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Abstract 

Multi-energy systems that consist of two or more energy carriers enhance the system efficiency 
and increase the reliability and flexibility in energy supply and demand. Also, demand response 
(DR) and energy storage are important elements of such energy systems, which can have a 
positive impact on the performance of multi-energy systems. However, uncertainties and risks 
are also appearing in the system. Introducing the aggregators and choosing a proper risk 
measure presents a solution to this problem. 

Under this scope, this thesis presents a set of optimization frameworks for aggregators to 
use in electrical energy systems and then extends it to multi-energy systems. Each 
computational tool considers a different risk management method. 

In this research-based thesis, which is a collection of articles, several DR programs are 
implemented to provide more flexibility for the consumers and encourage them to participate 
in DR programs actively. Moreover, the integrated DR programs are also employed to include 
multiple load types such as electricity, heating, and cooling loads in the programs designed by 
the aggregator. 

Moreover, the direct interactions of a DR aggregator with an ESS are neglected in many 
models. However, this consideration can lead to a significant improvement in the flexibility of 
the aggregator, thus increasing the profit of the entity by trading energy in the short-term 
markets to charge the ESS during the low-price periods. Hence, an analysis of the impact of the 
ESS unit on the DR aggregator's performance is applied to study the most appropriate size of 
the ESS that can maximize the profit of the aggregator. 

In addition, the consideration of a suitable risk management method based on the nature 
and characteristics of the uncertain parameters is an important issue for the aggregators in the 
management and scheduling of energy systems. Thus, hybrid approaches are proposed for the 
management of the aggregators. Therefore, the most suitable risk measures for the  
decision-maker are chosen based on the characteristics of the uncertain parameters, which 
leads to a more precise decision. 

 

 

Keywords: Optimization, Demand response, Uncertainty, Energy storage, Multi-energy 
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Resumo 

Os sistemas de multi-energia que consistem em dois ou mais portadores de energia aumentam 
a eficiência do sistema, aumentam a confiabilidade e a flexibilidade no fornecimento e na 
demanda de energia. Além disso, a resposta à demanda e o armazenamento de energia são 
elementos importantes desses sistemas energéticos, que podem ter um impacto positivo no 
desempenho dos sistemas de multi-energia. No entanto, incertezas e riscos também aparecem 
no sistema. A introdução de agregadores e a escolha de uma medida de risco adequada 
apresenta uma solução para esse problema. 

Nesse contexto, esta tese apresenta um conjunto de metodologias de otimização para que 
os agregadores usem nos sistemas de energia elétrica e, em seguida, são alargadas aos sistemas 
de multi-energia. Cada ferramenta computacional considera um método diferente de gestão 
de risco. 

Nesta tese, vários programas de resposta à demanda são implementados para fornecer mais 
flexibilidade aos consumidores e incentivá-los a participar ativamente nesses programas. Além 
disso, os programas integrados de resposta à demanda também são utilizados para incluir vários 
tipos de demanda, como eletricidade, aquecimento e arrefecimento, nos programas projetados 
pelo agregador. 

Ainda, as interações diretas de um agregador de resposta à demanda com um sistema de 
armazenamento de energia são negligenciadas em muitos modelos. No entanto, essa 
consideração pode levar a uma melhoria significativa na flexibilidade do agregador, 
aumentando assim o lucro da entidade ao negociar a energia nos mercados de curto prazo para 
carregar o sistema de armazenamento de energia durante os períodos de preços da eletricidade 
mais baixos. Portanto, uma análise do impacto da unidade de armazenamento de energia no 
desempenho do agregador de resposta à demanda é aplicada para estudar a dimensão mais 
apropriada do sistema de armazenamento de energia que pode maximizar o lucro do agregador. 

Além disso, a consideração de um método adequado de gestão de risco com base na 
natureza e nas características dos parâmetros incertos é uma questão importante para os 
agregadores na gestão e planeamento dos sistemas de energia. Portanto, são propostas 
abordagens híbridas para a gestão de agregadores. Assim, as medidas de risco mais adequadas 
para o agente de decisão são escolhidas com base nas características dos parâmetros incertos, 
o que leva a uma decisão mais precisa. 

 

 

Palavras-Chave: Otimização, Resposta à Demanda, Incerteza, Armazenamento de Energia, 

Sistemas de Multi-Energia. 
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Chapter 1  

Introduction 

1.1 - Motivation and Background 

The widening chasm between the supply and demand of energy in our modern energy systems 
has prompted significant interest in demand-side management as a viable solution. Among the 
various strategies available, demand response (DR) stands out as a particularly practical 
approach for bridging the gap between electricity generation and consumption [1], [2]. This 
electricity consumption pattern recognizing its potential, the Federal Energy Regulatory 
Commission (FERC) has officially defined DR as a method aimed at motivating end-user 
consumers to alter their energy consumption behaviors in direct response to fluctuating 
electricity prices or enticing incentive payments. 

The adoption of DR within the energy landscape offers a multitude of benefits. It acts as a 
pivotal tool for achieving equilibrium between electricity generation and demand, thereby 
mitigating issues stemming from energy imbalances. Additionally, it injects a newfound level 
of flexibility into the energy ecosystem, ensuring a more adaptable and resilient grid 
infrastructure. Furthermore, DR plays a significant role in enhancing the reliability of the 
electrical grid, thus reducing the occurrence of power outages and disturbances. Perhaps most 
notably, DR contributes to the ongoing global effort to combat climate change by curbing CO2 
emissions associated with excessive energy consumption [3]. In essence, DR emerges as a 
multifaceted solution with the potential to address a myriad of pressing challenges in the 
energy sector. 

Moreover, another essential feature in increasing the flexibility and resilience of modern 
energy systems resides in the integration of energy storage systems (ESS) [4]. ESSs represent a 
pivotal technological solution to address a host of challenges, particularly those engendered 
by the escalating integration of renewable energy sources within the power grid. 

The growing adoption of renewable energy resources, such as solar and wind, has led to a 
new era of sustainability and environmental consciousness in the energy sector. However, the 
inherent intermittency and variability of these renewable sources pose a significant challenge 
to grid stability and reliability. The erratic nature of renewable energy generation can 
precipitate imbalances in the supply-demand equation, leading to voltage fluctuations, 
frequency deviations, and potential network instabilities. It is within this series of challenges 
that the necessary for ESSs becomes essential [5].  
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For instance, according to the data provided by the grid operators at the California 
Independent System Operator (CAISO), it can be observed that there is a sharp drop in net load 
(or the demand remaining after subtracting variable renewable generation) in the middle of 
the day when solar generation tends to be highest, i.e., Figure 1.1 [6]. This emphasizes the 
importance of the implementation of DR programs and ESS to balance the generation and 
demand in the presence of renewable energy resources. 

ESSs serve as a dynamic buffer against the fluctuations of renewable energy production. By 
harnessing surplus energy during periods of high generation and releasing it during low 
generation, ESSs serve to smoothen the energy supply curve, obviating grid instability and 
ensuring a consistent, dependable power supply. This capability not only mitigates the 
challenges highlighted in the preceding discussion but also enhances grid resilience, effectively 
acting as a shock absorber in the face of unforeseen disruptions. 

The confluence of DR and ESSs represents a synergistic approach to addressing the 
exigencies of modern energy management. Together, these complementary features synergize 
to form a more holistic and robust model for optimizing energy systems. By orchestrating 
demand-side adjustments through DR and concurrently deploying ESSs to store and release 
energy, the energy ecosystem attains a level of flexibility and reliability that is vital to its 
sustainable evolution.  

This combination creates a resilient and efficient energy infrastructure controlled to meet 
the demands of the future while mitigating the environmental footprint through the integration 
of renewable resources. 

On the other side, it should be noted that the concept of the microgrid has undergone a 
profound transformation. Initially, the microgrid concept primarily revolved around the domain 
of the electric power sector. However, with the advent of innovative models that facilitate the 
seamless integration of various independent single-energy systems into a cohesive Multi-Energy 
System (MES), the scope and functionality of microgrids have expanded significantly. Notably, 
these modern MES-enabled microgrids have transcended their conventional focus on electric 
energy and now encompass the realm of thermal energy as well [3]. 

 

 

Figure 1.1 - CAISO net load pattern from 2015 until 2023 [6]. 

 



 

3 

 

This paradigm shift represents a crucial milestone in the domain of energy management. 
MES-enabled microgrids are poised to play a key role in the contemporary energy landscape by 
offering an integrated approach to both electric and thermal energy management. This 
evolution has broadened the horizons of energy system applications, rendering them flexible 
tools for optimizing not only electrical power but also thermal energy distribution and 
utilization within a given ecosystem. 

Crucially, the optimal management of distributed energy resources (DERs) and renewable-
based generation within the framework of multi-energy systems is imperative. These 
components are widely anticipated to constitute the linchpin of future energy systems. DERs 
encompass a diverse array of small-scale power generation and storage resources, including 
solar panels, wind turbines, and energy storage systems, which are distributed throughout the 
grid. The integration of renewable-based generation, such as solar and wind power, further 
accentuates the significance of DERs in the broader context of MESs. 

Given the anticipated prominence of DERs and renewable-based generation, the effective 
orchestration and management of these resources within MES has become paramount. 
Achieving optimal synergy between diverse energy sources, while ensuring efficient utilization 
and balancing of supply and demand, represents a formidable challenge. Yet, it is precisely in 
meeting this challenge that the future resilience and sustainability of energy systems will be 
forged. 

1.2 - Research Questions, Objectives and Contributions 
of the Thesis 

This thesis presents a comprehensive analysis of DR and ESS impact on the performance of 
energy systems and extends it to multi-energy systems. New analysis tools and methods are 
developed in this thesis that considers the operational variability and uncertainty associated 
with several resources such as consumption, generation, and energy prices. The overarching 
objective is to advance the state of the art in DR and energy storage utilization within multi-
energy systems, contributing to the integration of different energy sources while maintaining 
the cost-effectiveness of the whole system.  

In particular, the following research questions are addressed: 
1. What are the recent developments and trends in DR programs and energy storage 

technologies within MESs, specifically focusing on the main challenges and optimization 
techniques in energy hub system models? 

2. What is the behavior of a risk-seeking DR aggregator in the presence of several DR 
programs on the demand-side of the aggregator, and the day-ahead electricity market 
on the market side? How does the aggregator manage uncertainty on both sides? 

3. How does it improve the scheduling and risk-based operation of the DR aggregator? How 
does the incorporation of DRPs and an energy storage unit enhance consumers' 
flexibility in engaging with the DR aggregator's operations? 

4. What are the impacts of incorporating an ESS unit on the performance of a DR 
aggregator? How can the flexibility of end-users for their engagement in the DR 
programs be enhanced? 
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5. How can the integration of multiple DR programs for electrical, heating, and cooling 
loads provide increased flexibility to consumers while optimizing the operational 
efficiency of the distributed energy resources and the energy hub? 

6. How can risk management be effectively utilized for an uncertainty posed by the DER 
aggregator in an MES? 

The main objectives of this thesis are: 
 To carry out a state-of-the-art review on the status of DR and energy storage utilization 

across the world (with a particular focus on multi-energy systems), their economic 
aspects, current integration challenges and prospects, and other related issues. 

 To study the behavior of a risk-seeking DR aggregator considering two types of DR 
programs on the demand side of the aggregator, and the day-ahead electricity on the 
other side. 

 To develop a comprehensive and efficient optimization framework for a DR aggregator 
that addresses various uncertainties from both the market and consumer sides through 
the integration of different risk measures.  

 To enhance consumers' flexibility in participating in DR programs by accommodating 
two types of DR programs and incorporating an energy storage unit. 

 To develop a comprehensive model that analyzes the impact of an ESS unit on the 
performance of a DR aggregator, considering various end-users (residential, 
commercial, and industrial loads) participating in short-term electricity markets, such 
as day-ahead and balancing markets. 

 To demonstrate that the strategic integration of various DR programs targeted at 
different energy loads can not only offer consumers enhanced flexibility but also lead 
to improved operational efficiency of distributed energy resources and the energy hub. 

 To advance the understanding of risk management strategies in the context of DER 
aggregators and to optimize decision-making processes within MESs. 

The contributions of this thesis are summarized as follows: 
 An overview of the concept of DR and energy storage and the various types of them in 

multi-energy systems. Recent projects using DR programs and energy storage systems 
are highlighted to show the diversity of applications of DR and energy storage systems. 
Then, the concept of multi‐energy systems is discussed briefly, with a detailed focus 
on the application of DR and energy storage technologies to multi‐energy systems. This 
contribution is published in the Energies [7] and the Technologies for Integrated 
Energy Systems and Network [8]. 

 The behavior of the risk-seeker DR aggregator is studied considering two DR programs, 
i.e., time-of-use (TOU) and reward-based DR on the demand side of the aggregator and 
the day-ahead electricity market on the other side of it. Further, the uncertainty of 
both sides of the aggregator is considered. This contribution was published in 2019 
IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe) [9]. 
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 A hybrid optimization framework for a DR aggregator is developed that considers 
various uncertainties with different inherent characteristics of both the market and 
consumer sides through a combination of robust and stochastic methods, 
simultaneously. This model considers the stochastic and non-stochastic uncertain 
parameters to improve the scheduling of the DR aggregator and its risk-based 
operation. This contribution is published in the IEEE Transactions on Industry 
Applications [10]. 

 A model for analyzing the impact of the ESS unit on the performance of a DR aggregator 
is developed on behalf of various end-users such as residential, commercial, and 
industrial loads participating in the short-term electricity markets, i.e., day-ahead and 
balancing markets and increasing the flexibility for the end-users to participate in the 
DR programs through developing the participation roles of the end-users in DR programs 
through having renewable energy resources on the demand side of the aggregator. This 
contribution is published in the Journal of Energy Storage - ELSEVIER [11]. 

 An innovative, opportunistic risk-handling method for a hub is proposed comprising an 
μCHP, EHP, absorption chiller, boiler, and ESS. Three uncertain parameters of 
consumers are considered in this model- These are electrical, heating, and cooling 
loads. And multiple integrated DR programs are utilized to provide more flexibility to 
consumers. This contribution is submitted to the Applied Energy – ELSEVIER. 

 A hybrid IGDT-stochastic approach for the self-scheduling of a DER aggregator in an 
MES is developed. Therefore, through the application of this hybrid method, solutions 
for two different types of DER aggregators (risk-averse and risk-seeker decision-makers) 
are provided which makes it easier for the decision-makers to choose the model based 
on their preferences. The most suitable risk measures for the decision-maker are 
chosen based on the characteristics of the uncertain parameters, which leads to a more 
precise decision. This contribution is published in the Energy – ELSEVIER [12]. 

1.3 - Methodology 

The mathematical models developed in this thesis are based on well-established methods, 
namely, mixed-integer linear programming (MILP), mixed-integer non-linear programming 
(MINLP), robust optimization, information-gap decision theory (IGDT), and stochastic 
programming. To achieve the main research objective, beyond simulation models, this thesis 
develops methods and solution strategies to analyze the impact of DR and ESS in multi-energy 
systems under uncertainty with a special focus on the characteristics of the uncertain 
parameter. 

The proposed optimization models and the solutions strategies are implemented in GAMS© 
and solved in most cases using the CPLEX™, SBB™, and DICOPT™ algorithms, mostly by invoking 
default parameters. The visualization of the results is done in MATLAB©, Microsoft Visio™ and 
Excel©. 
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1.4 - Notation 

The present thesis uses the notation commonly used in scientific literature, harmonizing the 
common aspects in all sections, wherever possible. However, whenever necessary, in each 
section, a suitable notation may be used. The mathematical formulas will be identified 
concerning the subsection in which they appear and not in a sequential manner throughout the 
thesis, restarting them whenever a new section or subsection is created. Moreover, figures and 
tables will be identified with reference to the section in which they are inserted and not in a 
sequential manner throughout the thesis. 

Mathematical formulas are identified by parentheses (x.x.x) and called “Equation (x.x.x)” 
and references are identified by square brackets [xx]. The acronyms used in this thesis are 
structured under a synthesis of names and technical information coming from the English 
language, as accepted in the technical and scientific community. 

1.5 - Organization of the Thesis 

The thesis comprises seven chapters which are organized as follows. Chapter 1 is the 
introductory chapter of the thesis. First, the background of the thesis is presented. Then, the 
research motivations and the problem definition are provided. Subsequently, the research 
questions and contributions of this thesis are presented. Then, the methodology used 
throughout the thesis is introduced, followed by the adopted notations. Finally, the chapter 
concludes by outlining the structure of the thesis. 

In Chapter 2, a comprehensive overview of DR and ESS is presented. The most recent 
implementation of DR frameworks and energy storage technologies in multi-energy systems was 
comprehensively reviewed. The DR modeling approach in such energy systems was investigated 
and the main contribution of each of these works has been included. Moreover, the emerging 
topics within the area of MES are investigated using a bibliometric analysis to provide insight 
to other researchers in this area. 

In Chapter 3, a non-probabilistic program is proposed as a trading framework for DR 
aggregators. Both sides of the aggregator, including the upper side and downside of this entity, 
have been considered. On the downside of the aggregator, two popular programs are 
considered such as reward-based program and time-of-use (TOU) program, where DR is 
obtained from these resources. The acquired DR is studied to be traded in the day-ahead 
electricity market. To the aim of increasing the desired target profit of the risk-seeker 
aggregator, the opportunity function of Information-Gap decision theory (IGDT) is employed to 
address the uncertainty. 

Chapter 4 proposes a model to handle various uncertain parameters simultaneously to 
reduce their effect on the aggregator’s operation through the development of a novel hybrid 
stochastic-robust optimization approach that incorporates the uncertainties around wholesale 
market prices and the participation rate of consumers. The behavior of the consumers engaging 
in DR programs is addressed through stochastic programming. Additionally, the volatility of the 
electricity market prices is modeled through a robust optimization method. Two DR programs 
are considered in this model to include both time-based and incentive-based DR programs, i.e., 
time-of-use (TOU) and incentive-based DR (ibDR) programs to study three sectors of consumers, 
namely industrial, commercial, and residential consumers. An ESS is also assumed to be 
operated by the aggregator to maximize its profit. 
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As it was considered a DR aggregator responsible for participating in the wholesale 
electricity market on behalf of the end-users who participated in the DR programs in the 
previous chapter, in Chapter 5, a model for analyzing the impact of the ESS unit on a DR 
aggregator's performance is developed to provide more flexibility for the consumers. The direct 
interactions of a DR aggregator with an ESS are neglected in many models. However, this 
consideration can lead to improvement in the flexibility of the aggregator and increase the 
profit of the entity by trading energy in the short-term markets to charge the ESS during the 
low-price periods and discharge it to the market while the electricity market prices are high. 
Hence, it is assumed that the DR aggregator owns an ESS unit and can cover a percentage of 
its traded power through the ESS. An analysis of the impact of the ESS unit on the DR 
aggregator's performance is applied to study the most appropriate size of the ESS that can 
maximize the profit of the aggregator. In addition, renewable energy production is employed 
for end-users through the installation of rooftop PV panels. This demand-side renewable 
generation can provide more flexibility for the participants in DR programs. 

The electricity and natural gas systems are currently experiencing significant 
transformations, where an energy hub can be created by combining these two energy carriers. 
Therefore, energy hubs have the potential to be highly influential due to their ability to 
integrate and optimize multiple energy sources, improve energy efficiency, and provide 
flexibility in energy management. Hence, in Chapter 6, we extended our framework within the 
consideration of multi-energy systems to study and analyze them, particularly regarding their 
costs. This model introduces a novel energy hub risk-management method. Our risk 
management framework considers uncertainties arising from various load profiles, including 
electric and thermal loads, as the uncertainties originating from the end-user side are among 
the most important factors in optimizing the total cost of the energy hub. The proposed energy 
hub includes multiple distributed energy resources. 

The optimal management of DERs and renewable-based generation in MESs is crucial. To 
optimally manage these numerous and diverse entities, an aggregator is required. Hence, 
Chapter 7 proposes the self-scheduling of a DER aggregator through a hybrid IGDT-stochastic 
approach in an MES. In this approach, there are several renewable energy resources. The 
approach also considers an EV parking lot and thermal energy storage systems (TESs). Moreover, 
two DR programs from both price-based and incentive-based categories are employed in the 
microgrid to provide flexibility for the participants. The uncertainty in the generation is 
addressed through stochastic programming. At the same time, the uncertainty posed by the 
energy market prices is managed through the application of the IGDT method. A major goal of 
this model is to choose the risk measure based on the nature and characteristics of the 
uncertain parameters in the MES. 

Chapter 8 presents the main conclusions of this thesis. Guidelines for future works in these 
fields of research are provided. Moreover, this chapter reports the scientific contributions that 
resulted from this research work and that have been published in journals with high impact 
factor (first quartile), as book chapters, or in conference proceedings of high standard (IEEE). 
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Chapter 2  

Demand Response Programs and Energy 
Storage Technologies in Multi-Energy Systems 

In this chapter, the most recent implementation of DR frameworks and energy storage 
technologies in multi-energy systems was comprehensively reviewed. The DR modeling 
approach in such energy systems was investigated and the main contribution of each of these 
works has been included. Moreover, the emerging topics within the area of MES are 
investigated using a bibliometric analysis to provide insight to other researchers in this area. 

 

2.1- Demand Response Programs in Multi-Energy Systems 

There are numerous reasons behind the ongoing transition within the energy sector. These 
include major concerns about the emissions and other environmental impacts of fossil fuel 
combustion. DR has emerged as a key solution to help enable this energy transition [13]. DR 
can effectively increase the active participation of consumers within the energy sector. 

The Department of Energy of the United States has reported that active participation of 
consumers, through load reduction or load shifting, could be a key solution to future 
decarbonized energy systems. This reduction or shifting of load can be done through DR 
programs but some inelastic electricity consumers cannot participate in DR programs for 
numerous reasons, for instance, they have critical or must-run loads. Therefore, relying on a 
single energy carrier is not appropriate for future energy systems. Multi-energy systems (MES) 
can solve this issue and can maintain the comfort of the end-user during the operation of the 
DR program. 

As MES relies on numerous energy carriers such as electricity, gas, heating, and cooling 
there is an increased amount of flexibility within the system which can be harnessed by the 
utility to allow a diverse range of consumers to participate in DR programs. Consumers can 
utilize a multitude of energy carriers to help meet their needs for energy and comfort while 
participating in DR programs. The utilization of the energy hub (EH) for the MESs is essential. 
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Since the EH is usually employed to represent energy distribution systems within a well-
developed combined gas and electricity transmission networks model [14]. Figure 2.1 presents 
a representation of the relationships between a power system, other energy carriers and DR 
features. The main contributions of this model are as follows:  

 Review and synthesis of recent DR programs (DRPs) in MESs. 
 Exploration of the main DR in Energy Hub Systems models and their optimization. 
 Use of bibliometric techniques to examine emerging trends within the DRP in the MES 

research area to help display the relation of the topics that have been done in this 
area. This shows how certain topics have emerged over the years and highlights the 
direction in which the research is going. 

2.1.1- Demand Response 

DR can provide valuable solutions to several of the challenges that the current power system 
is facing. These challenges include managing load demand from consumers from the ongoing 
electrification of our society [15]. This increasing load demand could cause some major 
problems for system operators, especially in peak periods. To meet these challenges, numerous 
solutions other than DR have been proposed including the optimization of renewable energy 
generators, storage units, or capacitors. Another tool to tackle the issues relating to increased 
load demand is network reconfiguration [16]. This involves better management of the power 
flow within the network to reduce congestion.  

DR programs offer great potential to help overcome the challenges faced by the modern 
power system. Before DR is discussed further, it is important to provide a robust definition of 
DR. Three definitions of DR have been identified for this purpose. One of these definitions is 
as follows: ‘changes in the electricity usage pattern of the consumers if the prices of the 
electricity would change in several periods’ [17]. DR can also be defined by the incentive 
payments provided to consumers to help modify both the magnitude and timing of their energy 
use. The other definition of the DR is the incentive payments that are created to encourage 
the consumers to use less electricity when the market prices are high, or the reliability of the 
power system is endangered. These definitions, although similar, focus on different aspects 
related to DR, making the definitions presented complementary.  

