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Abstract 
 
 This paper proposes artificial neural networks in combination with wavelet transform for short-term wind power 
forecasting in Portugal. The increased integration of wind power into the electric grid, as nowadays occurs in 
Portugal, poses new challenges due to its intermittency and volatility. Hence, good forecasting tools play a key role in 
tackling these challenges. Results from a real-world case study are presented. A comparison is carried out, taking into 
account the results obtained with other approaches. Finally, conclusions are duly drawn. 
© 2010 Elsevier Ltd. All rights reserved. 
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1. Introduction 
 

Wind energy is gaining increasing importance throughout the world [1], and wind-driven power 

resources have become increasingly important in the planning and operation of electric power systems. In 

Portugal, the wind power goal foreseen for 2010 was established by the government as 3750 MW, 

representing about 25% of the total installed capacity in 2010. The wind power generating capacity 

reached 3350 MW on November 2009 and continues growing [2]. Particularly, on 15 November at 

7h30m, the contribution of wind power was the highest ever, reaching 71% of the total load [3]. 

Wind as the energy source has an intermittent nature. Integration of wind power into an electrical grid 

requires an estimate of the expected power from the wind farms at least one to two days in advance [4]. 

Short-term wind power forecasting is an extremely important field of research for the energy sector, as 

the system operators must handle an important amount of fluctuating power from the increasing installed 

wind power capacity. The time scales concerning short-term prediction are in the order of some days (for 

the forecast horizon) and from minutes to hours (for the time-step) [5]. 
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In the technical literature, several methods to predict wind power have been reported, namely physical 

[6] and statistical methods [7]. Physical method has advantages in long-term prediction while statistical 

method does well in short-term prediction [8]. 

Conventional statistical models are identical to the direct random time-series model, including auto 

regressive (AR), and auto regressive integrated moving average (ARIMA) [9] models. The persistence 

models are considered as the simplest time-series models, but they can surpass many other models in very 

short-term prediction. In spite of the unstable forecasting efficiency, they have been widely used in 

practice [8]. The persistence approach has proven to be a useful first approximation for short-term wind 

power forecasting. Hence, persistence and ARIMA approaches provide an important benchmark against 

which to compare alternative techniques. 

In the recent years, some new methods are catching researcher’s attention, namely data mining [10], 

artificial neural networks (NN) [11–14], fuzzy logic [15,16], evolutionary algorithms [17], and some 

hybrid methods [18,19]. The accurate comparison of all the methods is quite difficult because these 

methods depend on different situations and the data collection is a formidable task. However, it has been 

reported that artificial-based models outperformed others in short-term prediction [8]. 

NN are simple, but powerful and flexible tools for forecasting, provided that there are enough data for 

training, an adequate selection of the input-output samples, an appropriate number of hidden units and 

enough computational resources available. Also, NN have the well-known advantages of being able to 

approximate nonlinear functions and being able to solve problems where the input-output relationship is 

neither well defined nor easily computable, because NN are data-driven. Three-layered feedforward NN 

are specially suited for forecasting, implementing nonlinearities using sigmoid functions for the hidden 

layer and linear functions for the output layer [20]. Hence, a three-layered feedforward NN trained by the 

Levenberg-Marquardt algorithm is considered in this paper. 

This paper presents a successful application of using NN in combination with wavelet transform (WT) 

to forecast short-term wind power in Portugal. The proposed NNWT approach is compared with 

persistence, ARIMA and NN approaches, to demonstrate its effectiveness regarding forecasting accuracy 

and computation time. 
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This paper is organized as follows. Section II presents the proposed NNWT approach to forecast wind 

power. Section III provides the different criterions used to evaluate the forecasting accuracy. Section IV 

presents the numerical results from a real-world case study. Finally, Section V outlines the conclusions. 

 

2. Proposed approach 
 

The proposed NNWT approach to forecast short-term wind power is based on a combination of NN 

with WT. The WT is used to decompose the wind power series into a set of better-behaved constitutive 

series. Then, the future values of these constitutive series are forecasted using NN. In turn, the NN 

forecasts allow, through the inverse WT, reconstructing the future behavior of the wind power series and 

therefore to forecast wind power. 

