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ABSTRACT  

Transmission congestion management plays a key role in deregulated energy markets. To correctly model and 
solve this problem, power system voltage and transient stability limits should be considered to avoid obtaining a 
vulnerable power system with low stability margins. Congestion management is modeled as a multi-objective 
optimization problem in this paper. The proposed scheme includes the cost of congestion management, voltage 
stability margin and transient stability margin as its multiple competing objectives. Moreover, a new effective 
Multi-objective Mathematical Programming (MMP) solution approach based on Normalized Normal Constraint 
(NNC) method is presented to solve the multi-objective optimization problem of the congestion management, 
which can generate a well-distributed and efficient Pareto frontier. The proposed congestion management model 
and MMP solution approach are implemented on the New-England's test system and the obtained results are 
compared with the results of several other congestion management methods. These comparisons verify the 
superiority of the proposed approach. 
 
Keywords: Transmission congestion management; deregulated energy market; multi-objective mathematical 
programming; voltage and transient stability. 
 
 
 

1) Introduction 

In a competitive energy market, the market participants offer their bids to independent System Operator (ISO). 

The ISO is responsible for market clearing and providing an acceptable security level for power system [1]. 

Moreover, ISO is accountable for prediction of load level using a load forecasting procedure [2]. In other side, 

the generation companies (GENCOs) anticipate their future generation independently to offer to the market [3]. 

The market participants try to maximize their own profit using efficient bidding strategies [4]. The transition 

from cost-based pricing to bid-based pricing in a deregulated energy market has been modeled in [5]. The new 

conditions of open energy markets create a competitive situation where transmission networks are loaded up to 
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their stability margin to gain more economical operating point. Transmission congestion appears in power 

system when the amount of electric power, which should be transmitted on the network to meet the total 

demand, surpasses the capacity of the transmission facilities. Congestion management refers to the activities 

performed to eliminate the congestion in the network. It can also be considered as an organized mechanism used 

to dispatch, schedule and adjust the generation units and demands in order to handle congestion in the power 

grid. 

    Traditional congestion management schemes only consider thermal overloads, while the recent incidents in 

North America and Europe that caused major blackouts [6] show that security requirements are an important 

factor that should be considered in the congestion management problem. Congestion management is inherently 

an optimization problem with numerous constraints. Therefore, after mitigating the congestion, some constraints 

may reach their upper or lower limits. Although the constraints have not been violated, it is likely that the 

system goes to an unstable condition by even a small disturbance.  In other words, the stability margin of the 

system may be low after relieving congestion and so voltage and transient stability margins should be 

considered in the congestion management framework in addition to congestion management cost. 

    A survey of congestion management methods can be found in [7,8]. Additionally, some recent congestion 

management approaches are briefly reviewed in the following.  

    A congestion management method based on optimal power flow (OPF) is presented in [9] that relieves 

congestion using load shedding and generation rescheduling. In [10], the authors employ the concept of 

transmission congestion penalty factor to control power flows in transmission lines for congestion management. 

A combination of demand response and flexible alternating current transmission system (FACTS) devices for 

congestion management is presented in [11].  In [12], a congestion alleviation method ensuring voltage stability, 

using loadability limits in pool electricity markets, is proposed. In [13], modal analysis and modal participation 

factors are used for saving voltage stability within a congestion management framework. The research work of 

[14] introduces a new measure for transient stability margin (TSM) and incorporates it into a congestion 

management framework to mitigate congestion while enhancing the transient stability of the power system.  

Particle swarm optimization (PSO) has been used in [15] to determine the minimum-cost generation-redispatch 

strategy for congestion management. In [16], a congestion alleviation method considering dynamic voltage 

stability boundary of power system is proposed. A two-stage strategy based on modified Benders decomposition 
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approach is presented in [17] to solve the congestion management problem in a hybrid power market. In [18], a 

congestion management approach considering congestion management cost and power system emission is 

proposed, which is based on stochastic augmented ε-constraint method. In [19], a probabilistic strategy 

incorporating demand response in distribution energy market is proposed. Their method allows cost saving for 

the end-user consumer and also mitigates the network’s congestion. In [20], a mixed integer linear programming 

scheme is developed to coordinate applications of distributed energy storage systems, which maximizes their net 

profit and supports distribution’s network congestion management. In [21], a hybrid approach using bacterial 

foraging algorithm and Nelder-Mead method is proposed to solve TCSC (Thyristor-Controlled Series 

Compensator) placement problem of congestion management. A congestion management strategy based on 

rescheduling of hydro and thermal units in a hybrid electricity market is presented and formulated as mixed 

integer nonlinear programming problem in [22]. The objective function of their model solely minimizes the 

congestion management cost considering units’ up and down generation bids. In [23], a multi-objective group 

search optimizer with adaptive covariance and Lévy flights, considering economic and reliability objectives, is 

proposed to optimize the power dispatch in a large-scale integrated energy system. However, the methods 

reviewed above either do not consider voltage and transient stabilities or only model one of them. 

    To remedy this problem, some congestion management frameworks based on multi-objective models have 

recently been presented including both voltage and transient stability margins in addition to congestion 

management cost to enhance power system security. In [24], a multi-objective congestion management 

framework based on ε-constraint approach is presented for this purpose. An improved version of [24], called 

modified augmented ε-constraint method, is proposed in [25], to enhance the quality of solutions of the multi-

objective problem by generating efficient Pareto frontier. In line with [24] and [25], this paper proposes a multi-

objective congestion management model incorporating transient and voltage stability margins in addition to 

congestion management cost as the objective functions. Additionally, AC power flow, system security and 

prevailing generator limits are considered as the constraints of this model.  

