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Abstract 

This paper presents an overview of the different methodologies and mathematical 

optimization models developed in the framework of the EU-funded project SiNGULAR 

towards the optimal exploitation and efficient short-term operation of RES production in 

insular electricity networks. Specifically, the algorithms employed for the creation of system 

load and RES production scenarios that capture the spatial and temporal correlations of the 

corresponding variables as well as the procedure followed for the creation of units’ 

availability scenarios using Monte Carlo simulation are discussed. In addition, the advanced 
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unit commitment and economic dispatch models, that have been developed for the short-term 

scheduling of the conventional and RES generating units in different short-term time-scales 

(day-ahead, intra-day, and real-time) are presented. Indicative test results from the 

implementation of all models in the pilot system of the island of Crete, Greece, are illustrated 

and valuable conclusions are drawn. 

 

Keywords: Day-ahead market, insular power systems, mathematical modelling, mixed-

integer linear programming, RES integration, scenario generation. 

 

1. Introduction 

The increased use of energy from Renewable Energy Sources (RES), together with 

Demand-Side Management (DSM), energy savings and increased energy efficiency, 

constitute important parts of the package of measures needed to reduce Greenhouse Gas 

(GHG) emissions that will help Europe comply with the Kyoto Protocol. The European target 

“20-20-20” implies [1]: (a) a reduction in European Union’s (EU) greenhouse gas emissions 

of at least 20% below 1990 levels, (b) 20% reduction in primary energy use compared with 

projected levels, to be achieved by improving energy efficiency, and (c) 20% of EU energy 

consumption to come from renewable resources. 

The latter goal motivated the EU countries to incentivize the increase of RES installed 

capacity, with particular emphasis on generating electricity from wind and more recently from 

solar resources. Large RES plants have already been constructed and operated across Europe, 

whereas the integration of new small and large RES projects continues aggressively. The 

share of RES in the electricity production is expected to increase to 30-35% by 2020 [2].  

A large share of the recent RES installed capacity has already taken place in insular 

electricity grids, since these regions are preferable due to their high RES potential. However, 

the increasing share of RES in the generation mix of insular power systems presents a big 
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challenge in the efficient management of the insular networks, mainly due to the limited 

predictability and the high variability of renewable generation, features that make RES plants 

non-dispatchable, in conjunction with the relevant small size of these networks.  

In this context, the recently launched collaborative project SiNGULAR (Smart and 

Sustainable Insular Electricity Grids Under Large-Scale Renewable Integration), an EU-

funded project under the 7th Framework Programme (FP7) aims at investigating the effects of 

large-scale integration of RES and DSM on the planning and operation of insular (non-

interconnected) electricity grids, proposing efficient measures, solutions and tools towards the 

development of a sustainable and smart grid. Different network operation procedures and 

tools, based on innovative approaches of predictive electricity network operation, are being 

developed. A set of electricity network planning procedures and tools are also being 

developed to implement robust insular electricity network planning. The goal is the generation 

of effective solutions and information so that the integration of insular and highly variable 

energy resources is maximized. The operation and planning tools and procedures are being 

applied in different insular electricity grids across Europe (pilot sites), allowing the 

development of generalized guides of procedures and grid codes specific for future generation 

of smart insular electricity grids.  

Among others, in the framework of SiNGULAR, various methodologies and software tools 

are being developed and implemented for the optimal short-term scheduling of insular 

electricity networks, taking into account the stochastic nature of various system and unit 

parameters, such as the system load, the RES production, the unit availability, etc.  

In this paper, an overview of the different methodologies and mathematical optimization 

models developed towards the optimal exploitation and efficient short-term operation of RES 

production in insular electricity networks is presented. Specifically, the algorithms employed 

for the creation of system load and RES production scenarios that capture the spatial and 

temporal correlations of the corresponding variables as well as the procedure followed for the 
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creation of units’ availability scenarios using Monte Carlo simulation are discussed. In 

addition, the advanced unit commitment and economic dispatch models, that have been 

developed for the short-term scheduling of the conventional and RES generating units in 

different short-term time-scales (day-ahead, intra-day, and real-time) are presented. 

The remainder of the paper is organized as follows: Section 2 describes the scenario 

generation and scenario reduction procedures for the description of the uncertain system 

parameters, namely RES generation, system load and units’ availability. Section 3 describes 

the proposed advanced mathematical optimization models, namely unit commitment and 

economic dispatch models, for the short-term scheduling of the conventional and RES 

generating units in different short-term time-scales. In addition, indicative results from their 

coordinated implementation in the insular power system of Crete, Greece, are presented. 

Finally, in Section 4 valuable conclusions are drawn and indicative emerging methods and 

tools to address the challenges of the integration of large amounts of RES in insular electricity 

grids are highlighted. 

2. Scenario generation methodologies 

2.1 Scenario generation for RES injection 

In order to create scenarios for RES injection, time series analysis methodologies are 

employed. Specifically, a process that combines a scenario generation technique of an original 

(extended) set of scenarios with a technique to reduce the number of scenarios is followed. An 

additional methodology for creating spatial cross-correlated scenarios is also applied.  

The scenario generation technique of the initial (extended) set of scenarios using time 

series analysis techniques is based on a sampling approach. Specifically, the appropriate 

forecasting model for the random process under study (e.g. PV or wind power generation) is 

first determined. This forecasting model can be either a seasonal Autoregressive Integrated 

Moving Average (ARIMA) model or an Artificial Neural Network (ANN) model. In the 
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following paragraphs the basic features of both forecasting models are presented and the 

adopted scenario generation procedure is described. 

2.1.1 ARIMA models 

A class of time series techniques, namely ARIMA, can be employed for the short-term 

forecasting of RES injection. ARIMA is a method first introduced by Box and Jenkins [3] and 

is one of the most popular methods for time series forecasting. 

