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Abstract 10 
The non-stationary and stochastic nature of wind power reveals itself a difficult task to forecast and manage. In this context, with the 11 
continuous increment of wind farms and their capacity production in Portugal, there is an increasing need to develop new forecasting tools with 12 
enhanced capabilities. On the one hand, it is crucial to achieve higher accuracy and less uncertainty in the predictions. On the other hand, the 13 
computational burden should be kept low to enable fast operational decisions. Hence, this paper proposes a new hybrid evolutionary-adaptive 14 
methodology for wind power forecasting in the short-term, successfully combining mutual information, wavelet transform, evolutionary 15 
particle swarm optimization, and the adaptive neuro-fuzzy inference system. The strength of this paper is the integration of already existing 16 
models and algorithms, which jointly show an advancement over present state of the art. The results obtained show a significant improvement 17 
over previously reported methodologies. 18 

Keywords: Forecasting, wind power, evolutionary particle swarm optimization, neuro-fuzzy system, mutual information, wavelet transform. 19 

1. Introduction 20 

Recently, with the new paradigm shift in the energy sector, and the impositions for a gradual reduction of greenhouse gas 21 

emissions, producers are faced with delivering electricity using clean energy sources, in competitive deregulated electricity 22 

markets [1]-[2]. 23 

In this context, wind power sources have had the biggest jump in exploration and implementation within the electricity grid 24 

[3]-[4], in comparison with other clean energy technologies [5]. This worldwide expansion of wind energy has occurred due to 25 

the ratio between production and implementation costs, maintenance costs, the maturity of technology, and increasing production 26 

capacity [6]. However, due to the stochastic characteristic of wind power sources [7]-[9], its integration is responsible for the 27 

introduction of more variability, volatility, and uncertainty in system operation, which complicates the proper management of all 28 

production sources [10]-[11].  29 
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The behavior of wind farms depends on the quality and variation of wind speed, the weather conditions, total wind power 30 

capacity connected to the electricity grid, scheduled maintenance [12]-[13], and the wind power acceptance in electrical 31 

framework when it is available [14]. 32 

Portugal is one of the countries with the fastest growth in wind power production, and by 2020 it hopes to achieve an installed 33 

capacity of 8500 MW [15]. Thus, it becomes important to minimize the volatility and intermittent impacts of wind  34 

power [16]-[17], which can be accomplished by the scientific community in presenting new ideas for predicting wind power 35 

behavior [18]-[20]. Wind power forecasting tools represent a very important field of research for system operators, in order to 36 

reduce fluctuating power and optimize the installed wind power resources [21]. 37 

Wind power forecasting can be classified by time-scales, that is: very short-term, short-term and long-term (of the order of 38 

multiple days) [22]. Several wind power forecasting methodologies have been developed and described in the technical literature 39 

in recent years, which can be split into physical and statistical methodologies [23].  40 

Physical methodologies need an extensive number of physical specifications, and their inputs are also physical variables, such 41 

as orography, pressure and temperature, presenting advantages in long-term forecasting [24]. Statistical methodologies try to 42 

establish inherent relationships within the measured data, which can have advantages in short-term forecasting [25]-[26]. Some 43 

statistical methodologies are based on auto regressive techniques, i.e., auto regressive integrated moving average (ARIMA) [27]. 44 

Persistence and new reference model (NRM) [28] are also time-series models that can provide a valuable first approximation, 45 

and inclusively are able to beat numerical weather prediction (NWP) models for very short-term horizons (between few seconds 46 

till 6 hours ahead). 47 

Soft computing methodologies have become very popular recently, using an auto learning process from historical sets to 48 

identify future patterns, such as neural networks (NNs) [29]-[30], NNs with wavelet transform (WT), i.e., NNWT [31]; adaptive 49 

WT with NN (AWNN) [32], neuro-fuzzy (NF) systems [33]-[34], evolutionary algorithms [35], and some hybrid methods, such 50 

as wavelet-neuro-fuzzy (WNF) and particle swarm optimization (PSO)-WT-NF (WPA) [36]. 51 

In this paper, a new hybrid evolutionary-adaptive (HEA) methodology is tested for forecasting wind power, based  52 

on MI-mutual information, WT, EPSO-evolutionary particle swarm optimization, and ANFIS-adaptive neuro-fuzzy inference 53 

system. The HEA methodology is tested on a real case study using wind power data from Portugal. The object of the study is 54 

short-term prediction in wide area forecasting. To prove its superior forecasting accuracy and reduced computational burden, a 55 

comparison study will take into account persistence, NRM, ARIMA, NN, NNWT, NF, WNF, and WPA methodologies. This 56 

paper is organized in five sections: the proposed methodology (Section 2), forecasting accuracy validation (Section 3), case study 57 