    The new contributions of this paper can be summarized as follows: 

1) An important contribution of this paper with respect to the previous research works in the area, such as [24] 

and [25], is presenting a new multi-objective mathematical programming approach, based on normalized normal 

constraint (NNC) method, for solving multi-objective congestion management problem. Even distribution of 
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Pareto points on the Pareto surface and systematic approach for reducing the feasible objective space are among 

the important advantages of the proposed NNC-based multi-objective optimization approach. 

2) A novel optimality-based decision maker is proposed to efficiently select the most preferred solution for the 

MMP problem within the Pareto optimal set. This decision maker considers both optimality degree and 

importance of different objectives.  

To the best of the authors' knowledge, the above contributions are specific to this paper and have not been 

presented in the previous research works in the area. 

    The remaining parts of the paper are organized as follows. In section 2, the multi-objective congestion 

management model including the objective functions and constraints is presented. The proposed NNC-based 

MMP solution approach and optimality-based decision maker are introduced in section 3. Numerical results 

obtained from the proposed solution approach for the multi-objective congestion management problem are 

presented in section 4 and compared with the results obtained from several other MMP solution methods. 

Section 5 concludes the paper.  

2) Formulation of the multi-objective congestion management problem 

The objective functions of the multi-objective congestion management model are as follows: 

Congestion management cost (f1): 

1 ( . . ) ( . . ) ( . )up up down down up up down down I
Gj Gj Gj Gj Dk Dk Dk Dk Dk Dk

j SG k SD k SD
f B P B P B P B P VOLL P

  

                                      (1) 

where up
GjB and  down

GjB  are bid prices of jth generator to change its output power; up
GjP  and down

GjP  are up and 

down generation shifts of unit j, respectively, which are determined by the congestion management method. 

Similarly, up
DkB , 

down
DkB , 

up
DkP  and down

DkP  are analogous parameters of demand side bidding. Also, I
DkP  and 

VOLLDk  are the amount of involuntary load shedding and value of lost load (VOLL), respectively [25]. In (1), 

SG and SD indicate set of participating generators and demands in the congestion management, respectively. 

From (1), it is seen that the congestion management cost f1 includes three parts in which the first two parts are 

the payments of the ISO to GENCOs and demands respectively, for changing their powers as their offered bids. 

The third part represents the payment of ISO for involuntary load shedding employed in severe conditions, in 

addition to generation shifts and voluntary load changes, to relieve congestion.  
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f2 = Voltage stability margin (VSM): VSM in the load domain, which measures the loading margin of the power 

system between the current operating point and maximum loadability limit in terms of voltage stability, is used. 

Mathematical details of the VSM can be found in [24] and [25]. 

f3 = Corrected transient energy margin (CTEM): CTEM is employed in the proposed approach to assess the 

transient stability margin of power system. This measure is considered a common and reliable index to study 

transient stability, since it exploits time domain simulations along the corrected transient energy function. 

Moreover, CTEM linearly changes with respect to the magnitude of the disturbances in a wide range. 

Accordingly, CTEM provides a linear and suitable index to assess transient stability of power system. Details of 

CTEM can be found in [24] and [25]. 

The constraints of the congestion management model are as follows: 

min max
Gj Gj GjP P P   j SG  (2) 

min max
Gj Gj GjQ Q Q   j SG  (3) 

min max
Dk Dk DkP P P   k SD  (4) 

( )Dk Dk DkQ P tan   k SD  (5) 

Gn Dn n n,m m n m n,m
m SN

P P V Y V cos ( - - )


     n SN  (6) 

Gn Dn n n,m m n m n,m
m SN

Q -Q V Y V sin ( - - )


    n SN                   (7) 

Gn Gj
j SGn

P = P

  n SN  (8) 

Gn Gj
j SGn

Q Q


   n SN  (9) 

Dn Dk
k SDn

P = P

  n SN  (10) 

Dn Dk
k SDn

Q = Q

  n SN  (11) 

min max
n n nV V V   n SN  (12) 

max
b bS (V, ) S   Bb S  (13) 
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e up down
Gj Gj Gj GjP = P + P P   j SG  (14) 

e up down I
Dk Dk Dk Dk DkP = P P P P       k SD  (15) 

up down up down I
Gj Gj Dk Dk DkP , P , P , P , P 0       j SG k SD   (16) 

where PGj and QGj represent active and reactive power outputs of jth generator, which are limited in (2) and (3), 

respectively. PDk indicates active power demand of kth load, which is limited in (4) for the congestion 

management market. The reactive powers of loads, denoted by QDk, are determined based on their power factor 

angles Dk  as shown in (5). Equations (6) and (7) present AC power flow constraints in which nV  and n  

represent magnitude and angle of nth bus voltage, respectively. Also, n,mY  and n,m  are magnitude and phase 

of the admittance between buses n and m. In (6) and (7), PGn, QGn, PDn and QDn are active and reactive 

generations and loads of bus n, respectively, and SN is the set of power system buses. In (8)-(11), PGn, QGn, PDn 

and QDn are represented in terms of summation of active and reactive powers of individual generators and loads 

located in bus n. In (8)-(11), SGn and SDn indicate set of generators and set of loads located at bus n, 

respectively. Constraint (12) limits voltage magnitude of every bus within its allowable limits. Constraint (13) 

limits apparent power flow of branches where SB is the set of branches of the power system. In (14), G jP  is 

final active power of jth generating bus after congestion management, which consists of three parts. The first part 

of G jP  is e
GjP  indicating the scheduled power in the energy market for jth generating bus before congestion 

management. The second and third parts, denoted by up
GjP  and down

GjP , represent generation shifts of the 

GjP in up and down directions, respectively, determined by the congestion management procedure. In (15), 