In general, for stationary time series a simple Autoregressive Moving Average model, 

ARMA (p, q), is used, whose analytical mathematical expression is as follows: 

 
1 1

p q

t j t j t j t j
j j

y y    
 

       (1) 

where 1 2, ..., p    are the p parameters of the autoregressive polynomial and 1 2, ..., q    are 

the q parameters of the moving average polynomial. The term t  in the equation (1) stands for 

an uncorrelated normal stochastic process with zero mean and standard deviation σ. The 

stochastic process t  is also referred to as white noise, innovation term, or error term. In case 

that the original time series, ty , is non-stationary, a more complex model, namely 

Autoregressive Integrated Moving Average model, ARIMA(p, d, q), is constructed as follows.  

First, a stationary time series, tz , is derived by suitable (d-th order) differentiation of the 

original non-stationary time series, ty :  (1 )   d d
t t tz y B y , where 1( ) t tB y y .  Then a 

suitable ARMA (p, q) model is derived for the new stationary time series, tz , as in (1), where 

ty  is substituted with tz .  

A variation of the classical ARIMA model, namely the seasonal ARIMA model (i.e. 

SARIMA) is used here as the most appropriate time series model for the PV production 

forecasting. The seasonal ARIMA model is generally referred to as SARIMA (p,d,q) x 

(P,D,Q)S, where p, d, q and P, D, Q are non-negative integers that refer to the polynomial 

order of the autoregressive (AR), integrated (I), and moving average (MA) parts of the non-
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seasonal and seasonal components of the model, respectively and s defines the seasonal 

period. 

The model development was based on the Box-Jenkins methodology, which consists of 

four iterative steps: a) Identification, b) Estimation, c) Diagnostic Checking and d) 

Forecasting. Further details on the description of the adopted methodology can be found in 

[3]. 

Finally, the developed SARIMA model was further improved by incorporating short-term 

solar radiation forecasts derived from Numerical Weather Prediction (NWP) models. In Table 

1 the inputs and the output of the SARIMA model associated with the PV production forecast 

are presented. 

2.1.2 Artificial Neural Networks 

Artificial Neural Networks (ANN) are data processing systems that simulate the operation 

of the biological nervous system. They are widely used in numerous applications due to their 

ability to estimate both linear and non-linear dependencies between two or more variables.  

ANN comprise a set of basic processing units known as artificial neurons, or simply 

neurons, in proportion to the terminology used for biological neurons. The neurons are 

arranged in layers and are connected by links, which are assigned appropriate weighting 

factors (see Fig. 1). The inputs of a neuron are the outputs of the neurons of the previous layer 

multiplied by their respective weighting factors of their links. The output of the neuron is then 

used as the input for the neuron of the next layer. 

<INSERT FIGURE 1 HERE> 

Each layer has also a polarization term (always equal to one), which is also connected as 

input to all neurons of the next layer once it is multiplied by specific weights. Each neuron is 

activated by a function f (activation function), which reflects the possible infinite range of 

values of the neuron at a predefined interval, usually in [-1,1] or in [0,1]. A signal fed to the 
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input layer of the ANN is transmitted through the hidden layer to the output layer, where the 

output signal of the ANN is generated. 

The typical operation of an ANN is divided into two stages: 

 the training stage 

 the recall stage 

During the training stage, a sequence of inputs and desired outputs known as training 

patterns are given to the ANN. At this stage, the weighting factors of the ANN, which are 

initially given small random numbers, are appropriately adjusted so as to minimize the error 

of the output of the ANN with respect to the desired output. The training of the ANN is a 

time-consuming iterative process - especially when a large number of input-output patterns is 

used - and usually takes place in advance (off-line).  

<INSERT TABLE 1 HERE> 

Once the training stage is completed, the recall stage begins. At this stage, only the inputs 

are given to the ANN and the latter calculates the output according to its training. 

Computationally, the recall stage requires the transmission of the input vector through the 

ANN and the generation of the output vector and is extremely fast.  

Relevant bibliography dealing with the design and use of ANNs for PV and wind 

generation forecasting can be found in [4]-[5]. 

For the purposes of this project, a suitable ANN has been developed and trained for the 

forecasting of both the PV and wind power generation one hour ahead. In order to predict the 

value of the PV/wind power generation two hours ahead, the predicted value of the next hour 

is used as input for the prediction of the PV/wind generation for the second hour ahead. 

Following the same logic iteratively, in order to predict the PV/wind production t hours 

ahead, the predicted value of hour t-1 must be used as input for the prediction of the PV/wind 

generation during hour t. Thus, this continuous rolling update of the inputs of the ANN allows 
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for the forecasting to be extended up to the desired forecast horizon. In Table 1 the inputs and 

the output of the ANN models for the PV and wind power generation forecast are presented. 

Once the training of the ANN is completed, the time series of the residuals of the training 

is calculated as the difference between the forecasted values (using the trained ANN) and the 

historical values (real measurements).  

2.1.3 Scenario generation algorithm 

Once the appropriate model for the PV or wind generation forecasting is determined, a 

technique for the generation of the initial set of scenarios is implemented on the basis of a 

sampling approach [6].   

In any of the above forecasting models (ARIMA or ANN model), the time series of the 

residuals (white noise) follows a normal distribution with zero mean and standard deviation σ, 

i.e. ~ (0, )t N  . In this context, the procedure to generate a set of scenarios for a stochastic 

process Y (e.g. PV or wind power production) comprises an iterative process based on the 

random generation of white noises in order to develop a discrete approach of the stochastic 

process represented by a set of scenarios. Based on this logic, an appropriate algorithm has 

been developed to generate a set of scenarios for the day-ahead PV and wind power 

generation [6]. In this algorithm ΝΤ denotes the desired number of periods, while ΝΩ denotes 

the desired number of scenarios. The above scenario generation algorithm is illustrated in the 

block diagram of Fig. 2. An illustrative example of the above algorithm with the use of a 

typical forecasting model AR(3) is given in Fig. 3. 

Many stochastic processes associated with the management of the power systems and the 

operation of the electricity markets (where applicable) are statistically dependent. For 

instance, the energy injection from spatially close wind farms or PV stations frequently 

follows similar patterns. Modeling this statistical correlation is of the utmost importance for 

the System Operator, who is responsible for the management and the operation of the power 
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system, as well as for producers owning RES plants at adjacent geographical sites, who wish 

to schedule optimally their electricity production. 