(Section 4), and finally conclusions (Section 5). 58 
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2. Proposed methodology 59 

The HEA methodology results from the innovative combination of MI, WT, EPSO and ANFIS. The MI is used to eliminate 60 

the randomness in the selection of wind power series as inputs, increasing the robustness of the methodology and helping to 61 

decrease the final forecasting error [37]. MI is a nonlinear feature selection technique that is more adequate for wind power series 62 

than a correlation analysis [23, 38]. MI-based techniques in [23] outperform correlation analysis, which is a linear feature 63 

selection method, while wind power is a nonlinear mapping function of its input variables. The WT is employed to decompose 64 

the sets of wind power into new constitutive sets with better behavior. Then, the forthcoming values of those constitutive sets are 65 

predicted with the ANFIS. EPSO brings on augmented ANFIS performance by tuning their membership functions to attain a 66 

lesser error. Comparatively to a classical PSO, the evolutionary concepts behind of EPSO can make a real difference in terms of 67 

convergence properties. EPSO is self-adaptive, more robust and less sensitive to parameter initialization, comparatively to 68 

classical PSO. The evolutionary characteristics of EPSO and the adaptive characteristics of ANFIS complement each other 69 

perfectly. Finally, the inverse WT is used to reconstruct the signal, obtaining then the final forecasting results. 70 

2.1 Mutual Information 71 

The MI is based on the concept of entropy. In the case where variable ܺ is a random discrete variable, for example, ( ଵܺ , … ,ܺ), 72 

with distribution probabilities ܲ(ܺ), the entropy ܪ(ܺ) is given by [39]-[40]:  73 

(ܺ)ܪ = −ܲ( ܺ) logଶ൫ܲ( ܺ)൯


ୀଵ

																																																																																									(1) 

The conditional entropy is defined as: 74 

ܻ)ܪ ܺ⁄ ) = 	−ܲ൫ ܺ , ܻ൯ logଶ ቀܲ൫ ܻ ܺ⁄ ൯ቁ


ୀଵ



ୀଵ

																																																																													(2) 

The conditional entropy ܪ(ܻ ܺ⁄ ) quantifies the remaining uncertainty of ܻ when ܺ is known. The joint and conditional 75 

entropies are related by: 76 

(ܻ,ܺ)ܪ = (ܺ)ܪ + ܻ)ܪ ܺ⁄ ) = (ܻ)ܪ  (3)																																																																												(ܻ/ܺ)ܪ+

The MI measures the level of information between a set of information data. The discrete expression is defined as: 77 

(ܻ,ܺ)ܫܯ = ܲ൫ ܺ , ܻ൯ logଶ ቆ
ܲ൫ ܺ , ܻ൯

ܲ( ܺ)ܲ൫ ܻ൯	
ቇ



ୀଵ



ୀଵ

																																																																									(4) 

The MI may be given as: 78 

(ܻ,ܺ)ܫܯ = (ܺ,ܻ)ܫܯ = (ܺ)ܪ ܺ)ܪ− ⁄ ܻ)																																																																																(5) 

To ensure the convergence of the HEA methodology, the bounds of MI are very important to guarantee the best performance of 79 

the ANFIS. MI helps to determine the best sets of candidates that will be inputs for training the ANFIS tool [41]. Fig. 1 shows a 80 

simplified representation about MI. 81 
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 82 
Fig. 1. Simplified MI representation. 83 

2.2 Wavelet Transform 84 

Non-stationary behavior in a time series arises from instability in the mean and variance of the series. The WT is used in non-85 

stationary or time varying sets [42], being sensitive to the irregularities of input sets [43]. WT tools are capable of illustrating 86 

different aspects in the sets without losing the signal [44], reducing the noise of the sets without degradation. The discrete 87 

wavelet transform (DWT) is defined [13] as: 88 

ܹ(݉,݊) = 2ି( ଶ⁄ ) ݂(ݐ)
்ିଵ

௧ୀ

߮൬
ݐ − ܾ
ܽ ൰																																																																															(6) 

In (6) the variable ܶ represents the signal length ݂(ݐ), the parameters of scaling and translation of φ are given by ܽ = 2 	 and 89 