2.1. Wavelet transform 

The WT convert a wind power series into a set of constitutive series. These constitutive series present 

a better behavior than the original wind power series, and therefore, they can be predicted more 

accurately. The reason for the better behavior of the constitutive series is the filtering effect of the WT. 

A brief summary of WT is presented hereafter. For the sake of simplicity, one-dimensional wavelets 

are considered to illustrate the related concepts. Wavelet analysis is capable of revealing aspects of data 

that other signal analysis techniques miss, such as trends, breakdown points, discontinuities in higher 

derivatives and self-similarity. Furthermore, wavelet analysis can often compress or de-noise a signal 

without appreciable degradation [21]. These capabilities of WT can be useful in short-term wind power 

forecasting. 

WTs can be divided in two categories: continuous wavelet transform (CWT) and discrete wavelet 

transform (DWT). The CWT ),( baW  of signal )(xf  with respect to a mother wavelet )(x  is given by 

[21]: 

 dx
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where the scale parameter a  controls the spread of the wavelet and translation parameter b  determines 

its central position. The ),( baW  coefficient represents how well the original signal )(xf  and the 

scaled/translated mother wavelet match. Thus, the set of all wavelet coefficients ),( baW , associated to a 

particular signal, is the wavelet representation of the signal with respect to the mother wavelet.  
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Since the CWT is achieved by continuously scaling and translating the mother wavelet, substantial 

redundant information is generated. Therefore, instead of doing that, the mother wavelet can be scaled 

and translated using certain scales and positions usually based on powers of two. This scheme is more 

efficient and just as accurate as the CWT [22]. It is known as the DWT and defined as: 
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where T  is the length of the signal )(tf . The scaling and translation parameters are functions of the 

integer variables m  and n  ( mm nba 2.,2  ); t  is the discrete time index. 

A fast DWT algorithm based on the four filters (decomposition low-pass, decomposition high-pass, 

reconstruction low-pass, and reconstruction high-pass filters), developed by Mallat [23], is considered in 

this paper. 

Multiresolution via Mallat’s algorithm is a procedure to obtain ‘‘approximations’’ and ‘‘details’’ from 

a given signal. An approximation holds the general trend of the original signal, whereas a detail depicts 

high-frequency components of it [22]. By successive decomposition of the approximations (Fig. 1), a 

multilevel decomposition process can be achieved where the original signal is broken down into lower 

resolution components. 

"See Fig. 1 at the end of the manuscript". 

A wavelet function of type Daubechies of order 4 (abbreviated as Db4) is used as the mother    

wavelet )(t . The peculiarity of this wavelet system is that there is no explicit function, so we cannot 

draw it directly. The order of the Daubechies functions denotes the number of zero moments of the 

wavelet function. The wavelets are built based in a small function )(t , given by: 

                                                                )2(2)( ntlt
N

n
n                                                                  (3) 

where )(t  is the scale function or scaling wavelet and kl  denotes the low-pass filter coefficients which 

determine the characteristics of the resulting wavelet transform. The mother wavelet )(t  is given by: 

                                                                 )2(2)( ntht
N

n
n                                                                (4) 

where kh  denotes the high-pass filter coefficients closely related to the low-pass filter ( kl ) mentioned 

above.  
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The scale function is used to capture the smooth, low frequency nature of the data, whereas the mother 

wavelets are used to capture the detailed and high frequency nature of the data. The coefficients of low-

pass and high-pass filters are related by [24]: 

                                                                          n
n

n lh  1)1(                                                                    (5) 

The Daubechies wavelet Db4 offers an appropriate trade-off between wave-length and smoothness, 

resulting in an appropriate behavior for short-term wind power forecasting. Similar wavelets have been 

considered by previous researchers for load forecasting [21,22] and price forecasting [25,26]. Also, three 

decomposition levels are considered, as in [26], since it describes the wind power series in a meaningful 

way. The approach developed in this paper uses A3, D3 and D1 as inputs for the NN. 

2.2. Artificial neural networks 

NN are highly interconnected simple processing units designed in a way to model how the human 

brain performs a particular task [27]. Each of those units, also called artificial neurons, forms a weighted 

sum of its inputs, to which a constant term called bias is added. This sum is then passed through a transfer 

function: linear, sigmoid or hyperbolic tangent. 