 

Figure 2.1 - Representation of the relationship between a power system and other energy 

systems. 
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These three definitions of DR show that there are different objectives for DR programs. 
These objectives can be reached through types of  DR actions [18,19]. These include managing 
load profiles through elasticity peak shaving, and valley filling [17]. These results can be 
brought about by the use of time-dependent tariffs [20]. However, price is not always enough 
to convince a consumer to actively participate in DRPs [9]. Two main branches of DRP are 
prevalent and these are shown in Figure 2.2, and these two branches are price-based and 
incentive-based DRPs [21].  

In price-based DRPs, electricity prices are the main tool used to modify consumer energy 
use [22]. Within this category, there are three main programs and these are Time of Use (TOU), 
Critical Peak Pricing (CPP), and Real-Time Pricing (RTP) [23]. In contrast to price-based DRPs, 
incentive-based DRPs aim to modify consumer energy demand through the use of rewards [24]. 
Within this category of DRPs, the most popular tools used include Direct Load Control (DLC), 
interruptible/curtailable services, emergency DR programs (EDRP), ancillary services markets, 
capacity markets, and demand bidding/buyback programs. The most important of these are 
discussed in the next section.  

TOU pricing strategy contains different electricity pricing blocks corresponding to different 
periods of the day. In ToU programs, electricity prices can be increased during high-demand 
periods or decreased during low-demand periods to modify consumer behavior [25]. These 
programs generally do not change the amount of energy demanded but rather just shift the 
time of energy use to better suit the system status. CPP programs define the peak price period 
where the system's reliability may be at risk. Electricity prices are kept high during this period 
to reduce consumption and thus reduce the risk to the system. In RTP programs, prices are 
determined through real-time market interactions to match supply and demand.  

Within incentive-based DRP programs, DLC programs give the utility the power to directly 
control various appliances owned by the consumer such as electric water heaters, air-
conditioners (AC), and various pumps. During periods of high demand, the utility can effectively 
shut these appliances off while rewarding the consumers through incentives [26].  

The consumers can be involved directly in the DRPs through interruptible/curtailable 
services. The main aim of these programs is to have an agreement with the consumers to 
decrease energy usage during peak periods. In return, they receive monetary incentives. 
Likewise, to compensate for the contingencies and enhance the reliability of the system, EDRP 
is being addressed. Transmission line failure or an outage in a generator could lead to 
insufficient generation during peak period and thus a system contingency can happen.  

 
Figure 2.2 - Illustration of several DRPs. 
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In this condition, the best decision is to apply the EDRP to reduce the load supply by 
interrupting a major part of the large consumers’ load for a small duration and the consumers 
usually run their backup power in this period. Besides this, there is another way to maintain 
the energy system’s reliability and stability, which is implementing bulk load shedding. 
Consumers’ load is being curtailed instead of offering them monetary incentives. The above-
mentioned incentive-based programs are not the only available DRPs. Other incentive-based 
programs were created to meet various kinds of consumers in different conditions such as 
capacity markets, service markets, and demand bidding/buyback programs [18]. 

2.1.2- Energy Hubs for Multi-Energy Systems Management 

An exact definition of an energy hub can be given as written: A unit that has the capability of 
conversion, storage, and management of multiple energy carriers [27]. Another definition of 
energy hub which is more precise is introduced in [28]. In this paper, an energy hub is defined 
as an interface that manages the inputs and outputs of the energy carriers as well as converting 
and storing them. Therefore, an energy hub is the main component of the MESs. 

The energy hub concept was developed by a team at ETH Zurich through the VOFEN project. 
In this project, the future’s energy market design for the next 20-30 years had been created 
through a greenfield design of the energy system, that is to assume no effects of legacy 
infrastructure [29]. The project's main highlights are written as follows [30]: 

1. To gain more benefits from various energy carriers, a movement toward MES is 
required. 

2. The energy system is required to implement non-hierarchical structures.  

3. Energy systems are required to be more interconnected and more integrated. 

M. Geidl et al presented the important outcomes of the VOFEN project in [27] which led to 
the above-mentioned goals. The first concept is an energy interconnector, and the second 
concept is an energy hub. According to the definition of an energy interconnector, several 
energy carriers are combined into just one transmission system for long-distance [31]. In the 
VOFEN project, the energy hub is defined and presented as follows: The energy hub is a direct 
or indirect interface that exists between the demand side and generation side as well as the 
storage and transmission devices in various models and it manages one or different energy 
carries.  

In [32] the authors propose a nonlinear model for the combined power flow optimization 
in the presence of several energy carriers including electricity, gas, and heating systems that 
are based on the energy hub concept. They introduced a matrix as the model of an energy hub 
to simulate an optimization model for optimal power flow in the energy hubs. Thus, the main 
energy hub framework is provided in [33] with the aim of MESs management. 

Several reasons encourage employing MES instead of single energy systems. For instance, 
in [34], the utilization of the MESs will lead to sufficient improvement in the operation of a 
microgrid. Moreover, employing the energy hub in the energy system in [35] would improve the 
balance between energy generation and demand as well as help to smooth the total load profile 
of the consumers through the implementation of the Stackelberg game approach.  
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The importance of energy hubs is described in [36], where the authors state that one of 
the solutions to increase the efficiency of the system, as well as a decrease in the operational 
investment costs, is to move toward MESs through energy hubs due to interdependency that 
both electricity and natural gas have with each other. 

In addition, the MESs’ characteristics are dependent on several parameters such as cost, 
emissions could provide availability of optimal dispatch of various energy sources, electricity, 
and gas. Thus, the utilization of the multi-generation systems can be more efficient by the EH 
employment instead of the conventional energy system. Since it can optimize energy usage, 
enhance efficiency as well, and decrease the amounts of the system costs and emissions. In 
some recent works, such systems are also defined as integrated EH [37]. Moreover, two other 
significant advantages of the MESs are listed as follows: 

1. Increase in the system’s reliability: The reliability of the MES is more than the single 
energy system as the system is not dependent on only one source of energy. On the 
other hand, the individual energy systems’ reliability could be decreased since the 
availability of the loads is still high. 

1. The EH supply will be optimized through the additional degree of freedom. Since it is 
possible to characterize the inputs of the EH based on their availability, costs, 
emissions, and other related factors. Hence, the dispatching of the EH’s inputs will be 
more optimal based on these characteristics [27]. 

2.1.3- Demand Response in the Energy Hub Systems 

In this section, a specific focus is placed on the operation of DR within Energy Hubs. Firstly, 
the methods used to model the DRP and the Energy Hubs are discussed, and then following this, 
the different optimization techniques most used are presented. 

 

2.1.3.1- Modelling 
Energy hubs could be modeled in two types in the power system. One of these methods is the 
energy flow method [38]. This type of energy-hub modeling is depicted in Figure 2.3. 
Accordingly, the equations could be obtained from the usual power system’s energy flow. In 
these models, the inputs of the EH are the electricity and the natural gas and on the other 
side, the output ports can provide the electrical, heating, and cooling energies simultaneously. 
In this type of modeling, several types of energy carriers are coupled together. Thus all the 
energy balancing equations such as electrical, cooling, and heating have to be taken into 
account simultaneously [39].  

The other approach for modeling energy hub equations utilizes concepts related to graph 
theory and is termed matrix-oriented energy hub modeling [41].  In this method, energy 
converters are being utilized to convert different types of energy. To model the EH based on 
the matrix-based framework, it is necessary to define some of the following components in 
advance. These components are energy flow resistance, node, graph, branch, branch-node 
incidence matrix, and branch energy flow impedance matrix.  

The definition of these components is described in [42]. For instance, to model DR in this 
approach, [42] considered  some assumptions that are required: ܲ,

ோ indicates the j-th load 
branch after DR. Therefore, the directed graph of the EH using this approach can be depicted 
in Figure 2.4. 
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Figure 2.3 - Illustration of the EH modeled based on energy flow [40]. 

 

Figure 2.4 - Illustration of the EH modeled based on the matrix approach [42]. 

It must be noted most of the models dealing with DR in the EH are proposed by the first 
method, i.e., energy flow. For instance, in [43], the authors proposed an MES through energy 
flow method that consists of the heat recovery boiler, heat exchange device, micro gas turbine, 
gas boiler, electric boiler, absorption chiller, electric heat pump, electric energy storage and 
heat energy storage, wind turbine, photovoltaic unit. In this work, flexible DR for the electrical 
and heating loads is implemented. Similarly, the energy flow is used in [44] in the MES model 
and considering DR to provide more flexibility for the consumers. The DR program that is 
applied in this study uses TOU. Considering three periods during a day, i.e. peak, valley, and 
flat hours. 
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2.1.3.2- Optimization 
There have been several methods and algorithms that could be employed in the models to find 
the solution for the problems defined. In [37], since the model was a bilevel optimization 
scheduling model, The proposed optimization operation model is a non-linear problem that is 
formulated in two levels. There are some main approaches to finding the solution such as the 
branch and bound method, Karush-Kuhn-Tucker (KKT), penalty function method, etc. In this 
work, it is possible to determine the decision variables within the bounds of the constraints 
after some simplification. Thus, the KKT conditions for the lower level of this model can be 
utilized as the upper level’s constraints. Therefore, the bi-level model is being transformed 
into an equivalent single-level problem. Likewise, the solution that is considered in [45] leads 
to binary mixed-integer linear programming problems. To manage the coupling variables in the 
constraints, a binary variable is considered. In this work, linear interactive and general 
optimizer (Lingo) software is being used to find the optimal solution. 

Some heuristic methods were applied as the solution method to find the optimization point. 
For instance, a Stackelberg Game Approach is taken in [35]. Another heuristic approach that 
can also be employed to find the best solution is a genetic algorithm. In [46], the authors search 
for the best price in the microgrid through a genetic algorithm.  

In general, two separate objectives can be modeled. These are maximizing the benefit to 
the participants, mainly through maximizing their profit, or the other aim is to minimize their 
cost.  

 Benefit Maximization 

In some models, the optimization aims to maximize the profit For instance, the objective 
of [47] the electricity utility company is to maximize its profit. The proposed optimization 
model of [48] comprises two objectives one of which is maximizing the profit. The objective 
function is to maximize the expected aggregator’s profit [49].  

 Cost Minimization  

There are some studies in this field in which their optimization goal is minimizing the cost. 
In [50], minimization of the incentive payment is introduced as the objective function of this 
optimization problem., while considering the load-shaving constraints. The main objective of 
the [51] in the upper level is minimizing the total operation cost of the EH while maximizing 
the exergy efficiency in the lower level. The cost minimization of the considered energy system 
in [52] is the main aim of this optimization problem considering the amounts of electricity and 
heat loads, energy carriers’ tariffs, converters’ efficiency, and the starting time of the 
costumers’ preferred appliances. The MES is based on the minimum system costs. 

2.1.4- The direction of the research 

This section will examine the most recent studies that have a focus on DR in MES and present 
a synthesized overview of the current state of the art. Following this, a bibliometric study was 
carried out to investigate the emerging trends within the MES and DR research area. 
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2.1.4.1- The main contributions of the studied works 
The area of DRP in multi-energy systems has been receiving increasing interest from the 
scientific community in recent years, as can be seen in Figure 2.5. This figure shows the number 
of studies published in which their main area is the application of DRP in multi-energy systems. 
Based on this figure, the number of publications is increasing in an exponential trend after 
2016, which clearly shows the current relevance of the topic. 

The type of publications dealing with DRP in multi-energy systems is illustrated in  
Figure 2.6. From the figure, it is possible to see that the largest number of works are published 
in scientific journals, i.e., more than 60 % of the reviewed works. However, there are other 
types of publications like presenting the proposed DR models in international conferences, 
books, and as well as PhD dissertations. 

Each one of the existing publications focuses on different aspects, combinations of sources 
and technologies, from ME systems and DRP as well as approaches and models. A set of works 
in recent years are now discussed, having been classified according to the main area of the 
chapter, which ME sources are considered, and the presence of distributed energy resources 
(DER), plugin electric vehicles (PEVs), electrical storage systems (ESS) and Hydrogen storage.  

 

 

Figure 2.5 - Year of the studied publications. 

 

Figure 2.6 - Type of the studied publications. 
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For each work, the focus and the respective contributions area are highlighted. Also, the 
simulation environments of the optimization model of the models that utilize DR in the multi-
energy carrier systems are described. The models can be carried out in several programs such 
as the General Algebraic Modelling System (GAMS), MATLAB, etc.  

Tables 2.1 and 2.2 present a summarized list of all the publications analyzed for this 
review. The papers have been classified according to the type of energy carrier analyzed in the 
chapter. These were grouped into five separate groups. Group A [35,39,42,48,51–54,57–
61,63,64,67,69,71,72,74,79,80,83–85,88]contains the paper which considers power, heat, and 
gas. Group B [34,38,44,45,65,66,68,70,72,75,77,78,82,86,87] includes those papers that 
considered heat, power, gas as well as cooling. In Group C [37,46,50], papers considered power 
heat and cooling were considered. Group D [55,62] considered power and heat and Group E 
[47,76] considered power and gas.  

Most of the works which consider power, heat, and gas consider the presence of DERs and 
ESS as is the case of [54], [58], and [59]. In [54], a mathematical formulation for the optimal 
planning of a developed energy hub considering operation constraints is presented. The EH is 
constructed by a Transformer, Combined Heat and Power (CHP), Boiler, and Thermal Storage 
(TS). The EH is developed by Wind Turbine (WT), Energy Storage (ES), and DR programs. The 
hub input energy carriers are electricity, gas, and water. The authors in [58] focus on the 
optimal operation of a multi-carrier energy system in the presence of a wind farm, electrical 
and TS systems, electrical and thermal DR programs, the electricity market, and the thermal 
energy market. Stochastic programming is implemented for modeling the system uncertainties 
such as demands, market prices, and wind speed. In [59], a risk-constrained scenario-based 
two-stage stochastic method to solve the smart energy hub scheduling problem is presented. 
The smart energy hub scheduling model would determine the least-cost 24-hour operation of 
CHPs, boilers, and storage systems that would satisfy electrical and thermal demands. 

The set of works with power, heat, gas, and cooling follows the same approach as the 
previous group, but in these, the MES model considers the presence of cooling systems, some 
examples are the works presented in [65], [66], [70]. In [65] a long-term configuration and 
sizing model with an integrated DR to determine the optimal size options of the components 
of an energy service company's energy hub is developed. In this paper, the concept of DR is 
applied to heating, and cooling loads, which are curtailable and shiftable is applied to enhance 
economic efficiency and system flexibility.  

This modified version of the integrated DR program is denoted as integrated DR. The paper 
offers an approach for the energy service company to evaluate the probable cost including the 
investment and operation portion. The authors in [66] present a residential energy hub model 
that receives electricity, natural gas, and solar radiation at its input to supply the required 
electrical, heating, and cooling demands as the output. Augmenting the operational flexibility 
of the proposed hub in supplying the required demands, an inclusive DR program including load 
shifting, load curtailing, and flexible thermal load modeling is employed. In [70] the optimal 
scheduling of a smart residential energy hub (SREH) considering the uncertainties of electricity 
market prices, electrical demands, thermal demands, cooling demands, and solar radiation is 
presented.  

In the group of power, heat, and cooling the works do not consider gas in the models as 
can be seen in [37], [50], and [46]. An example of this group is [50] where an interactive 
dispatching strategy based on demand-side bidding and multi-energy coordination for a virtual 
power plant (VPP) to provide system reserve is developed.  
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The VPP with flexible load and CCHP allow for the interactive dispatching strategy based 
on demand-side bidding and multi-energy coordination, which could achieve a certain load 
curtailment plan by taking advantage of CCHP and interruptible load. The remaining groups, 
power and heat ([55], [62]) and power and gas ([47], [76]) have these systems as a base, 
however, they address or integrate additional energy carriers as is the case with EVs in [55] 
and [62]. 

 

Table 2.1 — The most recently studied works - part one 
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[34] EH GAMS × × ×  × × ×   

[35] DR MATLAB  × ×  ×     

[42] EH MATLAB  × ×  × ×  ×  

[53] EH GAMS  × × × × ×  ×  

[37] EH MATLAB × × × ×  ×  ×  

[54] EH GAMS  × × × × ×  ×  

[55] ME MATLAB  × ×   × × ×  

[56] EH NA   ×   ×   × 

[57] ME NA  × ×  × ×    

[58] EH GAMS  × ×  × ×  ×  

[59] EH GAMS  × ×  × ×  ×  

[60] DR MATLAB  × ×  × ×  ×  

[61] ME GAMS  × × × × ×  ×  

[62] DR GAMS  × × ×   ×   

[52] DR NA  × ×  × ×    

[63] EH GAMS  × ×  × ×  ×  

[64] EH MATLAB  × ×  ×   ×  

[47] DR NA   ×  ×     

[65] EH MATLAB × × ×  × ×    

[66] ME MATLAB × × × × × × × ×  

[67] EH GAMS  × ×  × ×  ×  

[68] EH GAMS × × ×  × ×  ×  

[69] EH GAMS  × ×  × ×    

[70] EH GAMS × × ×  × ×    

[71] DR MATLAB  × × × ×     

[72] ME MATLAB  × ×  ×     
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Table 2.2 — The most recently studied works - part two 
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[73] EH MATLAB × × ×  ×     

[74] ME MATLAB  × ×  × × × ×  

[75] DR NA × × ×  × ×    

[50] EH NA × × ×       

[76] DR MATLAB   ×  × ×    

[77] ME GAMS × × ×  × ×  ×  

[78] EH GAMS × × ×  × ×  ×  

[79] DR GAMS  × × × ×     

[51] EH GAMS  × ×  × ×  ×  

[80] ME NA  × ×  ×   ×  

[81] EH MATLAB  × ×  × × ×   

[82] ME NA × × ×  × ×  ×  

[83] EH MATLAB  × ×  × ×    

[84] EH GAMS  × ×  × ×  ×  

[85] ME GAMS  × ×  × ×   × 

[45] ME LINGO × × ×  × ×  ×  

[46] HE MATLAB × × ×   ×  × × 

[48] DR GAMS  × ×  × ×    

[86] ME NA × × ×  × ×  ×  

[44] ME NA × × ×  ×     

[87] DR MATLAB × × ×  ×     

[38] ME GAMS × × ×  ×     

[88] DR GAMS  × ×  × ×  ×  

[39] EH GAMS  × ×  × × × ×  

In [62] the paper proposes a method for short-term coordination of combined desalination, 
heating, and power systems, where the participation of aggregated PEVs in water-heat-power 
nexus is optimally scheduled. Real-time DR programs are implemented on water, heat, and 
electricity loads. The authors in [55] focus on optimizing a multi-energy hub that includes 
renewables, dispatchable energy sources, and energy storage with the vehicle-to-grid (V2G) 
interacting with the grid with a pricing scheme based on TOU. A stochastic model is used for 
modeling V2G-based DR. A new line of research can be seen in [56] and [85], where hydrogen 
storage systems are considered in the MES model. In [32] a self-regulating DR management 
mechanism is presented. Deferrable electrolyzers are used as a main controllable resource in 
a hydrogen-based clean energy hub, which includes a traditional generation plant, a low-carbon 
generation plant, and wind energy.  
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Based on the hysteresis control model for aggregated electrolyzers, a comfort-constrained 
optimal energy state regulation control strategy is implemented to model the deregulation 
feature of aggregated electrolyzers.  

In [85] the optimal energy management of an energy hub designed to simultaneously 
minimize the operation costs and emissions (inside and outside the hub) in the presence of WT 
and DR is addressed. The hydrogen network is considered one of the main networks connected 
to the energy hub, and the hydrogen demand is included as one of the energy hub’s outputs. 
Optimal management of the energy hub including hydrogen storage, thermal DR, power-to-
hydrogen, hydrogen-to-power, and gas-to-power facilities, as well as the WT, is addressed to 
reach the lowest cost and the lowest emissions. 

2.1.4.2- Trending Keywords in the Area 
To better understand the underlying trends in the studied literature, a scientometric analysis 
was conducted. VOSviewer, a well-known scientometric analysis software, was used to better 
understand the relationships present within the studied literature. In this analysis, a total of 
75 academic articles were studied using VOSviewer 1.6.15 [89]. A total of 173 keywords were 
identified and the most prevalent keywords are shown in Figure 2.7 below. 

As is expected the DR and energy hubs are the main keywords. Integrated DR is also 
prevalent in several articles. This can indicate that utilization of the integrated DR in the MESs 
is also one of the most recent works that are being done in several studies [87,90]. From Figure 
2.7, the different colors used in the figure represent the year of publication with the most 
recent publications shown in yellow while the older publications are shown in purple.  

Figure 2.7 - Main keywords and the temporal relationship between them. 
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2.2- Energy Storage Technologies in Multi-Energy 
Systems 

Now we are going to analyze the ESS technologies and their application in the energy system 
with a focus on MES as well. Energy storage is an important element of an energy system. In 
the power system, energy storage can be defined as components that can be employed to 
generate a form of energy or utilize previously stored energy at different locations or times 
when it is required. Energy storage can enhance the stability of the grid, increase the reliability 
and efficiency of integrated systems that include renewable energy resources, and can also 
reduce emissions. A diverse set of storage technologies are currently utilized for energy storage 
systems (ESSs) in a varied set of projects.  

This chapter provides information about the current ESS projects around the world and 
emphasizes the leading countries that are developing the applications of ESSs. The main 
categories of ESSs are explained in this chapter as follows: electrochemical, electromechanical, 
electromagnetic, and thermal storage. Moreover, energy storage technologies are utilized in 
power grids for various reasons such as electricity supply capacity, electric energy time-
shifting, on-site power, electric supply reserve capacity, frequency regulation, voltage support, 
and electricity bill management. Additionally, by integrating the various energy forms and 
developing the concept of multi-energy systems, ESS has become a fundamental component 
for the efficient operation of multi-energy systems. The main role of ESSs in multi-energy 
systems is to compensate for the fluctuations in power output from renewable energy 
resources. Moreover, the performance of the multi-energy system increases when it is 
integrated with an ESS. Thus, ESSs play an essential role in multi-energy systems. These storage 
systems not only allow for the balancing between fluctuations in energy supply and demand 
but can also offer important means to convert energy from one form to another. This ability of 
energy storage systems to store energy across time, location, and energy type greatly increases 
the flexibility of the integrated energy systems [91]. This chapter provides a comprehensive 
overview of energy storage technologies being applied to multi-energy systems and shows how 
these emerging technologies and systems play a critical role in any future energy system. 
Expectations are that the need for energy storage systems will triple by 2030 [91]. 

As the energy system evolves into one dominated by intermittent renewable energy 
sources, energy storage systems have experienced a massive increase in research and 
development from both academic and commercial developers [92]. This has led to immense 
reductions in cost and improvements in system efficiency and this is expected to continue in 
the near-term future. Despite these improvements, there still needs to be further development 
in this sector. This can be done through a combination of deployment-led innovation and active 
policies and regulations that shape research and development [93]. 

The breadth of energy storage applications is rapidly accelerating and is shown in the 
emerging sector of hybrid or multi-energy systems energy systems. These are systems that 
combine various renewable energy, traditional energy sources, and storage systems which 
complement each other to develop energy systems that take advantage of each of the 
component systems [92]. Within MES, energy storage technologies can be applied at nearly all 
scales and timeframes [94]. Each of the different energy storage technologies has its 
advantages and disadvantages and the exact combination of technologies for a given 
application should be carefully studied to ensure that the full potential of energy storage 
systems in multi-energy systems is harnessed [95]. 



 

22 

 

This part of the chapter introduces the concept of energy storage and discusses the various 
types of energy storage systems. Recent projects using energy storage systems are highlighted 
to show the diversity of applications of energy storage systems. Then the concept of multi-
energy systems is discussed briefly, with a detailed focus on the application of energy storage 
technologies to multi-energy systems. 

