15.19 14.48 6.40 6.00 5.00 4.86 4.50 

 2 
 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 
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Table 5) σ2
e,week for the last week of all months of year 2002 in the PJM electricity market 1 

Month NN  

[36] 

NAÏVE 

 [36] 

ARIMA 

 [36] 

WL 

[36] 

TF 

[36] 

DR  

[36] 

Proposed 

January 0.009 0.008 0.006 0.008 0.004 0.004 0.003 

February 0.007 0.008 0.008 0.007 0.003 0.003 0.003 

March 0.027 0.060 0.014 0.010 0.006 0.005 0.003 

April 0.103 0.019 0.023 0.014 0.010 0.010 0.006 

May 0.013 0.011 0.009 0.008 0.003 0.004 0.002 

June 0.057 0.075 0.045 0.018 0.006 0.005 0.003 

July 0.130 0.125 0.084 0.023 0.003 0.003 0.003 

August 0.035 0.060 0.030 0.061 0.005 0.006 0.004 

September 0.030 0.056 0.033 0.018 0.002 0.002 0.002 

October 0.015 0.005 0.010 0.006 0.003 0.003 0.002 

November 0.010 0.011 0.009 0.010 0.002 0.002 0.002 

December 0.116 0.070 0.081 0.046 0.013 0.008 0.006 

Average 0.0460 0.0423 0.0293 0.0191 0.0050 0.0046 0.0040 

 2 

 3 

 4 

 5 

 6 

Table 6) eday (%)  and eweek (%) for the five test days and two test weeks of year 2006 in the PJM electricity market 7 

Test Day NNSD [18] WT+FF+FA [37] HNES [38] AWNN+GARCH [2] CNEA [39] Proposed 

Jan. 20th 6.93 5.04 4.98 3.71 4.73 3.35 

Feb. 10th 7.96 5.43 4.10 2.85 4.50 2.93 

Mar. 5th 7.88 4.82 4.45 5.48 4.92 3.86 

Apr. 7th 9.02 6.24 4.67 4.17 4.22 3.68 

May. 13th 6.91 4.11 4.05 4.06 3.96 3.52 

February 1-7 7.66 6.07 4.62 5.27 4.02 3.31 

February 22-28 8.88 6.12 4.66 5.01 4.13 3.29 

Average 7.89 5.40 4.50 4.36 4.35 3.42 

 8 
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Table 7) σ2
e,day and σ2

e,week for the five test days and two test weeks of year 2006 in the PJM electricity market 1 

Test Day NNSD [18] CNEA [39] WT+FF+FA [37] AWNN+GARCH [2] HNES [38] Proposed 

Jan. 20th 0.0034 0.0031 0.0016 0.0010 0.0020 0.0010 

Feb. 10th 0.0050 0.0036 0.0021 0.0015 0.0012 0.0010 

Mar. 5th 0.0061 0.0042 0.0032 0.0033 0.0015 0.0015 

Apr. 7th 0.0038 0.0022 0.0019 0.0013 0.0018 0.0011 

May. 13th 0.0049 0.0027 0.0016 0.0015 0.0013 0.0012 

February 1-7 0.0066 0.0044 0.0023 0.0037 0.0016 0.0014 

February 22-28 0.0047 0.0035 0.0024 0.0025 0.0017 0.0018 

Average 0.0049 0.0034 0.0022 0.0021 0.0016  0.00128 

 2 

Table 8) eweek (%) for the four test weeks of the Spanish electricity market 3 

Method Winter Spring Summer Fall Average 

ARIMA [14] 6.32 6.36 13.39 13.78 9.96 

Mixed Model [40] 6.15 4.46 14.90 11.68 9.30 

MLP [15] 5.23 5.36 11.40 13.65 8.91 

Wavelet-ARIMA [17] 4.78 5.69 10.70 11.27 8.11 

WNN [41] 5.15 4.34 10.89 11.83 8.05 

FNN [16] 4.62 5.30 9.84 10.32 7.52 

HIS [42] 6.06 7.07 7.47 7.30 6.97 

AWNN [43] 3.43 4.67 9.64 9.29 6.76 

NNWT [44] 3.61 4.22 9.50 9.28 6.65 

SRN [45] 4.11 4.37 9.09 8.66 6.56 

RBFN [8] 4.27 4.58 6.76 7.35 5.74 

CNEA [39] 4.88 4.65 5.79 5.96 5.32 

MR-MI+NN [46] 4.21 4.76 6.01 5.88 5.22 

HNES [38] 4.28 4.39 6.53 5.37 5.14 

MI+ composite NN [35] 4.51 4.28 6.47 5.27 5.13 

WPA [47] 3.37 3.91 6.50 6.51 5.07 

MI-MI+ composite NN [35] 4.29 4.20 6.31 5.01 4.95 

Proposed 3.28 3.62 5.32 5.03 4.31 

 4 



 29

Table 9) σ2
e,week for the four test weeks of the Spanish electricity market 1 

Method Winter Spring Summer Fall Average 

ARIMA [14] 0.0034 0.0020 0.0158 0.0157 0.0092 

MLP [15] 0.0017 0.0018 0.0109 0.0136 0.0070 

Wavelet-ARIMA [17] 0.0019 0.0025 0.0108 0.0103 0.0064 

FNN [16] 0.0018 0.0019 0.0092 0.0088 0.0054 

AWNN [43] 0.0012 0.0031 0.0074 0.0075 0.0048 

NNWT [44] 0.0009 0.0017 0.0074 0.0049 0.0037 

CNEA [39] 0.0036 0.0027 0.0043 0.0039 0.0036 

HIS [42] 0.0034 0.0049 0.0029 0.0031 0.0036 

MR-MI+NN [46] 0.0014 0.0033 0.0045 0.0048 0.0035 

RBFN [8] 0.0015 0.0019 0.0047 0.0049 0.0033 

WPA [47] 0.0008 0.0013 0.0056 0.0033 0.0027 

MI+ composite NN [35] 0.0014 0.0014 0.0033 0.0022 0.0021 

HNES [38] 0.0013 0.0015 0.0033 0.0022 0.0021 

MI-MI+ composite NN [35] 0.0014 0.0014 0.0032 0.0023 0.0021 

Proposed 0.0012 0.0012 0.0028 0.0018 0.0017 

 2 


