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Abstract—This article presents an analytical approach based
on Extended Kalman Filter (EKF) for nodal pricing in distri-
bution networks containing private distributed generation (DG).
An appropriate nodal pricing policy can direct active distribution
network (ADN) to optimal operation mode with minimum loss.
However, there are several crucial challenges in nodal pricing model
such as: equitable loss allocation between DGs, obtain minimum
merchandising surplus (MS), and equitable distribution of remu-
neration between DGs, which is difficult to achieve these goals
simultaneously. However, in the proposed method, the issue was
embedded in the form of the EKF updates. The measurement
update reduces the MS, and in the time update, DG’s nodal prices
as state variables are modified based on their contribution to the
loss reduction. Therefore, all aspects of the problem are consid-
ered and modeled simultaneously, which will prepare a realistic
state estimation tool for distribution companies in the next step of
operation. The proposed method also has the ability to determine
the nodal prices for distribution network buses in a wide range of
power supply point prices (PSP), which other methods have been
failed, especially at very low or high PSP prices. Eventually, using
the new method will move system towards to the minimum possible
losses with the equitable condition. The application of the proposed
nodal pricing method is illustrated on 17-bus radial distribution test
systems, and the results are compared with other methods.

Index Terms—Distributed generation (DG), distribution
network, Kalman filter, loss reduction allocation, measurement
and time updates, merchandising surplus (MS).
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NOMENCLATURE

a Active power index.
c Combinatorial nodal price index.
i,j Index of loads and DGs unit.
k Iteration of EKF index.
N Normal distribution probability.
P Power supply point index.
r Reactive power index.
T Transpose index.
+, − Index of posteriori and priori measurement

update.
aj ,bj , cj Cost coefficients of DG j.
E Expected value.
I Identity matrix.
NL, NDG Number of loads and DG units.
P0 Initial covariance matrix.
PLi

, QLi
Active and reactive power of load i.

vk, ωk Measurement and process noise.
Rk, Qk Variance of measurement and process noise.
γ Price coefficient of load reactive power.
ξ Power factor of DG.
f System equation.
h Measurement equation.
M Merchandising surplus.
PDGj

, QDGj
Active and reactive power of DG j.

Pmax
DGj

Maximum active power of DG j.
Pk Covariance matrix of estimation error.
PLoss Measurement equation of loss power.
P real
Loss Real power losses from load flow.

PPSP, QPSP Active and reactive power of power supply
point.

u Input signal.
x System state variable.
y Measured output.
λa
DGj

, λr
DGj

Nodal prices of active and reactive power of
DG j.

λc
DGj

Price offered to DGs.
λDGlim

Upper or lower limit of the nodal price vector
for DGs.

λa
P , λr

P Active and reactive power supply point price.

I. INTRODUCTION

A. Motivation of the Research

W ITH the development and penetration of distributed
generations (DGs) in distribution networks (DNs), an

appropriate economic decision from distribution companies
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(DISCOs) to the DGs will also be important for optimal op-
eration of system so that DN change from passive to active
distribution network (ADN) [1]. In this respect, there will be
significant challenges for the DN, such as the uncertainties in
the DGs, and computational difficulties with increasing number
of participants in the energy market [2]. Also, an appropriate
nodal pricing policy as an economical signal from DISCOs can
make financial incentives for private DGs to participate in power
generation and reduce power losses in the ADNs [3], [4]. This is
analogous to relationship between independent system operator
(ISO) and the participants in the competitive electricity market
with the aim of maximizing their profits [5].

In an ADN, DISCO can reduce the difference between rev-
enues and payments known as merchandising surplus (MS), with
the aim of fair increasing the nodal prices of DG’s buses which
can reduce the network losses by increasing their power output.
Therefore, an important related question is how distribution
nodal pricing model should be selected to achieve these goals:
(i) equitable allocation of losses to each participant, (ii) obtain
minimum MS, (iii) equitable distribution of remuneration of
each participant to increase their nodal prices based on their
contribution to loss reduction.