<INSERT FIGURE 2 HERE> 

<INSERT FIGURE 3 HERE> 

Relevant works on the concept of cross-correlation of electricity production from RES 

plants as well as reported techniques for the efficient generation of statistically dependent 

(cross-correlated) scenarios have been located in the literature [7]-[13]. 

In order to account for the statistical correlation of the power output from neighboring RES 

plants, in the framework of this project an appropriate algorithm already described in [6] was 

implemented for the generation of spatial and temporal cross-correlated scenarios regarding 

the RES electricity injection.  

2.1.4 Scenario reduction techniques 

Usually, a large set of scenarios is required to ensure that the sampling approach described 

in the previous section represents the stochastic process accurately. However, since the 

computational performance of the stochastic programming models is highly dependent on the 

size of the scenario set, a compromise between the necessary number of scenarios and the 

computational burden of the associated stochastic programming model needs to be made, so 

that the problem can be solved using acceptable computational resources. For this purpose, 

appropriate scenario reduction techniques are usually applied. 

A scenario reduction technique aims at reducing the size of the set of scenarios as much as 

possible, while at the same time the stochastic information enclosed in the original set is 

affected as less as possible. In other words, the optimal solution of the stochastic optimization 

problem using the reduced set of scenarios should remain close to the optimal solution 

obtained using the extended (original) set of scenarios. Various scenario reduction techniques 

have been reported in the literature so far [14]-[20]. 
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The scenario reduction methodology implemented is based on the concept of the 

probability distance [5]. In general, the probability distance allows for quantifying how 

“close” two different sets of scenarios representing the same stochastic process are. In this 

context, if a large scenario set is close enough to a reduced one in terms of the probability 

distance, the optimal solution of the simpler problem (which is formulated and solved using 

the reduced set of scenarios) is expected to be close to the optimal value of the original 

problem (which is formulated and solved with the extended set of scenarios). The most 

common probability distance used in stochastic programming is the Kantorovich distance [7], 

also adopted here. A comprehensive overview of the theoretical background underlying the 

concept of probability distance is thoroughly presented in [7], while its application to scenario 

reduction is discussed in detail in [14]. 

2.1.5 Indicative results 

Indicative results from the process of creating cross-correlated scenarios for the electricity 

production of two adjacent wind farms, namely “Anemos Aiolikis” and “Ydroaioliki”, located 

in the prefecture of Chania, Crete, are presented next. Their installed capacity is 6.3 MW and 

9.35 MW, respectively. Fig. 4-5 illustrate the extended (50 scenarios) and reduced (20 

scenarios) set of scenarios for the wind generation of the wind park “Anemos Aiolikis”, while 

Fig. 6-7 illustrate the respective extended and reduced set of scenarios for the wind generation 

of the wind park “Ydroaioliki”.  

<INSERT FIGURE 4 HERE> 

<INSERT FIGURE 5 HERE> 

<INSERT FIGURE 6 HERE> 

<INSERT FIGURE 7 HERE> 
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2.2 Scenario generation for system load 

The scenario generation procedure regarding the electrical load is based, in general, on the 

same iterative process of random generation of white noises already discussed in Section 2.1 

and illustrated in Fig. 2. In the case of the system load, a well-trained ANN model was used 

as forecasting model. 

The ANN used for the system load forecasting is trained taking into account: 

 the real values of the electrical load during past hours and days, 

 the hour of the day, the day of the week, and the day of the year during which the real 

values of the load were recorded, 

 the maximum and the minimum daily temperature. 

Relevant bibliography discussing the design of ANNs for the electrical load forecasting 

can be found in [21]-[22]. 

The application of the relevant scenario generation and reduction algorithms is shown in 

Fig. 8 and Fig. 9, where 50 scenarios for the electrical load of the insular power system of 

Crete, Greece, with a 24-hour forecast horizon were initially created (see Fig. 8) and 

subsequently transformed to a reduced set of 20 scenarios (see Fig. 9). 

<INSERT FIGURE 8 HERE> 

<INSERT FIGURE 9 HERE> 

2.3 Scenario generation for unit availability 

One of the main sources of uncertainty to be taken into account for the modeling of the 

short-term operation of the power system is the generating units’ availability i.e. the ability of 

the unit to produce at its nominal capacity or its inability to fully or partially produce 

electricity due to a forced outage. 

In order to model the availability or unavailability of generating units, availability 

scenarios are usually created. In this project, the generation of unit availability scenarios is 
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based on a widely used technique, which involves creating "availability" and "non-

availability" states using a two-state Markov model. 

The availability history of a generating unit is usually represented by a two-state time 

series, where Up = “available” and Down = “unavailable”, as shown in Fig. 10. This dynamic 

sequence of states is constructed using a two-state Markov model, as illustrated in Fig. 11. 

According to Fig. 11, each generating unit is characterized by a failure rate λ (times per 

year) and a repair rate μ (times per year) or, equivalently, by the unit mean time to failure 

8760
Up

meant


 (in h) and the unit mean time to repair 8760
Down

meant


 (in h).   

<INSERT FIGURE 10 HERE> 

<INSERT FIGURE 11 HERE> 

The time Upt  for which the unit remains available until the next failure and the time Downt  

for which the unit is off-line until it becomes available again, can be considered as random 

variables following exponential distribution, with time constants Up
meant  and Down

meant , 

respectively, as follows: 

 
8760

( ) 1


 

Upt
UpF t e



 (2)  

 
8760

( ) 1



 

Downt
DownF t e



 (3)  
 

Using the inverse transform method [23], the random time to the next failure (status "Up") 

and the random time to the next repair (status "Down") are given, respectively, by the 

following expressions: 

 1 8760( ) ln(1 ) ln(1 )        Up Up
meant F y y t y


 (4) 

 1 8760( ) ln(1 ) ln(1 )        Down Down
meant F y y t y


 (5)  

where y  is a random variable uniformly distributed in [0,1]. 
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Therefore, expressions (4)-(5) allow for the generation of k random samples Up
kt , Down

kt  

through the generation of  random samples ky  from the uniform distribution in [0,1]. 