DkP , e
DkP , up

DkP  and down
DkP  are analogous parameters for demand side. If the down load shifts of congestion 

management, i.e. down
DkP , are not sufficient in a severe condition to bring a secure operating point for the power 

system, further involuntary load shed I
DkP  can be used to further decrease PDK as shown in (15). However, 

involuntary load shed I
DkP  is only used in emergency conditions as its cost VOLL, shown in (1), is usually 

very expensive. In (16), all generation and load shifts as well as involuntary load sheds are confined to positive 

values. 
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    All objective functions of the proposed multi-objective congestion management model, i.e. f1, f2 and f3, are 

functions of active and reactive powers of generators and loads and so are functions of up down
Gj GjP , P  j SG

and up down I
Dk Dk DkP , P , P   k SD , which are considered as the decision variables of this optimization problem. 

Thus, the multi-objective optimization approach should so change these decision variables that the best 

compromise among the competing objective functions f1, f2 and f3 is found, while the constraints (2)-(18) are 

satisfied. Such an approach is presented in the next section. 

 

3) The Proposed MMP solution approach  

    In MMP problems, usually there is no single global optimum solution, and it is often necessary to determine a 

set of points that fit a predetermined definition for optimality. The predominant concept in defining an optimal 

solution is Pareto optimality [26]. In MMP problems, Pareto optimal refers to the solution that its performance 

in any objective function cannot be enhanced without worsening its results for the other objective functions. 

MMP solution approaches usually try to find a set of well-behaved Pareto optimal solutions. Afterward, a 

decision maker can be employed to find the most preferred solution for the MMP problem among the generated 

Pareto optimal set.  

    Without loss of generality, assume the MMP problem can be represented as:  

 1 2( ) ( ) ( )Nx
Min f x , f x ,..., f x


 ( 1)N   (17) 

where x is the vector of decision variables; Ω is the feasible solution space of the MMP problem; fi(.) represents 

ith objective function; N indicates number of objective functions. 

To present the proposed multi-objective optimization approach, at first, some basic concepts are introduced.  

Objective Space is a vector space including objective functions of the MMP problem as its dimensions. It is 

different from solution space, which is a vector space with decision variables of the MMP problem as the 

dimensions. Objective space for a MMP problem including two objective functions of f1(.) and f2(.), that should 

be minimized, is shown in Fig. 1.  

Anchor Point is a feasible solution in which one of the objective functions of the MMP problem is individually 

optimized. Thus, the number of anchor points of the MMP problem of (17) is N. In the objective space, anchor 
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points indicate the end points of the Pareto frontier as shown in Fig. 1, where f1* and f2* represent the two anchor 

points. 

Payoff matrix. Suppose that the optimum value of the ith objective function is obtained for the value xi
* of the 

decision vector, i.e. fi(xi
*) indicates the optimum value of the ith objective function. Compute the value of the 

other N-1 objective functions for xi
*. The vector * * *

1 ( ), ..., ( ), ..., ( )i i i N if x f x f x   constitutes the ith row of the 

payoff matrix for the MMP problem of (17). In this way, all rows of the N×N payoff matrix, denoted by Ψ, can 

be constructed as follows:  

* * *
1 1 1 1

* * *
1

* * *
1

( ),..., ( ),..., ( )

( ),..., ( ),..., ( )

( ),..., ( ),..., ( )

i N

i i i N i

N i N N N

f x f x f x

f x f x f x

f x f x f x

   
 
 
      
 
 
  





  (18) 

Utopia Point is a point in the objective space where all objective functions of the MMP problem simultaneously 

reach their optimal values, i.e. fi(xi
*), i=1,…,N. The utopia point is shown by f U in Fig. 1. It is noted that utopia 

point cannot usually be found in the feasible solution space as there may not be a single feasible solution for 

which all objective functions are simultaneously at their best possible values. Thus, utopia point is only defined 

in the objective space with the following coordinates: 

* * *
1 1 2 2( ), ( ),..., ( )

TU
N Nf = f x f x f x    (19) 

 

 

Fig. 1) Objective Space for a MMP problem with two objective functions f1 and f2 

Feasible space

Pareto set
Utopia line

f
1

*

f2
*f U

f SN

f Nf
2

f
1
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Utopia hyper-plane is the minimum subspace of the objective space, which includes all anchor points of the 

MMP problem. It becomes a line for bi-objective cases, a plane for tri-objective cases, and a hyper-plane for 

MMP problems with N>3 and so is generally called utopia hyper-plane [27]. It should be noted that, utopia 

hyper-plane, may not include utopia point as utopia hyper-plane includes anchor points defined in the feasible 

solution space, while the utopia point is usually outside this space. For instance, from Fig. 1, it is seen that f U is 

outside the utopia line. 