B. Background and Related Works

Nodal pricing is one of the most effective pricing mechanism
in transmission networks which can be implemented in DNs
by considering the importance of line losses instead of pricing
congestion [1], [4], [6]–[8]. Among the different approaches
for nodal pricing, locational marginal price (LMP) is the most
dominant method which is based on the sensitivity of network
losses with respect to the variation of injection or withdrawal
power in each bus [7], [9], [10]. In [11], a distribution LMP
pricing model based on linear approximation and sensitivity
factor is presented for congestion management in ADN. Also the
LMP pricing model through chance constrained mixed-integer
programming method is proposed in [12] to alleviate the possible
congestion in DN with high penetration of electric vehicles.

However, the aforementioned definition of LMP causes MS
in economic exchange of DNs which may not minimize system
losses [4], [6], [8], [13], [14]. In order to eliminate MS, recon-
ciliation factor have been proposed in [6], so that the authors
suggest conciliated nodal pricing by modifying marginal loss
coefficients and therefore the cost of losses are collected exactly
by nodal prices. Therefore, due to that the main purpose of the
method is elimination of MS, it does not provide equitable idea
to remunerate DGs based on contribution in reducing losses.
In order to solve the problem of equitable allocation, several
methods based on cooperative game theory such as Shapley
method [4], [15]–[18], nucleolus theory [7], Stackelberg game
[19], and circuit theory [20], [21] are presented. The authors
of [3], have suggested iteration method to eliminate DISCO’s
extra benefit and correct DG output by modifying LMP in each
iteration. In this regard, first, uniform price is considered equal to
power supply point (PSP) for all buses, then based on the Shapley
Value method, loss reduction allocation is achieved to adjust the
nodal prices related to DGs. Although this method considered
equitable allocation among participants, but it does not guarantee
the zero MS in economic exchange between DISCOs and DGs.
In [7], [8], [13], decision maker can adjust DISCO’s benefit and
so changes objective function, MS value and profit of DGs. This
is done by changing the coefficient of constraint of the objective
function which is the loss or emission reduction. These methods

offer valuable contributions, but will not give an exact prospect
to solve MS problem and equitable allocation of remuneration
among DGs simultaneously.

In order to overcome the aforementioned challenges and hav-
ing a more precise perspective of the issue, this article proposes
a new approach for nodal pricing based on extended Kalman
filter (EKF) which is undoubtedly one of the most popular state
estimation technique that has been used extensively [22]. In [23],
prediction of market clearing prices are provided by neural net-
works using EKF and, it has been shown more accurate predic-
tions as compared to Bayesian method. In [24], neural networks
based on the EKF and its use in electric energy price prediction
in two cases: one-step ahead and n-step ahead are presented.

C. Key Contributions

In the proposed method, the problems mentioned are in the
form of measurement and time updates of the EKF, in such a
way that the measurement update reduces the merchandising
surplus, and in the time update, DG’s nodal prices as state
variables are modified based on their contribution to the loss
reduction. In this regard, first, the explicit nonlinear state-space
model of the problem is derived, then, the problem is defined by
the assumption that the MS constraint is zero, and therefore the
new loss function is obtained from this constraint. This function
is determined as the estimated output of the EKF and is compared
with the real system losses as measurement output which will
be obtained from the load flow equations. This is when the EKF
computes estimation error and tries to reduce that. Afterward,
nodal prices of DG’s busses are described as state variables in
the filter. These state variables change in time update of EKF
based on the participation of each DGs in loss reduction. It
should be noted that, indeed, equitable remuneration with the
aim of increasing or decreasing nodal prices among DGs is
meaningful when equitable allocation of losses has already been
implemented among the participants.

As before mentioned, several methods for loss allocation in
ADN are presented and in this article, as described in [4] and
[16]–[18] we use a Shapley Value (SV) approach and consider
a negative allocation to DGs for reducing network losses. How-
ever, it should also be mentioned that if the total DG output is
more than the specific load’s consumption, the loss allocation
will become positive to DG and therefore, the time update of
EKF will have a different approach than negative loss allocation.
Ultimately, during the update EKF process, feasible solution will
move towards to a point where zero MS constraint is satisfied
and equitable profit allocation is taken between the DGs which
provide loss reduction.