For short-term operation (e.g. 24-hour time horizon), the time to next repair Down
kt  can be 

neglected, given that when the unit becomes unavailable during a single hour of the 24-hour 

horizon it is considered to remain unavailable up to the end of the 24-hour period. For longer 

time horizons, the generation of k random samples shall be repeated until the time series of 

the successively produced Up
kt , Down

kt  covers the respective time period. 

Finally, the availability state , ,i tav   of unit i for hour t and scenario ω is defined as 

follows:  

 , , 11 , ,    UpDown
i t k kav i t t t   

 , , 0 , ,   Up Down
i t kkav i t t t   

3. Scheduling models for the short-term operation of insular power systems 

3.1 Problem description 

Owing to their small-size and autonomous nature, insular power systems are simpler to 

monitor and control than large, multi-area interconnected power systems.  There are no seams 

issues and no low frequency inter-area oscillations threaten the integrity of insular power 

systems. However, owing to the same reasons, insular power systems are more vulnerable to 

high RES penetration: they cannot import flexible generation from neighboring power 

systems when wind is not blowing and sun is not shining and cannot export the excess 

renewable generation of windy and sunny days to their neighbors through the 

interconnections. In addition, they cannot take advantage of the renewable generation 

“portfolio effect”, i.e. the fact that renewable generation becomes more predictable and less 

variable when aggregated over a wide geographic area. Finally, the effects of increased 

renewable penetration on the system inertia and the system primary frequency response 

characteristic are harder to manage in the absence of the help from neighboring systems. 
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Whichever the nature of the power system is (i.e. insular or interconnected), an important 

criterion for the optimal short-term operation of a power system is to meet the variable load 

demand with minimum operating cost using an optimal mix of the available generating units, 

according to their operating characteristics. System Operators regularly use short-term 

scheduling models in order to fulfill this objective, among which Unit Commitment is 

considered to be one of the best available options for longer time horizons (e.g. one day or 

several hours ahead). For near to real-time horizons (e.g. 5 min or 15 min ahead), Economic 

Dispatch is usually used. In this case, the commitment status of the conventional generating 

units for each dispatch interval has already been determined by the most recent unit 

commitment solution and economic dispatch aims only at dispatching the on-line units solely 

respecting their ramp rates and technical limits to meet the system load at least cost. 

In general, Unit Commitment (UC) is a complex optimization problem, where the System 

Operator (SO) aims at minimizing the total production cost over the scheduling horizon. The 

total production cost comprises the fuel costs, which are primarily associated with the 

operating status and the production level of the generating units, the start-up costs and the 

shut-down costs. As a result, the UC problem has been traditionally solved in centralized 

power systems to determine the best possible commitment status, the start-up/shut-down 

sequences and the respective power outputs for all available generating units in order to 

satisfy the forecasted demand and the system-wide reserve requirements in all time intervals 

of the scheduling horizon. Moreover, the SO has to respect various generating unit constraints 

(such as the minimum up/down times, the start-up/shut/down trajectories, etc.), which further 

reduce his flexibility to select which generating units to start-up and/or shut-down. 

In this sense, the UC optimization problem has the following form: 

Minimize [Total Production Costs] = [Fuel Costs + Start-Up Costs + Shut-Down Costs] 

Subject to:  

a) Unit Capacity Limits 



15 

 

b) Unit Minimum Up/Down Times 

c) Unit Ramp Rate Limits 

d) Unit Initial Conditions and Status Restrictions (must-run, fixed-MW, unit availability) 

e) System Power Balance 

f) System Reserve Requirements 

g) Network Constraints 

Constraints (a)-(d) are the local unit-wise constraints, while constraints (e)-(g) are the 

system-wide coupling constraints. The specific nature of the UC problem has been exploited 

by SOs through various solution algorithms, in order to achieve a feasible and as close to 

optimal solution as possible. It should be noted that for interconnected power systems the UC 

system constraints must be accordingly modified to take into account the interchange 

schedules and the tie-line constraints. 

The Economic Dispatch (ED) problem formulation is simpler than the UC formulation, 

since the objective function comprises only the fuel costs and the problem is subject only to 

the unit-wise constraints (a), (c) and the system-wide coupling constraints (e)-(g).  

The critical problem of Unit Commitment (UC) in a power system has been addressed by 

many different novel approaches and algorithms so far. These approaches range from simple 

exhaustive enumeration below [24]-[25] and priority listing methodologies [26]-[28] to 

dynamic programming [29]-[35], artificial intelligence [36]-[42] and Lagrangian Relaxation 

techniques [43]-[48]. Lately, more advanced mixed-integer linear programming (MILP) 

models have been adopted [49]-[56], following the rapid growth of state-of-the-art hardware 

and software systems. Finally, stochastic optimization [57]-[61] and robust optimization 

techniques [62]-[68] are among the most popular emerging trends to deal with related 

optimization problems under uncertainty. 
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3.2 Description of the proposed optimization models 

The MILP approach has been proposed in the last decade as a viable and efficient 

alternative methodology for solving various optimization problems associated with the short-

term operation of power systems, such as the UC problem. MILP models have been widely 

applied, since most SOs along with the research community recognized that critical decisions 

associated with the operation of the power system can be effectively represented by integer 

(more specifically binary) variables and, therefore, classical linear programming approaches 

could not be used to explicitly model and solve such complex problems. In MILP 

formulations, the commitment decisions denoting practically the on/off status of the 

generating units in various operating phases (e.g. off-line, start-up, dispatchable, shut-down, 

etc.) are modeled using binary variables, while the power output, reserve contribution and 

power flow decisions are modeled using continuous variables.  

In this project, the short-term operation of the insular power system is modeled using three 

distinct MILP-based optimization models, namely as follows: 

 A Rolling Day-Ahead Scheduling (RDAS) model,  

 An Intra-day Dispatch Scheduling (IDS) model, and 

 A Real-time Economic Dispatch (RTED) model. 

Fig. 12 illustrates the general input-output data structure of the aforementioned MILP 

models. It is mentioned that the RDAS and IDS models have been developed either in a 

deterministic framework (considering all unit and system parameters deterministically known 

for the respective scheduling period) or in a scenario-based stochastic programming 

framework to account for uncertainties associated with the random unit and system 

parameters (e.g. system load, RES production, unit availabilities, etc.), as already discussed in 

Section 2. 