Nadir Point is a point in the objective space, denoted by f N, where all objective functions of the MMP problem 

concurrently reach their worst values. For the MMP problem of (17), the Nadir point becomes: 

1 2( ), ( ),..., ( )
T

N
Nx x x

f = Max f x Max f x Max f x
  

 
       (20) 

Since some of f N elements may become unbounded, a close concept to Nadir point, called pseudo-nadir in 

which all objective functions have bounded values, is defined. To determine pseudo-nadir point, denoted by f SN, 

for the MMP problem of (17), consider the ith column of the payoff matrix Ψ, shown in (18). This column 

includes the results obtained for fi through individual optimization of f1,…,fN. The ith coordinate of the pseudo-

nadir point f SN, i.e. fiSN, is obtained as below: 

 * * *
1( ), ..., ( ), ..., ( )S N

i i i i i Nf M ax f x f x f x  (21) 

In other words, fiSN is the worst result of fi in the payoff matrix. Accordingly, f SN is constructed as follows: 

f SN={f1
SN,… fiSN,… fN

SN}T (22) 

Even Distribution is a set of points evenly distributed over a region if no part of that region is over or under 

represented by that set of points, compared to the other parts.  

Using the above concepts, the normalized normal constraint (NNC) method for the solution of the MMP 

problem of (17) can be formulated as the following step-by-step algorithm: 

Step 1) Determine the Anchor Points: Individually optimize each of the objective functions subject to xΩ to 

obtain the anchor points.  
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Step 2) Normalize the objective Functions: As different objective functions may have different ranges, they 

should be normalized to avoid the masking effect. In NNC method, the objective functions of the MMP problem 

are normalized based on the utopia and pseudo-nadir points as follows: 

*

*

( ) ( )( )
( )

i i i
i SN

i i i

f x f xf x =
f f x




 1 2i = , ,...,N                  (23) 

where SN
if  and *( )i if x  represent ith element of the vectors f SN and f U, respectively; the superscript ¯ indicates 

normalized value. The main difference between NNC method and other MMP solution techniques is the strategy 

adopted for reducing the feasible objective space. The next steps 3 to 6 detail this strategy.  

Step 3) Calculate Utopia Hyper-Plane Vectors: In the N-dimensional utopia hyper-plane, the vector 

connecting two normalized anchor points *
if  (1<i<N–1) and *

Nf , denoted by *
iNf , is defined as follows:  

* * *
iN N if f f   (24) 

where the elements of the vectors *
if  and *

Nf  are normalized according to the procedure given in the previous 

step. 

Step 4) Determine Normalized Increment: The normalized increment for each utopia hyper-plane vector *
iNf , 

denoted by LiN, is determined as:  

*

1
iN

iN
iN

f
L =

SP -
 1 1i N                    (25) 

where *
iNf  represents the Euclidean norm of its vector argument *

iNf ; SPiN  is a pre-specified set-point for 

utopia hyper-plane vector *
iNf  indicating number of division points for *

iNf . To evenly distribute the division 

points along every utopia hyper-plane vector, the set-points should be related to each other as follows: 

*
1

*
1

.N iN
iN

N

SP f
SP

f
  (26) 

Based on (26), the number of division points assigned to each utopia hyper-plane vector is proportional to its 

length. In this way, only the first set-point SP1N should be specified and the NNC method automatically adjusts 

the other set-points SPiN (2<i<N–1) based on SP1N using (26). An important advantage of the NNC method 

compared to the other multi-objective solution approaches, such as ε-constraint [24], augmented ε-constraint 
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[28] and modified augmented ε-constraint [25], is that we can easily control the density of the generated Pareto 

set for any number of objective functions by tuning only one set-point. Higher values of SP1N lead to more dense 

representation of the Pareto set, but with the cost of higher computation burden. 

Step 5) Generate Utopia Hyper-Plane Points: Utopia hyper-plane points are generated based on linear 

combination of normalized anchor points as shown below:  

*
N

j ji i
i =1

H = c f                 (27) 

where 

1ji0 c                 (28) 

1
1

N

ji
i =

c =                 (29) 

To generate each jH , its cji values in the range of 1<i<N–1 vary (i.e., increments or decrements) in the step of 

LiN computed in (25). The last cji value is computed through (29), i.e. 
1

1
1

N

jN ji
i =

c c


  . To better illustrate the 

performance of the generation mechanism of utopia hyper-plane points, the cji values produced by this 

mechanism for a three-objective MMP problem (i.e., N=3) are shown in Fig. 2. In this figure, Li1=Li2=0.25 is 

assumed. In this case, 15 utopia hyper-plane points with the following cji values are generated:  

(cj1,cj2,cj3) = {(0,0,1),(0,0.25,0.75),(0,0.5,0.5),(0,0.75,0.25),(0,1,0),(0.25,0,0.75),(0.25,0.25,0.5),(0.25,0.5,0.25), 

(0.25,0.75,0),(0.5,0,0.5),(0.5,0.25,0.25),(0.5,0.5,0),(0.75,0,0.25),(0.75,0.25,0),(1,0,0)}                                    (30) 

 

 

Fig. 2) Generated cji values for a three-objective MMP problem 
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Fig. 3 shows these 15 utopia hyper-plane points in the normalized objective space. As seen, the coordinates of 

the space are normalized objective functions 1f , 2f , and 3f . Also, the three anchor points *
1f , *

2f , and *
3f  as 

well as two utopia hyper-plane vectors *
13f  and *

23f  are shown in the figure. Fig. 3 shows uniform distribution of 

the utopia hyper-plane points within the normalized objective space. 