	ܾ = ݊2, respectively, and the time step is given by ݐ. The DWT algorithm used in this work is based on four filters divided into 90 

two groups: the decomposition in low and high pass filters, and the reconstruction in low and high filters. The approximations 91 

(An) and details (Dn) of the original sets can be obtained via Mallat’s algorithm. Fig. 2 shows a three-level decomposition model 92 

of WT [13], used in this work. Also, the 4th Daubechies function is chosen as mother function due to better trade-off among 93 

length and smoothness [36]. 94 

 95 

Fig. 2. Level decomposition model of WT. 96 

2.3 Evolutionary Particle Swarm Optimization 97 

EPSO corresponds to a meta heuristic method where rules and optimization concepts are contained in the evolutionary 98 

strategies and self-adaptive properties [45]. Each particle is described by object parameters and strategic parameters [46]-[47]. 99 

Hence, the formulation of EPSO is composed of object parameters ܺ and strategic parameters ݓ that correspond to the weights. 100 

The movement rule of EPSO is defined as [48]: 101 

ܺ
௪ = ܺ + ܸ

௪ 																																																																																																		(7) 

ܸ
௪ = ݓ

∗ 	 ܸ + ଵݓ
∗ 	( ܾ − ܺ) ଶݓ+

∗ 	൫ ܾ
∗ − ܺ൯																																																																									(8) 
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Equations (7) and (8) are similar to their classical PSO algorithm, as shown in Fig. 3. The difference is related to the weights 102 

ݓ
∗ , which undergo mutation given as: 103 

ݓ
∗ = ݓ + ߬ܰ(0,1)																																																																																																		(9) 

where ܰ(0,1) is a randomly Gaussian variable. The global best ܾ
∗ is changed according to: 104 

ܾ∗ = ܾ + ߬ ′ܰ(0,1)																																																																																															(10) 

 105 

Fig. 3. Movement rule of a particle. 106 

2.4 Adaptive Neuro-Fuzzy Inference System 107 

ANFIS is a combination of NN and fuzzy algorithms: NN has the capability of self-learning which is essential for the fuzzy 108 

system to auto-adjust accordingly with the proposed problem. Due to the self-learning process, the membership functions are 109 

adjusted in an adaptive form [49]-[50]. The general ANFIS architecture is composed by 5 layers, thus also called multi-layer 110 

feed-forward network, represented in general terms in Fig. 4. 111 

 112 

Fig. 4. General ANFIS architecture [50]. 113 

A triangular membership function is considered in this manuscript as a node function due to being a continuous and piecewise 114 

differentiable function [36]. The ANFIS used in this paper employs the least-squares and back-propagation gradient descent 115 

method. EPSO assists in the tuning of the membership function parameters [36]. 116 

2.5 Hybrid Evolutionary–Adaptive Methodology 117 

The HEA methodology will now be described in successive steps. Fig. 5 illustrates the structure of the HEA methodology in 118 

the form of a flowchart. 119 

Step 1: The HEA methodology is initialized with a matrix of historical wind power data considering the previous 12 hours, 120 

with a time step of 15 minutes. The historical wind power data date back to 2007 and 2008, available in [51]. To allow a fair 121 

comparison with the results already obtained using other methodologies, the same data of 2007 and 2008 were selected, each 122 
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corresponding to a different season (winter, spring, summer and fall). Moreover, for a clear comparison, only historical data sets 123 

of wind power are used, i.e., no exogenous sets are taken into account, which also allows a reduced overall computational time.  124 

Step 2: The previous matrix of historical data is normalized in {0, 1} intervals, to find the set of historical wind power data in 125 

the same scale, that will be later used by the MI in future candidate selections. 126 

Step 3: Constitute data groups for the MI. The number of those groups is defined by combinatorial optimization in order to 127 

avoid compromising the computational burden. The formation of groups must be performed in a balanced way; otherwise, this 128 

could compromise the ANFIS performance. 129 

Step 4: Compute the entropy and conditional entropy of each group, where ܲ(ܺ) is given by a binomial distribution function. 130 

Step 5: Compute the MI of each group. 131 

Step 6: Compute the best group subset data. The best group found will be recombined in wind power data-sets. These selected 132 

sets will be inputs for the WT. 133 

Step 7: Training the ANFIS with the previous constitutive sets. The optimization of membership function parameters is 134 

achieved by EPSO.  135 

Step 8: Until the best results or convergence are not reached, jump to Step 1. When the best results are found or convergence is 136 

reached, the inverse WT is applied and the output of the methodology is reached. 137 