Multilayer perceptrons are the best known and most widely used kind of NN. The artificial neurons 

are organized in a way that defines the network architecture. In feedforward networks, artificial neurons 

are often arranged in layers: an input layer, one or more hidden layers and an output layer [27].  

Fig. 2 shows the architecture of a generic three-layered feedforward NN model. 

"See Fig. 2 at the end of the manuscript". 

In order to find the optimal network architecture, several combinations should be evaluated. These 

combinations include networks with different number of hidden layers, different number of artificial 

neurons in each layer and different types of transfer functions. 

The configuration chosen consists of a one hidden layer that uses a hyperbolic tangent sigmoid 

transfer function and a one artificial neuron output layer with a pure linear transfer function.  

The configuration chosen consists of a one hidden layer that uses a hyperbolic tangent sigmoid 

transfer function, given by: 

                                                                      ss
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and a one unit output layer with a pure linear transfer function, given by: 

                                                                          ')'(' ssf                                                                            (7) 

where s  is the weighted input of the hidden layer, )(sf  is the hyperbolic tangent sigmoid transfer 

function of the hidden layer, 's  is the weighted input of the output layer, and )'(' sf  is the pure linear 

transfer function of the output layer. 

This configuration has been proven to be a universal mapper, provided that the hidden layer has 

enough artificial neurons [28].  

On one hand, if there are too few artificial neurons, the network will not be flexible enough to model 

the data well and, on the other hand, if there are too many artificial neurons, the network may over-fit the 

data. The number of artificial neurons in the hidden layer was chosen by trial and error. The best results 

were produced with six hidden artificial neurons. The number of model input parameters is four. 

Forecasting with NN involves two steps: training and learning. Training of feedforward networks is 

normally performed in a supervised manner. One assumes that a training set is available, given by the 

historical data and containing both inputs and the corresponding desired outputs, which is presented to the 

network. The adequate selection of inputs for NN training is highly influential to the success of training. 

In the learning process a NN constructs an input-output mapping, adjusting the weights and biases at each 

iteration based on the minimization of some error measure between the output produced and the desired 

output. The error minimization process is repeated until an acceptable criterion for convergence is 

reached. 

The most common learning algorithm is the backpropagation algorithm. However, the standard 

backpropagation learning algorithm tends to converge slowly [29].  

An algorithm that trains a NN 10 to 100 times faster than the standard backpropagation algorithm is 

the Levenberg-Marquardt algorithm. While backpropagation is a steepest descent algorithm, the 

Levenberg-Marquardt algorithm is a variation of Newton's method [14,20]. Hence, a three-layered 

feedforward NN trained by the Levenberg-Marquardt algorithm is considered in this paper. 

Newton's update for minimizing a function )(xV  with respect to the vector x  is given by: 

   )()()(
12 xxx VV 


  (8)  

where )(2 xV  is the Hessian matrix and )(xV   is the gradient vector. 
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Neglecting the second-order derivatives of the error vector, the Hessian matrix is given by: 

 )()(2)(2 xJxJx TV   (9)  

where )(xJ  is the Jacobian matrix. 

The Gauss-Newton update is given by: 

   )()()()()(
1

xexJxJxJx TT 
  (10)  

where )(xe  is the error vector. 

The advantage of Gauss-Newton over the standard Newton's method is that it does not require 

calculation of second-order derivatives. Nevertheless, the matrix )()( xJxJ T  may be not invertible. This 

is overcome with the Levenberg-Marquardt algorithm, which consists in finding the update given by: 

   )()()()()( 1 xexJIxJxJx TT    (11)  

where parameter   is conveniently modified during the algorithm iterations. 

When   is very small or null the Levenberg-Marquardt algorithm becomes Gauss-Newton, which 

should provide faster convergence, while for higher   values, when the first term within brackets of (11) 

is negligible with respect to the second term within brackets, the algorithm becomes steepest descent. 

Hence, the Levenberg-Marquardt algorithm provides a nice compromise between the speed of Gauss-

Newton and the guaranteed convergence of steepest descent [29]. 