 

Fig. 3) Illustration of the utopia hyper-plane points for a three-objective MMP problem in the normalized objective space 

 

Step 6) Generation of the Pareto Solutions: For each jH , generated in the previous step, one Pareto solution 

is produced by solving the following problem: 

( )Nx
Min f x


                   (31) 

Subject to 

*, 0 , 1,..., 1j iNf H f i N                      (32) 

where ., .  indicates inner product between the two vectors and  1 ( ), ..., ( )Nf f x f x is a point in the N-

dimensional normalized objective space. In the above optimization problem, the constraints (32) in the objective 

space are added to the original constraints of the problem in the solution space, i.e. x  . The constraints (32) 

limit the feasible part of the objective space to a subspace surrounded by the normal hyper-planes such that each 

normal hyper-plane is perpendicular to a utopia hyper-plane vector *
iNf . To better describe this matter, consider 
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Fig. 3 in the three-dimensional objective space, where the normal hyper-planes become normal planes and can 

be graphically illustrated. In this figure, N–1=2 normal planes of jH , which are perpendicular to the utopia 

hyper-plane vectors *
13f  and *

23f , are illustrated by dotted lines. For any point f in the dotted area above jH in 

Fig. 3, the two inner products of the vector jf H and vectors *
iNf (i.e., *

13f  and *
23f ) become negative and 

outside this area, at least one of the two inner products becomes positive. Thus, considering (32), the feasible 

area of the objective space for the optimization problem of jH is the dotted area of Fig. 3. Similarly the feasible 

area of the objective space for the optimization problem of jH   is the hatched dotted area of Fig. 3, which is 

surrounded by the corresponding normal planes indicated by dashed lines. Thus, the NNC method converts a 

MMP problem with N objective functions into a set of single-objective optimization problems in the form of 

(31)-(32), reducing the feasible objective space step-by-step (e.g., compare the feasible space of jH  and jH  ). 

By solving each of these single-objective optimization problems one Pareto solution is obtained. In this solution, 

( )Nf x  is directly optimized as given in (31), while a certain degree of optimality is retained for each of the N–1 

remaining objective functions through the N–1 constraints of (32). Note that by limiting the feasible space 

around one anchor point (e.g., *
1f ), the degree of optimality of the associated objective function (e.g., 1( )f x ) in 

the Pareto solution increases and vice versa. The reason is that the anchor point indicates the best feasible result 

of the associated objective function and the Pareto solution cannot be outside the area surrounded by the normal 

planes. At the same time, by limiting/expanding the feasible space, the optimality of ( )Nf x  in the Pareto 

solution can be decreased/increased. Thus, every Pareto solution generated by the NNC method implements a 

specific compromise between the competing objective functions of the MMP problem in which some objectives 

are more optimized and some others are less optimized. As the Pareto solutions are evenly distributed in the 

search space (as shown, for instance, in Fig. 3), the best covering of the space for a specific amount of search 

effort, i.e. for a specific number of Pareto solutions, can be obtained by the NNC method. The search resolution 

of the NNC can be tuned by only one set-point, i.e. SP1N, as discussed in step 4. The systematic approach of 

NNC for reducing the feasible objective space and generating the associated Pareto solutions, also known as 

judiciously reducing the feasible design space [27], as well as the uniform distribution of the Pareto solutions in 

the search space are two important characteristics of the NNC method. 
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    The above formulation presented for the NNC method assumes that all objective functions of the MMP 

problem should be minimized as given in (17). If an objective function should be maximized, i.e. we have Max 

fi(x), it can be replaced by Min 1/fi(x), provided that fi(x) never becomes zero, or Min –fi(x). 

    After generating Pareto solutions by the NNC method, the most preferred solution among them is selected by 

a decision maker based on the relative importance of the objective functions. Different decision making 

approaches, such as TOPSIS [29], have been presented for this purpose in the literature. It is worthwhile to note 

that decision maker is separate from the MMP solution method, such as NNC, which typically generates Pareto 

solutions. In other words, different MMP solution approaches might be combined with different decision 

makers. Here, an optimality-based decision maker is proposed, which can easily be implemented.  

    Suppose  ,1 ,( ), ..., ( )k k k Nf f x f x  is the kth Pareto solution generated by the NNC method. Its preference, 

denoted by Pk, is evaluated by the optimality-based decision maker as follows: 

 , ,. ( ) . 1 ( )
Max Min

k i k i j k j
i S j S

P IC f x IC f x
 

                                                                                                      (33)  

where SMax and SMin are two subsets of the N objective functions including the objectives that should be 

maximized and minimized, respectively; ICi and ICj indicate the importance coefficients of ith and jth objective 

functions, respectively, such that 1
Max Min

i j
i S j S

IC IC
 

   . As the preference Pk should be maximized, the one's 

complement of the normalized objectives of SMin, i.e. ,1 ( )k jf x , is included in (33). Note that each normalized 

objective is in the range of [0,1]. Thus, if the Pareto solution kf  maximizes more the objectives of SMax and 

minimizes more the objectives of SMin, i.e. optimizes more different objectives, the optimality-based decision 

maker returns a higher preference value Pk for it. This means that kf  is a more preferred solution for the MMP 

problem. The most preferred Pareto solution with the highest preference value is selected as the final solution of 

the MMP problem. An advantage of the proposed decision maker is that its output, i.e. the preference value, 

linearly changes with respect to the optimality degree of different objectives while considers their relative 

importance. 