The review of the novelties presented in this article are sum-
marized as follows.

1) Rendering a new mathematical perspective on the feasi-
ble solution of the merchandising surplus and equitable
allocation of remuneration problems.

2) Satisfying the minimum MS constraint based on the mea-
surement update of EKF.

3) Equitable distribution of remuneration between DGs
based on time update of EKF and using the SV approach.

4) Loss minimization of ADN based on the economic signal
which DISCOs use to control the participation of private
DGs in the power generation.

5) Determine the nodal prices for distribution network buses
in a wide range of PSP prices.
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D. Organization of the Article

The rest of this article is organized as follows: Section II,
presents proposed nodal pricing method including new loss
function derivation from zero MS and EKF formulation. In order
to evaluate the performance of the EKF-based nodal pricing
method, Section III presents the experimental results. Finally,
main conclusions are provided in Section IV.

II. PROPOSED NODAL PRICING METHOD

In this section, at first, the equations that describe the nodal
pricing problem are derived. Then the challenges associated with
the problem will be addressed, and finally EKF will be applied
to the ADN with nodal pricing problem.

A. New Loss Function Derivation From Zero MS Constraint

In this section, new loss function of ADN will be derived from
the economic and technical equations of the system. It should be
noted that we consider the problem solving for one-hour period
of time. Therefore, when the problem achieves the feasible
solutions by this method, it can be used similarly for other hours.

At first for the technical equations, the active and reactive
power balance can be written as follows [1], [4], [6]:

NL∑

i=1

PLi
+ PLoss = PPSP +

NDG∑

j=1

PDGj
(1)

NL∑

i=1

QLi
= QPSP +

NDG∑

j=1

QDGj
(2)

where (1) shows that, sum of the loads and power losses on the
left side of the equation are equal to sum of the DG’s power
and power received from reference bus that called power supply
point (PSP).

As mentioned before, the MS equation which will be obtained
from differences between payments and revenues [25] are as
follows [1], [4], [6], [13]:

MS = λa
p

NL∑

i=1

PLi
+ λr

p

NL∑

i=1

QLi
−

NDG∑

j=1

λa
DGj

PDGj

−
NDG∑

j=1

λr
DGj

QDGj
− λa

p (PPSP) . (3)

In this article, similar to [4], [6], [26] it is assumed that the
reactive price is not considered in transmission pricing model,
thus the price of reactive power at PSP is assumed to be zero.
Substituting (1) in (3), (4) is obtained.

MS = λa
p

NL∑

i=1

PLi
+ λr

p

NL∑

i=1

QLi
−

NDG∑

j=1

λa
DGj

PDGj

−
NDG∑

j=1

λr
DGj

QDGj
− λa

p

⎛

⎝
NL∑

i=1

PLi
+ PLoss −

NDG∑

j=1

PDGj

⎞

⎠ .

(4)

According to [4] and [8], DG’s benefit function and optimal
power generation of DGs obtained from derivation are

DGs Benefit = λc
DGj

PDGj
−
{
ajP

2
DGj

+ bjPDGj
+ cj

}
(5)

∂ {DG′s Benefit}
∂PDGj

= 0 ⇒ PDGj
=

λc
DGj

− bj

2aj
. (6)

Considering power generation constraints, the price offered
constraint to DGs is obtained

0 ≤ PDGj
≤ Pmax

DGj
→ bj ≤ λc

DGj
≤ 2ajP

max
DGj

+ bj (7)

and according to [7], considering constant power factor for DGs
as follows:

QDGj
= ξPDGj

(8)

and it is assumed the active and reactive price relationship for
load is

λr
p = γλa

p (9)

As before mentioned, DISCOs try to encourage DGs to
participate in power generation in ADN by increasing DGs
nodal prices so that this encouragement charge will be provided
by decreasing the MS value. Also, it is rational manner from
DISCOs to spend all MS value to achieve minimum power loss
[4]. Therefore, considering zero MS and substituting (5)–(9) in
(4), the loss estimation function with price variables is derived
as follows:

PLoss = loss estimation function (λc
DGj

)

=

NDG∑

j=1

( −1

2ajλa
p

)
(λc

DGj
)2 +

NDG∑

j=1

(
bj

2ajλa
p

+
1

2aj

)
λc
DGj

−
NDG∑

j=1

bj
2aj

+ γ

NL∑

i=1

QLi
. (10)

In this new loss function, λc
DGj

is the new control variable or
economic signal as previously mentioned which can be used by
DISCO to exert its control over private DG units and minimize
the loss in ADN. In order to solve aforementioned problem and
achieve appropriate nodal prices, the following methods have
been used formerly:

1) uniform price [4], [7];
2) marginal loss [1]–[7], [26], [27];
3) Shaloudegi’s method [4]
In the first nodal pricing method, the price of all loads and

DGs are similar to PSP price. This is a simple bidding option
from DISCOs which DGs may not be participated in power
generation at low PSP prices. In the marginal loss method,
nodal prices are determined based on network loss sensitivity
with respect to small changes of active and reactive power in
each bus. But, the method has MS greater than zero. In order
to eliminate MS value, reconciliation method is suggested in
[6], which is based on adjusting marginal loss coefficients to
compensate for cost of losses by nodal prices. Although, this
suggestion eliminates MS, it does not guarantee an equitable
nodal pricing policy among DGs to minimize losses as much as
possible. Shaloudegi’s method in [4] has used iterative method
by starting from uniform price equal to PSP price for all DGs,
and then run loss reduction allocation method for DGs to finally
achieve equitable nodal prices in ADN. However, due to the
initial point of method based on uniform price, this will not
be able to offer nodal prices at low PSP prices. In addition,
this method does not provide sufficient reason only by running
loss reduction allocation to eliminate MS. Therefore, we should
present a method, which can be applied to the aforementioned
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TABLE I
DISCRETE-TIME EKF EQUATIONS

problem without deficiency. The EKF method which is presented
in this article, not only provides equitable nodal prices between
DGs, but also eliminates MS value simultaneously.

The Kalman filter can also be used to solve the above problem.
But, due to the nonlinearity of (10), we use the EKF that
linearizes the nonlinear system around the Kalman filter estimate
[22]. In the next section, the procedure and formulation of the
EKF on the problem will be described.

B. EKF Formulation

In order to avoid increasing computational burden of
continuous-time EKF, the dynamics of the problem are dis-
cretized and then a discrete-time EKF is used [22]–[24]. The
equations of discrete-time EKF are given in Table I [22]. Af-
terwards, the equations of the new method of nodal pricing are
derived based on Table I.

According to equation I in Table I, state space equations of
the system are as follows:
{
xk = fk−1(xk−1, uk−1, ωk−1)

λ
c,k
DG = λ

c,k−1
DG + P k−1

Losspu,DG ×
(
λDGlim

− λ
c,k−1
DG

)
.

(11)

In (11), the new nodal prices of DG’s buses in stepk depend on
the contribution of each DG in system loss reduction, maximum
nodal price range and nodal prices of DG’s buses in step k − 1.
For instance, if P k−1

Losspu,DGj
= 1 which means DG i has a full

Fig. 1. Equitable approach to remunerate or penalty DGs to reduce or increase
power losses.

Fig. 2. One step of EKF for time update and measurement update.

contribution in the loss reduction allocation, then DISCO offers
λ
c,k
DGj

= λDGj,max
to remunerate DG i to increase its power

generation. Also, if a DG increases system losses, therefore
λDGj,lim

= bj to decrease its power generation. The aforemen-
tioned process is a presentation of equitable remuneration among
DGs based on their contribution to the loss reduction of the
system, which is used in the time update of EKF and is shown
in Fig. 1. In this step, based on nodal prices offered to DGs and
(5) and (6), DG’s optimal power generation are obtained. Now,
one can obtained power losses from load flow and therefore
calculate MS from (4). As before mentioned, in order to achieve
zero MS in (4), the estimation function are obtained in (10). In
other words, if the actual losses from the load flow is equal to
losses from the estimation function, it means that the MS is zero.
In the primary steps of the EKF, MS is not zero and therefore
losses from (10) is not equal to actual losses from load flow
which causes an error. Therefore in order to solve this problem,
the measurement update based on the error, is used to modify the
nodal prices. This equation XIV in Table I is written as follows:
⎧
⎪⎨