Step 9: Compute the wind power forecasting errors with different criteria to validate the methodology, comparing the results 138 

obtained with other results already available in the specialized literature. 139 

Table 1 shows the parameters considered for MI, ANFIS and EPSO. The inference rules of ANFIS are put into automatic 140 

mode to achieve the best performance. This is done according to the nature of the data, which requires a large number of 141 

inference rules to obtain the best results [36]. 142 
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 143 

Fig. 5. Flowchart of the proposed methodology. 144 
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Table 1 145 
Parameters of MI, ANFIS and EPSO 146 

 Parameters Type or Size 

MI 
Best Lower Bound of Set 0.20 

Best Upper Bound of Set 0.86 

ANFIS 

Membership Functions 2–7  

Necessary Iterations or Epoch 2–25  

Type of Membership Functions Triangular–format 

EPSO 

Fitness Acceleration 2 

Sharing Acceleration 2 

Initial Inertia Weight of Population 0.9 

Final Inertia Weight of Population 0.4 

Population Size 96 

Maximum Generation 192 

Number of New Particles 12 

Generation for Each New Particle 2 

Necessary Iterations 192 

Minimum Value of New Position 5 

Maximum Value of New Position 2000 

3. Forecasting accuracy evaluation 147 

To compare the proposed methodology with other methodologies used for wind power forecasting, previously published in the 148 

specialized literature, the mean absolute percentage error (MAPE) criterion is commonly used. This criterion is given as: 149 

ܧܲܣܯ =
100
ܰ 

̂| − |
̅

																																																																																										(11)
ே

ୀଵ

 

̅ =
1
ܰ



ே

ୀଵ

																																																																																																							(12) 

where ̂ is the wind power data forecast at hour ℎ,  is the actual wind power data at hour ℎ, ̅ is the average value for the 150 

forecasting horizon.  151 

The uncertainty of the proposed methodology is also evaluated using the error variance estimation. The smaller the value for 152 

this criterion, the more exact the methodology is. In accordance with the MAPE criterion, the error variance criterion is given by: 153 

,௧ߪ
ଶ =

1
ܰቆ

̂| − |
̅ − ݁௧ቇ

ଶே

ୀଵ

																																																																																										(12) 

݁௧ =
1
ܰ

̂| − |
̅

ே

ୀଵ

																																																																																																						(13) 

Moreover, the normalized mean absolute error (NMAE) criterion is determined by: 154 

ܧܣܯܰ =
100
ܰ 

̂| − |
ܲ௦

																																																																																																(14)
ே

ୀଵ

 

while ܲ௦ corresponds to the wind power capacity installed ( ܲ௦ =  in this work).  155 ܹܯ2700
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Furthermore, the normalized root mean square error (NRMSE) is used [23], [52], [53] determined by: 156 

ܧܣܯܰ = ඩ
1
ܰ൬

̂ − 
ܲ௦

൰
ଶே

ୀଵ

× 100																																																																																								(15) 

4. Case study 157 

The HEA methodology has been applied for the prediction of the whole wind power in Portugal. The numerical results 158 

presented take into account the wind farms that have telemetry with the Portuguese TSO (REN). Our forecaster predicts the 159 

value of the wind power subseries for 3-h ahead taking into account the wind power data of the previous 12 hours with a time 160 

step of 15 minutes.  161 

Numerical results with HEA methodology are provided in Figures 6 to 9 for the four seasons of the year, correspondingly. The 162 

prediction bias may be considered rather neutral, in the sense that when the errors start to go more in the positive side, the 163 

methodology immediately corrects itself and drives them to the negative side to compensate, and vice-versa. This behaviour is 164 

associated to the evolutionary characteristics of EPSO, on the one hand, and the adaptive characteristics of ANFIS, on the other 165 

hand.  166 

Table 2 provides a comparative study between the HEA methodology and eight other previously published methodologies, 167 

regarding the MAPE criterion. The MAPE criterion using HEA methodology has an average value of only 3.75%, the lowest one 168 

of all. The MAPE enhancements between HEA and the other methodologies are 80.3%, 80.3%, 63.7%, 48.3%, 46.2%, 43.5%, 169 

37.4% and 24.7%, respectively, always above 24%, which is significant.  170 

Table 3 provides a comparative study between the HEA methodology and the eight other methodologies, regarding the error 171 

variance criterion. The average value is only 0.0013, again the lowest one of all, indicating lesser uncertainty in the forecasts. 172 

The error variance enhancements between HEA and the other methodologies are 94.4%, 94.4%, 83.8%, 74.5%, 72.3%, 69.8%, 173 