    To apply the proposed NNC method and optimality-based decision maker for solving the multi-objective 

congestion management problem, the objective functions f1, f2 and f3 as well as the decision variables x are as 

described in the previous section. Also, the constraints (2)-(16) shape the feasible solution space Ω of this MMP 
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problem (feasible objective space of each Pareto solution is shaped within the NNC method as described in the 

step 6). 

 

4) Numerical Results 

    The proposed NNC-based MMP solution approach and optimality-based decision maker are applied for 

multi-objective congestion management on the New-England test system. This test system consists of 39 buses, 

34 lines, 2 shunt capacitors, 12 transformers, 19 constant power loads and 10 synchronous generators. Static and 

dynamic data of this test system, depicted in Fig. 4, can be found in [30]. Additionally the rating of the branches 

3-18, 7-8, 9-39, 16-19, 16-21 and 23-24 are assumed to be 100, 300, 200, 300, 200 and 320 MVA, respectively 

[25]. By means of the static and dynamic data, the second and third objectives, i.e. f2 = VSM and f3 = CTEM, for 

the New-England test system can be easily calculated. The energy market data of the test system (e.g., the bid 

data of the generators and demands and VOLL) are obtained from [25]. The MMP solution method and decision 

maker are implemented within MATLAB 8.3 software package [31]. Moreover, dynamic simulation of the test 

system is performed using PSS/E 30 software package [32] with the integration time step of 0.1ms. Furthermore, 

PSAT software package [33] is also employed to obtain VSM factor by means of bifurcation analysis.  

    In the following, at first, the results obtained from energy market clearing before congestion management are 

presented and discussed. These results show that the operating point of the power system without congestion 

management violates security limits and therefore it is not feasible. This justifies the necessity of congestion 

management in a real environment. Afterward, the performance of single-objective and multi-objective 

congestion managements are compared. It is shown that the single-objective approach may lead to vulnerable 

power system from stability viewpoint or very high congestion management cost, while the proposed multi-

objective approach implements an appropriate compromise among the competing objective functions. This 

confirms the validity of the proposed multi-objective congestion management model for real-world applications. 

Subsequently, higher effectiveness of the proposed NNC-based multi-objective optimization approach is 

extensively illustrated compared to other recently published MMP solution methods for solving multi-objective 

congestion management problem. Finally, the performance of the proposed optimality-based decision maker for 

different case studies is shown and discussed. This decision maker plays a key role in the real applications, since 
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with the aid of it the ISO can make the optimal decision based on the importance coefficients of the objective 

functions and obtained Pareto solutions. 

    Before applying the congestion management, VSM and CTEM of the test system are calculated as 23.40% 

and 0.136 pu, respectively, which are relatively low stability margins. Moreover, there are some overloaded 

branches in the system prior to running the congestion management such that four lines 7-8, 16-19, 16-21 and 

23-24 are overloaded to 116.8%, 161.8%, 170.3% and 113.0% of their rating, respectively. Also, the voltages of 

two buses 7 and 8 are 0.87 pu and 0.88 pu before congestion management, respectively, which are out of the 

acceptable range  , 0.9,1.1min max
n nV V    . Thus, the operating conditions obtained from the energy market 

clearing are not feasible and congestion management should be performed to make feasible the operating point 

and improve the stability margins. After the congestion management, the voltages return to the acceptable range 

and overloads are relieved due to the constraints (12) and (13) enforced by the congestion management model. 

However, the operating point may be still vulnerable due to its low stability margins, which is not acceptable for 

a real-world application. Another important issue is the congestion management cost. To better illustrate these 

aspects, consider the payoff matrix for the MMP problem of congestion management, shown in Table 1. As 

described in section 3, the first, second and third rows of this matrix are obtained from the single objective 

optimization of f1, f2, and f3, respectively. The solution illustrated in the first row, i.e. [f1, f2, f3] = [14714.31, 

28.81, 0.14], has a low congestion management cost as the solution approach only focuses on optimizing f1 in  
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Fig. 4) Single-line diagram of the New-England test system 

 

Table 1) Payoff matrix for the MMP problem of congestion management on the New England test system 

Applied Optimization f1: cost ($/h) f2: VSM (%) f3: CTEM (pu) 