<INSERT FIGURE 12 HERE> 
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The solutions of all above models are coordinated aiming at the maximization of the zero 

variable cost RES injection simultaneously minimizing the total operating cost of the 

conventional (thermal) generating units in the insular power system. 

Specifically, the RDAS model solves the short-term UC problem with an hourly time 

resolution, where a simultaneous multiple-hour co-optimization of energy and reserve 

resources is performed under a large set of unit and system constraints (e.g., unit start-up and 

shut-down procedures, minimum-up/down time constraints, min/max power output 

restrictions, ramp-rate limits, system reserve requirements, transmission limits, etc.). The 

RDAS model is typically solved twice for each dispatch day (day D): once prior to the 

beginning of the dispatch day (e.g. at 21:00 of day D-1), covering the entire day-ahead 

scheduling period (24 hours of day D), and once few hours prior to noon of day D (e.g. at 

10:00 a.m.) covering the second half of day D (i.e. hours 13-24), as updated forecasts 

regarding the system and unit parameters (e.g. system load, unit availabilities, RES injection) 

are made available during the progress of day D.  

The solution of the RDAS model provides the commitment status and dispatch scheduling 

for all generating units (conventional and RES) during the respective scheduling period (24h 

or 12h) under study. In this context, the optimal commitment status of slow base-load units is 

considered as binding (fixed decisions) for the formulation and solution of the intermediate 

IDS models that follow, while the optimal commitment status and dispatch scheduling for all 

other units (fast units and RES plants) provided by RDAS are indicative. 

The IDS model follows in general the formulation of the RDAS model. The main 

difference lies in that the UC problem is now solved every twenty (20) minutes on a multiple-

hour basis (typically four (4) hours) with a 20-minute time resolution. Since the solution of 

the RDAS models provides the commitment of the slow units for day D (binding start-up 

and/or shut-down decisions), which is considered to remain unchanged unless a unit forced 

outage takes place, the committed slow units are modeled as must-run units in the IDS runs 
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during day D. In this sense, the IDS model is solved successively during day D deciding only 

on the commitment status of the fast thermal units and RES plants (if applicable) as well as 

the dispatch scheduling of all (slow and fast) units.  

Finally, the RTED model is implemented for the determination of the optimal generation 

dispatch levels of all generating units in real time (e.g. every 20 minutes) to satisfy the system 

load demand and the spinning reserves requirements. The main feature of RTED model is that 

no commitment decisions are taken, since the commitment status of all generating units for 

each dispatch interval has already been determined by the most recent RDAS and IDS models 

solutions. Therefore, RTED can be considered as a special case of the aforementioned MILP 

unit commitment problem, since it is, in fact, a Linear Programming (LP) problem (no binary 

decision variables are used) and aims at dispatching the on-line units respecting only their 

ramp rates and technical limits to meet the system load at least cost. Following the current 

trend of advanced electricity markets [69]-[71] that recently adopted RTED models with a 

look-ahead horizon in order to deal more efficiently with the unpredictability and variability 

of RES, the proposed RTED model has been formulated for a 20-minute dispatch period in 

conjunction with a look-ahead horizon of one hour.  

Finally, it is noted that both the time horizon and time resolution of all three scheduling 

models have been chosen according to the provisions of the Greek Grid Code for non-

interconnected islands, which is currently under public consultation. However, they are all 

parametric and can be easily adapted to the needs of every single insular power system.  

Fig. 13 illustrates the main characteristics of the three distinct scheduling models, while the 

coordination sequence of the three scheduling models along with an indicative scheduling 

timeline is illustrated in Fig. 14. 

<INSERT FIGURE 13 HERE> 

<INSERT FIGURE 14 HERE> 
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3.3 Test results 

The developed MILP models have already been tested on the power system of Crete, 

Greece, which is a large insular system currently comprising 25 conventional thermal units of 

different technologies, with a total installed thermal capacity of 799 MW. In addition, there 

are 29 wind parks and around 2,800 PV installations (990 ground-mounted and 1,806 rooftop 

systems) with a total installed capacity of 184 MW and 94 MW, respectively. Table 2 presents 

an overview of the generation mix of the insular power system of Crete at the end of 2013. 

<INSERT TABLE 2 HERE> 

Fig. 15-20 illustrate indicative results from the application of the scheduling models in the 

power system of Crete. Two different cases have been examined, which are differentiated 

only in terms of the wind energy production distribution during the day. It is noted that the 

total available wind generation (in MWh) is identical in both cases. In this sense, the effect 

that the wind energy generation profiles may have on the short-term scheduling of the entire 

generation mix is analyzed. Specifically, in Case 1 (Morning wind) wind blows strongly 

during the first hours of the day and gradually decreases during the evening and night hours. 

On the contrary, in Case 2 (Afternoon wind) wind generation is weak during the early 

morning hours and gradually increases and reaches its peak during the last hours of the 24-

hour scheduling horizon.  

Fig. 15-16 illustrate the day-ahead scheduling per unit type for both cases. In both cases, 

Combined Cycle Gas Turbine (CCGT) is considered a must-run unit, since its continuous 

operation is strictly required by the SO in order not only to alleviate voltage stability issues in 

the west side of the island where the CCGT unit is located, but also to contribute significantly 

to different types of spinning reserves (i.e. primary, secondary, tertiary). In the case of high 

morning wind (Case 1), the low system load during the early morning hours in conjunction 

with the fact that base-load thermal units cannot operate below their minimum power output 

as well as they cannot be shut-down and subsequently start-up immediately due to critical 
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technical and economic constraints (e.g., long minimum up/down times, high start-up costs, 

provision of reserves, etc.) lead to a notable wind curtailment of 76.3 MWh/day, which 

correspond to 3.3% of the total daily available wind production for this case (see Fig. 15). 