⎪⎩

x̂+
k = x̂−

k + kk[yk − hk(x̂
−
k , 0)]

λ̂
c,k,+
DGj

= λ̂
c,k,−
DGj

+ kk[P
textreal
Loss,k − loss estimation function (λ̂c,k,−

DGj
)].

(12)

It can be seen from (12) that, when estimation losses from
(10) close to the real power losses, the measurement update
will not change the nodal prices. The One step of EKF for
time update and measurement update is depicted in Fig. 2. As
shown in Fig. 2, priori estimated nodal prices (λ̂c,k−1,−

DGj
) and

the covariance matrix of estimation (P−
k−1) at time (k − 1),

are embedded in measurement update. After that, posteriori
estimation of nodal prices (λ̂c,k−1,+

DGj
) and posteriori estimation

of covariance matrix (P+
k−1) are obtained.

In the time between (k − 1)+ and k−, we define the system
dynamics based on the equitable allocation of remuneration
based on IX and X in Table I. However, to initialize the filter,
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Fig. 3. Flowchart for nodal pricing based on EKF.

Fig. 4. Schematic overview of the article.

we begin the estimation process with λ̂
c,0,+
DGj

= bj + ε, which ε

is an arbitrarily small positive quantity so that according to (6),
DGs power generation starts with a nonzero value.

This EKF algorithm continues until MS approach to zero.
Also, according to [28], due to the independence of the stationary
process and measurement noises, covariance matrix is zero
(Qk = 0). The flowchart of EKF process for the new nodal
pricing method in ADN and Schematic overview of the article
has been shown in Figs. 3 and 4, respectively.

Fig. 5. 17-bus radial distribution system.

The equations of Partial derivative matrices VII and XI
respectively are presented in the following equations:

Fk−1 =
∂fk−1

∂λ
c,k−1
DG

|
λ̂
c,k−1,+
DG

= (λDGlim
− λ

c,k−1
DG )

∂P k−1
Losspu,DG

∂λ
c,k−1
DG

+ (1− P k−1
Losspu,DG).INDG×NDG

(13)

Hk−1 =
∂hk−1

∂λ
c,k−1
DG

|
λ̂
c,k−1,−
DG

=
b− 2λc

DG

2aλa
p

+
1

2a
. (14)

III. SIMULATION AND RESULTS

In this section, the proposed EKF method is simulated using
MATLAB version R2018a, 64-bit machine with Windows 10,
Intel core 2 Duo CPU, 3.00-GHz processor and RAM 4.00 GB.
In this section, the proposed EKF method is simulated using
MATLAB version R2018a, 64-bit machine with Windows 10,
Intel core 2 Duo CPU, 3.00-GHz processor and RAM 4.00 GB.
The proposed method based on EKF which consists of time
update for equitable allocation of remuneration among DGs and
measurement update for zero MS, is compared with marginal
loss, uniform price and LMP method (called here Shaloudegi)
which is used in [4]. The proposed method is implemented on a
test radial ADN of 17-buses shown in Fig. 5 and with the data
reported in [16] and [20].

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on May 08,2020 at 21:27:07 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE SYSTEMS JOURNAL

TABLE II
COEFFICIENTS OF DG’S COST FUNCTION

There are three DG units located at bus 15, 16, and 17, and
the coefficients of DG’s cost function are given in Table II.

It is assumed that each DG unit can supply total loads at its
maximum capacity, so the maximum DG output is 1.854 MW.
Also, according to [7] the constant power factor equal to 0.9
lagging is considered for all DG units.