59.4% and 38.1%, respectively, always above 38%, even more significant since it is related to the uncertainty in the forecasts, 174 

representing a major improvement. Table 4 shows the NMAE criterion comparative results between the HEA methodology and 175 

the eight other methodologies. The enhancements between HEA methodology and the other methodologies regarding the NMAE 176 

criterion are 83.1%, 83.0%, 69.0%, 55.1%, 53.3%, 51.1%, 46.5% and 36.3%, respectively, always above 35%, again significant. 177 

Furthermore, Table V shows the NRMSE criterion results of the HEA methodology for the four seasons. The NRMSE 178 

criterion using the HEA methodology has an average value of 2.66%. 179 
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 180 
Fig. 6. Measured and predicted results (15-min intervals) for the Winter season: Gray and black lines represent actual and forecasted wind 181 

power, respectively, while dark-blue line represents errors in absolute value. 182 

 183 
Fig. 7. Measured and predicted results (15-min intervals) for the Spring season: Gray and black lines represent actual and forecasted wind 184 

power, respectively, while dark-blue line represents errors in absolute value. 185 

 186 
Fig. 8. Measured and predicted results (15-min intervals) for the Summer season: Gray and black lines represent actual and forecasted wind 187 

power, respectively, while dark-blue line represents errors in absolute value. 188 
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 189 
Fig. 9. Measured and predicted results (15-min intervals) for the Fall season: Gray and black lines represent actual and forecasted wind power, 190 

respectively, while dark-blue line represents errors in absolute value. 191 

Table 2 192 
MAPE Outcomes for all Methodologies 193 

 Winter 
season 

Spring  
season 

Summer  
season 

Fall  
season Average 

Persistence [29] 13.89 32.40 13.43 16.49 19.05 

NRM [36] 13.87 32.38 13.43 16.43 19.03 

ARIMA [29] 10.93 12.05 11.04 7.35 10.34 

NN [29] 9.51 9.92 6.34 3.26 7.26 

NNWT [31] 9.23 9.55 5.97 3.14 6.97 

NF [33] 8.85 8.96 5.63 3.11 6.64 

WNF [19] 8.34 7.71 4.81 3.08 5.99 

WPA [36] 6.47 6.08 4.31 3.07 4.98 

HEA 5.74 3.49 3.13 2.62 3.75 

Table 3 194 
Error variance outcomes for all methodologies  195 

 Winter  
season 

Spring  
season 

Summer  
season 

Fall  
season Average 

Persistence [29] 0.0074 0.0592 0.0085 0.0179 0.0233 

NRM [36] 0.0074 0.0590 0.0079 0.0180 0.0231 

ARIMA [29] 0.0025 0.0164 0.0090 0.0039 0.0080 

NN [29] 0.0044 0.0106 0.0043 0.0010 0.0051 

NNWT [31] 0.0055 0.0083 0.0038 0.0012 0.0047 

NF [33] 0.0041 0.0086 0.0038 0.0008 0.0043 

WNF [19] 0.0046 0.0051 0.0021 0.0011 0.0032 

WPA [36] 0.0021 0.0035 0.0016 0.0011 0.0021 

HEA 0.0019 0.0015 0.0010 0.0008 0.0013 

  196 
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Table 4 197 
Comparative NMAE results  198 

 Winter  
season 

Spring  
season 

Summer  
season 

Fall  
season Average 

Persistence [29] 7.64 12.15 4.98 10.88 8.91 

NRM [36] 7.62 12.14 4.98 10.84 8.90 

ARIMA [29] 6.01 4.52 4.09 4.85 4.87 

NN [29] 5.22 3.72 2.35 2.15 3.36 

NNWT [31] 5.07 3.58 2.21 2.07 3.23 

NF [33] 4.86 3.36 2.09 2.05 3.09 

WNF [19] 4.58 2.89 1.78 2.03 2.82 

WPA [36] 3.56 2.28 1.60 2.02 2.37 

HEA 2.73 1.48 0.74 1.10 1.51 

Table 5 199 
NRMSE results  200 

 Winter  
season 

Spring  
season 

Summer  
season 

Fall  
season Average 

HEA 3.60 3.18 1.78 2.07 2.66 

Statistically demonstrative results for a full year (2009) using the HEA methodology are provided in Table 6 and Table 7 201 

concerning the MAPE and NMAE criterions, respectively. The HEA methodology clearly outperforms all other methodologies.  202 