Single objective optimization of  f1 (Cost) 14714.31 28.81 0.14 

Single objective optimization of  f2 (VSM) 141392.06 40.2 38.26 

Single objective optimization of  f3 (CTEM) 261285.54 31.28 101.01 

  

this case. However, the results obtained for f2, and f3, i.e. the stability margins, may not be acceptable. For 

instance, CTEM has only been increased from 0.136 to 0.140, which shows a negligible improvement. On the 

other hand, the solutions obtained from the single objective optimization of f2, and f3, illustrated in the second 

and third rows of the payoff matrix, bring high stability margins at the expense of very high congestion 

management costs, i.e. about 10 to 20 times more congestion management cost than the first row. Additionally, 

the high stability margins of the second and third rows may not be necessary. For instance, CTEM is increased 

from 0.136 to 101.01 (i.e. about 743 times higher CTEM) in the third row as the solution approach only focuses 
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on maximizing CTEM in this case. However, such a high CTEM may not be required and lead to overdesign of 

the system. These results indicate that single-objective optimizations may not be efficient for solving the 

congestion management problem. Another option is enforcing the stability margins as constraints instead of 

objective functions, e.g. in the form of VSM>VSMmin and CTEM>CTEMmin. However, determining the 

thresholds of VSMmin and CTEMmin, which depends on the static and dynamic characteristics of the system, may 

not be an easy task. In other words, while the low thresholds may lead to operating the system in vulnerable 

conditions, excessively high thresholds can result in high and even unreasonable congestion management costs. 

Moreover, by enforcing the stability margins as constraints, only one solution can be produced for the problem, 

while there is no guarantee that the generated solution is non-dominated from MMP viewpoint. On the other 

hand, by modeling the stability margins as objective functions, a set of Pareto solutions, instead of one solution, 

are generated and the best solution among them can be selected considering the relative importance of different 

objective functions. In other words, the multi-objective congestion management provides more flexibility for 

ISO in real environments. Using the multi-objective congestion management, ISO can better manage its 

competing objective functions including the congestion management cost and stability margins. 

    The performance of the proposed approach and some other MMP solution methods for solving the multi-

objective congestion management problem is evaluated in the following. For the proposed approach, 15 utopia 

hyper-plane points with the cji values shown in (30) and Fig. 2 are considered. 

    Three different case studies based on the importance coefficients of the objective functions are constructed for 

the MMP problem of the congestion management as: 

Case 1: IC1 = 0.5, IC2 = 0.25, IC3 = 0.25 

Case 2: IC1 = 0.5, IC2 = 0.4, IC3 = 0.1 

Case 3: IC1 = 0.5, IC2 = 0.1, IC3 = 0.4 

In practice, these importance coefficients can be selected by ISO based on the system technical and economic 

conditions. In the above three cases, equal importance has been considered for the congestion management cost 

and the stability margins together (i.e. 0.5 versus 0.5). In the first case, voltage and transient stabilities have the 

same importance. However, in the second and third cases higher importance is given to VSM and CTEM, 

respectively, since in real-world applications, a power system may be more vulnerable against voltage stability 

or transient stability. The results obtained from the proposed NNC-based MMP solution approach and five other 
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well-known solution methods for these three cases are presented in the following Tables 2, 3, and 4. The five 

benchmark methods of these tables include single objective optimization, weighting MMP, Ordinary ε-

constraint, augmented ε-constraint, and modified augmented ε-constraint. For details of these methods, the 

interested reader can refer to [19,20,25]. The normalized objective function values obtained from each method 

for the MMP problem are shown in Tables 2-4. The results of the five comparative methods are taken from [25]. 

Based on the normalized objective function values, the preference or Pk for every solution is determined through 

(33), which is shown in the last column of Tables 2-4. The same optimality-based decision maker is used for all 

solution methods of Tables 2-4. As described in the previous section, the concept of optimality in single-

objective optimization is replaced by the concept of preference in MMP, which measures how much a solution 

optimizes different objectives instead of one objective. Tables 2-4 show that the proposed NNC-based MMP 

solution approach outperforms all five other methods in all three cases as the proposed approach attains the 

highest preference value in all Tables 2, 3 and 4. The first benchmark method of these tables, i.e. single 

objective optimization, shows the poorest performance with the lowest preference value among all methods, 

since this method only considers one objective function. Here, the most important objective function, i.e. f1, is 

taken into account as the single objective of this method. The single objective optimization fully optimizes f1 

without optimizing f2 and f3. Thus, the normalized values of 1, 0 and 0 are obtained for f1, f2 and f3, respectively, 

leading to (IC1=0.5)×1 + IC2×0 + IC3×0 = 0.5 as the preference PK of this solution in all three Tables 2-4. 

  

Table 2) The results obtained for case 1 of the MMP congestion management problem on the New England test 

system 

Method f1 f2 f3 Preference (PK) 

Single objective 1.000 0.000 0.000 0.500 

Weighting MMP 0.504 0.461 0.862 0.583 

Ordinary ε-constraint 0.810 0.500 0.500 0.655 

Augmented ε-constraint 0.618 0.876 0.644 0.689 

Modified Augmented ε-constraint 0.731 0.752 0.586 0.700 

Proposed 0.624 0.843 0.784 0.719 
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Table 3) The results obtained for case 2 of the MMP congestion management problem on the New England test 

system 

Method f1 f2  f3  Preference (PK) 

Single objective 1.000 0.000 0.000 0.500 

Weighting MMP 0.768 0.605 0.590 0.685 

Ordinary ε-constraint 0.989 0.500 0.000 0.695 

Augmented ε-constraint 0.731 0.752 0.586 0.725 

Modified Augmented ε-constraint 0.859 0.764 0.129 0.748 

Proposed 0.789 0.776 0.452 0.750 

 

Table 4) The results obtained for case 3 of the MMP congestion management problem on the New England test 

system 

Method f1 f2 f3 Preference (PK) 