The new proposed pricing method is applied to the ADN
shown in Fig. 5, for the PSP price between 15 $/MWh to
60 $/MWh, and the backward-forward sweep load flow method
in [16] has been used. There will also be a comparison be-
tween EKF pricing method and three available methods namely:
marginal loss, uniform pricing and Shaloudegi [4], and their
impacts on reducing network losses and equitable allocation of
remuneration among DG units are investigated.

According to [22], if we have no initial idea about state
variable, then positive-definite symmetric matrix P0 = ∞, con-
trariwise for the absolutely certain initial state variable, we have
P0 = 0. In this article, we have some uncertainty about our initial
estimate and so according to [28] P0 = δI3×3(δ > 0). Also, the
stationary measurement noise vk is assumed zero-mean, with a
standard deviation of 0.1 [29]. The equations of partial derivative
matrices VII and XI are written in (15), shown at the bottom of
the page, and (16), respectively.

In order to evaluate the feasible solution and finding allowable
area for the state variables, it is necessary to have demonstration
of power loss and MS in ADN based on discrete DG’s power at
specified PSP price.

Therefore, this issue for MS is implemented for different PSP
prices of 15, 30, 45, and 60 ($/MW), which is shown in Fig. 6.
The allowable area is where MS ≥ 0, which is shown in Fig. 6
with the points higher than zero surface. This is also because
the rational reason that the revenues should be higher than the
payments. In addition, it can be seen that these area have become
wider, as the PSP price (λa

p) is increased from 15 ($/MW) to
60 ($/MW).

Fig. 6. Allowable area for MS in terms of DG’s active power.

Hk−1 =
∂hk−1

∂λ
c,k−1
DG

|
λ̂
c,k−1,−
DG

=

⎡

⎢⎢⎢⎣

b1−2λc
DG1

2a1λa
p

+ 1
2a1

b2−2λc
DG2

2a2λa
p

+ 1
2a2

b3−2λc
DG3

2a3λa
p

+ 1
2a3

⎤

⎥⎥⎥⎦

T

(16)

At PSP prices 15 ($/MW) and 30 ($/MW), by increasing
active power of DG 3 from 0 to 1.854, the MS surface moving
downwards and reducing the allowable area. But, at PSP prices
45 ($/MW) and 60 ($/MW) with increasing active power of DG
3, first MS surface will have ascendant move and make it wider,
then the movement continues as a descending and this area will
be small. As described above, EKF should search minimum loss
point in the allowable area (MS ≥ 0), because the area MS < 0
has no economic justification and will not be rational.

The loss power surfaces in term of DGs power step changes,
are depicted in Fig. 7. By increasing step changes in the active
power of DG 3, the minimum loss will be obtained at the 8th
step. So, if we look at the loss surfaces below the coordinate
plane, we will observe the minimum loss line from the 8th step.
In general, as can be seen in Fig. 7, the loss surfaces in terms of
DG’s power, has a concavity so that among these surfaces, there
will be a minimum loss line and the line is also concave which
has a minimum point that EKF should obtain this point.

Fk−1 =

⎡

⎢⎢⎢⎢⎢⎣

1 +
∂Pk−1

Losspu,DG1

∂λ
c,k−1
DG1

(λDGlim,1
− λ

c,k−1
DG1 )− P k−1

Losspu,DG1

∂Pk−1
Losspu,DG1

∂λ
c,k−1
DG2

(λDGlim,1
− λ

c,k−1
DG1 )

∂Pk−1
Losspu,DG2

∂λ
c,k−1
DG1

(λDGlim,2
− λ

c,k−1
DG2 ) 1 +

∂Pk−1
Losspu,DG2

∂λ
c,k−1
DG2

(λDGlim,2
− λ

c,k−1
DG2 )− P k−1

Losspu,DG2

∂Pk−1
Losspu,DG3

∂λ
c,k−1
DG1

(λDGlim,3
− λ

c,k−1
DG3 )

∂Pk−1
Losspu,DG3

∂λ
c,k−1
DG2

(λDGlim,3
− λ

c,k−1
DG3 )

∂Pk−1
Losspu,DG1

∂λ
c,k−1
DG3

(λDGlim,1
− λ

c,k−1
DG1 )