2.2.1- Energy Storage Definition 

In the energy system, an important component is energy storage. Within the power system, 
energy storage can be defined as a component that can be employed to generate a form of 
energy or store energy for use at a different time or location. Applications of renewable energy 
resources around the world have developed and increased exponentially due to their 
advantages over traditional energy resources such as power plants that use fossil fuels. Despite 
these advantages, the fast growth of renewable energy resources has brought some challenges 
to the power system as well.  

One of the main issues of renewable energy resources is intermittent generation which is 
dependent on many factors such as solar irradiation, wind speed, and direction among others 
[96,97]. These factors lead to fluctuations in electricity generation from renewable energy 
resources. Utilization of ESSs can address this issue and play a complementary role for 
renewable energy resources to create a reliable and sustainable energy system. 

The top countries in terms of installed ESS projects or those to be built are shown in  
Figure 2.8. The total capacity of ESS in these 20 countries is approximately 198 GW [98]. 
According to this figure, the US is the country with the highest capacity of ESS. The US has 
around 57.3 GW of ESS capacity [98],[99]. China and Japan are the second and third places 
with 31.7 GW and 28.1 GW of capacity, respectively. If we take a deeper look at Figure 2.8, 
there is a major difference in the capacities of these three countries relative to the remaining 
17 countries. For instance, Germany’s ESS capacity is 8.3 GW which is around four times lower 
than the ESS capacity of the US. This can indicate that ESSs are considered an important 
component of the energy system in the US, China, and Japan. The dimensions of Germany and 
Japan are almost the same; however, the ESS capacity of Japan is much greater than Germany. 
However, the observed data shows that the dimensions of the country have a positive relation 
on the ESS capacity on most of the cases.  

Another important observation from Figure 2.9 is related to the share of ESSs on each 
continent. For instance, in Asia and Australia, considering China, Japan, India, South Korea, 
Taiwan, and Australia, the ESS share is equal to 72.5 GW. In European countries, this figure is 
56.4 GW of ESS capacity which includes Spain, Germany, Italy, Switzerland, France, Austria, 
United Kingdom, Portugal, Ukraine, Russia, and Poland. North America has 62.1 GW of capacity 
which includes the US and Canada. Finally, South Africa is the only country from Africa that is 
listed in the top 20 countries with an ESS capacity of 2.8 GW. Therefore, Asia and Australia are 
the leading followed by North America and then Europe. 

The ownership type of the current ESS projects is given in Figure 2.10. As shown in this 
figure, there are five main categories of ESS ownership. Most of the ESS projects are Investor-
Owned projects which means that they belong to the investment companies that are developing 
the project.  
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A total of 640 projects are being implemented and managed by their investors. Public-
owned ESS projects are in second place and then, Federally-Owned and State/Municipal-Owned 
are next. 188 projects are considered to be Publicly-Owned projects and there are 53 projects 
which are owned by Cooperatives. In Figure 2.10, two projects fall outside of the above-
mentioned categories. In other words, their ownership does not belong to the public, state, 
investor, or other above-mentioned categories. 

 

 
Figure 2.8 - Top countries in ESS capacities [98].  

 

 
Figure 2.9 - The cumulative capacity of ESS of each continent [98]. 



 

24 

 

 

Figure 2.10 - Type of the ESS ownership [98]. 

 

2.2.2- Different types of energy storage systems 

Many different technologies are being utilized for current ESS projects. The classification of 
these technologies is dependent on many factors such as the purpose of energy storage. For 
instance, they can be classified according to their operation duration, or type of function 
[100,101]. Electrical and thermal are the main types of energy that are being stored. The 
different energy storage technologies are listed in Figure 2.11. 

 In this list, the main storage systems are as follows: mechanical storage, pumped hydro 
storage, lithium-ion battery, liquid air energy storage, lead-carbon, hydrogen storage, 
electromechanical, electrochemical, and thermal storage systems [102–109]. According to the 
information provided in the literature, electrochemical energy storage systems are the most 
popular and common storage technology [100]. There are currently at least 998 projects around 
the world that are categorized as electrochemical energy storage systems [98]. Pumped hydro 
storage technology is another common type and there are more than 350 projects which employ 
pumped hydro storage technology. A total of 220 projects are using thermal storage technology 
according to the information shown in Figure 2.11. However, some technologies are less 
common and popular for companies that are designing and implementing energy storage 
technologies for the energy network. These less common technologies are liquid air energy 
storage and lead-carbon technologies [105,106]. 

Based on a report from the US Department of Energy, the global capacity of energy storage 
systems is equal to 191.2 GW in 2020 and this is a 12% increase compared to 2017 [110].  
Table 2.3 shows the cumulative capacity of energy storage systems for each type of energy 
storage technology. According to this table, electrochemical systems have the greatest 
capacity of rated power among all currently available storage technologies at 118.2 GW. 
Lithium-ion batteries are also becoming an important source of energy storage due to their 
application in the electric vehicles section. 
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Then, the pumped hydro storage with 51.8 GW captures the second-greatest cumulative 
rated power capacity. The lithium-ion battery is also becoming an important source of energy 
storage due to its application in the electric vehicles sector [111]. Next in terms of installed 
capacity, there is pumped hydro storage with 51.8 GW of rated power capacity. 

It should be noted that in this chapter, energy storage systems are classified into four main 
categories which are electrochemical energy storage, electromechanical energy storage, 
electromagnetic energy storage, and thermal energy storage as depicted in Figure 2.12. Each 
category will be introduced and explained in the next sections. 

 
 

 

Table 2.3 — The rated power of each ESS technology 

ESS Technology Rated Power (GW) 

Electrochemical storage 118.2 
Compressed Air Energy Storage 1.6 
Electromechanical 4.5 
Hydrogen Storage 1.3 
Lead-carbon 0.02 
Liquid Air Energy Storage 0.33 
Lithium-Ion Battery 1.7 
Pumped Hydro Storage 51.8 
Thermal Storage 12.5 

 

 

 

 
Figure 2.11 - The various ESS technologies [98]. 
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Figure 2.12 - The main classification of energy storage systems [112]. 

2.2.2.1- Electromechanical energy storage systems  

The most established ESS in high-power applications is Pumped hydroelectric storage (PHS) 
which has been used since the 1890s. PHS is a sustainable energy source, with the flexibility 
and storage capacity to improve grid stability [113]. PHS is operated in low-demand periods, 
extra energy is used from the grid to pump water from a lower to an upper reservoir. Low-cost 
surplus off-peak electric power is normally used to run the pump. In high-demand periods, the 
opposite occurs with water flowing from the upper reservoir to the lower one and turning a 
turbine to generate electricity to export to the grid. The gravitational potential energy of the 
stored water determines the energy storage potential [112]. PHS allows energy from renewable 
sources like solar and wind, or excess electricity from sources like coal or nuclear, to be saved 
for periods of higher demand. PHS is a suitable technology for small autonomous island grids 
and large-scale energy storage. The energy efficiency of PHS is approximately 70 to 80% [113].  

Another type of mechanical energy storage is compressed air energy storage (CAES). It also 
has a relatively simple operating principle. Air is compressed by an electrical compressor and 
this compressed air can be stored in suitable storage vessels. Electrical energy is changed to 
the potential energy of compressed air. An air turbine expands the air and it releases back the 
energy to the grid [114]. In comparison with other energy storage systems, CAES has a large 
storage capacity, low self-discharge, and a long lifetime [115]. These characteristics make 
CAES very suitable and cost-effective for bulk energy storage systems. In advanced CAES 
projects, the efficiency has been improved (around 70%–80% efficiency) [116]. A vast amount 
of compressed air can be stored underground so, CAES can provide a large amount of the world's 
future energy storage demands [115]. 
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Another common type of electro-mechanical storage technology is flywheels [117]. 
Flywheels consist of a massive rotating cylinder, attached to a shaft, which is supported on a 
stator. The cylinder rotates and stores kinetic energy. The flywheel is connected to a motor 
generator that interacts with the grid through advanced power electronics. When the system 
is utilized as a motor and a generator, it is charged and discharged, respectively. Nowadays, 
some magnetic bearings are used to decrease friction and shear. To maintain efficiency, the 
flywheel system is operated in a vacuum to reduce drag. Low maintenance, long lifetimes, and 
low environmental impacts are some of the advantages of flywheel energy storage systems. 
Flywheels are more applicable to short-term storage systems as the self-discharge rate is nearly 
20% of the hourly stored energy [112]. Flywheel energy storage systems are good choices for 
various applications in power systems such as power quality improvements, power smoothing, 
renewable energy integration support, and stability improvements [118]. 

2.2.2.2- Electromagnetic energy storage systems  

One of the systems used to store the energy electromagnetically is supercapacitor. It is made 
from electrochemical cells containing two electrodes, an electrolyte, and a membrane. The 
porous membrane provides an area for the ions to transfer between the electrodes. No 
chemical reaction occurs in supercapacitors in contrast to what happens in batteries. 
Supercapacitors store the energy in the cells electrostatically. The anode contains negative 
charges, the cathode contains positive charges, and the electrolyte contains both. By applying 
a voltage to the electrodes, an electrical double layer forms in the vicinity of the anode and 
cathode. The electric field created by these double layers is where the energy is stored [112]. 
Because of the fast charge/discharge and high power density, supercapacitors are applicable 
as supplementary energy sources in electric vehicles, consumer electronics, and industrial 
fields. However, due to their fast self-discharge and low energy densities, supercapacitors are 
not suitable as primary power sources [119]. To overcome the issues, some improvements are 
needed in configuration, electrode material, and electrolyte. 

Another system for storing energy in a magnetic field is superconducting magnetic energy 
storage (SMES). SMES system stores energy in a magnetic field. This magnetic field is generated 
by a DC current traveling through a superconducting coil [120]. The wire is made of a 
superconducting material that is cryogenically kept cold so the electric current passes through 
the coil with almost zero resistance. This allows the energy to be stored in the system for a 
longer period. Normally the superconducting material can be mercury, vanadium, and niobium-
titanium. To discharge the stored energy in an SMES, the conductive coil is connected to an AC 
power convertor. SMES systems are very efficient storage systems (around 90 % efficiency), but 
they have very low energy densities and they are still far from being economically lasting 
[120,121]. 

2.2.2.3- Electrochemical energy storage systems  

Hydrogen energy storage is a form of electrochemical energy storage in which electrical power 
is converted into hydrogen by an electrolyzer [122]. Later, this stored energy can be released 
by using the gas as fuel in a combustion engine or a fuel cell [123]. Electrolysis of water is a 
simple process to produce hydrogen.  
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The efficiency of water electrolysis depends on the technology, the hydrogen production 
rate, and the pressure level [112]. Most commonly, hydrogen is stored as a compressed gas in 
a container. Also, it can be stored at very low temperatures as a cryogenic liquid. Some other 
methods like metal hydride materials or chemical hydrides can be used to store hydrogen. In 
this method, the hydrogen is bonded to a material and it can be released as required. Hydrogen 
can be utilized as fuel in gas turbines, piston engines, and hydrogen fuel cells. Hydrogen energy 
storage systems can provide much longer duration storage compared to batteries [123]. 

Battery Energy Storage Systems (BESS) are a family of technologies developed for storing 
electric charge by using batteries. In most of the energy storage systems with batteries, 
electrical energy is converted into chemical energy and vice versa. Redox, reduction, and 
oxidation reactions occur in the battery cell. Each battery consists of two electrodes, an 
electrolyte, a separator, and a container. The electrolyte is a material in which the ions can 
be transferred between the anode and cathode, and the redox reaction can take place. This 
electrolyte is an electronic insulation material. The separator prevents internal short circuits 
of the battery from occurring and the container is needed to enclose and protect the battery 
cell [112]. 

Battery energy storage systems have the advantages of a small footprint and no restrictions 
on geographical locations where they could be located. Other storage technologies such as PHS 
and CAES are only suitable for a limited number of locations. For instance, topological 
conditions, long development time, and large land use are the main constraints in the 
development of PHS projects [124]. Batteries are of various types such as Lithium-ion, Lead-
acid, Sodium Sulfur, Zinc bromine, and Flow. 

2.2.2.4- Thermal energy storage systems  

Another form of energy storage is thermal energy storage (TES). In thermal energy storage 
systems, thermal energy is stored by heating or cooling a storage medium [125,126]. The stored 
energy can be released later for power generation and other demands where it can generate 
steam for electricity production [93]. In this storage system, different materials with different 
thermal properties can be used and various results can be achieved. TES systems are commonly 
used in buildings and industrial processes. Solar thermal systems are the most common 
application in TES systems. There should be a heat-sensitive material in a solar power plant 
like molten salt. The solar field gathers the energy from the sun and heats the molten salt. A 
heat transfer fluid is heated up by the hot salt through a heat exchanger and then a turbine 
(connected to a generator) is spun using this fluid. Even if there is no sun, the turbine can be 
run with the heat stored in the molten salt [112].  

 

2.2.3- Advantages of storage in the energy system 

The energy storage technologies are employed in power grids for various reasons [127–129]. 
The most common advantages of the application of energy storage systems are given in  
Table 2.4. In this table, the various services that the storage technologies are being used for 
are listed in the first column. In the first row, the different storage technologies are given. 
Different storage services are electric supply capacity, electric energy time-shift, on-site 
power, electric supply reserve capacity, frequency regulation, voltage support, and electricity 
bill management.  
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Table 2.4 — The Energy Storage Systems Projects based on their storage type and services [98] 

 
According to this table, it is shown that electrochemical energy storage is broadly employed 

for electric energy time shift, frequency regulation, and renewable capacity firming. For 
example, 267 projects employ electrochemical energy storage systems for electric energy time-
shift service. A total of 225 electrochemical energy storage systems are designed or operating 
for frequency regulation. 

Furthermore, through the analysis of Table 2.4, it can be seen that the electric energy 
time-shift service is the only service that uses all types of energy storage technologies. Besides 
that, electrochemical storage is also being used for all of the power grid services. As there are 
no services that do not use an electrochemical type of energy storage. Electrochemical energy 
storage with 998 projects worldwide is the most popular storage technology that is used to 
supply one of the services to power grids. 
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Electric Supply Capacity 100 4 0 1 0 0 0 302 2 

Electric Energy Time Shift 267 16 84 1 2 1 1 325 3 

On-Site Power 121 5 1 0 0 0 27 1 0 
Electric Supply Reserve Capacity - 
Spinning 63 22 3 0 0 0 0 83 1 

Frequency Regulation 225 34 6 3 0 1 1 66 0 

Voltage Support 157 18 1 0 0 1 1 37 1 

Load Following (Tertiary Balancing) 62 4 0 2 0 0 0 27 0 

Black Start 51 2 0 0 0 0 0 15 0 

Electric Bill Management with Renewables 105 3 2 1 0 0 3 1 0 
Stationary Transmission/ Distribution 
Upgrade Deferral 44 0 4 1 0 0 0 0 0 

Transmission Support 27 1 3 0 0 1 0 2 0 

Renewables Capacity Firming 278 11 55 8 0 0 1 15 3 

Renewables Energy Time Shift 202 17 62 6 0 0 28 18 3 
Grid-connected commercial (reliability 
and quality) 81 4 3 0 0 0 2 2 0 

Transportation services 51 1 0 2 0 0 0 0 0 

Distribution upgrade due to solar 48 0 0 0 0 0 0 0 0 

Ramping 54 4 1 1 0 0 0 5 0 

Grid-connected residential (reliability) 47 0 3 0 0 0 1 0 0 

Microgrid capability 170 9 1 0 0 0 26 0 0 

Transmission congestion relief 20 1 3 1 0 1 0 3 0 

Transmission support 27 1 3 0 0 1 0 2 0 
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According to data published by the US Department of Energy [98], 1698 projects are based 
on the development of the ESSs until 2020. Thus, the number of ESS projects in the top 
countries regarding the implementation of this technology is depicted in Figure 2.13. As 
illustrated in this figure, the US, by working on more than 740 projects is the world’s lead 
country in this regard. China and Germany are in the next places by running 101 and 97 ESS 
projects, respectively. However, all of the projects are not in the operational phase. To present 
a better view regarding the applied ESS projects around the world, Figure 2.14. represents the 
current situation of the total ESS applications around the world. This figure indicates that there 
are 1363 projects out of 1698 whose design and construction are done and they are in the 
operational mode. This number is equal to almost 80 percent of all of the currently published 
ESS projects. 180 projects are also in the announcing phase and from this number there are 9 
ESS that were announced but they were never built. More details about the current situation 
of the ESS programs can be found in Figure 2.14. 

 

 

Figure 2.13 - Number of the ESS projects in the top countries [98]. 

 

 
Figure 2.14 - The current situation of the total ESS applications around the world [98]. 
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2.2.4- Energy storage technologies application in the  
multi-energy systems  

The significance of energy storage systems in the power grid has been explained and discussed 
in the previous sections. ESS is expected to become more significant in future energy systems, 
especially in multi-energy systems [130]. 

The different forms of energy storage such as electrical and thermal are being combined 
in multi-energy systems. These multi-energy systems include several energy resources, 
including diesel engines, gas turbines, or renewable energy resources such as wind turbines, 
photovoltaics, etc. For optimal operation of multi-energy systems in the presence of various 
energy resources, the utilization of the energy storage system is one of the most important 
factors [131]. Energy storage can be installed at several points of the multi-energy system. It 
is common to install storage in the output sector of the energy hub.  

An energy hub is defined as a place where the integration and management of several 
energy components such as production, conversion, storage, and consumption of different 
energy carriers in multi-energy systems occur [132]. While installment of the storage in the 
input side of it is also proposed in some cases. Thus, hydrogen and electrical storage can be 
installed on both sides of the hub, i.e., the input side or output side. However, thermal storage 
is usually employed on the output side of the hub. The usual structure of the multi-energy 
system in the presence of ESS is depicted in Figure 2.15. In Figure 2.15. (a)., a simple energy 
hub is drawn based on the definition which was provided in [30]. According to the concept of 
energy hub in this study, any structure that correlates the generation and the consumption 
sides through transmission, conversion, and ESS can be defined as an energy hub. In Figure 
2.15. (b). more comprehensive structure of the multi-energy system is presented where 
demand can be supplied through electrical, cooling, and heating forms of energy.  

The impact of storage size and forecasting period in the optimal operation of the multi-
energy systems has been studied in [133]. This study proves that there is a reverse relation 
between the size of the energy storage system and the operational cost of the multi-energy 
system. In other words, larger energy storage will lead to a lower cost in the multi-energy 
system. However, the impact of the size of the energy storage is lower than the length of the 
forecasting horizon. A long forecasting horizon for energy storage can lead to a reduction in 
the costs of the energy hub. Moreover, Ivalin Petkov et al. proved that the application of ESS 
can reduce emissions by 90% in multi-energy systems which include renewable energy resources 
[69]. To better highlight the advantages of ESS in multi-energy systems, several applications of 
the energy storage systems are summarized in the following part of this section. To optimize 
the total operation cost of the energy hub and consider the uncertainty posed by the 
distribution system including electricity, heating, and cooling loads, power-to-gas storage with 
a tri-state compressed air energy storage system is proposed in [134]. Authors in [69] 
implemented a conditional value-at-risk approach for managing the uncertainties originating 
from wind power generation, electrical and thermal loads in a multi-energy system which 
utilizes a compressed air energy storage system to decrease the fluctuations caused by the 
renewable energy resources as well as increase the freedom of the multi-energy system’s 
operator. An underground hydrogen storage system is proposed in [135] to minimize the CO2 
emissions in the context of an integrated energy system by developing a mixed-integer linear 
program optimization model which focuses on the dynamics of the stored energy during the 
hydrogen injection and withdraw processes. 
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Figure 2.15 - Multi-energy structure in the presence of ESS [132]. 

 
The ESS is also a complementary component in the multi-energy systems for DR programs 

[136]. The goal of the operator from the employment of the DR programs is to meet the amount 
of the generation with the required load, especially during the peak period. The energy storage 
technology can also support this goal by providing a percentage of the demand to the consumers 
when there is a lack on the supply side and it is not possible for the consumers to participate 
in the DR programs. Therefore, the storage can be charged in multi-energy systems through 
the acquired DR during the off-peak period. This aggregated DR can be discharged in the multi-
energy system during the peak period to meet the consumers’ demand and reduce the pressure 
from the generation side. For instance, the authors in [137] presented an optimal model for 
the operation of an energy hub by utilization of renewable energy resources, DR programs, and 
energy storage systems. To provide more flexibility for the operation of the energy hub, several 
DR programs for the residential sector of the consumers such as shifting programs, and 
curtailing programs are proposed as complementary components of the energy storage system 
[66]. 

2.3- Conclusions 

Due to the limited capabilities of the current power system, demand-side resources cannot be 
integrated very easily. DR helps to overcome these limitations and thus can help to integrate 
more demand-side resources. To capture the full potential of these resources, DRPs should 
consider various carriers of energy such as electricity and natural gas. This can be achieved 
through the use of Energy Hubs. This will help to maximize the benefits of DRPs and also 
minimize the side effects, such as consumer discomfort.  
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In this chapter, the main definitions of the DR, ESS, and multi-energy systems are reviewed. 
Then, the advantage of the energy hub over the conventional power system was addressed. 
Then, some recent modeling of the DR and ESS technologies in the energy-hub environment is 
studied. The comprehensive review that has been done in this work can be a reference for 
future research and improvements in applying the DR and ESS in the energy-hub systems. The 
emerging keywords that have been extracted from the studied works show that the “integrated 
DR” is getting more interest and is one of the main keywords that is linked to the energy-hub 
topic. 

The work that has been done has identified some findings when it comes to implementing 
DRP in MES and these are as follows: 

 The capability of converting between various forms of energy: Some limitations restrict 
the possibility of converting between the different energy carriers across time and for 
different consumers. For instance, there are some consumers with must-run loads that 
the only available form of energy is electricity. Therefore, it is not possible to 
participate in the DRPs through the reviewed works. 

 For an optimization model, it is suggested to consider both consumer discomfort and 
profit at the same time. There have been some researches that only focused on 
decreasing the discomfort rate of the consumers participating in the DRPs in MESs. On 
the other hand, the main aim of some studies is to increase the profit of the consumers 
through their participation in the DRPs in the MES. However, there is a capability of 
developing models that consider minimizing the uncomforting rate of the consumers 
while increasing their profit from employing DRPs. 

This work has gathered and summarized the most recent work concerning DR programs 
within MES. It has shown that there is a growing increase in the field and this is because of the 
several advantages that DR and MES can contribute to the future energy system. Both will be 
important as the energy transition takes hold and the combination of these two strategies can 
yield multiplicative advantages for both system operators and consumers. This work has 
provided a summarized foundation for future researchers to consult when working in this 
exciting and important field. 

Additionally, in the context of ESS in the MES, by integration of the various energy forms 
and developing the concept of the MESs, one of the key components of multi-energy systems is 
ESSs. The main role of the ESSs in multi-energy systems is to compensate for the fluctuations 
introduced by renewable energy resources. In this chapter, ESS technologies in the context of 
multi-energy systems are presented and explained. Moreover, in the context of the multi-
energy system, the storage unit can be installed on both sides of the input or output of the 
system as hydrogen and electrical storage can be installed on both sides, while, thermal storage 
usually is employed on the output side of the system. Moreover, it is shown that the ESS can 
also be a complementary component for the DR actions to provide more flexibility for the 
operation of the energy hub, especially during high consumption periods. 
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Chapter 3  

Application of Opportunistic Information-Gap 
Decision Theory on the Trading Framework 
of A Demand Response Aggregator 

After reviewing the most recent trends and In this chapter, a non-probabilistic program is 
proposed as a trading framework for DR aggregators. Both sides of the aggregator, including 
the upper side and downside of this entity, have been taken into account. On the downside of 
the aggregator, two popular programs are considered such as reward-based program and time-
of-use (TOU) program, where DR is obtained from these resources. The acquired DR is studied 
to be traded in the day-ahead electricity market. To the aim of increasing the desired target 
profit of the risk-seeker aggregator, the opportunity function of information-gap decision 
theory (IGDT) is employed to address the uncertainty. 