<INSERT FIGURE 15 HERE> 

<INSERT FIGURE 16 HERE> 

On the contrary, in the case of high afternoon wind (Case 2) these issues are eliminated 

(wind curtailment falls to 4.3 MWh/day or 0.002%), since the wind generation contributes 

mainly to the shaving of the noon and the evening peak load, also restricting significantly the 

operation of high-cost thermal units, such as the Open Cycle Gas Turbine (OCGT) units (Fig. 

16), which in Case 1 are deemed necessary to serve the evening peak-load (see Fig. 15). 

<INSERT FIGURE 17 HERE> 

<INSERT FIGURE 18 HERE> 

Fig. 17-18 illustrate the total energy and reserves contribution provided by all conventional 

thermal units for the two cases examined. The system reserve requirements are determined on 

a regular basis by the SO according to the specific needs of the power system taking also into 

account the RES share. The dashed and dotted red lines denote the total maximum and 

minimum power output of all conventional units that are on-line in each hour of the 

scheduling period, respectively. It is clear that the power output of all thermal units 

plus/minus the corresponding total contribution in spinning reserves (i.e. R1up: primary-up, 

R1dn: primary-down, R2up: secondary-up, R2dn: secondary-down, R3S: tertiary spinning) do 

not exceed the corresponding technical limits (i.e. maximum/minimum power output) of the 

thermal generation system. 

Fig. 19-20 illustrate the distribution of the total daily production cost in the different 

conventional thermal unit types for the two cases studied. As expected, in Case 1 where wind 

generation substitutes mainly low-cost thermal units (i.e. steam and Internal Combustion 

Engine (ICE) units) during the early morning hours (see Fig. 15), the total system production 
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cost is equal to €907,838 with the share of OCGT units’ production cost being equal to 6.3% 

(= €57,031 / €907,838). On the contrary, in Case 2 where wind generation substitutes mainly 

the energy production of medium-/high-cost thermal units (i.e. CCGT and OCGT units) 

during the evening hours (see Fig. 16), the total system production cost falls to €835,668 (-

7.95% as compared to Case 1) and the share of OCGT units’ production cost falls to 1.8% (= 

€14,972 / €835,668).  

<INSERT FIGURE 19 HERE> 

<INSERT FIGURE 20 HERE> 

4. Conclusion 

In this paper an overview of various methodologies and mathematical optimization models 

developed in the context of the EU-funded project SiNGULAR towards the optimal short-

term scheduling of electricity generation in insular electricity networks was presented. 

Methodologies that combine a scenario generation technique of an original extended set of 

scenarios with a technique to reduce the number of scenarios while capturing the spatial and 

temporal correlations of the corresponding variables have been discussed. Indicative results 

from their application in the pilot system of the island of Crete, Greece, prove the efficiency 

of the applied procedures. 

Additionally, the main features of three MILP-based optimization models developed for 

the short-term scheduling of insular power systems along with an indicative coordination plan 

and proposed timeline were analyzed in detail. Simulation results showed that, in power 

systems with high share of renewable energy, the daily wind energy generation profiles may 

have a vital impact on the short-term scheduling of the entire insular generation mix in terms 

of wind energy curtailment, short-term operation of conventional thermal units and total 

system production cost. In this sense, new challenges arise regarding the efficient and reliable 

short-term operation of insular electricity networks with high RES penetration. These 

challenges call for the design and implementation of new emerging methods and tools, such 
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as the demand side management, the electrical energy storage, the concept of virtual power 

plants, etc, in the following years.  

Acknowledgments 

This work was supported in part by the EU Seventh Framework Programme FP7/2007-

2013 under grant agreement no. 309048 (Project SiNGULAR) and in part by the State 

Scholarships Foundation of Greece in the context of the “IKY Fellowships of Excellence for 

Postgraduate studies in Greece – Siemens Program”. 

 

References 

[1] Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of 
the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC 
and 2003/30/EC. Available online at: 
<http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2009:140:0016:0062:en:PDF> 
(Last accessed 12 May 2014) 

[2] Renewable energy target for Europe: 20% by 2020. Technical Report: European Renewable Energy 
Council. Available online at: <http://www.erec.org/media/publications/targets-2020.html>;2004. 
(Last accessed 12 May 2014) 

[3] Box GE, Jenkins G. Time series analysis, forecasting and control: Holden Day; 1976. 

[4] Alexiadis MC, Dokopoulos PS, Sahsamanoglou HS, Manousaridis IM. Short-term forecasting of wind 
speed and related electric power. Solar Energy 1998;63:61-8. 

[5] Wang F, Mi Z, Su S. Short-term solar irradiance forecasting model based on artificial neural network using 
statistical feature parameters. Energies 2012;5:1355-70. 

[6] Conejo AJ. Decision making under uncertainty in electricity markets: Springer; 2010. 

[7] Rachev ST. Probability metrics and the stability of stochastic models. Chichester. England: John Wiley & 
Sons; 1991. 

[8] Thomann GC, Barfield MJ. The time variation of wind speeds and wind farm power output in Kansas. 
IEEE Transactions on Power Systems 1988;3:44-9. 

[9] Billinton R, Chen H, Ghajar R. Time-series models for reliability evaluation of power systems including 
wind energy. Microelectronics and Reliability 1996;36:1253-61. 

[10] Wangdee W, Billinton R. Considering load-carrying capability and wind speed correlation of WECS in 
generation adequacy assessment. IEEE Transactions on Energy Conversion 2006;21:734-41. 

[11] Xie K, Billinton R. Considering wind speed correlation of WECS in reliability evaluation using the time-
shifting technique. Electric Power Systems Research 2009;79:687-93. 

[12] Miranda MS, Dunn RW. Spatially correlated wind speed modeling for generation adequacy studies in the 
UK. Proceedings of the IEEE Power Engineering Society General Meeting. Tampa, USA; 2007. 

[13] Morales JM, Minguez R, Conejo AG. A methodology to generate statistically dependent wind speed 
scenarios. Applied Energy 2010;87:843-55. 

[14] Dupačová J, Gröwe-Kuska N, Römisch W. Scenario reduction in stochastic programming: An approach 
using probability metrics. Mathematical Programming Series A 2003;95:493-511. 

[15] Heitsch H, Römisch W. Scenario reduction algorithms in stochastic programming. Computational 
Optimization and Applications 2003;24:187-206. 