Single objective 1.000 0.000 0.000 0.500 

Weighting MMP 0.350 0.836 0.939 0.635 

Ordinary ε-constraint 0.588 0.750 0.750 0.669 

Augmented ε-constraint 0.730 0.752 0.587 0.675 

Modified Augmented ε-constraint 0.765 0.614 0.591 0.681 

Proposed 0.758 0.593 0.695 0.716 

 

Weighting MMP shows a better performance than single objective optimization as this method considers all 

objective functions through a weighted sum approach with the weights of the sum are chosen as the importance 

coefficients of the objectives. However, weighting MMP can generate only one solution for the MMP problem, 

while the ε-constraint methods can generate a set of solutions and select the best one among them. Thus, it is 

seen that the next three ε-constraint based methods reach higher preference values than the weighting MMP. 

Compared to ordinary ε-constraint, augmented ε-constraint can generate more efficient Pareto solutions and so 

attain higher preference results. Modified augmented ε-constraint further improves the performance by 
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considering the relative importance of the objective functions in its efficient solution generation process. 

However, the proposed NNC-based MMP solution approach, based on the judiciously reducing the feasible 

design space and the uniform distribution of the Pareto solutions, can effectively cover the objective space and 

find more preferred solutions for the MMP problem as shown in Tables 2-4. 

    Detailed results of the 15 Pareto solutions obtained by the proposed approach are shown in Fig. 5(a)-5(f). 

Among them, Pareto solutions 4, 9, and 8 are selected for the cases 1, 2, and 3 by the optimality-based decision 

maker, respectively. The values obtained for the decision variables of the MMP congestion management 

problem including up generation shifts of units, down generation shifts of units, demand increments of loads, 

demand decrements of loads, and involuntary load sheds are illustrated in Fig. 5(a), 5(b), 5(c), 5(d), and 5(e), 

respectively. It is observed that the Pareto solutions more focuses on down generation shifts compared to up 

generation shifts (Fig. 5(b) versus Fig. 5(a)) and demand decrements compared to demand increments (Fig. 5(d) 

versus Fig. 5(c)) to relieve the congestion. Fig. 5(e) shows that very low involuntary load shedding is employed 

by the Pareto solutions due to its high cost, i.e. VOLL. The values obtained for the objective functions of the 

MMP congestion management problem are demonstrated in Fig. 5(f). Fig. 5(f) shows distribution of the Pareto 

solutions in the three-dimensional objective space of this MMP problem. The three anchor points of the MMP 

problem are shown by the circles filled by ‘+’ in Fig. 5(f). Even distribution of the Pareto solutions obtained by 

the proposed method can be seen from this figure. The Pareto solutions 4, 9, and 8 selected by the optimality-

based decision maker for the three cases 1, 2 and 3 are represented by the circles filled by ‘∆’ in Fig. 5(f). The 

coordinates of these Pareto solutions in Fig. 5(f) indicate the objective function values attained by these 

solutions. 
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(a) (b) 

 

 
(c) 

 
(d) 

 
(e) 

 

 
      

(f) 

Fig. 5) Detailed results of the Pareto solutions obtained by the proposed approach for the MMP congestion 
management problem of the New England test system: (a) Up generation shifts of units, (b) Down generation 

shifts of units, (c) Demand increments of loads, (d) Demand decrements of loads, (e) Involuntary load shedding, 
and (f) Objective function values 
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The computation time of the proposed method for the three cases of the MMP congestion management problem 

of the New England test system is about 18s. This run time, measured on a simple hardware set of a laptop 

computer with Intel Core i7 CPU-1.6GHz and 4GB RAM, is completely reasonable within the decision making 

framework of congestion management, e.g. one hour. As a comparison, the computation time of the modified 

augmented ε-constraint method (which has the closest performance to the proposed approach in Tables 2-4) is 

20.2s for cases 1 and 3 and 35.7s for case 2, measured on a similar hardware set in [25]. This comparison 

illustrates higher computational efficiency of the proposed method compared to modified augmented ε-

constraint. 

5) Conclusion  

    Congestion management is an important operation function of power markets as the operating conditions 

obtained from the market clearing may not be feasible in terms of security limits and stability margins of the 

power system. The congestion management problem involves different competing objective functions consisting 

congestion management cost and stability margins. While a straightforward way for tackling with this problem 

is formulating it as a single objective optimization model including the stability margins enforced through the 

constraints, this approach may not be able to implement an efficient compromise among different objectives and 

lead to a vulnerable power system or unreasonable congestion management cost. Thus, in this paper, following 

some recent research works in the area, congestion management is modeled as a MMP problem. The main 

contribution of this paper is to propose a new MMP solution method for solving multi-objective congestion 

management problem. The main advantages of the proposed NNC-based MMP solution method are its 

systematic approach for reducing the feasible design space and effective covering of the objective space through 

a uniform distribution of the Pareto solutions. These capabilities enable the proposed approach to find more 

preferred multi-objective solutions compared to the other MMP methods, such as weighting MMP, ordinary ε-

constraint, augmented ε-constraint and modified augmented ε-constraint, which have been recently presented in 

the other research works for solving multi-objective congestion management problem. Additionally, an 

optimality-based decision maker has also been proposed to select the most preferred solution, among the 

generated Pareto set for the MMP problem, considering the relative importance of the objective functions. 
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