3.1- Introduction 

The traditional solution of the independent system operator to mitigate the power misbalancing 
matters due to the peak periods was to rely on the generators. However, many solutions have 
been introduced and even employed in the power system. DR is being used as one of the main 
key solutions of the general demand-side methods in the smart grids [138] and [139].  

Several studies have been done in DR to enhance the participation of the end-user 
consumers in the electricity market environment. Aggregation of the obtained DR from the 
demand side is known as one of these solutions. However, the willingness of the end-user 
consumers in the DR programs plays an essential role to this end.  

Therefore, considering their behavior as one of the uncertain parameters in the model is 
one of the main motivations of this work. Besides that, to increase the effectiveness of the 
model, the aggregator needs to consider the uncertainty of the electricity market prices too. 
The DR aggregator (DRA) has an intermediary role in trading the obtained DR into the electricity 
market [140,141].  
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Two uncertain parameters are taken into account in this study, the participation rate of 
the consumers in the DR program and the electricity market prices. One of these uncertainties 
belongs to the demand side and the other one belongs to the other side.  

Several DR programs are implemented in the smart grids which could be classified into two 
main categories, i.e. incentive-based DR programs and price-based DR programs [142–145]. To 
employ a comprehensive model, in this study, one DR program from each category has been 
defined, i.e. time-of-use (TOU) and reward-based DR (RBDR). Further, DR programs can be 
modeled for different types of loads.  

For instance, in Ref. [146], the residential consumers are considered the main participators 
in DR programs. The authors in [147] investigate the feedback of the commercial and industrial 
loads participating in DR programs. To observe the effects of the proposed model on the loads, 
all types of consumers are assumed simultaneously, i.e. industrial, commercial, and 
residential. 

To address the uncertain parameters, information-gap decision theory (IGDT) is applied as 
a risk measure, and its advantages in comparison with other methods like scenario-based 
models have been studied comprehensively in [148]. The employment of the IGDT method in 
various areas of the power system and smart grid is discussed in [149]. There are two main 
IGDT functions, robust function and opportunity function. The robust one is used for risk-averse 
decision makers and the opportunity function is utilized for risk-seeking purposes. Therefore, 
the behavior of a risk-seeker DRA is modeled in this work through opportunity IGDT. 

The contribution of this work is studying the behavior of the risk-seeker DRA considering 
two DRPs, i.e. TOU and RBDR on the demand side of the aggregator and the day-ahead 
electricity market on the other side of it. Further, the uncertainty of both sides of the 
aggregator is taken into account. For the risk management of the problem, the IGDT method is 
applied.  

3.2- Problem Formulation 

First, it is supposed that there is not any uncertain parameter. In other words, we assume that 
the day-ahead market price and participation factor of consumers in the RBDR program are 
determined. This section is considered as deterministic formulation. Then, in the second 
section of formulation, the uncertainties are considered, i.e. day-ahead market prices and 
participation rate of the consumers in the RBDR program. The opportunistic IGDT model is being 
used to address the uncertainties. 

The full description of the parameters, variables, and terms used in the problem 
formulation is presented in Table 3.1. 

 
 
 
 
 
 
 
 
 
 



 

37 

 

Table 3.1 — Indices, parameters and variables used in this chapter. 

Indices  

t  Time horizon index 

j  RBDR steps index 

p  Period index 

c Consumer index 

Parameters 

 Expected day-ahead market price [$/MWh] (ݐ)ሚߣ

ܲ෪ܴ  Demand-side consumers’ participation rate in the RBDR program (ݐ)

D0(c,t) Initial demand of consumer ܿ in time interval ݐ 

E(c,t,p) Consumer ܿ elasticity in time interval ݐ in period  

  consumer ܿ initial price in period (,ܿ)ߣ

  consumer ܿ TOU price in period (,ܿ)ߣ

 Duration of each period (ݐ)݀

B0 Deterministic expected profit of the DRA [$] 

Bw Desired target profit of the  DRA [$] 

σ profit deviation factor 

തܲோோ(ݐ) load reduction step in the reward-based DR [MWh] 

തܴோோ(ݐ) Given reward in the reward-based DR [$/MWh] 

Variables  

β horizon related to uncertain parameter 

 ෨ The function of optimal opportunity valueߚ

 Consumers’ participation rate in the RBDR program (ݐ)ܴܲ

TOU(t) obtained TOU volume from consumers within time horizon ݐ [MWh] 

 Day-ahead market price [$/MWh] (ݐ)ߣ

ܲ(ݐ) Day-ahead power[MWh] 

Binary Variable  

 The reduced load level in RBDR (ݐ)ோோݒ
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3.2.1- The Deterministic Formulation 

 
In this section, the deterministic problem formulation is written as follows: 

퐵 =푀푎푥 푃 .휆
=

− 푃퐹 .푃 .푅
==

 (3.1) 

. :s t  

푃 = 푃 − 푇푂푈      ,∀푡 
(3.2) 

TOU = 퐷 (푐, 푡)
=

퐸(푐, 푡, 푝) 휆(푐, 푝)− 휆 (푐, 푝)
휆 (푐, 푝)=

  ,∀푡 (3.3) 

 푃 = 푃푅 .푃̄ . 휈
=

    ,∀푡,∀푗 (3.4) 

푅 = 푅          ,∀푡,∀푗
=

 (3.5) 

푅̄ ( − ) . 휈 ≤ 푅 ≤ 푅̄ . 휈  ,∀푡,∀푗 (3.6) 

휈 = 1,∀푡,∀푗
=

 (3.7) 

푃 ≤ 푃 ≤ 푃           ,∀푡  (3.8) 

휈 ∈ {0,1} (3.9) 

DRA must know its schedule for trading in the day-ahead market. It has to be noted that in 
this part, the DRA can predict the uncertain parameters, i.e. participation rate of consumers 
in the RBDR program and day-ahead market prices. 

The objective function is indicated in equation (3.1) which is a profit-maximization 
problem. The 1st term belongs to the revenue that is gained from trading the DR in the day-
ahead market. The second term refers to the cost of participation in the RBDR program. The 
power balance equation is considered in (3.2). The amount of power that is traded in the day-
ahead market must be equal to the amount of obtained DR from consumers for each type of 
consumer and each time step. In (3.3), the TOU program is being defined. In this program, 
consumers receive different price tariffs during a day, for instance, two tariffs for two time 
periods: low-peak and high-peak.  

Thus, the consumers’ power usage is being regulated according to this change in the tariffs. 
,ܿ)ܧ  shows the elasticity of the consumer type c in the time step t and period p. The RBDR (,ݐ
program is indicated in (3.4). As stated in Figure 3.1, the volume of the load reduction will be 
increased as the aggregator offers higher rewards to the consumers in a stepwise manner. 
The total value of the reduced load based on the RBDR program is specified by ௧ܲ

ோோ. PRt shows 
the participation rate of the consumers in this program, which is used as the uncertain 
parameter in this model and varies from 0 to 1.  
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Figure 3.1 - The RBDR program curve. 
 
High values in PRt, show a high rate of participation of consumers in that time step. For 

instance, PRt = 1 means that all the forecasted DR through the RBDR program is attainable. In 
(3.5), the total amount of reward in each time step based on the RBDR program is calculated. 
The level of the reward in each step j and each time t is shown in (3.6). Note that according 
to constraint (3.7), ߥ௧,

ோோ is a binary variable and the aggregator can choose only one level j in 
each time step t.  

As stated in (3.8), the aggregator can only trade an amount of ߣ௧which is not less than its 
minimum or not more than its maximum capacity. 

3.2.2- The Opportunistic IGDT Formulation 

The opportunistic IGDT model is formulated in (3.10) - (3.16) as follows: 

Obj Func:   훽=̃min 훽 (3.10) 

s.t. 

퐵∗ ≥ 퐵 = (1 + 휎).퐵  (3.11) 

푃 ≤ 푃 ≤ 푃                          ,∀푡 (3.12) 

B∗ = { 

푀푎푥 푃 .휆
=

− 푃푅 .푃 .푅
==

 
(3.13) 

(3.2)- (3.9) (3.14) 

(1-훽).푃푅 ≤ 푃푅 ≤  (1+훽).푃푅       ,∀t  (3.15) 

(1-훽). 휆̃ ≤ 휆 ≤  (1+훽). 휆̃      ,∀t   } (3.16) 
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In this section, the uncertain parameters are taken into account. It is considered that the 
day-ahead market prices and the participation rate of consumers in the RBDR program the 
uncertain parameters. To address these uncertainties, the opportunistic IGDT approach is being 
implemented.  

Note that the forecasted values of the uncertain parameters are available at the moment 
of modeling, i.e. ܲ෪ܴ ௧ and ߣሚ௧. This program aims to minimize the horizon of the uncertainties 
 while the requirements are being fulfilled. In constraints (3.15) and (3.16) the uncertainties (ߚ)
have been addressed. 

The framework of this model is depicted in Figure 3.2. In the first stage, the model 
calculates the deterministic value of the objective function (the profit of the DRA). In this step, 
the forecasted values for the uncertain parameters (ܲ෪ܴ ௧and ߣሚ௧) is employed to derive the 
deterministic results. In the next stage, by utilizing the deterministic profit of the aggregator 
and the profit deviation factor (σ), the uncertain parameters are addressed through the 
opportunistic IGDT method.  

 

 
Figure 3.2 - The proposed model framework. 
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3.3- Case Study 

This problem is a mixed-integer nonlinear programming (MINLP) model. As explained before, it 
aims to minimize the horizon of the opportunity function value while the constraints are 
satisfied or met. Various commercial solvers i.e. SBB could be used to solve this problem using 
General Algebraic Modeling System (GAMS) [150]. The model is simulated in a PC with 6 GB RAM 
and 2.43 GHz CPU speed. The model has 3745 variables and 3827 constraints and the simulation 
running time was less than a second, i.e. 0.9.  

Reference [151] is used for implementing the load data. High-peak and low-peak periods 
are considered as periods for each day (p=2). The high-peak period is assumed from 08 to 22. 
Accordingly, from 23 to 07 is assumed as the low-peak period. Industrial, commercial, and 
residential are the types of consumers that are taken into account (c= 3).  

The aggregator can offer the obtained DR from the end-user consumers during the high-
peak period to the day-ahead market and vice versa during the low-peak. TOU and RBDR 
program is modeled on the lower side of the aggregator. The data regarding the elasticity 
matrix which is required for the TOU model is employed from [152] 

As stated before, the profit deviation factor is utilized as the risk measure in the IGDT 
procedure. As the profit deviation factor increases, our model results become more risk-seeker. 
And σ = 0 gives the deterministic results of the programming. We change the σ from zero to 
0.85. Each optimum value of the opportunity value is depicted in Figure 3.3. Higher profit 
deviation factors result in higherߚ෨.  

 

 

Figure 3.3 - Optimal opportunity function value for different profit deviation factors. 
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To investigate more in detail the results of the problem, an arbitrary value of σ= 0.15 is 
chosen. To gain the target profit ܤ௪ = (1 + ܤ.(ߪ = (1 + 0.15). 344,800 = 396500 , theߚ෨is 44% 
or 0.44, which means that if the observed uncertain parameters are 44% more than the 
forecasted values, the aggregator will gain $396,500.  

The curve in Figure 3.4 indicates the results regarding the acquired DR through the RBDR 
program. During the high-peak period, the amount of DR which is obtained through this program 
is at its maximum when they are the usual work starting time (t=9 AM) and also the time that 
the night starts (t= 7 PM). Results from implementing the TOU program are demonstrated in 
Figure 3.5. As obvious in the figure, the amount of TOU in industrial consumers is much higher 
than the other consumers including residential and commercial. The industrial end-user plays 
the main role in the deployment of the TOU program. 

The day-ahead traded power through the aggregator is also presented in Figure 3.6. During 
the high-peak period, the amount of power which is offered to the pool market is around 
1000 kW in the early hours of the high-peak period. It is easily noticeable that the amount of 
the acquired DR from the consumers through RBDR and TOU programs is equal to the traded 
power in the day-ahead market, which proves the accuracy of the simulation.  

 
 

  

Figure 3.4 - Amount of reduced energy using the RBDR program. 
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Figure 3.5 - The Impact of Implementation of Time-of-Use Program. 

 

 

 

Figure 3.6 - The day-ahead traded power through the aggregator. 
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3.4- Conclusions 

The behavior of a DRA is studied in the proposed model which tends to gain higher profits due 
to the favorable deviations of the uncertain parameters in the day-ahead electricity market. 
To this end, the opportunity IGDT method has been applied as a risk measure. Two uncertain 
parameters from each side of the aggregator (upper-side and down-side) are assumed 
simultaneously as follows: 1- the day-ahead market prices and 2- the participation rate of the 
consumers in the RBDR program. The model is simulated for various values of the profit 
deviation factors. The direct relation between the profit deviation factor and the optimum 
opportunity function value is shown in the results.  

To analyze the model effects more in detail, one arbitrary value of the profit deviation 
factor is chosen and the correlated results are demonstrated comprehensively. The amount of 
the electricity power that is traded in a day-ahead market through the DRA is equal to the 
obtained DR from the consumers’ side. Moreover, three types of consumers, i.e., industrial 
commercial and residential, industrial consumers play the main role in employing the TOU 
program. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Chapter 4  

Novel Hybrid Stochastic-Robust Optimal 
Trading Strategy for a Demand Response 
Aggregator in the Wholesale Electricity Market 

 
This chapter proposes a model to handle various uncertain parameters simultaneously to reduce 
their effect on the aggregator’s operation through the development of a novel hybrid 
stochastic-robust optimization approach that incorporates the uncertainties around wholesale 
market prices and the participation rate of consumers. The behavior of the consumers engaging 
in DR programs is addressed through stochastic programming. Additionally, the volatility of the 
electricity market prices is modeled through a robust optimization method. Two DR programs 
are considered in this model to include both time-based and incentive-based DR programs, i.e., 
time-of-use (TOU) and incentive-based DR (ibDR) programs to study three sectors of consumers, 
namely industrial, commercial, and residential consumers. An ESS is also assumed to be 
operated by the aggregator to maximize its profit. 

4.1- Introduction 

4.1.1 - Background and Motivation 

The power system has become increasingly dependent on the active participation of consumers 
as a result of the sharp increase in the use of distributed energy resources. Hence, managing 
this participation through the use of demand-side management techniques is essential to 
optimize the operation of the power system. The most effective solution for demand-side 
management is known as DR [153]. Various DR programs (DRPs) can be used to better balance 
the fluctuations in both the generation side and demand side. The two main categories of DRPs 
are price-based and incentive-based DRPs. Offering several DRPs encourages consumers to 
participate more actively and this leads to acquiring more DR potential for the aggregator to 
maximize the total profit through trading in the wholesale energy market.  
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Optimal DR scheduling by the aggregator should contain DRPs from both price-based and 
incentive-based programs to provide a degree of freedom for the consumers to choose the 
program that suits their individual needs and preferences, thus facilitating their engagement 
with the DRP. Price-based programs are designed to shift a percentage of the consumption by 
using variable energy usage tariffs to optimize the power system operation. An example is 
shifting the amount of demand from the peak period to the off-peak period or vice-versa. 
Incentive-based DRP aims to reduce or curtail consumption by offering an incentive (often 
financial) to the consumers who participate in such DRPs. The main goal of DRPs is to alter a 
consumer’s energy usage profile and further incentivize them to engage in such programs. 
Implementation of DRPs reduces the energy consumption during peak periods while increasing 
the amount of energy usage during the off-peak periods [7].  

Several challenges are posed to the DR aggregator as an intermediary entity in the power 
system. One of the main challenges is that the DR aggregator is that the aggregator has to 
manage various uncertainties posed by the market side and also the consumer side to reach its 
maximum profit. The aggregator should consider the uncertain behavior of the consumers 
during their participation in DRPs and also the uncertainty of the electricity market prices in 
order not to affect its profit negatively. To go more in detail, one of the significant challenges 
facing DRPs is how to incentivize the consumers to participate in the proposed DRPs and manage 
their correlating uncertainty. Individual consumers have a small amount of DR potential and 
this restricts their ability to directly trade their DR within the wholesale energy market. To 
resolve this issue, a DR aggregator is introduced into the energy system [154]. The DR 
aggregator’s primary responsibility is to aggregate the obtained DR from individual consumers 
and trade the acquired DR into the wholesale market. Thus, two main sources of uncertainties 
exist, the behavior of the consumers in participation in DRPs and the electricity market prices. 
Another responsibility of the aggregator is proposing the DRPs to the end-users. The aggregator 
usually seeks to maximize its profit or minimize its costs from trading the obtained DR in the 
wholesale market [155]. Addressing these challenges seems to be essential. 

4.1.2 - Literature Review 

In recent years there have been various studies looking to optimize the operation of DR 
aggregators in wholesale markets considering the power system and consumers' constraints. 
Some of the most recent and closely related research on DR aggregators is included for context 
and to show how the current work extends the state-of-the-art. The DR optimization methods 
in the power system have been extensively reviewed in [18]. Examples of incentive-based DRPs 
include direct load control [156], load curtailment, demand bidding [145], and emergency 
demand reduction. On the other hand, the most common price-based DRPs are time-of-use 
(TOU), critical peak pricing, and real-time pricing [157].  

According to the advantages of employment of various DRPs from both price-based and 
incentive-based categories, we have employed DRPs from both classifications, which provides 
more flexibility for the consumers. Additionally, studying the behavior of the DR aggregators 
in the wholesale market is also essential to improve the scheduling process of the aggregator 
[158]. For instance, the authors in [159] proposed a self-scheduling optimization program that 
considers a price-based DRP. Load uncertainty is addressed through a fuzzy method.  
The willingness of the consumers to participate in the DRPs is assumed to be uncertain. 
However, the uncertainty associated with the wholesale market is not taken into account.  
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In [160], a scheduling framework is proposed that uses stochastic programming and the 
alternating direction method of the multipliers algorithm. This model only considered the 
behavior of the residential consumers and neglected the other types of end-users. The 
uncertainties of the consumption side are managed. However, the uncertainties of electricity 
market prices are not assessed and these fluctuations are important for the scheduling.  
Similar to the previous model, [161] only considered residential consumers and utilized 
stochastic programming methods for the uncertainty of load without considering market price 
fluctuations. Likewise, only industrial loads are studied in [162,163] without considering other 
types of consumers.  

Several models only considered the uncertainty of the electricity market for DR frameworks 
[164], [165]. For instance, Abapour et al. proposed robust scheduling for a DR aggregator 
through game theory by the price uncertainty assumption [164]. Moreover, the authors of [165] 
formulated an optimal bidding strategy for an aggregator. The electricity price of the day-
ahead market is managed as the risk factor. However, the uncertainties that are originating 
from the behavior of the consumers are not directly assessed. The behavior of the various 
uncertain parameters on each side of the aggregator could be modeled more realistic if the 
risk measure were selected based on the characteristics of the uncertain parameter. Moreover, 
a taxonomy table is presented in Table 4.1 to demonstrate the novelty of the work through a 
comparison of the proposed model with the recent similar works. 

4.1.3 - Contributions and Chapter Organization 

The above section shows that while exist several models that investigate the scheduling 
framework for DRPs, several research gaps have been identified. The major research gap is the 
inclusion of uncertainties associated with both the wholesale market and the uncertainties 
from the consumer side. Additionally, respecting the characteristics of the uncertain 
parameters is necessary for selecting the best risk management strategies.  

 

Table 4.1 — The Comparison of The Proposed Method Vs. Similar Works 

Ref Study field 
Uncertainty Consumer Type* Storage Uncertainty model 

Market Load Res Com Ind   

[164] DR Aggregator ×  Not classified  Robust 

[166] DR Aggregator  × Not classified  Genetic Algorithm II 

[167] DER Aggregator  × ×   × Robust 

[49] DER Aggregator ×   ×  × Stochastic 

[168] EV Aggregator ×  Not classified  Hybrid Stochastic-Robust 

[169] EV Aggregator × × Not classified  Hybrid Stochastic-Robust 

[170] Retailers ×  Not classified  Stochastic 

[171] DR Aggregator × × Not classified  Stochastic 

[172] DR Aggregator  × × × ×  Fuzzy 

This work DR Aggregator × × × × × × Hybrid Stochastic-Robust 

*Res: Residential, Com: Commercial, Ind: Industrial 
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For instance, in optimization models based on robust approaches, the robustness level of 
the uncertain parameter can be adjusted through the budget of uncertainty [173]. Based on 
the available characteristics of the load on the demand side, stochastic modeling is more 
effective as a risk measure [68]. 

In the proposed model the day-ahead market price can be forecasted by the DR aggregator 
based on the available price history. The main uncertainty of the market prices is due to the 
price fluctuations that could be addressed through an effective robust management method. 
On the other hand, stochastic programming can be employed to handle the uncertainty of the 
engagement ratio, as the participation ratio of consumers in the DRPs is known. Thus, a 
combination of both robust and stochastic approaches is proposed to model the aforementioned 
uncertain parameters. Another advantage of the proposed hybrid model is the mixed-integer 
linear problem which has a convex mathematical formulation. 

Additionally, this model considers three types of consumers, industrial, commercial, and 
residential consumers, with different demand usage patterns, making the model more 
comprehensive.  

Thus, the main contributions of the proposed model are summarized as follows: 
 Proposing a hybrid mixed-integer linear programming (MILP) optimization framework 

for a DR aggregator that considers various uncertainties with different inherent 
characteristics of both the market and consumer sides through a combination of robust 
and stochastic methods, simultaneously. 

 Proposing a hybrid robust-stochastic model that considers the stochastic and non-
stochastic uncertain parameters to improve the scheduling of the DR aggregator and 
its risk-based operation. 

 Providing more flexibility for the consumers regarding engagement in the DRPs by 
considering two types of DRPs and considering an energy storage unit for the DR 
aggregator. 

The organization of the chapter is presented as follows. In the next section, the proposed 
hybrid stochastic-robust method is presented and explained. Section 4.3 presents the data used 
for the case study as well as the results of the simulation. Section 4.4 contains the conclusions 
drawn from the most important findings. 

4.2 - The Proposed Hybrid Model 

4.2.1 - The DR trading framework 

In this section, the proposed DR framework is introduced and presented in detail. As mentioned 
before, this model uses a hybrid stochastic-robust optimization approach. Two uncertain 
parameters are addressed and managed through the combination of risk measures. The 
proposed DR framework is designed as follows.  

On the demand side of the aggregator, there are three consumer sectors, namely 
residential, commercial, and industrial sectors. The aggregator manages the participation of 
consumers through two different DR programs, namely the TOU program and the incentive-
based program. On the wholesale electricity market side of the aggregator, the day-ahead 
market is available. The aggregator can participate in the day-ahead market as a price-taker 
entity to trade its acquired DR. The proposed model is shown in the flowchart in Figure 4.1.  
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       Stage Zero: Input data
 The electricity market specifications
 DR programs specification
 Consumers load data

Main stage: 
The Hybrid Stochastic-Robust Model

 Part  1 : Stochastic programming          
Objective Function::
    Maximizing the DR aggregator profit  
Constraints:
    Power Balance  
    TOU DR program
    Incentive-based DR program              
    Energy Storage System
Uncertain parameter:
    Consumers participation ratio

Part 2: Robust programming
Objective Function::
    Maximizing the DR aggregator profit  
Constraints:
    Part 1 constraints     
    Duality constraints
Uncertain parameter:
    The electricity market price

       Final stage: Outputs
 Optimal profit of the DR aggregator 
 Self-scheduling of the aggregator
 Optimal DRPs participation
 Optimal operation of ESS

 

Figure 4.1 - The flowchart of the proposed DR trading procedure. 