[16] Heitsch H, Römisch W. A note on scenario reduction for two-stage stochastic programs. Operations 
Research Letters 2007;35:731-8. 



23 

 

[17] Fortet R, Mourier E. Convergence de la répartition empirique vers la répartition théorique. Annales 
Scientifiques l’École Normale Supérieure 1953;70:266-85. 

[18] Feng Y, Ryan SM. Scenario construction and reduction applied to stochastic power generation expansion 
planning. Computers & Operations Research 2013;40:9-23. 

[19] Heitsch H, Römisch W. Scenario tree reduction for multistage stochastic programs. Computational 
Management Science 2009;6:117-33. 

[20] Morales JM, Pineda S, Conejo AJ, Carrión M. Scenario reduction for futures market trading in electricity 
markets. IEEE Transactions on Power Systems 2009;24:878-88. 

[21] Bakirtzis AG, Petridis V, Kiatzis SJ, Alexiadis MC, Maissis AH. A Neural Network Short Term Load 
Forecasting Model for the Greek Power System. IEEE Transactions on Power Systems 1996;11:858-63. 

[22] Hippert HS, Pedreira CE, Souza RC. Neural networks for short-term load forecasting: A review and 
evaluation. IEEE Transactions on Power Systems 2001;16:44-55. 

[23] Devroye L. Non-uniform random variate generation. New York: Springer-Verlag. Available online at: 
<http://luc.devroye.org/rnbookindex.html>;1986. (Last accessed 12 May 2014) 

[24] Hara K, Kimura M, Honda N. A method for planning economic unit commitment and maintenance of 
thermal power systems. IEEE Transactions on Power Apparatus and Systems 1966;PAS-85:427-36. 

[25] Kerr RH, Scheidt  JL, Fontana AJ, Wiley JK. Unit Commitment. IEEE Transactions on Power Apparatus 
and Systems 1966;PAS-85:417–21. 

[26] Shoults RR, Chang SK, Helmick S, Grady WM. A practical approach to unit commitment, economic 
dispatch and savings allocation for multiple-area pool operation with import/export constraints. IEEE 
Transactions on Power Apparatus and Systems 1980;PAS-99:625–35.  

[27] Lee FN. Short-term thermal unit commitment - A new method. IEEE Transactions on Power Systems 
1988;3:421–8. 

[28] Senjyu T, Shimabukuro K, Uezato K, Funabashi T. A fast technique for unit commitment problem by 
extended priority list. IEEE Transactions on Power Systems 2003;18:882–8. 

[29] Lowery PG. Generating unit commitment by dynamic programming. IEEE Transactions on Power 
Apparatus and Systems 1966;PAS-85:422–6. 

[30] Pang CK, Sheble GB, Albuyeh F. Evaluation of dynamic programming based methods and multiple area 
representation for thermal unit commitments. IEEE Transactions on Power Apparatus and Systems 
1981;PAS-100: 1212–8.  

[31] Snyder WL, Powell Jr. HD, Rayburn JC. Dynamic programming approach to unit commitment. IEEE 
Transactions on Power Systems 1987;PWRS-2:339–50.  

[32] Hobbs WJ, Hermon G, Warner S, Sheble GB. An enhanced dynamic programming approach for unit 
commitment. IEEE Transactions on Power Systems 1988;3:1201–5.  

[33] Ouyang Z, Shahidehpour SM. An intelligent dynamic programming for unit commitment application. IEEE 
Transactions on Power Systems 1991;6:1203–9.  

[34] Chen CL, Chen SL. Short-term unit commitment with simplified economic dispatch. Electric Power 
Systems Research 1991;21:115–20. 

[35] Li C, Johnson RB, Svoboda AJ, Tseng C, Hsu E. A robust unit commitment algorithm for hydro-thermal 
optimization. IEEE Transactions on Power Systems 1998;13:1051–6.   

[36] Boussaϊd I, Lepagnot J, Siarry P. A survey on optimization metaheuristics. Information Sciences 
2013;237:82–117. 

[37] Mantawy AH, Abdel-Magid YL, Selim SZ. A new genetic-based tabu search algorithm for unit 
commitment problem. Electric Power Systems Research 1999;49:71-8.      

[38] Zhao B, Guo CX, Bai BR, Cao YJ. An improved particle swarm optimization algorithm for unit 
commitment. Electrical Power and Energy Systems 2006;28:482–90.      

[39] Kazarlis SA, Bakirtzis AG, Petridis V. A genetic algorithm solution to the unit commitment problem. IEEE 
Transactions on Power Systems 1996;11:83–92.      

[40] Maifeld TT, Sheble GB. Genetic-based unit commitment algorithm. IEEE Transactions on Power Systems 
1996;11:1359–70.   



24 

 

[41] Rudolf A, Bayrleithner R. A genetic algorithm for solving the unit commitment problem of a hydro-thermal 
power system. IEEE Transactions on Power Systems 1999;14:1460–8. 

[42] Damousis IG, Bakirtzis AG, Dokopoulos PS. A solution to the unit-commitment problem using integer-
coded genetic algorithm. IEEE Transactions on Power Systems 2004;19:1165–72.      

[43] Cohen AI, Sherkat VR. Optimization based methods for operations scheduling. Proceedings of the IEEE 
1987;75:1574–91. 

[44] Merlin A, Sandrin P. A new method for unit commitment at Electricité de France. IEEE Transactions on 
Power Apparatus and Systems 1983;PAS-102:1218–25.  

[45] Baldick R. The generalized unit commitment problem. IEEE Transactions on Power Systems 1995;10:465–
75.  

[46] Svoboda AJ, Tseng C, Li C, Johnson RB. Short-term resource scheduling with ramp constraints. IEEE 
Transactions on Power Systems 1997;12:77–83.  

[47] Cheng C, Liu C, Liu C. Unit commitment by lagrangian relaxation and genetic algorithms. IEEE 
Transactions on Power Systems 2000;15:707–14.     

[48] Fu Y, Shahidehpour M, Li Z. Security-constrained unit commitment with AC constraints. IEEE 
Transactions on Power Systems 2005;20:1001–13.   