  

3. Forecasting accuracy evaluation 
 

To evaluate the accuracy of the proposed NNWT approach in forecasting wind power, different 

criterions are used. This accuracy is computed in function of the actual wind power that occurred. These 

criterion allow comparing alternative techniques. 

The mean absolute percentage error (MAPE) criterion, the sum squared error (SSE) criterion, and the 

standard deviation of error (SDE) criterion, are defined as follows. 

The MAPE criterion is defined as follows [30]: 

 
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where hp̂  and hp  are respectively the forecasted and actual wind power at hour h , p  is the average 

wind power and N  is the number of forecasted hours.  

The SSE criterion is given by: 

 
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The SDE criterion is given by: 
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where he  is the forecast error at hour h  and e  is the average error of the forecasting period. 

A measure of the uncertainty of a model is the variability of what is still unexplained after fitting the 

model, which can be measured through the estimation of the variance of the error. The smaller this 

variance, the more precise is the prediction [25]. 

Consistent with definition (12), daily error variance can be estimated as [25]: 
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4. Numerical results 
 

The proposed NNWT approach has been applied for wind power forecasting in Portugal. The 

numerical results presented take into account all the wind farms in Portugal that have telemetry with the 

National Electric Grid (REN). Historical wind power data, available at the REN website (thus, public-

domain information), are the main inputs to train the NN. For the sake of clear comparison, no exogenous 

variables (such as temperature or pressure) are considered. 
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Our forecaster (ANN architecture) predicts the value of the wind power subseries for 3 hours ahead, 

taking into account the wind power data of the previous 12 hours with a time-step of 15 minutes 

(therefore existing 48 measured power values, divided into four column vectors with 12 elements each). 

This procedure is repeated until the next 24 hours values are predicted.  

It should be noted that the input layer is comprised by four artificial neurons, which correspond to four 

column vectors with 12 elements each, while the output layer is comprised by only one artificial neuron, 

which corresponds to a single column vector with 12 elements (3 hours, with a time-step of 15 minutes). 

The following days are randomly selected: July 3, 2007, October 31, 2007, January 14, 2008, and 

April 2, 2008, corresponding to the four seasons of the year. Hence, days with particularly good wind 

power behavior are deliberately not chosen. This results in an uneven accuracy distribution throughout the 

year that reflects reality.  

Numerical results with the proposed NNWT approach are shown in Figs. 3 to 6 respectively for the 

winter, spring, summer and fall days. Each figure shows the actual wind power, solid line, together with 

the forecasted wind power, dash-dot line.  

"See Fig. 3 at the end of the manuscript". 

"See Fig. 4 at the end of the manuscript". 

"See Fig. 5 at the end of the manuscript". 

"See Fig. 6 at the end of the manuscript". 

Table 1 presents the values for the criterions to evaluate the accuracy of the proposed NNWT 

approach in forecasting wind power. The first column indicates the day, the second column presents the 

MAPE, the third column presents the square root of the SSE, and the fourth column presents the SDE. 

"See Table 1 at the end of the manuscript". 

A good accuracy of the proposed NNWT approach was ascertained. The MAPE has an average value 

of 6.97%.  

Table 2 shows a comparison between the proposed NNWT approach and three other approaches 

(persistence, ARIMA, and NN), regarding the MAPE criterion. The persistence approach assumes that the 

predicted value of the next step in the future is the last measured value. The ARIMA approach is 

developed using SPSS software. Parameter estimation is performed with the aid of this software. The 

configuration considered corresponds to an ARIMA (1,2,1).  

"See Table 2 at the end of the manuscript". 
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The proposed NNWT approach provides the lowest average MAPE. The relative (negative or 

positive) values of forecast errors, considering ARIMA, NN and NNWT approaches, are shown in Figs. 7 

to 10 respectively for the winter, spring, summer and fall days. 

"See Fig. 7 at the end of the manuscript". 

"See Fig. 8 at the end of the manuscript". 

"See Fig. 9 at the end of the manuscript". 

"See Fig. 10 at the end of the manuscript". 

The ARIMA approach provides larger errors compared with NN and NNWT approaches. Comparing 

NN with the proposed NNWT approach, it is possible to conclude that the introduction of WT enables a 

reduction in the average MAPE. 