According to Figure 4.1, in stage zero, the input data are collected and employed, such as 
the electricity market specifications, DRPs specifications, and load data of the consumers who 
participate in this framework. The most significant sources of uncertainties that have the 
greatest impact on the profit of the aggregator are addressed and managed in this model which 
are the day-ahead market prices in the market side of the aggregator and the participation 
ratio of the end-users in the DR program in the consumption-side of the DR aggregator. Then, 
in the main stage, the combination of stochastic programming and robust optimization is 
considered. To do this, several scenarios for the participation ratio of consumers in the ibDR 
program are generated. In other words, the uncertainty of the consumers’ participation ratio 
is managed and addressed through stochastic programming to maximize the DR aggregator’s 
profit. In the stochastic phase, the uncertainty of market price is not considered. Then, the 
hybrid stochastic-robust model is introduced. The new uncertain parameter which is the 
electricity market price is considered to be accounted for through another risk measure that 
can indicate the effect of the electricity market on the profit of the aggregator, which is robust 
optimization. 
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Hence, both uncertain parameters are being managed through the hybrid stochastic-robust 
method. In the final step, the optimal result of the problem will be given and demonstrated. 
The full explanation of the hybrid model will be presented in the following sections. 

4.2.2 - Mathematical problem formulation 

The problem formulation of the hybrid stochastic-robust model is presented and described in 
this section. According to the first step of the flowchart depicted in Figure 4.1, the 
mathematical formulation of the stochastic programming is presented. This step is shown 
mathematically in (4.1) – (4.19). The problem is structured as a maximization model to achieve 
the highest possible amount of profit for the DR aggregator. In this section, the participation 
ratio is considered to be addressed through stochastic programming.  

The full description of the parameters, variables, and terms used in the problem 
formulation is presented in Table 4.2. 

The objective function is presented in (4.1).  
 

푀푎푥: 휋 푃 − 푃 휆
=

 

− 푃푅 푃 푅
==

− 푃 휂
=

−
푃
휂

퐶  

(4.1) 

 
The probability of each scenario is denoted by ߨ(߱). There are four terms in the objective 

function. The first term, i.e., ൫ ௧ܲ,ఠ
,௦ − ௧ܲ,ఠ

,൯ߣ௧, indicates the revenue and cost from selling 
and buying the acquired DR in the day-ahead market, respectively. 

Afterwards, the next term that is denoted by ܴܲ௧,ఠ ௧ܲ,
ோܴ௧,

ோ, represents the amount of 
reward that has to be given to the consumers who participate in the ibDR program. This reward 
is paid to the consumers during the peak period and received from them during the off-peak 
period. Therefore, positive values for this term represent a reward for the demand reduction 
that is paid by the aggregator, being a potential revenue during off-peak periods due to the 
negative cost for the DR aggregator. Finally, the last term in this equation is related to the 
cost of the ESS that is operated by the aggregator to optimize its trading in the day-ahead 
market.  

The ESS is being served if the amount of power that is going to be offered in the day-ahead 
market is greater than the available DR. This mismatch is being cleared through operating the 
ESS. Charging the ESS imposes costs on the aggregator, which decreases its total profit, while 
discharging the ESS entity will help and improve the aggregator’s performance to gain more 
revenue. The energy balance constraint is presented in (4.2). The amount of demand that is 
traded in the day-ahead market is required to be equal to the amount that is obtained from 
the end-users through the ibDR and TOU programs and any shortfall would be compensated 
through the ESS. The negative value for ௧ܲ,ఠ

்ை is because of the nature of this program and is 
explained in more detail in the TOU constraint equations. 

푃 − 푃 = 푃 + 푃 − 푃 − 푃  (4.2) 
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Table 4.2 — Indices, parameters and variables used in this chapter. 

 
Indices 

T Time [h] 

p Period 

c End-users sector 

ω Scenario 

j ibid reduction steps 

Parameters 

 ௧ The day-ahead market price [€/MWh]ߣ

௧ߣ
, The minimum day-ahead price [€/MWh] 

௧ߣ
,ெ௫ The maximum day-ahead price [€/MWh] 

ߣ
,/ߣ, The initial/TOU tariff of energy in consumption [€/MWh] 

 ఠ The probability of scenario ωߨ

௧ܲ,
ோ The steps of the reduced load in the ibDR program [kW] 

ܴ௧,
ோ The steps of the incentive in the ibDR program [€/kW] 

 ௗ௦ாௌௌ The charging/discharging efficiency of the ESSߟ/ாௌௌߟ

ܥ
ௗ The degradation cost of the ESS [€/kWh] 

ܲ,ெ௫ The maximum capacity of the traded power of the DR aggregator [kW] 

 The initial demand of participants [kW] (,ܿ)0௧,ఠܦ

  The elasticity matrix for the consumers (,ܿ)௧ܧ

 ாௌௌ,ெ௫ The maximum capacity of the ESS [kWh]ܧ

 ாௌௌ, The minimum capacity of the ESS [kWh]ܧ

  The coefficient for the SOC of the ESS ߙ

Γ The budget of the uncertainty 

Variables 

ܴܲ௧,ఠ The ratio of participation of consumers in the ibDR program 

௧ܲ,ఠ
ாௌௌ, The charging power value of the ESS [kW] 

௧ܲ,ఠ
ாௌௌ,ௗ௦ The discharging power value of the ESS [kW] 

௧ܲ,ఠ
,௦ The selling power value in the DA market [kW] 

௧ܲ,ఠ
, The buying power value in the DA market [kW] 

௧ܲ,ఠ
ோ The reduced load in the ibDR program [kW] 

ܴ௧ோ The total amount of reward in the ibDR program [€] 

௧ܲ,ఠ
்ை The power value in the TOU program [kW] 

௧,ఠܧ
ாௌௌ The energy of ESS [kWh] 

,ߚ ,ݕ  Dual variables for the robust model ߦ

Binary variables 

௧,ఠܫ
,௦/ܫ௧,ఠ

, Binary variable indicating that the aggregator is selling/buying to/from the DA market  

௧,ܫ
ோ Binary variable indicating the level of load reduction in the ibDR program 

௧,ఠܫ
ாௌௌ,. Binary variable indicating the charging mode of the ESS 

௧,ఠܫ
ாௌௌ,ௗ௦. Binary variable indicating the discharging mode of the ESS 
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The constraints for the amount of power that could be traded are shown in (4.3)–(4.5). In 
(4.3) and (4.4), the capacities of offering and buying the amount of power in the day-ahead 
market are addressed as, currently, the aggregator can only trade in the wholesale market. 
Equation (4.5) requires that in each time interval, the selling or buying of power cannot occur 
simultaneously through the use of the binary variables ܫ௧,ఠ

,௦ and ܫ௧,ఠ
,.  

푃 ≤ 퐼 푃  (4.3) 

푃 ≤ 퐼 푃  (4.4) 

0 ≤ 퐼 + 퐼 ≤ 1 (4.5) 

The constraints related to the implemented ibDR program are described in (4.6)–(4.9). The 
amount of demand is reduced through (4.6). ܴܲ௧,ఠ indicates the participation ratio of the end-
user in this DRP in time interval t and scenario ω multiplied with ܲ ௧,

ோ, which shows the amount 
of reduction chosen from the Demand Reduction Curve [15] through a binary variable denoted 
by ܫ௧,

ோ. The demand reduction curve is a table which the aggregator proposes to the 
consumers, highlighting the relationship between demand reduction and the correlated amount 
of incentive (reward) considered for the end-user, as addressed in (4.7). This reward is greater 
than the previous step and smaller or equal to the current step.  
In other words, the amount of reward is within the range of ܴ௧,(ିଵ)

ோ  and ܴ௧,
ோ, and ܴ௧,

ோ will 
be chosen as the reward amount (4.8). It should be noted that in each time interval, only one 
step of this reduction curve can be selected, which is ensured through (4.9) using a binary 
variable ܫ௧,

ோ.  

푃 = 푃푅 푃 퐼
=

 (4.6) 

푅 = 푅
=

 (4.7) 

푅 ( − )퐼 ( − ) ≤ 푅 ≤ 푅 퐼  (4.8) 

퐼
=

= 1 (4.9) 

As previously stated, there are two types of DRPs, the first type is introduced above and 
the second program is the TOU program. The TOU program is one of the most popular DR 
programs that can alter the usage pattern of consumers through different energy tariffs in 
different periods such as peak and off-peak periods.  

This program is utilized in the proposed framework through (4.10). 0ܦ௧,ఠ(ܿ,) indicates the 
initial consumer’s load in scenario ω before the use of the TOU program in sector c and period 
p. The elasticity of consumers is assumed through a matrix that is ܧ௧(ܿ,). This matrix indicates 
how the end-users are elastic to the change in their energy usage pattern. The last term in this 
constraint ൬ఒ

,ିఒబ
,

ఒబ
, ൰ denotes the new tariff after TOU employment in sector c and period p, 

i.e., ߣ, and the normal tariff, i.e., ߣ
,.  

푃 = 퐷0 (푐, 푝)퐸 (푐, 푝)
휆 − 휆
휆==

 (4.10) 
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The specifications of the considered ESS are presented in (4.11) – (4.17). The amount of 
energy in time interval t and scenario ω is calculated in (4.11). The ESS energy is dependent 
on the previous time interval (t-1) and scenario ω plus the charging amount of power multiplied 
by the charging efficiency minus the discharging amount of power multiplied by the discharging 
efficiency [40]. As mentioned before, the ESS can be charged or discharged in each hour. In 
other words, at least one of the components of (4.11) that are ௧ܲ,ఠ

ாௌௌ,. or ௧ܲ,ఠ
ாௌௌ,ௗ௦. should be zero 

as the ESS cannot be charged and discharged at the same time. The energy level of the ESS 
cannot be less than ܧாௌௌ,  or higher than ܧாௌௌ,ெ௫ .  

퐸 = 퐸( − ) + 푃 휂 −
푃
휂

  

(4.11) 

퐸 ݅݊ ≤ 퐸 ≤ 퐸  (4.12) ݔܽ

The capacities related to the charging and discharging amount of power are limited through 
the inclusion of (4.13) and (4.14), respectively.  

0 ≤ 푃 ≤ 푃 퐼  (4.13) 

0 ≤ 푃 ≤ 푃 퐼  (4.14) 

As stated before, charging and discharging of the ESS cannot occur simultaneously, as 
considered in (4.15). It is also assumed that the initial and final energy of the ESS is equal as 
stated in (4.16).  

0 ≤ 퐼 + 퐼 ≤ 1 (4.15) 

퐸 = = 퐸 =  (4.16) 

Moreover, the initial amount of energy of the ESS is dependent on the ESS maximum 
capacity as indicated by (4.17).  

퐸 = = 훼퐸  (4.17) 

퐼 , 퐼 , 퐼 , 퐼 , 퐼 ∈ {0,1} (4.18) 

푃 ,푃 ≥ 0 (4.19) 

After introducing stochastic programming, the hybrid robust-stochastic optimization 
method is implemented. The uncertainty of the day-ahead market price is handled through 
robust programming due to the high importance of the wholesale electricity market. 
Meanwhile, the uncertainty of the participation ratio of the consumers in the DRPs is addressed 
by the scenario-based stochastic approach. It is noteworthy to mention that the general 
mathematical formulation of the robust optimization is given and demonstrated in [174], [175]. 
Thus, regarding the general form of robust optimization, the proposed hybrid robust-stochastic 
DR framework is formulated using (4.20) – (4.24). 

 
 
 



 

54 

 

푚푖푛:− 휋 푃 − 푃 휆 + 훽
=

− 푃푅 푃 푅
==

 

− 푃 휂 −
푃
휂

퐶
=

+ Γ휉  

(4.20) 

subject to:  

(4.2) - (4.19) (4.21) 

휉 + 훽 ≥ 휆 − 휆 ݕ  (4.22) 

(푃 − 푃 ) ≤ 푦  (4.23) 

휉 ,훽 , 푦 ≥ 0 (4.24) 

The hybrid robust-stochastic framework is solved through the reformulation of the 
maximization problem into a minimization problem, as shown in (4.20).  

In the mathematical formulation of the DR model, ௧ܲ,ఠ
,௦, ௧ܲ,ఠ

,,ܴܲ௧,ఠ, ௧ܲ,ఠ
ாௌௌ,,

௧ܲ,ఠ
ாௌௌ,ௗ௦, ௧ܲ,ఠ

ோ,ܧ௧,ఠ
ாௌௌ are the decision variables. While the day-ahead market price (ߣ௧) is 

assumed to be the uncertain parameter managed through the robust management method. The 
day-ahead market price can fluctuate from ߣ௧

, to ߣ௧
,ெ௫.  

As mentioned in [174], there is an important integer item in the robust optimization which 
is the budget of uncertainty, denoted by Γ. The budget of uncertainty is employed to enforce 
limitations of the electricity market price, which is considered as the uncertain parameter of 
the market size of the framework, and these limitations are given as ߣ௧

, to ߣ௧
,ெ௫.  

Moreover, Γ controls the level of conservativity of the DR framework during the scheduling 
time. Therefore, the value of the budget of uncertainty can be given as follows: Γ ∈
{0,1,2, … ,ܶ}. In the case Γ=0, the uncertainty of the day-ahead market price is ignored and the 
results are suitable for risk-neutral decision-makers. As the budget of uncertainty increases, 
the proposed DR framework results would be better suited for risk-averse decision-makers and 
the model would become more conservative. Hence, the most conservative condition (worst-
case scenario) will occur when Γ = T. In this condition, it is assumed that the day-ahead market 
price would fluctuate from its corresponding forecasted value in all the scheduling time 
horizons, [0- Γ]. Additionally, ߦ, β, and y are dual variables of the constraints considered due 
to the reformulation of the problem. 

4.3 - Simulation and Results 

4.3.1 - Data Preparation  

In this section, the data and the test system assumptions are introduced and explained in detail. 
This problem is formulated as a mixed-integer linear programming (MILP) model and the CPLEX 
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solver in the GAMS programming environment was used to obtain the optimal solution. The 
number of single equations in our simulation is equal to 4,057.  

Moreover, 3,950 is the total number of single variables, and 1,898 of them are discrete 
variables. The execution time in our modeling was approximately 12.5 seconds on a personal 
computer with 6 GB RAM and 2.41 GHz of CPU speed.  

4.3.2 - Data Assumptions  

As explained in the previous section, the day-ahead market is chosen from the wholesale 
market for the upper side of the aggregator, allowing the DR aggregator to trade its acquired 
DR. The day-ahead market price is assumed to be an uncertain parameter managed through 
the robust management method. The day-ahead market price can fluctuate from ߣ௧

, to 
௧ߣ
,ெ௫. The energy prices are taken from the Portuguese day-ahead market [176]. The prices 

are shown in Figure 4.2. According to this figure, the lowest market prices occur at 6:00 in the 
morning, while the highest prices are seen at 12:00, 14:00, and 22:00.  

Additionally, Figure 4.3 illustrates the input data for the cumulative demand of each 
consumer’s sector, which is based on real scenarios that are derived from Portugal. According 
to this figure, three consumer sectors are considered in this case study which illustrates the 
sum of the demands of the consumers that are classified into several sectors: residential, 
commercial, and industrial. The residential and commercial behavior are similar to each other. 
However, the load data of the industrial sector indicates a significant difference.  

The residential and commercial peak period starts at 9:00 in the morning and ends at 22:00. 
The peak period for the industrial sector occurs at 9:00 and ends at 18:00. The hours that are 
not considered in the peak period are assumed to be off-peak periods. 

Additionally, Figure 4.3 illustrates the input data for the cumulative demand of each 
consumer sector, which is based on real scenarios that are derived from Portugal. According to 
this figure, three consumer sectors are considered in this case study which illustrates the sum 
of the demands of the consumers that are classified into several sectors: residential, 
commercial, and industrial. The residential and commercial behavior are similar to each other. 
However, the load data of the industrial sector indicates a significant difference. The 
residential and commercial peak period starts at 9:00 in the morning and ends at 22:00. The 
peak period for the industrial sector occurs at 9:00 and ends at 18:00. The hours that are not 
considered in the peak period are assumed to be off-peak periods. 

Regarding the parameters that are considered for the ESS, it should be noted that the 
maximum and minimum capacities of the ESS are 200 kWh and 100 kWh, respectively. The 
charging/discharging SOC of the ESS is assumed to be 20 kWh. It is worthwhile to mention that 
the initial SOC of ESS is considered to be set by the optimal solution. The efficiency of the 
battery for both charging and discharging mode operation is chosen as 90% from the nominal 
value. Finally, the degradation cost of the battery is supposed to be 0.07 €/kWh.  

As stated in the problem formulation section, the ratio of participation by the consumers 
in the DRP is considered to be the uncertain parameter that is handled through stochastic 
programming. To this end, several scenarios are generated. After the scenario reduction 
process, 20 scenarios have been chosen as the final number of scenarios describing the ratio of 
participation of consumers in the incentive-based DR program.  
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In the incentive-based DR program, 20 steps of demand reduction are selected to correlate 
with a certain amount of reward [136]. Regarding the TOU program, the values used in the 
matrix of elasticity are taken from [15].  

In the proposed hybrid stochastic-robust problem, the price of energy in the day-ahead 
market is chosen as the second uncertain factor that is being addressed through the robust 
approach. To this end, a price variation of 20% from the assumed values is considered and this 
is shown in Figure 4.2. It means that, in robust programming, it is supposed that the prices 
fluctuate 20% from the forecasted values. 

 

Figure 4.2 - The Electricity price in the studied period. 

 
Figure 4.3 - The cumulative load profile of the consumers on the studied day. 

 



 

57 

 

4.3.3 - Simulation and Result Discussion 

4.3.3.1 - The Performance of the TOU DR Program 

In this section, the key results derived from the simulation of the proposed model are shown 
and discussed. The first result discussed is related to the impact of the TOU DR program, as 
shown in Figure 4.4. As indicated in this figure, the total reduction amount of the demand 
through the implementation of the TOU program is illustrated.  

According to these results, it can be seen that during the off-peak period, there are positive 
values and during the peak period, there are negative values. The positive values mean that by 
implementing the TOU program, the consumers increase their consumption compared to their 
consumption without the TOU program. The negative values during the peak period indicate a 
decrease in consumption relative to the consumers’ usage pattern without the TOU program.  

As explained in the problem formulation, the TOU program has a direct relation to the 
amount of demand in each sector. Thus, the participation of consumers in this program in the 
residential and commercial sectors is lower than the corresponding values in the industrial 
sector. This is because the daily power use of the industrial consumers is greater than the daily 
usage in the other sectors. Therefore, the largest share of the total TOU program shown in 
Figure 4.4. is due to the industrial sector. Note that the peak and off-peak period is not the 
same for all the sectors.  

Thus, from 18:00 to 22:00, the industrial sector is in the off-peak period and the other two 
sectors are still in the peak period, the total TOU is the summation of negative values in the 
residential and commercial section and positive values in the industrial one. This is the main 
reason that these hourly values are different relative to others in the studied time horizon.  

 

 

Figure 4.4 - The impact of the implemented TOU DRP. 

 



 

58 

 

It should also be noted that from 18:00 to 22:00, as the industrial sector is in its off-peak 
period and since it has the largest share of demand, the total amount of obtained demand is 
based on the behavior of the industrial sector. 

4.3.3.2 - The Performance of the ibDR Program 

As explained in the previous section, the ibDR program is also considered in this model. In this 
program, the participation ratio of consumers is assumed to be uncertain and modeled through 
stochastic programming. Moreover, the day-ahead market prices are modeled using robust 
programming. As explained before, the budget of uncertainty, i.e., Γ, plays the most crucial 
role in investigating the impact of the uncertain parameter.  

Therefore, three values are chosen for the budget of uncertainty, which are ߁ = {0, 2, 12}. 
When ߁ = 0, it means that the robust impact is not considered and the results shown in this 
case are the same as when only stochastic programming is taken into account. In the second 
condition, it is assumed that the price can fluctuate in two hours from the observed hours, i.e., 
߁ = 2. It corresponds to a small share of robustness. Finally, in the last case, ߁ = 12 is selected. 
It means that the optimal schedule is the most robust against fluctuations in market price, 
which is the uncertain parameter.  

As illustrated in Figure 4.5, the participation of consumers in the ibDR program during the 
off-peak period for all the considered cases is the same. This means that the participation of 
consumers in this DR program is not dependent on the robustness of the market price. However, 
during the peak period, the impact of robustness varies.  

 

Figure 4.5 - The ibDR program engagement in the proposed framework.  
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According to this figure, when ߁ = 0, consumer participation is at its maximum. For 
instance, the DR aggregator obtains more than 200 kW at 12:00 from the participants in this 
DR program. This is due to the high market price during these hours. Since the impact of 
robustness is neglected, consumers increase their participation to receive a high reward from 
the aggregator. However, by increasing the budget of uncertainty, the worst cases are 
simulated, and to make the programming robust against the price variations, the acquired 
demand from this type of DRP is decreased. Therefore, it is completely reasonable that the 
lowest demand is obtained from the consumers that are related to ߁ = 12. 

4.3.3.3 - The Performance of ESS 

The hourly operation of the ESS is illustrated in Figure 4.6. According to this figure, when the 
level of energy in the ESS is increasing, it indicates that the ESS is in its charging mode. When 
the energy level in this entity decreases compared to the previous hour, the ESS is in a 
discharging condition.  

Table 4.3 explains the behavior of the ESS in detail. In this table, the behavior of the ESS 
for various budgets of uncertainty is given. According to the problem constraints, it was 
expected that both charging and discharging of the ESS could not occur simultaneously. This is 
the reason why in every hour, one of the values in the charging or discharging related columns 
is zero.  

Since the initial stored energy in the EES is supposed to be 100 kWh, at the end of the first 
hour, the stored energy has increased by 20 kWh, according to Table 4.3. The results given in 
Table 4.3 and Figure 4.6 show that the ESS charges until 03:00 regardless of the value of budget 
of uncertainty, while the behavior of storage changes from 04:00.  

 

 

Figure 4.6 - The operation of the ESS over the scheduling period. 
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In the first two cases, i.e., ߁ = {0, 2}, the ESS starts to discharge, while in the worst-case 
scenario that occurs when ߁ = 12; the ESS is still charging, but not to the full capacity. It is 
worthwhile to mention that the number of charging cycles of ESS in each scenario is as follows: 
five when ߁ = 0, four when ߁ = 2, and seven when ߁ = 12. The number of charging and 
discharging cycles in the first two scenarios is similar.  

However, this is not the case in the worst-case scenario. In the worst-case scenario, it is 
considered that in 12 hours there is a price variation that affects the profit of the aggregator 
negatively. Thus, the aggregator operates the ESS to minimize the negative effect of price 
variations. 

 
 
 

Table 4.3 — The Charging and Discharging behaviors of the ESS 
 

T Hybrid Γ=0 Hybrid Γ=2 Hybrid Γ=12 

 ܲாௌௌ, 
(kW) 

ܲாௌௌ,ௗ௦ 
(kW) 

ܲாௌௌ, 
(kW) 

ܲாௌௌ,ௗ௦ 
(kW) 

ܲாௌௌ,  
(kW) 

ܲாௌௌ,ௗ௦  
(kW) 

1 20 0 20 0 20 0 

2 20 0 20 0 20 0 

3 20 0 20 0 20 0 

4 0 20 0 20 15.8 0 

5 0 20 0 20 0 20 

6 0 8.6 0 8.6 20 0 

7 15.8 0 20 0 20 0 

8 20 0 20 0 20 0 

9 0 20 20 0 0 20 

10 20 0 20 0 0 20 

11 20 0 20 0 20 0 

12 20 0 8.1 0 0 20 

13 20 0 0 17.2 20 0 

14 20 0 0 19.1 0 2.4 

15 0 20 0 20 0 20 

16 20 0 0 20 0 20 

17 0 20 20 0 0 20 

18 0 20 20 0 16.7 0 

19 0 20 0 20 14.8 0 

20 0 20 0 20 0 19.6 

21 20 0 20 0 19.8 0 

22 20 0 20 0 0 18.7 

23 0 18.6 0 15.9 20 0 

24 0 20 0 20 0 19.5 
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4.3.3.4 - The Scheduling of DR aggregator in the DA market  

The daily schedule of the aggregator is depicted in Figure 4.7. In this figure, the amount of 
power that the aggregator trades with the day-ahead market is shown. According to the results, 
the flow of energy during the off-peak hours is from the day-ahead market to the consumers. 
While in the peak hours, from 9:00 to 22:00 for the residential and commercial sectors and 
from 9:00 to 18:00 for the industrial sector, the flow is reversed. In other words, during the 
peak period, the aggregator offers its acquired demand to the day-ahead market. 