∂Pk−1
Losspu,DG2

∂λ
c,k−1
DG2

(λDGlim,2
− λ

c,k−1
DG2 )

1 +
∂Pk−1

Losspu,DG3

∂λ
c,k−1
DG3

(λDGlim,3
− λ

c,k−1
DG3 )− P k−1

Losspu,DG3

⎤

⎥⎥⎥⎥⎦
(15)
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TABLE III
COMPARISON POWER OUTPUT OF DGS AND LOSS AND MS FOR EKF METHOD, SHALOUDEGI’S METHOD,

MARGINAL LOSS, AND UNIFORM PRICE FOR PSP PRICES FOR 24 h

Fig. 7. Loss power surfaces in terms of DGs power step changes.

In Fig. 8 at PSP prices 15 and 30 $/MW, the minimum loss
line is out of the MS allowable area. So, by considering the
concave shape of the loss surface, minimum loss point is the
first admissible point in the surface at the closest to 8th step.
At PSP prices 45 and 60 $/MW due to that, the minimum loss
line is in the MS allowable area, we accept this point as the

Fig. 8. Distance variation between MS allowable area and minimum loss line
in terms of PSP price changes.

minimum loss with MS > 0. According to the above results, it
can be concluded that the minimum loss in ADN does not always
occur in the MS= 0. In other words, if the positive MS would be
utilized to more participation of DGs in power generation, then
the total DG output is more than the specific load’s consumption.
Therefore, the loss allocation will become positive to DG and
the system will be far away from the minimum loss point.
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Fig. 9. Convergence of estimated power losses to real power losses in the EKF
process for PSP prices of 15, 30, 45, and 60 $/MWh.

Considering changes between MS allowable area at PSP
prices 30 and 45 $/MW and minimum loss lines, the simulations
were performed and in the PSP price 35.93 $/MW the minimum
loss line was tangent to margin of the MS allowable area. So,
there are two different intervals in terms of minimum loss,
first [15–35.93] with minimum loss in the zero MS, and the
interval [35.93–60] with minimum loss at the positive MS.
The active power step changes method will drastically increase
computational time, especially when we want to increase the
accuracy of the solutions. Therefore, applying the EKF method
which is least time consuming suggested here.

For the four above-mentioned prices, based on (11)–(14), we
apply the new method to obtain equitable remuneration between
DGs and minimum losses. The process of attainment of solution
by EKF are shown in Fig. 9. The EKF method starts from
λ̂
c,0,+
DGj

= bj + ε point for each DG, so the start power loss in
Fig. 9 is almost near to network without DGs. After that, in
equitable allocation of remuneration step, if a DG reduces the
power losses which found by the Shapley method, the time
update of EKF increases its nodal price and vice versa.

During these steps, measurement update ensures that the
estimated power losses are close to real power losses from load
flow in order to achieve zero MS. It can be seen from Fig. 9 that
the above process has led to a decline in the power loss changes.

As shown in Fig. 9, for the PSP prices 15 and 30 $/MWh which
are less than 35.93 $/MWh, the time update reduces distribution
power losses and the measurement update reduces the MS value.

For the PSP prices 45 and 60 $/MWh, according to Fig. 8,
minimum losses occur in the positive MS, therefore only time
update are used and measurement update eliminated. This pro-
cess was performed for PSP prices between 15 and 60 $/MWh
with steps of 0.01 $/MWh and the final results of EKF method
are compared with marginal loss, uniform price and Shaloudegi
[4] in Fig. 9.

As shown in Fig. 10, power losses from EKF method are
lower than in other methods. Also, the minimum power losses by
Shaloudegi has been achieved at 37.5 $/MWh with 0.0038 MW,
while in the uniform price and marginal loss methods are
42.24 $/MWh with 0.00378 MW and eventually in the EKF
method are in the interval [35.93–60] $/MWh with 0.00375 MW.
In addition, power losses in Shaloudegi has been decreased
significantly at PSP prices 20 and 30 $/MWh which in this points,

Fig. 10. Distribution loss changes obtained by uniform price, marginal loss,
Shaloudegi, and EKF method versus power supply point price.