[49] Dillon TS, Edwin KW, Kochs HD, Taud RJ. Integer programming approach to the problem of optimal unit 
commitment with probabilistic reserve determination. IEEE Transactions on Power Apparatus and Systems 
1978;PAS-97:2154–66. 

[50] Arroyo JM, Conejo AJ. Multiperiod auction for a pool-based electricity market. IEEE Transactions on 
Power Systems 2002;17:1225–31.   

[51] Streiffert D, Philbrick R, Ott A. A mixed integer programming solution for market clearing and reliability 
analysis. Proceedings of the IEEE Power Engineering Society General Meeting. San Francisco, USA; 2005.         

[52] Li T, Shahidehpour M. Price-Based Unit Commitment: A case of lagrangian relaxation versus mixed 
integer programming. IEEE Transactions on Power Systems 2005;20:2015–25.                                                                                                                          

[53] Carrion M, Arroyo JM. A computationally efficient mixed-integer linear formulation for the thermal unit 
commitment problem. IEEE Transactions on Power Systems 2006;21:1371-8. 

[54] Frangioni A, Gentile C, Lacalandra F. Tighter approximated MILP formulations for unit commitment 
problems. IEEE Transactions on Power Systems 2009;24:105-13. 

[55] Ostrowski J, Anjos MF, Vannelli A. Tight mixed integer linear programming formulations for the unit 
commitment problem. IEEE Transactions on Power Systems 2012;27:39-46. 

[56] Morales-España G, Latorre JM, Ramos A. Tight and compact MILP formulation of start-up and shut-down 
ramping in unit commitment. IEEE Transactions on Power Systems 2013;28:1288-96. 

[57] Bouffard F, Galiana FD. Stochastic security for operations planning with significant wind power 
generation. IEEE Transactions on Power Systems;23:306-16. 

[58] Tuohy A, Meibom P, Denny E, O' Malley M. Unit commitment for systems with significant wind 
penetration. IEEE Transactions on Power Systems 2009;24:592-601. 

[59] Wu L, Shahidehpour M, Li T. Stochastic security-constrained unit commitment. IEEE Transactions on 
Power Systems 2007;22:800-11. 

[60] Morales JM, Conejo AJ, Pérez-Ruiz J. Economic valuation of reserves in power systems with high 
penetration of wind power. IEEE Transactions on Power Systems 2009;24:900-10. 

[61] Papavasiliou A, Oren SS, O'Neill RP. Reserve requirements for wind power integration: A scenario-based 
stochastic programming framework. IEEE Transactions on Power Systems 2011;26:2197-206. 

[62] Ben-Tal A, El Ghaoui L, Nemirovski A. Robust optimization. Princeton University Press; 2009.  

[63] Jiang GLR, Zhang M, Guan Y. Two-stage robust power grid optimization problem. Technical Report; 
2010. 

[64] Zhao L, Zeng B. Robust unit commitment problem with demand response and wind energy. Technical 
Report, University of South Florida; 2010. 

[65] Bertsimas D, Litvinov E, Sun XA, Zhao J,  Zheng T. Adaptive robust optimization for the security 
constrained unit commitment problem. IEEE Transactions on Power Systems 2013;28:52-63. 



25 

 

[66] Street A, Oliveira F, Arroyo JM. Contingency-constrained unit commitment with n-K security criterion: A 
robust optimization approach. IEEE Transactions on Power Systems 2011;26:1581-90. 

[67] Wang Q, Watson J, Guan Y. Two-stage robust optimization for n-K contingency-constrained unit 
commitment. IEEE Transactions on Power Systems 2013;28:2366-75. 

[68] Jiang R, Wang J, Guan Y. Robust unit commitment with wind power and pumped storage hydro. IEEE 
Transactions on Power Systems 2012;27:800-10. 

[69] Cheung KW, Rios-Zalapa RR. Smart dispatch for large grid operations with integrated renewable 
resources. Proceedings of the Innovative Smart Grid Technology (ISGT) Conference. California, USA; 
2011. 

[70] Look Ahead Commitment Stage 1—Highlights From Functional Design Document v1.1, Midwest ISO, 
May 4, 2010. Available online at: 
https://www.midwestiso.org/WHATWEDO/STRATEGICINITIATIVES/Pages/LookAhead.aspx (Last 
accessed 12 May 2014) 

[71] FERC Order 764 Compliance. 15-Minute Scheduling and Settlement. Draft Final Proposal, California ISO, 
Mar. 26, 2013. Available online at: <http://www.caiso.com/Documents/DraftFinalProposal-FERC-
Order764MarketChanges.pdf> (Last accessed 12 May 2014) 

 
Table Captions 

Table 1 RES generation forecasting models characteristics 

Table 2 Crete power system overview (December 2013) 

Figure Captions 
Fig. 1 Graphical illustration of an ANN model 

Fig. 2 Scenario generation algorithm 

Fig. 3 Scenario generation algorithm using forecasting model AR (3) 

Fig. 4 Extended set of scenarios for wind park “Anemos Aiolikis” 

Fig. 5 Reduced set of scenarios for wind park “Anemos Aiolikis” 

Fig. 6 Extended set of scenarios for wind park “Ydroaioliki” 

Fig. 7 Reduced set of scenarios for wind park “Ydroaioliki” 

Fig. 8 Extended set of system load scenarios for the power system of Crete 

Fig. 9 Reduced set of system load scenarios for the power system of Crete 

Fig.10 Unit availability state sequence  

Fig. 11 A two-state Markov model  
Fig. 12  General structure of MILP models 

Fig. 13  Scheduling models characteristics 

Fig. 14  Coordination sequence of scheduling processes 
Fig. 15 Day-ahead scheduling – Morning wind (Case 1) 

Fig. 16 Day-ahead scheduling – Afternoon wind (Case 2) 

Fig. 17 Energy and reserves contribution from conventional units – Morning wind (Case 1) 

Fig. 18 Energy and reserves contribution from conventional units – Afternoon wind (Case 2) 

Fig. 19 Total daily production cost – Morning wind (Case 1) 

Fig. 20 Total daily production cost – Afternoon wind (Case 2) 