 As there are some hours which are peak periods for the residential and commercial sectors 
and off-peak periods for the industrial sector, namely from 18:00 to 22:00, the aggregator is 
still offering its demand to the day-ahead market in these hours.  

In contrast, this amount is much smaller than the previous hours. Since the majority of 
demand belongs to the industrial sector, it has a large impact on the results relative to the 
other two sectors. In the worst-case scenario (߁ = 12), the aggregator is not trading at all.  

In other words, the amount of power reduction during the peak period of residential and 
commercial sectors is equal to the demand increase during the off-peak period of the industrial 
sector, which occurs between 18:00 and 22:00 during the worst-case. 

4.3.3.5 - The Sensitivity Analysis of Proposed Method  

Comparing the three cases, it can be seen that as the budget of uncertainty increases, the total 
amount of traded power in the day-ahead market decreases during the peak period and vice-
versa in the off-peak period. Hence ௧ܲ

 reaches zero during the worst-case at 18:00. The 
salient results obtained are depicted in Figure 4.8, which provides the sensitivity analysis of 
the proposed model. As it was stated in the previous sections, the profit is affected directly by 
budget uncertainty and market price variations.  

 

Figure 4.7 - The traded amount of energy in the DA market. 
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Figure 4.8 - The sensitivity analysis of the considered test system on the proposed hybrid model. 

The variations for the day-ahead market price are chosen to be 0, 5%, 10%, 15%, and 20%, 
while the budget of uncertainty is selected from zero to 12 (worst-case). For a fixed value of 
 as the price variation increases, the total profit of the aggregator decreases. The minimum ,߁
value for the profit of the DR aggregator occurs during the worst-case scenario and maximum 
price variations from the forecasted values, that is, 39,070 € at ߁ = 12 and ߙ = 20%. On the 
other hand, the maximum profit of the aggregator is 257,300 € when there are no price 
variations and the budget of uncertainty is equal to zero. 

4.3.3.6 - The After-the-Fact Analysis of the Proposed Method  

In this section, the effectiveness and usefulness of the proposed model is demonstrated. To 
this end, three optimization techniques are applied to the employed case study which is named 
after the fact analysis [148]. In the robust optimization approach, it is considered that the 
uncertain parameter is addressed and handled through the robust method. On the other side, 
the uncertain parameters are only managed through the stochastic optimization approach.  

The actual and forecasted day-ahead electricity market are considered in this stage for 
seven days which is illustrated in Figure 4.9. As seen in this figure, the forecasted market prices 
are slightly lower than the actual values during the first four days of the considered period. 
Then, in the remaining days of the assumed period, it is reversed where the forecasted prices 
are greater than the actual values of the day-ahead market. 
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Figure 4.9 - The hourly day-ahead electricity market prices for a week. 

 
 Table 4.4 indicates the profit of the DR aggregator for the proposed hybrid, the stochastic 

and robust optimization methods using the actual day-ahead electricity market prices. 
According to the results, the total profit of the aggregator through the application of the hybrid 
robust-stochastic approach will be greater than the other two studied methods, i.e., the robust 
method and stochastic method in the typical week. Moreover, it can be seen that the total 
performance of the proposed approach is better than the other ones whenever the forecasted 
prices are greater than the actual prices or even when the forecasted prices are lower than 
the actual prices. 

 
 

Table 4.4 — Comparison of the Profit of the Different Methods 
 

Day Hybrid profit (€) Stochastic profit (€) Robust profit (€) 

1 133042 136131 130821 

2 147101 147015 144876 

3 153564 151217 151147 

4 154140 151904 151830 

5 167679 159383 165028 

6 177394 165097 174096 

7 168765 160681 165988 

T 1101689 1071431 1083788 
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4.4 - Conclusions  

A hybrid stochastic-robust model is proposed in this chapter to provide a better analysis of the 
DR aggregator in the evaluation of adverse scenarios during the scheduling of DR programs for 
the end-user. A stochastic method is applied to manage the engagement rate of the demand 
side in the DRPs, which includes three sectors of consumers, namely industrial, residential, and 
commercial end-users. A robust approach is implemented on the upper side of the aggregator 
that contains the wholesale electricity market. Fluctuations in the day-ahead market prices 
that can affect the profit of the aggregator are considered. The TOU and ibDR programs are 
utilized for the consumers and an ESS entity is operated by the aggregator. Unique peak and 
off-peak periods are considered for each sector of consumers to enhance the model’s 
effectiveness in a real case study. The results indicate that the demand of the industrial 
consumers affects the profit of the aggregator more than the other sectors due to their high 
demand during the peak period. Regarding the ESS operation in the first hours of the off-peak 
period,  the behavior of   ESS   is the same in all cases,  that is,  in the charging mode.  

The ESS remains in the charging mode in the worst-case scenario, while it begins to 
discharge in the other scenarios to prevent any economic loss for the aggregator. Additionally, 
for a fixed value of the budget of uncertainty, as the price fluctuations increase, the total 
profit of the aggregator decreases in response. Moreover, the minimum profit of the DR 
aggregator occurs during the worst-case scenario and maximum price variations from the 
forecasted values. For future work, other electricity markets such as the balancing market, 
spinning market, and forward contracts could be considered to make this model more 
comprehensive. Another interesting development that can be done in this work is considering 
the prosumers as the clients of the aggregator instead of consumers. Meanwhile, multi-energy 
systems can be included alongside the electricity market to optimize the consumers’ behavior 
in the gas and heating engagement, as well as the electricity demand. 
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Chapter 5  

Energy Storage System Impact on the 
Operation of a Demand Response Aggregator 

We considered a DR aggregator responsible for participating in the wholesale electricity market 
on behalf of the end-users who participated in the DR programs in the previous chapter. In this 
chapter, a model for analyzing the impact of the ESS unit on a DR aggregator's performance is 
developed to provide more flexibility for the consumers. The direct interactions of a DR 
aggregator with an ESS are neglected in many models. However, this consideration can lead to 
improvement in the flexibility of the aggregator and also increase the profit of the entity by 
trading energy in the short-term markets to charge the ESS during the low-price periods and 
discharge it to the market while the electricity market prices are high. Hence, it is assumed 
that the DR aggregator owns an ESS unit and can cover a percentage of its traded power through 
the ESS. An analysis of the impact of the ESS unit on the DR aggregator's performance is applied 
to study the most appropriate size of the ESS that can maximize the profit of the aggregator. 
In addition, renewable energy production is employed for end-users through the installation of 
rooftop PV panels. This demand-side renewable generation can provide more flexibility for the 
participants in DR programs. 

5.1- Introduction  

Due to the significant growth of the gap between the amount of electricity supply and demand 
in the energy system, demand-side management has received greater attention. DR is one of 
the most practical approaches to managing this gap between electricity generation and load 
[1,2]. The Federal Energy Regulatory Commission (FERC) has defined DR as a method to 
encourage end-user consumers to change their usage patterns in response to proposed 
electricity prices or incentive payments. The application of DR to the energy system has several 
advantages, such as balancing electricity generation and demand, increasing flexibility, 
enhancing the grid's reliability, and reducing CO2 emissions [3].  
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Within the energy system, a DR aggregator has emerged whose primary responsibility is to 
design DR programs to encourage end-users to actively participate in demand-side 
management, as the volume of DR of each end-user is typically very small. Therefore, the DR 
aggregator can acquire DR from the end-users and trade it within the wholesale electricity 
markets [15]. Furthermore, another crucial solution for providing flexibility in the energy 
system is the ESS [4].  

One of the main reasons for using ESSs is to overcome the challenges that can occur due to 
the high penetration of renewable energy resources in the power system. This significant 
volume of intermittent energy can lead to instability and low reliability in the network, which 
these challenges can make it essential to employ ESSs to prevent these issues [5]. The 
necessities for the application of DR and ESS have been mentioned above. Thus, using both 
features in a model is more beneficial to the overall system.  

Hence, the primary motivation of this work is to apply an ESS to study its impact on the 
performance of the DR aggregator in the short-term markets. On the other side, the uncertainty 
posed by the electricity market prices should be managed and handled to help the aggregator 
increase its profit. The robust optimization method is also applied to address this uncertainty.  

A number of the most recent similar works are reviewed and studied in this section. The 
DR models that handle uncertain parameters are stated and discussed in the first part. Then, 
models that utilized a DR aggregator are mentioned. Later, the studies considering both DR 
and ESS are given detailed attention. For instance, the authors in [177] developed a DR program 
to determine the solution for minimizing the costs for the third entity and maximizing the social 
welfare through a game theory approach. Similarly, a game theory approach is proposed in 
[178] for the optimal scheduling of a DR-enabled energy system.  

The management of the uncertainty posed by the generation of renewables is addressed in 
this work. Moreover, the uncertainty of DR is taken into account in [179] to enhance the 
flexibility for scheduling an energy system integrated with an electric vehicle parking lot. The 
uncertainty of DR is handled in [180] to assess the congestion issues in the power systems. In 
these models, different aspects of the utilization of DR in the energy system are considered.  

However, most of these works focused on the uncertainties on the demand side, and the 
uncertainties from the electricity market side are not given comprehensive attention. In 
addition, it seems crucial to take a closer look at models with an emphasis on applications of 
DR aggregators [171,181–184]. A stochastic approach is proposed between a DR aggregator and 
the end-users in [181] through an incentive-based DR program designation. Additionally, the 
uncertainty on the demand side is modeled through a Stackelberg Game. Meanwhile, the 
authors in [182] integrated the DR aggregator with the distributed network operators for 
residential loads to allocate power consumption from several electrical loads based on the TOU 
tariffs. 

On the other hand, an optimal trading strategy for a DR aggregator is studied in [185], 
considering a bottom-up procedure for modeling end-users' responsiveness. Peer-to-peer 
transactions of a DR aggregator with a wind power producer are managed in [183] through a 
bi-level stochastic programming model combining the day-ahead and balancing markets. An 
Artificial intelligence (AI) based method is employed for the trading strategy of a DR aggregator 
in [184] with managing the uncertainty posed by the load and renewable energy resources.  
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In these studies, despite considering the uncertainties from several sources, the 
interactions of the aggregator with a direct ESS to improve the flexibility of the aggregator are 
missing. Nevertheless, a few research works considered the interactions between the DR 
aggregator and ESS components from the aggregator's viewpoint. For example, an aggregator 
with an ESS is considered in [186]. The aggregator purchases electricity from the independent 
system operator (ISO) to serve its customers with the primary objective of minimizing the 
aggregator's costs. However, the aggregator does not trade its energy within the wholesale 
electricity markets, and the uncertainty posed by the market side is neglected. While the 
authors in [187,188] considered the transactions between several components of the network, 
such as the DR aggregator and ESS in the wholesale markets, the impact of the ESS on the 
management of the trading strategy of the DR aggregator is not taken into account. 

As stated above, several models applied both ESS and DR programs to their models for 
several purposes. However, the direct impact of the employment of an ESS unit owned by a DR 
aggregator has not been studied, to the best of our knowledge. Utilization of an ESS by a DR 
aggregator can lead this entity to increase its profit by trading energy in the short-term markets 
as well as increasing the flexibility for the aggregator to act as a retailer to charge the ESS 
during the lower price periods and discharge it to the market while the electricity market 
prices are high.  

On the other side, using renewable energy resources on the demand side can increase the 
consumers' flexibility to participate in the DR programs. Since the surplus produced energy 
from the rooftop photovoltaic (PV) panels can be obtained through the DR aggregator. Thus, 
the decision-maker needs to optimize the characteristics of the ESS unit which directly affects 
the aggregator's performance to maximize its profit. In most of the works, the impact of the 
ESS on the DR framework is not analyzed. 

Considering the above-mentioned research gap, a DR framework is modeled through robust 
optimization to study the impact of the ESS on the DR aggregator. The aggregator obtains DR 
from the end-users through two different DR programs, TOU, and reward-based DR programs. 
The TOU program is categorized as a price-based DR program, while a reward-based program 
is known as an incentive-based one. Therefore, the end-users can choose to participate in 
either DR programs or both based on availability. The end-users are assumed to be from various 
residential, commercial, or industrial sectors.  

On the other side, the aggregator can trade DR in short-term electricity markets, i.e., day-
ahead and balancing (real-time) markets. The market prices in both electricity markets are 
chosen as uncertain parameters. The robust optimization method is applied as a risk measure 
to handle these uncertainties. This risk-management method can protect the decision-maker 
against the worst-case market prices.  

Hence, the novel contributions of the proposed model can be listed below: 
 Development of a model for analyzing the impact of the ESS unit on the performance of 

a DR aggregator on behalf of various end-users such as residential, commercial, and 
industrial loads participating in the short-term electricity markets, i.e., day-ahead and 
balancing markets. 

 Increasing the flexibility for the end-users to participate in the DR programs through 
developing the participation roles of the end-users in DR programs through having 
renewable energy resources on the demand side of the aggregator. 

 



 

68 

 

The rest of the chapter is organized as follows: Section 5.2 introduces the proposed 
optimization model, and then the mathematical formulation is explained. Then, to 
demonstrate the usefulness and effectiveness of the model, the results are discussed in Section 
5.3. Finally, the chapter concludes by summarizing the most important findings of the studied 
model in Section 5.4. 

5.2- Proposed Optimization Model  

The proposed robust optimization approach for the DR aggregator is explained and presented 
in this section. The schematic of the DR trading model is illustrated in Figure 5.1.  

A DR aggregator in the center of the model plays the role of a decision-maker in this 
framework. The aggregator has employed two DR programs, including TOU and incentive-based 
DR programs. These programs will be explained in detail in the problem formulation section. 
The aggregator is responsible for implementing these DR programs for the end users.  

 

 

 

Figure 5.1 - The schematic of the DR trading model. 
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This study has three types of end-users, as displayed in Figure 5.1; they are the industrial, 
commercial, and residential sectors. These end-users are equipped with rooftop PV panels that 
cover a percentage of their usage and allow them to participate in the DR programs. On the 
other side, there is an electricity pool market that consists of two day-ahead and balancing 
(real-time) markets where the clearing procedure is based on the regulations indicated in [189].  

There is also another component of the proposed framework, namely the ESS. The primary 
responsibility of this entity is to support the aggregator to avoid economic losses. Thus, the ESS 
will be controlled and operated by the DR aggregator. There is a bi-directional flow between 
the components of this framework. In other words, the energy can flow from the end-users to 
the market through the DR aggregator or vice-versa. Moreover, the ESS can be charged or 
discharged whenever the aggregator finds it beneficial for the decision-maker, the DR 
aggregator.  

In the second part of Figure 5. 1, the model's objective and other elements are presented. 
This problem's objective is to maximize the profit of the DR aggregator. The electricity prices 
in the pool market, including day-ahead and real-time prices, are chosen as the uncertain 
parameters. It is worthwhile to mention that the uncertain nature of the wholesale electricity 
market prices has a significant and direct relation to the profit of the DR aggregator, where if 
the uncertainty of the electricity market prices isn't adequately addressed, it may lead to a 
sharp decline in its profit. A robust optimization model determines the optimal solution to 
study the case under severe uncertainty, whereas scenario-based methods find the optimal 
solution based on a limited number of possible price scenarios. Thus, it is crucial to study the 
uncertainty of market prices to result in the robust scheduling of the DR aggregator in an 
environment. Therefore, the robust optimization approach is selected to handle this 
uncertainty and manage the risk associated with electricity market prices. The robust 
optimization approach in the power system is explained in [174].  

The full description of the parameters, variables, and terms used in the problem 
formulation is presented in Table 5.1. 

The detailed mathematical formulation of the proposed model is expressed as follows: 

푀푎푥 푃 휆 + 푃 +휆 +−푃 −휆 −

=

− 푃 푅
==

− 푃 휂 −
푃
휂

퐶
=

 

(5.1) 

 
where this optimization model's objective is maximizing the DR aggregator's profit. The first 
term of the objective function is the revenue from trading the obtained DR in the day-ahead 
market which ߣ௧ is the day-ahead uncertain price. The following terms refer to the 
revenue/cost from trading in the balancing markets. Thus, if the aggregator has an excess 
amount of energy, it can be offered to the balancing market with a positive imbalance price. 
If the aggregator has a deficit, it can purchase from the balancing market with the negative 
imbalance prices. It should be noted that based on the balancing market regulations, the 
positive imbalance electricity prices are lower than the day-ahead prices, while the negative 
imbalance prices are greater than the correlated day-ahead prices. This is a reasonable rule to 
encourage market participants to avoid mismatches in scheduling in the day-ahead market as 
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much as possible. This helps the ISO to have sufficient information about electricity 
transactions in advance. 

Table 5.1 — Indices, parameters and variables used in this chapter. 

 
Indices  

t Time horizon index 

p Periods index 

c Consumer index 

Parameters 

 ௧ Day-ahead market price [€/kWh]ߣ

௧ߣ
,ା, ௧ߣ

,ି Imbalance prices in excess/deficit modes [€/kWh] 

,ܿ)ߣ    initial price related to consumer ܿ in period (

,ܿ)ߣ    TOU price related to consumer ܿ in period (

M A sufficiently large constant 

തܲ
௧,
ோ,௪ The steps of the reduced load in the reward-based DR program [kWh] 

തܴ

ோ,௪(ݐ) The steps of incentive in the reward-based DR [€/kWh] 

ாௌௌߟ ,  ௗ௦ாௌௌ The charging/discharging efficiency of the ESSߟ

ܥ
ௗ The degradation cost of the ESS [€/kWh] 

ܲ,ெ௫/ 

ܲ, 

The maximum/minimum capacity of the traded power of the DR 

aggregator in the day-ahead market [kW] 

 ாௌௌ, The maximum/minimum capacity of the ESS [kWh]ܧ/ாௌௌ,ெ௫ܧ

  The coefficient for the SOC of the ESS ߩ

Variables 

௧ܲ
 The traded power in the day-ahead market [kWh] 

௧ܲ
,ା, ௧ܲ

,ି The traded power in the balancing market [kWh] 

௧ܲ
்ை

 

The changes in the electricity usage through the employment of the TOU 

program [kWh] 

௧ܲ
ாௌௌ, The charging power value of the ESS [kW] 

௧ܲ
ாௌௌ,ௗ௦ The discharging power value of the ESS [kW] 

 ௧ாௌௌ The energy of ESS [kWh]ܧ

Binary Variables 

 The reduction level in the reward-based DR program (ݐ)ோ.௪ܫ

௧ܫ
ாௌௌ,./ 

௧ܫ
ாௌௌ,ௗ௦. 

Binary variable indicating the charging/ discharging mode of the ESS 
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It should be noted that the imbalance between positive and negative prices is also uncertain 

parameters. The next term in the objective function is the amount of reward that the 
aggregator pays to the end-users who participate in the reward-based DR program. This is 
categorized as an incentive-based DR program. There are several steps in each level, as there 
is a direct relationship between the reduced amount of energy and the reward offered. The 
last element of (5.1) relates to the cost of charging or discharging the ESS. The charging and 
discharging coefficients of the ESS are denoted by ߟாௌௌ and ߟௗ௦ாௌௌ. Finally, ܥ is the degradation 
cost of the battery. 

It should be noted that ߣ௧, ௧ߣ
,ା, ௧ߣ

,ି are the uncertain parameters for which a robust 
optimization method is selected to handle these sources of uncertainties. When the robust 
optimization is implemented on the proposed model, the mathematical problem formulation is 
represented as follows: 

푀푎푥 푃 휆̂ + 푃 +휆̂ + − 푃 −휆̂ −         
=

− 푃 푅
=

− 푃 휂 −
푃
휂

퐶
==

+ 푚푖푛
{푡||푡|≤Γ}

 푃 휆푡
퐷퐴,푀푎푥

−휆푡
퐷퐴,푚푖푛

+ 푃 + 휆푡
퐵,+,푀푎푥

−휆푡
퐵,+,푚푖푛

− 푃 − 휆푡
퐵,−,푚푖푛

−휆푡
퐵,−,푀푎푥

 

(5.2) 

In the robust optimization, the uncertain parameters can deviate from their expected 

values, i.e., {ߣመ௧, መ௧ߣ
,ା, መ௧ߣ

,ି }. This deviation range can be selected through α where α is a value 

between 0 and 1 that can adjust the uncertainty level. Hence, the day-ahead market prices, 

i.e., ߣ௧ can deviate between ߣመ௧
, and ߣመ௧

,ெ௫ and  ߣ௧
,ା ∈ መ௧ߣ)

,ା,, መ௧ߣ
,ା,ெ௫) for the positive 

imbalance price and  ߣ௧
,ି ∈ መ௧ߣ)

,ି,, መ௧ߣ
,ି,ெ௫) for the negative imbalance, prices are also 

considered. In this objective function, the second part of the formula indicated through a min 

term is considered for wholesale electricity market prices as the uncertain parameters should 

not exceed Γ. The uncertainty interval of the day-ahead and balancing market prices are taken 

from a forecasting model [190]. Due to the complexity of this initial form of robust 

optimization, the objective function can be handled through the utilization of auxiliary 

variables ߯ and ݕ௧. Hence, the objective function presented in (5.2) can be equivalently 

converted into the following mathematical function, i.e., (5.3) considering the auxiliary 

variables. 

푀푎푥 푃 휆̂ + 푃 +휆̂ + − 푃 −휆̂ −   
=

− 푃 푅
=

− 푃 휂 −
푃
휂

퐶
==

+ 푚푖푛
∑   ≤    ≤ ≤ + +− − ≤

 ( 휆̂ − 휆̂

+ 휆̂ + − 휆̂ + − 휆̂ − − 휆̂ − ) . 푦 .휒  
 

(5.3) 

 

In addition, by using the duality theory, this formula can be converted into the following 
objective function and constraints, in which, ξ and ߚ௧ are dual variables. A comprehensive 
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explanation for obtaining the robust problem formulation from the initial form is provided in 
[191]. 

푀푎푥 푃 휆̂ + 푃 +휆̂ + −푃 −휆̂ −

=

− 푃 푅
==

− 푃 휂 −
푃
휂

퐶 − Γξ − 훽
==

 

(5.4) 

휉 + 훽 ≥ 휆̂ − 휆̂ + 휆̂ + − 휆̂ + + 휆̂ − − 휆̂ − 푦  (5.5) 

푃 + 푃 + − 푃 − ≤ 푦  (5.6) 

ξ,훽 , 푦 ≥ 0 (5.7) 
Variables ξ and ߚ௧ which are dual variables of the initial problem (5.3) used to take into 

account the known bounds of wholesale electricity market prices, i.e., day-ahead and real-
time, while ݕ௧ is an auxiliary variable used to obtain equivalent linear expressions. 

To protect the model from uncertainty, another parameter is essential to use in the robust 
approach, called budget of uncertainty, i.e., Γ. This is an integer parameter that controls the 
level of conservatism. It can range from 0 to T where T is the maximum number of uncertain 
parameters. If Γ=0, the uncertain parameter is precisely equal to its expected value, and the 
robust approach does not protect the model against uncertainty. However, Γ=T indicates that 
the model is fully protected against uncertainty. In other words, as the decision-maker becomes 
more risk-averse, higher values for the budget of uncertainty should be chosen.  

The final form of objective function presents the worst case of uncertain parameters, and 
market prices can deviate unfavorably equal to the Γ.  

The constraints of the proposed model can be expressed as follows: 

.ݏ   :ݐ

푃 + 푃 + − 푃 − = 푃 − 푃 + 푃 − 푃 + 푃   ,∀푡 (5.8) 

The power balancing constraint is presented in (5.8). Hence, the power traded on the 
market side of the aggregator should be equal to the amount of power on the consumption side 
in each time interval. The power traded in the day-ahead market is denoted by ௧ܲ

 and power 
traded in the balancing market denoted by ௧ܲ

,ା and ௧ܲ
,ି. On the other side, the first two 

variables indicate the amounts of DR acquired from the end-users. The next two variables are 
the amount of charging/ discharging power from the ESS and the last one is the amount of 
power generated from the PV panels. 

The constraints related to the employed DR programs are given in (5.9) – (5.14). 