In addition to the MAPE, stability of results is another important factor for the comparison of forecast 

approaches. Table 3 shows a comparison between the proposed NNWT approach and the three other 

approaches (persistence, ARIMA and NN), regarding daily error variances.  

"See Table 3 at the end of the manuscript". 

The average error variance is smaller for the proposed NNWT approach, indicating less uncertainty in 

the predictions. Improvement in the average error variance of the proposed approach with respect to the 

three other approaches is 79.8%, 41.3% and 7.8%, respectively. 

Furthermore, the four plots of Fig. 11 provide average errors considering ARIMA, NN and NNWT 

approaches, for the four days analyzed. 

"See Fig. 11 at the end of the manuscript". 

Overall, the performance of the proposed NNWT approach is generally better than the performance of 

ARIMA and NN approaches, even if some other four representative days were used.  

Moreover, the average computation time required by the proposed NNWT approach is less than 10 

seconds using MATLAB, which is similar to the average computation time required by the NN approach 

but with the added advantage of the filtering effect. Instead, the ARIMA approach requires about 

1 minute of computation time. 

Hence, the proposed NNWT approach provides a powerful tool of easy implementation for short-term 

wind power forecasting. 
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5. Conclusions 
 

A NNWT approach, based on the combination of artificial neural networks with wavelet transform, is 

proposed for short-term wind power forecasting in Portugal. The application of the proposed NNWT 

approach to wind power forecasting in Portugal is both novel and effective. The MAPE has an average 

value of 6.97%, outperforming persistence, ARIMA and NN approaches, while the average computation 

time is less than 10 seconds. Hence, the results presented confirm the considerable value of the proposed 

NNWT approach in forecasting wind power. 
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Fig. 1. Multilevel decomposition process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Three-layered feedforward NN model. 
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Fig. 3. Winter day: actual wind power (solid line) together with the forecasted wind power (dash-dot line). 

 

 

 

 

Fig. 4. Spring day: actual wind power (solid line) together with the forecasted wind power (dash-dot line). 
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Fig. 5. Summer day: actual wind power (solid line) together with the forecasted wind power (dash-dot line). 

 

 

 

 

Fig. 6. Fall day: actual wind power (solid line) together with the forecasted wind power (dash-dot line). 
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Fig. 7. Winter day: relative value of forecast errors considering ARIMA (dashed line), NN (dash-dot line) and 

NNWT (solid line) approaches. 

 

 
 
 

 
Fig. 8. Spring day: relative value of forecast errors considering ARIMA (dashed line), NN (dash-dot line) and NNWT 

(solid line) approaches. 
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Fig. 9. Summer day: relative value of forecast errors considering ARIMA (dashed line), NN (dash-dot line) and 

NNWT (solid line) approaches. 

 

 

 

 
Fig. 10. Fall day: relative value of forecast errors considering ARIMA (dashed line), NN (dash-dot line) and NNWT 

(solid line) approaches. 
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Fig.11. Average errors within three time intervals, considering ARIMA (black rectangle), NN (grey rectangle) and 

NNWT (white rectangle) approaches for the days analyzed: (a) Winter, (b) Spring, (c) Summer, and (d) Fall. 
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Tables 
 
Table 1 

Statistical analysis of the daily forecasting error 
 

Day MAPE (%) SSE (MW) SDE (MW) 

Winter 9.23 606.15 38.80 

Spring 9.55 533.62 37.61 

Summer 5.97 218.11 15.99 

Fall 3.14 211.38 15.97 

 

 

Table 2 

Comparative MAPE results 
 

 Winter Spring Summer Fall Average 

Persistence 13.89 32.40 13.43 16.49 19.05 

ARIMA 10.93 12.05 11.04 7.35 10.34 

NN 9.51 9.92 6.34 3.26 7.26 

NNWT 9.23 9.55 5.97 3.14 6.97 

 

 

Table 3 

Daily forecasting error variance 
 

 Winter Spring Summer Fall Average 

Persistence 0.0074 0.0592 0.0085 0.0179 0.0233 

ARIMA 0.0025 0.0164 0.0090 0.0039 0.0080 

NN 0.0044 0.0106 0.0043 0.0010 0.0051 

NNWT 0.0055 0.0083 0.0038 0.0012 0.0047 

 