Furthermore, the HEA methodology presents a relatively low computational burden; the CPU time is less than 40 seconds per 203 

iteration, on average, working with MATLAB on a standard PC with 1.8 GHz processor and 1.5-GB of RAM. Not only is the 204 

training time almost negligible, but also the accuracy is higher and the uncertainty is lower.   205 

Table 6 206 
Comparative MAPE outcomes for 2009  207 

 Persist. 
[29] 

NRM 
[36] 

ARIMA 
[29] 

NN 
[29] 

NNWT 
[31] 

NF 
[33] 

WNF 
[19] 

WPA 
[36] HEA 

January 17.44 16.83 16.03 13.62 12.22 10.69 8.16 6.71 6.14 

February 22.84 22.81 20.56 14.55 12.92 11.68 8.64 7.05 6.05 

March 19.70 18.99 13.01 12.04 11.05 8.76 7.51 6.19 5.61 

April 22.77 22.53 13.26 9.43 9.19 8.78 7.82 6.57 5.55 

May 17.20 16.78 11.98 9.86 8.85 8.29 6.87 5.94 4.52 

June 36.70 36.37 27.96 14.18 12.52 11.60 8.85 7.23 6.98 

July 21.30 20.86 15.98 13.53 12.28 11.16 8.42 7.06 7.02 

August 13.94 13.55 11.94 8.42 7.48 6.18 5.09 4.66 4.58 

September 24.51 24.20 16.65 10.60 10.28 9.95 8.28 7.33 5.55 

October 26.45 26.16 18.58 12.92 11.28 10.44 8.67 7.26 7.20 

November 17.16 16.88 14.47 12.72 12.15 11.36 8.65 6.99 5.10 

December 16.90 16.86 12.14 10.03 9.54 8.98 7.02 5.99 5.43 

Average 21.41 21.07 16.05 11.83 10.81 9.82 7.83 6.58 5.81 

  208 



13 
 

Table 7 209 
Comparative NMAE outcomes for 2009  210 

 Persist. 
[29] 

NRM 
[36] 

ARIMA 
[29] 

NN 
[29] 

NNWT 
[31] 

NF 
[33] 

WNF 
[19] 

WPA 
[36] HEA 

January 3.23 3.12 2.97 2.53 2.26 1.98 1.51 1.24 1.16 

February 8.34 8.37 7.51 5.31 4.71 4.27 3.16 2.58 2.24 

March 1.91 1.84 1.26 1.17 1.07 0.85 0.73 0.60 0.55 

April 4.07 4.02 2.37 1.69 1.64 1.57 1.40 1.17 0.99 

May 5.91 5.76 4.11 3.39 3.04 2.85 2.36 2.04 1.59 

June 7.86 7.79 5.99 3.04 2.68 2.48 1.89 1.55 0.72 

July 4.05 3.96 3.04 2.57 2.33 2.12 1.60 1.34 0.69 

August 4.73 4.60 4.05 2.86 2.54 2.10 1.73 1.58 1.55 

September 4.85 4.79 3.29 2.10 2.03 1.97 1.64 1.45 1.09 

October 5.36 5.31 3.77 2.62 2.29 2.12 1.76 1.47 1.35 

November 7.02 6.90 4.08 5.20 4.97 4.65 3.54 2.86 1.98 

December 5.54 5.53 3.98 3.29 3.13 2.95 2.30 1.97 1.81 

Average 5.24 5.17 3.87 2.98 2.72 2.49 1.97 1.65 1.31 

5. Conclusions 211 

A new hybrid evolutionary-adaptive methodology, called HEA, was tested for short-term (3-h ahead with 15-min intervals) 212 

wind power predictions in the Portuguese system. The HEA methodology results from the valuable joint characteristics of WT 213 

(bringing a filtering effect handling non-stationary sets), EPSO (bringing evolutionary optimization), and ANFIS (bringing an 214 

adaptive architecture), considering also MI in the selection of the best input data (increasing the robustness of the methodology). 215 

For a fair and clear comparative study, identical test cases used by other methodologies were considered, also without exogenous 216 

variables. The application of the proposed HEA methodology was revealed to be accurate and effective, helping to reduce the 217 

uncertainty associated with wind power. The average MAPE value was only 3.75% for an average error variance of 0.0013 and a 218 

NRMSE of 2.66%. In addition, the low computational burden is a reality, providing wind power forecast results in less than 40 219 

seconds per iteration. Hence, the proposed HEA methodology presents the best trade-off between computational time and 220 

accuracy, which is crucial for real-life and real-time applications. 221 
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