푃 = 퐷 (푐, 푡) 퐸(푐, 푡, 푝) 휆(푐, 푝)− 휆 (푐, 푝)
휆 (푐, 푝)

,∀푡
==

 (5.9) 

푃 = 푃̅
=

. 퐼  ,∀푡,∀푗 (5.10) 

푅 = 푅
=

,∀푡,∀푗 (5.11) 
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푅 ( − ) . 퐼 ≤ 푅 ≤ 푅 . 퐼 ,∀푡,∀푗 (5.12) 

퐼
=

= 1,∀푡,∀푗 (5.13) 

퐼 ∈ {0,1} (5.14) 

The implemented TOU program is presented in (5.9). According to the definition of the 
TOU program, the participants are encouraged to reduce their consumption during the peak 
prices due to the high electricity tariffs, while they can consume more in the off-peak period 
with lower tariffs. The load profile is denoted by ܦ(ܿ, -where c indicates the type of end ,(ݐ
user. The matrix of elasticity is also denoted by ܧ(ܿ,  where p shows the periods that peak (,ݐ
and off-peak ones. The electricity usage tariffs before and after employment of the TOU 
program are ߣ(ܿ,) and (,ܿ)ߣ, respectively. 

The constraints regarding the reward-based DR program are stated in (5.10) – (5.14). The 
amount of demand reduced in each time interval is denoted by ௧ܲ

ோ.௪. The correlated reward 
is given to the end-users based on the reduced amount of demand, i.e., ܴ௧ோ.௪ is calculated 
through (5.11). The next equation indicates that the reward amount can change in a stepwise 
pattern. The last two constraints show that in each time interval, one step can be chosen, and 
this is indicated by a binary variable denoted by ܫ௧,

ோ.௪. 

푃 ≤ 푃 ≤ 푃   ,∀푡 (5.15) 

0 ≤ 푃 + ≤ 푃 − 푃 + 푃 − 푃 + 푃   ,∀푡 (5.16) 

0 ≤ 푃 − ≤ 푃   ,∀푡 (5.17) 

The power that can be traded in the day-ahead market through the DR aggregator has a 
specific capacity presented in (5.15). Similarly, the positive imbalance power should be lower 
or equal to the amount of available power for the DR aggregator as the maximum amount of 
power that can be available for the aggregator in the excess mode happens if the aggregator 
does not trade its whole available DR in the day-ahead market as declared in (5.16). Whereas 
the imbalance negative power limits are shown in (5.17), where no DR is available, the 
aggregator schedules its maximum capacity to be offered in the market. The ESS constraints 
are written as follows: 

퐸 = 퐸 − + 푃 휂 − 푃 휂  (5.18) 

퐸 ≤ 퐸 ≤ 퐸  (5.19) 

퐸 = = 퐸 =  (5.20) 

퐸 = = 휌퐸  (5.21) 

0 ≤ 푃 ≤ 푃 퐼  (5.22) 

0 ≤ 푃 ≤ 푃 퐼  (5.23) 

0 ≤ 퐼 + 퐼 ≤ 1 (5.24) 
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퐼 , 퐼 ∈ {0,1} (5.25) 

The amount of energy stored in the ESS unit is calculated in (5.18), where it is dependent 
on the previous level of energy plus the amount of power charged/discharged at time t with 
ESS charging/discharging coefficients, i.e.,  ߟாௌௌ and ߟௗ௦ாௌௌ.  

It should be noted that the ESS has a minimum and maximum energy level declared in 
(5.19). Moreover, it is assumed that the ESS unit's initial and final level of the ESS unit in each 
time horizon should be equal. Also, (5.20) indicates that the stored energy level in the ESS 
directly relates to its maximum capacity. The initial amount of energy available at the 
beginning of the scheduling period is determined by (5.21). The amount of charging/discharging 
power in each time interval is limited, as stated in (5.22) and (5.23). In addition, ܫ௧

ாௌௌ, and 
௧ܫ
ாௌௌ,ௗ௦ are the binary variables that are used to indicate that the ESS cannot charge or discharge 

simultaneously. 

푃 = 퐺
퐺 푃̅ + 휇 푇 +퐺 푁푂퐶푇 − 20

800
− 푇  (5.26) 

푃 = 푃 → + 푃 → + 푃 →  (5.27) 

Finally, the hourly PV generation constraints are presented in (5.26) and (5.27). Rooftop 
PV generation is wholly dependent on solar irradiance. Besides that, other factors can affect 
the generation value, such as the temperature and the characteristics of the panel (5.26) [192]. 
The PV panels' generated power can be exploited by either the end-users, ESS or the DR 
aggregator to be traded within the short-term electricity markets.  

5.3- Case Study 

5.3.1   Data preparation  

In this section, the employed data from the case study is explained in detail. The proposed 
model is aimed at profit maximization, mathematically formulated as a mixed-integer linear 
programming (MILP). It is simulated and solved in GAMS optimization software through the 
CPLEX solver. The problem was solved in a personal computer with 6 GB RAM and 2.41 GHz CPU 
speed. It is considered that the peak period of residential and commercial consumers is from 
9:00 to 22:00 during the day, while the peak period for industrial consumers is from 9:00 to 
18:00. The rest of the time is an off-peak period. These load profiles are taken from a real case 
study in March 2016 from São Miguel, Portugal. It is noteworthy to mention that the peak and 
off-peak periods of the studied cases are chosen based on their daily initial load profiles which 
are presented in a figure that illustrates the influence of the application of the TOU program 
in the simulation result section. The expected day-ahead market prices are taken from the 
Portuguese wholesale electricity market [176]. The maximum value for the available power of 
the DR aggregator that can be exchanged in the day-ahead market is equal to 1000 kW. 

The data for the TOU and reward-based DR programs are similar to the reward steps and 
tariffs. The values used for the steps of the reward-based DR program are presented in  
Figure 5.2. In our model, it is assumed that there are 25 unique steps for the reward-based DR 
program for each consumer type, such as residential, commercial, and industrial. The DR 
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aggregator offers the obtained DR to the pool market during the peak period and purchases 
during the off-peak hours.  

 

Figure 5.2 - The values for each step of the reward-based DR program. 

 

 
As the pool market prices are assumed to be uncertain, robust optimization is selected as 

the risk management method, and 20% is chosen as the price variations from the expected day-
ahead market prices. The expected electricity prices in the balancing market are assumed to 
be 10% higher or 10% lower than day-ahead prices for the negative or positive imbalance values, 
respectively [15].  

Moreover, it is assumed that the end-users in all three sectors are equipped with rooftop 
PV panels, and their total generation for each section in the studied time horizon is illustrated 
in Figure 5.3. Regarding the ESS, it should be mentioned that three different cases are 
considered for the ESS to observe and study its impact on the profit of the DR aggregator. The 
degradation cost of the battery is assumed to be 0.07 €/kWh.  The battery's efficiency for both 
charging and discharging modes is 88%. The remaining employed ESS data for each case is 
presented in Table 5.2 and Table 5.3. 
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Figure 5.3 - The PV generation for each sector of the consumers. 

Table 5.2 — The general input parameters of the ESS unit. 

  0.07 €/kWhܥ

 ாௌௌ 88%ߟ

 ௗ௦ாௌௌ 88%ߟ

 0.5 ߩ

Table 5.3 — The characteristics of the ESS for three studied cases 

ESS 
 ாௌௌ,ெ௫ܧ

(kWh) 

 ாௌௌ,ெܧ

(kWh) 

ெܲ௫
ாௌௌ, 

(kW) 
ெܲ௫
ாௌௌ,ௗ௦ 

(kW) 

Case 1 100 40 20 20 

Case 2 200 40 40 40 

Case 3 400 40 80 80 

5.3.2   Simulation results  

The electricity pool prices are chosen as the uncertain parameters, and through the 
implementation of a robust optimization approach, the uncertainty budget, i.e., Γ, is an integer 
number that indicates the optimization level. As Γ increases, the robustness of the model 
against the worst-case scenarios increases as well. The sensitivity analysis of the proposed 
robust model for various ESS capacities is depicted in Figure 5.4. 

Figure 5.4 illustrates the profit of the DR aggregator against several values for the budget 
of uncertainty. There are two significant findings from this result. First, when the level of 
robustness is low, there is small protection against the uncertain parameter that leads very 
sharp decrease in the profit of the aggregator. While it reaches a specific budget of uncertainty, 
i.e., Γ=9, the model becomes almost fully robust against the price uncertainty. Hence, this 
robustness protects the profit of the aggregator from unfavorable scenarios for the electricity 
market prices. 
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Figure 5.4 - The sensitivity analysis of the proposed robust model for various ESS capacities. 
Meanwhile, it can be seen that when the budget of uncertainty is low, the impact of ESS 

on the DR aggregator's profit is insignificant. However, as the model becomes more robust 
against the electricity market prices, the impact of the ESS grows meaningfully.  

Thus, to show the importance of the ESS in detail, a table provides data regarding the 

profit of the aggregator in two conditions, which is when our model is less protected against 

the price uncertainty, Γ=2. The following condition is when our proposed model is protected 

against the uncertain parameter and is fully robust, Γ=12, i.e., Table 5.4. According to the data 

shown in this table, when there is no ESS, the profit of the aggregator is €266,187 if the budget 

of uncertainty is equal to two.  
By increasing the capacity of the ESS, it can be observed that the aggregator's profit is also 

increasing. Thus, when the ESS capacity is 400 kWh, the profit of the aggregator is €275,502 
which is 3.5% higher than the case study without any ESS. On the other side, the profit of the 
aggregator increases by 20% when the budget of uncertainty is equal to 12. In other words, 
having a greater capacity for the ESS significantly impacts the DR aggregator's profit, even in 
the worst-case scenarios.  

Therefore, according to the data shown in Figure 5.4 and Table 5.4, the necessity of having 

an ESS seems more reasonable when the decision-maker desires to protect its profit from the 

worst-case scenarios and reduce the uncertainty's negative effect. The influence of the 

implementation of the TOU DR program is expressed in Figure 5.5. In this figure, there are two 

columns for each hour. The first column indicates the initial amount of the total load. 

Meanwhile, the second column in each hour presents the new load values after the application 

of the TOU program. Each column shows the share of each sector, such as residential, 

commercial, and industrial in the total load amount. As presented in this figure, there is an 

increase in consumption compared to the typical energy usage without consideration of the 

TOU program during the off-peak period. On the other side, there is a reduction in the 

consumption of the end-users during the peak period.  
Based on these results, the influence of industrial loads in implementing this DR program 

is almost ten times greater than the reasonable residential and commercial sectors due to the 
high consumption profile of the industrial loads. Based on this program, the end-users are 
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encouraged to reduce their usage during the peak period and compensate for this reduction 
during the off-peak period with lower tariffs.  

 

Table 5.4 — The profit of aggregator for different ESS cases 

ESS Max Capacity 

(kW) 

The profit of DR aggregator (€) 

Γ=2 Γ=12 

0 266,187 77,883 

100 268,542 81,060 

200 271,458 85,904 

400 275,502 93,471 

 
The robust results of the problem when the DR aggregator is trading the day-ahead and 

balancing markets are depicted in Figure 5.6 and Figure 5.7, respectively. To analyze the 
scheduling of the aggregator in the short-term markets in a robust condition, the chosen budget 
of uncertainty is equal to 12. Thus, the profit of the aggregator is protected against the worst-
case scenarios that could happen in the day ahead and balance market prices. 

 
 

 

Figure 5.5 - The influence of the TOU program on the usage amounts of the end-users during the 
studied time horizon. 
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Figure 5.6 - The power traded in the day-ahead market for various ESS capacities. 

 

 

Figure 5.7 - The power traded in the balancing market for various ESS capacities. 

 
According to Figure 5.6, the aggregator purchases energy from the day-ahead market at 

total capacity. On the other side, when the peak period starts, the aggregator offers the 
acquired DR to the day-ahead market, which is indicated in the figure as positive values. As 
presented, the performance of the aggregator in the day-ahead market when ESS maximum 
capacity is 100 kWh is entirely different from the other case studies. Thus, the trading behavior 
of the aggregator during the off-peak period of residential and commercial end-users is almost 
the same. At 18:00, the off-peak of the industrial section starts while the residential and 
commercial sectors are still in their peak period. Thus, the values shown in the figure from 
18:00 to 22:00 are the total energy traded in the day-ahead market. During these hours, the 
residential and commercial sectors are reducing their demand by participating in the reward-
based DR program while the industrial sector increases its usage as it is in the off-peak period. 
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Therefore, the participation of the industrial sector in the reward-based DR program is in the 
opposite direction of the other sectors from 18:00 to 22:00. After 22:00, the trading behavior 
becomes similar as all three sectors are again in the same period, i.e., the off-peak period. 

The trading manner of the aggregator in the balancing market is illustrated in Figure 5.7. 
The aggregator trades the imbalance within the balancing market depending on whether it has 
a deficit or excess. The positive values in the figure indicate that the aggregator has an excess 
and is offering its surplus energy in the balancing market with positive imbalance prices that 
are 10% lower than the day-ahead market prices. On the other side, the negative values state 
that the aggregator has a deficit and is required to purchase energy from the balancing market 
with the negative imbalance prices that are 10% higher than the day-ahead market prices. 
Therefore, the DR aggregator trades its energy during the day-ahead market to avoid economic 
losses. The entity does not desire to purchase its required energy during higher-price periods 
and sell the excess during lower-priced periods. 

 Hence, based on the data shown in Figure 5.6, the aggregator gains more profit when its 
ESS maximum capacity is 400 kWh. The imbalance values during the peak and off-peak periods 
are lower than in the other cases. And the behavior of the aggregator with 100 kWh ESS is the 
worst as in many time slots; it is in the deficit or excess mode. 

Finally, the behavior of ESS in the proposed model for three different cases is displayed in 
Figure 5.8. The green bars express the day-ahead market prices, while the lines show the 
current level of the ESS for different cases. Increasing the energy level means that the ESS is 
charging, and a decrease in the level of the ESS energy indicates the ESS is discharging. The 
first apparent outcome is the ESS's dependency on market prices. Thus, when the market prices 
increase, the ESS is discharged to cover a percentage of the required energy of the aggregator 
to avoid economic losses. If there was no ESS, the aggregator must purchase the whole amount 
of energy from the electricity markets at high prices. Therefore, owning an ESS allows the 
aggregator to charge it at low prices and discharge it at high prices, further supporting the 
aggregator to maximize its profit.  

Another critical point is about the different capacities of the ESS employed by the 
aggregator. It can be seen that the initial level of energy of Case 3 is higher than the other 
cases. Hence, Case 3 starts discharging at 5:00 while Case 1 and Case 2 start discharging at 
6:00. The main reason for beginning the earlier discharge for Case 3 is that the initial level of 
energy is high enough to cover the percentage of the aggregator's required energy. It can also 
charge up to its maximum capacity, which is 400 kWh. The ESS starts discharging for the second 
time at 18:00, which is when the peak period of the industrial sector ends. Therefore, because 
of high day-ahead market prices during the afternoon, it is more beneficial for the aggregator 
with 400 kWh ESS to cover a percentage of its demand. 
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Figure 5.8 - The optimal performance of the ESS with different capacities based on the DA electricity 
market prices. 

 

 

 

 

 

5.4- Conclusions 

An optimal electricity trading model for a DR aggregator was developed in this work with a 
focus on the impact of the ESS unit that the aggregator owns. The DR aggregator was 
responsible for trading the available energy within the wholesale electricity markets, i.e., day-
ahead and balancing (real-time) markets. The electricity market prices were assumed to be 
uncertain and a robust optimization approach was applied as the risk measure for these sources 
of uncertainty. On the demand side, three types of end-users were considered: residential, 
commercial, and industrial sectors. Two DR programs were implemented to allow end-users to 
participate in DR programs actively. Meanwhile, end-users were equipped with rooftop PV 
panels that could improve their participation in DR programs. In addition, three cases with 
different ESS characteristics were studied to evaluate better the impact of the ESS on the profit 
of the DR aggregator. Thus, it was demonstrated that an ESS with higher capacity was required 
as the decision-maker desires to be increasingly protected against unfavorable scenarios for 
uncertain parameters. By increasing the capacity of the ESS, it is shown that the aggregator's 
profit also increases. For instance, when the ESS capacity is 400 kWh, the profit of the 
aggregator is €275,502. This represents a 3.5% increase compared to the case study without 
any ESS, assuming a budget of uncertainty (Γ) equal to 2. On the other hand, if the Γ is equal 
to 12 in a case with an ESS capacity of 400 kWh, the profit of the aggregator increases by 20% 
from a case without an ESS unit. In other words, having a greater capacity for the ESS 
significantly impacts the DR aggregator's profit, even in the worst-case scenarios. Moreover, 
the results showed that the capacity of the ESS had a significant impact on the trading strategy 
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of the aggregator in day-ahead and balancing markets. Hence, as the aggregator chooses an 
ESS with higher capacity, its transactions within the day-ahead market will increase. Therefore, 
the aggregator will require less power to be traded in the balancing market, which is desirable 
to prevent economic losses. The robust optimization method is suitable for risk-averse and 
conservative decision-makers who desire to investigate the worst-case scenarios that can 
occur. However, for better investigation of favorable changes in the uncertain parameter, it is 
suggested to implement other risk measures such as information-gap decision theory or 
stochastic programming that can generate several scenarios, including the favorable scenarios 
for the risk-seeking decision-makers. The role of the DR aggregator entity can be upgraded to 
a distributed energy resources aggregator that provides the control and management of several 
components of the energy system such as multiple renewables, on-site distributed generations, 
and DR programs to this entity. This upgrade can lead to more flexibility for the aggregator and 
make the model more comprehensive in optimizing its profit which can be worked as future 
work. Thus, the performance of the ESSs in such a system can be improved as the aggregator 
has several components under its control.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

Chapter 6  

 
 

Optimal Management of Electrical and Thermal 
Loads in Multi-Energy Systems Considering 
an Integrated Demand Response Program 

It is crucial to study and analyze the optimization of energy hubs, particularly regarding their 
costs. This chapter introduces a novel energy hub risk-management method. Our risk 
management framework takes into account uncertainties arising from various load profiles, 
including electric and thermal loads, as the uncertainties originating from the end-user side 
are among the most important factors in optimizing the total cost of the energy hub. The 
proposed energy hub includes multiple distributed energy resources. Moreover, an ESS is also 
considered to cover a percentage of electrical energy. Multiple integrated DR programs, i.e., 
TOU and emergency DR, are also adopted to assist the energy hub operator in managing its 
components and adjusting the energy consumption volume when the energy prices are high, 
helping the operator attain lower costs in managing the energy hub. 

6.1- Introduction 

A significant challenge nowadays is the transition from fossil fuels to sustainable energy sources 
to match the global population's demand. Relying on fossil-fueled power plants as the primary 
energy source in future energy systems is not sustainable due to their drawbacks related to 
efficiency, costs, and, most importantly, pollution [193]. Energy systems that rely on a single 
energy vector to meet the final demand are typically more expensive to manage and operate 
than those that utilize multiple energy vectors, such as electricity, natural gas, and district 
heating. Multi-energy systems address the final demand using various energy carriers, including 
heating and cooling vectors [194]. 

Moreover, it has become simpler to transition from using single-energy systems to multi-
energy related to several distributed energy resources, like electric heat pumps (EHPs) and 
combined heat and power (CHP) [3]. The operator of these systems must manage the different 
energy carriers to enhance efficiency and reduce the costs associated with the operation [196]. 
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In addition, the replacement of several single-energy systems with a multi-energy system 
provides an efficient approach to integrating multiple energy sources and accommodating their 
input and output functions. The authors in [197] demonstrated that optimizing these systems 
with low-carbon concepts and technologies can increase the utilization of renewable energy 
resources and reduce carbon emissions. Additionally, incorporating DR programs into multi-
energy systems can lead to the development of a low-carbon economic dispatch model while 
reducing the cost of the components running inside the energy hub. 

Numerous studies have examined recent advancements in research related to energy hubs 
and multi-energy systems. For example, a thorough examination of different models and the 
energy hub concept was carried out in [132], which discussed the energy hub's various inputs, 
outputs, internal units, and entities. Similarly, the authors in [198] analyzed multi-energy 
systems focusing on their innovative performance and considering multiple sources of 
uncertainty in the generation, demand, and energy market sectors. Several papers have also 
focused on implementing and managing the energy hub.  

In [199], the authors put forward an optimal bidding approach for the participation of an 
energy hub in energy markets. An ESS can be integrated into a hub and can supply some part 
of the electric loads through the energy hub.[200], [130]. As a result, including an ESS can 
lower the operational cost of the energy hub by enabling the charging of the ESS during off-
peak (lower price) periods and discharging it to the energy hub during peak periods when prices 
are high. 

DR programs can also be integrated into the multi-energy systems which is another crucial 
factor in such models [7]. Incorporating different energy types in the energy hub can enhance 
consumers’ engagement in DR programs and improve the energy hub’s performance [201]. For 
instance, an optimal self-scheduling of an energy hub is presented in [202] by considering the 
DR program. The authors demonstrated that using DR could reduce the total energy cost by 
adjusting the consumption based on the energy prices. The risk-averse attitude for the self-
scheduling strategy is considered. In contrast, the possibility of reducing costs for the energy 
hub operator due to favorable deviations of the uncertainty resources is not studied. It should 
be noted that applying an integrated DR program for an energy hub is more beneficial than a 
traditional electric DR program.  

Both electric and thermal loads can be optimized to provide more control and flexibility 
for the operator [13]. The authors in [203] proposed a two-level optimization model for an 
energy hub considering an integrated DR program for electric and natural gas demands. 
However, the impact of uncertainties on the demand side of the test system is not studied.  

Research relating to managing and optimizing energy hubs is becoming increasingly 
important as this concept emerges. The uncertainty originated through electrical, heating, and 
cooling demands, renewables (wind turbine and PV) generation, and the price of energy carriers 
was addressed by a stochastic optimization approach in [68], in which the authors utilized the 
Monte Carlo method to generate the stochastic scenarios to maximize the profit of the energy 
hub. 

To decrease the expected operational cost of the hub considering a risk-averse manner, a 
hybrid stochastic-IGDT technique was utilized for the assessment of the energy hub's 
management and scheduling [204]. The robust strategy of the IGDT method only manages the 
uncertainty posed by the electricity market prices and not those from the demand side. 
Moreover, an optimal energy hub management strategy is proposed in [205], where the 
uncertainty of the demand side is addressed using a Monte Carlo scenario-based approach.  
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As stated in [132], in much of the research around the concept of energy hubs, uncertainty 

modeling is addressed using robust or scenario-based approaches. However, such risk 

management methods usually neglect the behavior of a risk-seeking energy hub operator.  
At the same time, the opportunity function of the IGDT method is extensively designed to 

examine the energy hub in a risk-seeking manner. Most methods for optimizing energy hub risk 
management approaches focus on handling uncertain parameters through robust or scenario-
based frameworks. However, most of these methods cannot provide a clear scheduling strategy 
for a risk-seeker energy hub operator who desires to profit more by reducing its management 
costs.  

Therefore, this work's main new contribution is the introduction of an innovative, 
opportunistic risk-handling method for a hub comprising an μCHP, EHP, absorption chiller (AC), 
boiler (BO), and ESS. The opportunistic strategy is more appropriate for risk-seeking decision-
makers who leverage favorable deviations in uncertain parameters for more significant cost 
reductions. Three uncertain parameters of consumers are considered in this model- These are 
electrical, heating, and cooling loads.  

Another new contribution of this model is that multiple integrated DR programs are utilized 
to provide more flexibility to consumers. Two DR programs are proposed for the electrical 
loads. To decrease the operating costs of the distributed energy resources and the energy hub, 
two DR programs for electrical loads are employed, i.e., the time-of-use (TOU) DR program 
and emergency DR program have been incorporated, which TOU DR program move a portion of 
the electric load from the peak period to the off-peak period. Also, an emergency DR program 
is defined to control the electric demand when there is difficulty in supplying the demand due 
to a significant increase in electric usage. Furthermore, one shifting DR program is considered 
for each heating and cooling load.  