Fig. 11. MS changes versus the PSP prices for the uniform price, marginal
loss, Shaloudegi’s method, and EKF method.

price wants to be higher than coefficient b of DG1, DG2, and
DG3, and so DGs participate in power generation in ADN. There
are not sudden changes in power losses in EKF method due to
the fact that the proposed method has ability to determine the
nodal prices for DGs at the PSP prices less than 20 $/MWh,
which reduces power losses, while in the other methods the
nodal prices will not be offered to DGs when the PSP price
is less than coefficient b. Hence according to (6), DG’s power
output in other methods will be zero and power losses are 0.023
(MW). Fig. 11 illustrates the MS changes versus the PSP prices.
In the EKF method, up to 35.93 $/MWh, MS are less than 0.0001
while for the interval [35.93–60] $/MWh, the MS are increased
which is the reasons already mentioned. Also, the other methods
obtain the MS more than zero at all PSP prices. Fig. 12 shows
convergence of states for estimation of nodal prices for three
DGs at PSP price of 15, 30, 45, and 60 $/MWh.

As can be seen in Fig. 12, starting point for the estimated
process is λ̂

c,0,+
DGj

= bj + ε ($/MWh), which converges in less
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Fig. 12. Convergence of states for estimation of nodal prices for PSP prices
of 15, 30, 45, and 60 $/MWh.

than 50 iteration. For PSP prices lower than 35.93 $/MWh,
according to Fig. 8, due to the minimum loss line is in the
negative MS area, and the acceptable power loss point is in
MS = 0, therefore, convergence process is fluctuating between
positive and negative MS area.

However, for PSP prices greater than 35.93 $/MWh, minimum
loss line is in the positive MS area, and therefore, convergence
process only with time update will have smooth state. Table III
shows the comparison results between the new nodal pricing
method based on EKF and other previously mentioned method,
for 24 h, with the data reported in [4]. From Table III, it is clear
that at the 4th hour with PSP price 19.99 $/MWh, EKF method
is able to determine the power output for DGs and provides
340.7 KW for ADN, while other methods have been failed to
obtain satisfactory results for the PSP prices lower than the
coefficient b. On the other hand, for the PSP prices between the
10th hour to the 22th hour which are higher than the critical value
35.93 $/MWh indicated in Fig. 10, despite the fact that in EKF
method MS are higher than the other methods, minimum loss for
ADN for one hour equal to 3.75 KW has been obtained. It has
been also confirmed by the results for the total losses and total
MS in Table III, which the total losses in 24 h by EKF method,
are lower than the other methods. However, as shown in Table
III, execution time in EKF method is higher than that of other
method, which is reasonable computation time for EKF method.

IV. CONCLUSION

In this article, a new nodal pricing method based on EKF is
proposed in ADN in the presence of private DGs. Two updates
of this method solved two significant problems of the nodal
pricing issue. Equitable allocation of remuneration and zero
MS constraint were effectively addressed by time update and
measurement update respectively. In this respect, due to the
incentive nature of time update to participate DGs in power
generation, distribution power losses were minimized. In or-
der to achieve a desirable viewpoint of the problem, different
states of distribution loss power and MS were simulated by
increasing the discrete power of DGs at different PSP prices.
It was observed that in the PSP prices at a specific interval the
minimum loss occurred at zero MS, while for the PSP prices
more than the specific interval the minimum loss was achieved
in the positive MS area. Thus, for the case of minimum loss

at positive MS, the measurement update was eliminated from
the EKF process, which was not required to diminish MS to
zero. In these cases, EKF obtained minimum power loss only
with time update without fluctuation. We conclude that in some
cases, for instance at high PSP prices, equitable distribution of
remuneration and minimum loss point did not occur in zero MS.
It is also recommended that future work focuses on effects of
demand response, uncertainties in the load demand and DGs,
and scheduled load profiles on the nodal pricing in ADNs. In
addition, impact of competition between participants in ADN
by the game theory method on nodal pricing model, can be the
scope of future works.
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