The organization of this chapter is as follows: Section 6.2 describes the proposed model. 
Section 6.3 presents simulation results and discussions. Finally, Section 6.4 summarizes the 
significant discoveries of the study as the conclusions. 

6.2- The Proposed Hybrid Model 

Figure 6.1 illustrates the energy hub proposed in this model, which is a multi-energy system 
that depends on two inputs from the upstream electricity and natural gas networks. The hub 
obtains its required natural gas supply from the upstream gas provider, while electricity can 
be purchased from or sold to the upstream power network with bidirectional electricity flow.  

To clarify, the gas flow is unidirectional from the network to the hub, while the electricity 
power flow is bidirectional and can go from the upstream grid to the hub or vice versa. The 
energy hub has three outputs to satisfy the three consumer demands: heating, cooling, and 
electricity. 

Several entities have been considered to optimize the energy hub’s operation and minimize 
costs. These entities are depicted in Figure 6.1. The energy hub comprises the following units: 
EHP, μCHP, AC, BO, and ESS. Among these components of the hub, the μCHP, AC, and boiler 
rely on natural gas as the input, while EHP and ESS use electricity as their input 
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Figure 6.1 - The structure and components of the proposed energy hub. 

The cooling demands of the consumers can be fulfilled by either the AC or EHP units within 
the energy hub, whereas the heating demand can be met by the BO and EHP units. In addition, 
the μCHP system is capable of delivering both electricity and heating to satisfy consumers' 
needs. Furthermore, the EHP unit can address both cooling and heating loads. Lastly, the 
energy hub utilizes an ESS to charge or discharge.  The management of the designed multi-
energy system consists of two stages: a deterministic stage that considers no uncertainty in the 
design and aims to reach the lowest possible (minimum) cost of the multi-energy system, and 
a second stage that takes uncertainty into account. The opportunistic IGDT risk-handling 
method is employed in the second part to assess the uncertainty.  

6.2.1- The Mathematical Problem Formulation 

The full description of the parameters, variables, and terms used in the problem formulation 
is presented in Table 6.1. 

6.2.1.1- The Deterministic Stage 

The problem formulation of the first part assumes no data uncertainty. It can be written 
as follows: 

    푚푖푛 푂퐶0 = ൭
푂퐶푠,푡퐸퐻푃 +푂퐶푠,푡

휇퐶퐻푃 +푂퐶푠,푡퐴퐶 +푂퐶푠,푡퐵푂

+휆푁퐺퐺푠,푡푁퐺 + 휆푡푃퐺푃푠,푡푃퐺 +푂퐶푠,푡퐷푅
൱

푇

푡=0

푆

푠=1

 (6.1) 

 
The objective function of the deterministic problem, shown in (6.1), is to minimize the 

operating cost of the energy hub by optimally scheduling the various assets. The cost function 
for the operation of each entity in the energy hub includes the EHP, μCHP, AC, and BO. The 
following two terms of (6.1) represent the cost of purchasing natural gas from the gas network 
and the electricity bought from the power grid. 
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Table 6.1 — Indices, parameters and variables used in this chapter. 

Superscripts 

EHP Electric heat pump 

μCHP Micro combined heat and power 

AC Absorption chiller 

EH Electric heater 

BO Boiler 

ESS Energy storage system 

Ch./Dis. Charging/discharging mode of ESS 

NG Natural gas from the grid 

PG Electricity power from the grid 

Subscripts and indices 

s Season 

t Time horizon 

c/h Cooling/heating 

Parameters and variables 

  Deterministic minimum cost of energy hubܥܱ

 The operation cost of each entity ܥܱ

௧ீߣ/ேீߣ  Natural gas/ electricity price 

௦,௧ܩ
ேீ  Purchased natural gas from the gas grid 

௦ܲ,௧
ீ  Amount of electricity bought or sold from or to the grid 

௦,௧ܥ
ாு/ܪ௦,௧

ாு Cooling/heating generation of the EHP 

௦ܲ,௧
ఓு/ܪ௦,௧

ఓு  Electricity/heating generation of μCHP 

௦,௧ܥ
  Cooling generation of AC 

ߟ  The cooling conversion ratio of AC 

௦,௧ܧ
ாௌௌ The energy level of ESS 

௦ܲ,௧
ாௌௌ,./ ௦ܲ,௧

ாௌௌ,ௗ௦. Charge/discharge amount of ESS 

.ߟ
ாௌௌ/ߟௗ௦.

ாௌௌ Charge/discharge ratio of ESS 

ܾ௦,௧
ாௌௌ,./ܾ௦,௧

ாௌௌ,ௗ௦. Binary variables for charge/discharge mode of ESS 

௦ܲ,௧
ாோ  Load after the implementation of the DR program 

 ௦,௧ Shifted amount of demandݎ݀݅

ܱܶ ௦ܷ,௧ Movable amount of load in the TOU program 

௦ܲ,௧
ௗ/ܪ௦,௧

ௗ/ܥ௦,௧
ௗ Initial electric, heating, and cooling loads 
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The variable ௦ܲ,௧
ீ represents the electric power flow to or from the electric grid, and its 

sign depends on the direction of the power flow. If ௦ܲ,௧
ீ is positive, it means the energy hub is 

buying power from the grid, and if it is negative, it means the energy hub is selling power to 
the grid. Therefore, if ܲ ௦,௧

ீ is negative, it represents revenue for the energy hub. The final term 
in the objective function refers to the cost associated with the application of integrated DR 
programs. The constraints of this model are given as follows: 

ܱ퐶푠,푡퐸퐻푃 = 푥퐸퐻푃(퐻푠,푡퐸퐻푃 + 퐶푠,푡퐸퐻푃)
2 + 

              푦 (퐻 + 퐶 ) + 푧  
(6.2) 

퐶 = 휂 푃  (6.3) 

퐻 = 휂 푃  (6.4) 

퐶 푏 ≤ 퐶 ≤ 퐶 푏  (6.5) 

퐻 푏 ≤ 퐻 ≤ 퐻 푏  (6.6) 

푏 + 푏 ≤ 1 (6.7) 

Equations (6.2) to (6.7) present the constraints related to the EHP unit. The objective of 
equation (6.2) is to calculate the operating costs of the EHP based on its operation coefficients 
x, y, and z. The EHP’s ability to provide heating and cooling is subject to conversion constraints, 
as expressed in equations (6.3) and (6.4). In addition, the limitations of the cooling-heating 
EHP generation are taken into account in equations (6.5) and (6.6), respectively. The EHP 
component is unable to produce both heating and cooling simultaneously, which is reflected in 
equation (6.7). 

ܱ퐶푠,푡
휇퐶퐻푃 = 푢휇퐶퐻푃(푃푠,푡

휇퐶퐻푃)2 + 푣휇퐶퐻푃(푃푠,푡
휇퐶퐻푃) 

              푤 (퐻 ) + 푥 (퐻 ) 

             푦 (푃 )(퐻 ) + 푧  
(6.8) 

푃 − 푃 − −
−

퐻 −퐻 ≤ 0 (6.9) 

푃 − 푃 −
푃 − 푃
퐻 −퐻

퐻 −퐻 ≥ −푀(1− 푏 ) (6.10) 

푃 − 푃 −
푃 − 푃
퐻 −퐻

퐻 −퐻 ≥ −푀(1− 푏 ) (6.11) 

푃 푏 ≤ 푃 ≤ 푃 푏  (6.12) 

0 ≤ 퐻 ≤ 퐻 푏  (6.13) 

Equations (6.8) to (6.13) present the constraints related to the μCHP unit. Equation (6.8) 
calculates the operational cost of the μCHP [206]. The feasible operating region of the μCHP is 
defined by (6.9) to (6.11). Equation (6.12) restricts the maximum generated power of the μCHP. 
Moreover, (6.13) ensures that the generated heat falls within the capacity of the μCHP. 
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ܱ퐶푠,푡퐴퐶 = 푦퐴퐶(퐶푠,푡퐴퐶) + 푧퐴퐶 (6.14) 

퐶 푏 ≤ 퐶 ≤ 퐶 푏  (6.15) 

퐶 = 휂 푃  (6.16) 

The cost function of the AC unit is expressed in (6.14), while constraint (6.15) indicates 
the minimum and maximum limitations of the AC unit. Moreover, the unit’s cooling generation 
is shown in (6.16) which is dependent on the coefficient of the AC unit and its electricity. 

ܱ퐶푠,푡퐵푂 = 푦퐵푂(퐻푠,푡퐵푂) + 푧퐵푂 (6.17) 

퐻 푏 ≤ 퐻 ≤ 퐻 푏  (6.18) 

The cost of operating the BO to meet the demand for heating is expressed in (6.17). The 
BO unit’s operating range is constrained by ܪை,, min. capacity, and ܪை,ெ௫ , max. capacity. 

퐸푠,푡퐸푆푆 = 퐸푠,(푡−1)
퐸푆푆 + ൫푃푠,푡

퐸푆푆,푐ℎ.휂푐ℎ.
퐸푆푆൯− ൭

푃푠,푡
퐸푆푆,푑푖푠.

휂푑푖푠.퐸푆푆 ൱ (6.19) 

퐸 ≤ 퐸 ≤ 퐸  (6.20) 

0 ≤ 푃 ≤ 푃 푏  (6.21) 

0 ≤ 푃 ≤ 푃 푏  (6.22) 

푏 + 푏 ≤ 1 (6.23) 

퐸 = = 퐸 =  (6.24) 

퐸 = = 훼 퐸  (6.25) 

The constraints for the ESS are presented in (6.19)–(6.25) [40]. The volume of energy stored 
in the storage unit is determined as (6.19). The amount of energy in the ESS is bounded by its 
capacity limits, as shown in (6.20). The power used to charge the ESS is denoted by ௦ܲ,௧

ாௌௌ,., 
which is subject to the limit specified in (6.21). 

Similarly, the maximum discharging power, denoted by ௦ܲ,௧
ாௌௌ,ௗ௦., of the ESS is limited by 

(6.22). Additionally, the ESS cannot charge and discharge simultaneously, as expressed in 
(6.23). Eq (6.24) ensures that the ESS's initial and final energy levels are the same. The ESS’s 
initial energy level depends on its maximum capacity, as shown in (6.25). 

ܱ퐶푠,푡퐷푅 = 푂퐶푠,푡
퐸퐷푅,푇푂푈 +푂퐶푠,푡

퐸퐷푅,퐸푀 +푂퐶푠,푡퐻퐷푅 +푂퐶푠,푡퐶퐷푅 (6.26) 

푃 − = 푃 + 푖푑푟  (6.27) 

푖푑푟 = 푇푂푈 푃  (6.28) 

푖푑푟
=

= 0 (6.29) 
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푇푂푈 ≤ 푇푂푈 ≤ 푇푂푈  (6.30) 

푃 = 휑 푃 + + 휑 푃 + + 휑 푃 +  (6.31) 

0 ≤ 푃 ≤ 퐿푃퐹  퐼 푃  (6.32) 

0 ≤ 푃 ≤ 퐿푃퐹  퐼 푃  (6.33) 

푏 + 푏 ≤ 1 (6.34) 

푃 = 푃 − + 푃 − 푃  (6.35) 

The cost of implementing DR programs is determined by (6.26), and the constraints for the 
TOU DR program are outlined in (6.27)–(6.30) [207]. The TOU DR program is implemented to 
shift the peak load to the off-peak period. Equation (6.27) defines ௦ܲ,௧

்ைିோ as the quantity of 
electricity demand following the implementation of the DR program, which is computed by 
adding the initial load and the load shifted together as a result of the time-of-use DR program. 
The shifted load value is determined by (6.28) as a percentage of the initial load's shiftable 
amount, ܱܶ ௦ܷ,௧, multiplied by ௦ܲ,௧

ௗ. It is worth mentioning that the deterministic problem 
assumes that the cumulative shifted electrical load amount throughout the entire time horizon 
is zero, as indicated in (6.29). Additionally, (6.30) limits the amount of the initial load that can 
be shifted through the TOU program by setting the minimum and maximum amounts of shiftable 
load during the analysis period. 

The constraints of the emergency DR program are given in (6.31)–(6.34) [208]. The 
mechanism for implementing the emergency DR program for electrical loads is given in (6.31). 
According to this equation, in case of a supply-demand imbalance for a given hour, the curtailed 
amount of electrical load must be recovered in the following three consecutive periods, where 
߮ଵ,߮ଶ, and ߮ ଷ are the recovery percentages. Additionally, (6.32) and (6.33) show the limitations 
of the upward and downward electrical demand, respectively. The binary variables in (6.34) 
indicate that the upward or downward electric demand cannot happen simultaneously. Finally, 
the total amount of the DR, including the TOU and emergency programs, is given by (6.35). 

퐻푠,푡
퐷푅,푢푝

푡

= 퐻푠,푡
퐷푅,푑표

푡

 (6.36) 

0 ≤ 퐻 ≤ 퐿푃퐹  퐼 퐻  (6.37) 

0 ≤ 퐻 ≤ 퐿푃퐹  퐼 퐻  (6.38) 

퐼 + 퐼 ≤ 1 (6.39) 

퐶 = 퐶  
(6.40) 

0 ≤ 퐶 ≤ 퐿푃퐹  퐼 퐶  (6.41) 

0 ≤ 퐶 ≤ 퐿푃퐹  퐼 퐶  (6.42) 
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퐼 + 퐼 ≤ 1 (6.43) 

The implemented shifting DR programs for heating and cooling loads are presented in 
(6.36)–(6.43) [209]. To keep the heating load without any changes in the total amount of 
energy, (6.36) is considered. The upward and downward values are limited by (6.37) and (6.38).  

Moreover, the EH operator can increase or decrease the heating loads in each period, as 
given in (6.39). The shifting DR programs for cooling loads are similar to the heating DR 
program, as stated in (6.40)–(6.43). 

0 ≤ 푃 ≤ 푃 푏  (6.44) 

0 ≤ 푃 ≤ 푃 푏  (6.45) 

푏 + 푏 ≤ 1 (6.46) 

푃 = 푃 + 푃 + 푃 − 푃  (6.47) 

퐻 = 퐻 +퐻 +퐻  (6.48) 

퐶 = 퐶 + 퐶  (6.49) 

Equations (6.44)–(6.46) govern the energy exchange between the energy hub and the power 
grid. The variable ܲ ௦,௧

ீଶு represents the power purchased by the hub from the upstream network, 
while ܲ ௦,௧

ுଶீ represents the energy sold by the energy hub to the grid. Notably, the model ensures 
that simultaneous import and export of energy is not possible for the energy hub, expressed in 
(6.46).  

Constraints (6.47)–(6.49) represent the energy balance of the system, considering the DR 
programs. The grid, μCHP, and ESS units can provide the electrical load after the DR program 
implementation. Similarly, the EHP, μCHP, or the BO can supply the heating load. Moreover, 
the EHP and AC units must supply the cooling demand after the DR program. 

6.2.1.2- IGDT-based Opportunity Stage 

One of the significant challenges in energy hub operation is the uncertainty associated with the 
expected loads, which may differ from the actual loads. This discrepancy can significantly 
increase the operating costs of the energy hub. Utilizing the IGDT approach can address this 
challenge as it effectively manages the uncertainty associated with the expected loads [9].  

Thus, below is the mathematical formulation for this stage.  

min 훽 (6.50) 

s.t.  

푂퐶∗ ≤ 푂퐶 = (1− 휎)푂퐶  (6.51) 

푂퐶∗ = 푚푖푛

⎩
⎨

⎧

⎝
⎜⎜
⎜⎛
푂퐶 +푂퐶 +
푂퐶 +푂퐶 +
휆 퐺 + 휆 푃 +푂퐶 ⎠

⎟⎟
⎟⎞

==
⎭
⎬

⎫
 (6.52) 
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(1− 훽)푃̃ ≤ 푃 ≤ (1 + 훽)푃̃  (6.53) 

(1− 훽)퐻̃ ≤ 퐻 ≤ (1 + 훽)퐻̃  (6.54) 

(1− 훽)퐶 ̃ ≤ 퐶 ≤ (1 + 훽)퐶 ̃  (6.55) 

(6.2)− (6.49) (6.56) 

The energy hub’s target cost under favorable deviations of the electrical, heating, and 
cooling loads is denoted by ܱܥఠ in the equation. ܱܥఠ is set to be less than the minimum cost 
obtained from the deterministic stage, which is represented by ܱܥ. As per the formulation of 
the proposed model outlined in (6.53)-(6.56), the minimum level of uncertainty (ߚ) would be 
achieved when the values for ௦ܲ,௧

ௗ, ܪ௦,௧
ௗ, and ܥ௦,௧

ௗ are equal to (1 − (ߚ ෨ܲ௦,௧
ௗ, (1 − ෩௦,௧ܪ(ߚ

ௗ, 
and (1 − ݐ,ݏ෨ܥ(ߚ

݈݀ܽ
, respectively. Therefore, the constraints (53)–(55) could be replaced with a new 

form as shown below: 

min 훽 (6.57) 

s.t. 
 

푂퐶∗ =

⎝
⎜⎜
⎜⎛
푂퐶 +푂퐶 +
푂퐶 +푂퐶 +
휆 퐺 + 휆 푃 +푂퐶 ⎠

⎟⎟
⎟⎞

==
 (6.58) 

푂퐶∗ ≤ 푂퐶 = (1− 휎)푂퐶  (6.59) 

푃 = (1− 훽)푃̃  (6.60) 

퐻 = (1− 훽)퐻̃  (6.61) 

퐶 = (1− 훽)퐶 ̃  (6.62) 

(6.2)− (6.49) (6.63) 

It is important to mention that the value of ߚ represents the minimum amount of favorable 
deviation in uncertainty needed to achieve the target cost. 

6.3- Case Study and Results 

Details of the data used for each entity of the energy hub are provided in this part. The EHP 
unit’s capacity ranges from a minimum of 10 kW to a maximum of 200 kW. This unit can supply 
both heating and cooling loads. During the winter season, the energy is priced in such a way 
that the price of natural gas is higher than electricity purchased from the grid. This allows the 
EHP unit to meet a considerable portion of the heating load by converting electricity into heat 
in winter. 
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The maximum capacity of the BO unit is 400 kW, whereas the AC unit can produce up to 75 
kW. The absorption chiller can cover some percentages of the cooling load during hot weather. 
In other weather conditions, the EHP unit, which uses natural gas, will supply the cooling load. 

Additionally, the AC unit relies solely on natural gas as its input. The test system includes 
a μCHP with a nominal capacity of 375 kW, which can generate a maximum of 125 kW of heat 
and 150 kW of electricity. The absorption chiller is unable to utilize the heat generated from 
the μCHP.  

The performance parameters of μCHP could be defined accordingly: 2.869-e4 (uஜେୌ), 
2.0829 (vஜେୌ), 1.658-e4 (wஜେୌ), 0.1827 (xஜେୌ), 0.001248 (yஜେୌ), 13.747 (zஜେୌ). The ESS can 
be charged up to 300 kWh, with maximum charging and discharging rates set at 10 kW and 20 
kW, respectively. Charge and discharge of ESS cannot occur simultaneously. The ESS’s lower 
energy limit is set at 50 kWh, and the ESS’s initial and final states of charge are set to be 200 
kWh. 

Figure 6.2 displays the electrical demand profiles. Four different load profiles represent 
the four seasons, i.e., S1, S2, S3, and S4 for spring, summer, fall, and winter. Each season’s 
behavior is examined by taking one day from that season and conducting hourly simulations. 
The high peak period for electricity demand is 9:00 to 22:00, as shown in Figure 6.2.  

Figs. 6.3 and 6.4 present the expected sample heating and cooling load profiles for one 
day, respectively. The scheduling is simulated for one year. The deterministic (non-
probabilistic) results indicate that to fulfill the yearly demand, the energy hub incurs a 
minimum cost of €56,100. 

The IGDT opportunity function accounts for electric, heating, and cooling load 
uncertainties. To address the problem, various operational cost deviation factors are 
considered.  

Figure 6.5 shows the minimum favorable deviation amounts of load uncertainties for the 
energy hub to achieve the desired cost. The increase in the cost deviation factor results in a 
corresponding increase in the value of the opportunity function. An example is given to 
highlight this relationship. Suppose ߪ is equal to 0.20. In that case, the target cost is ܱܥఠ =
(1 − ܥܱ(0.20 = €44,880. This means that to reach this cost, the observed electric, heating, 
and cooling loads must be reduced by at least 17.2% relative to the expected values. 
 

 
 
Figure 6.2 - The sample electricity load profiles for each season. 
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Figure 6.3 - The sample heating load profiles for each season. 

 

 
Figure 6.4 - The sample cooling load profiles for each season. 
 

 

Figure 6.5 - The value of the opportunity function for various cost deviation factors. 
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In addition, the impact of the implementation of DR programs for electric loads is shown 
in Figure 6.6. To illustrate the effect of the DR program on the electric demand, each season 
is depicted in a single subplot. After the implementation of DR programs, the load profiles 
during the peak period have decreased and have been moved to the off-peak period, according 
to the results. 

For example, the demand profile for S1 has experienced an increase during off-peak hours 
due to the price difference between low and high peak hours. Specifically, the daily load 
demand at 15:00 during spring is 400 kW, which decreases to 350 kW after implementing the 
DR program.  

Similarly, the daily load profile in summer has changed from the peak period to the off-
peak period, where there is a significant change in the morning and the evening, while it is 
reduced during midday. Electric consumption during autumn is increased from 7:00 to 14:00, 
thus reducing afternoon demands. 

Finally, there is a significant peak shaving during winter at 18:00. To reduce the electricity 
usage at 18:00, the demand for the previous hours is increased to balance the reduced and 
recovered energy.  

It should be noted that the emergency DR program is not used according to the current 
demand. The main reason for this issue is the high cost of exercising the emergency DR 
program, which the operator prefers not to exercise unless necessary because of the imbalance 
between supply and demand. 

As mentioned in the problem formulation section, the shifting DR program is applied for 
both heating and cooling loads, where their associated results are shown in Figure 6.7 and 
Figure 6.8, respectively. 

 

 
Figure 6.6 - The electricity profile after employment of DR programs for each season: (a) spring, (b) 

summer, (c) autumn, and (d) winter. 
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Figure 6.7 - The heating loads profile after employment of DR programs for each season: (a) spring, 

(b) summer, (c) autumn, and (d) winter. 
 
 

 
Figure 6.8 - The cooling loads profile after employment of DR programs for each season: (a) spring, 

(b) summer, (c) autumn, and (d) winter. 
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The impact of applying the shifting DR program for the heating loads is considerable on the 
total cost. The heating loads in the spring are reduced during the day, while they increase 
during the night and evening.  

Therefore, the heating requirement for keeping the room temperature pleasant during the 
night is considered. Similarly, the heating loads in summer are reduced during the peak period 
and compensated during the off-peak period. 

It should be noted that the shifting DR program for the heating loads in winter is more 
important than the other seasons as the heating demand is high during these periods. Thus, it 
can be seen that there are smooth changes in energy usage during the day based on the energy 
prices and the load participation ratio. It attempts to increase the heating demand during the 
day to decrease it at night.  

As mentioned in the result discussion of Figure 6.6, the TOU DR program was only exercised 
in the studied case due to the high cost of applying an emergency DR program for the energy 
hub operator.  

To analyze the performance of the emergency DR program, a sensitivity analysis is applied 
to the electric loads. Therefore, the electric load profiles are being studied using a range of 
{0.8, 1.0, 1.2, 1.5, 1.8} times of the electricity demand given in Figure 6.2. When the load profile 
coefficient is {0.8, 1.0, 1.2}, the system can balance supply and demand. Hence, the emergency 
DR program is not being activated by the operator.  

However, the multi-energy system cannot meet the power balance when the load profile 
increases to 1.5 or 1.8 times the regular pattern. Accordingly, the emergency DR program is 
activated to resolve this issue. 

Figure 6.9 shows the performance of the system under the emergency DR program when 

௦ܲ,௧
ௗ,௪ = 1.5 ௦ܲ,௧

ௗ. It can be observed that this program is activated only in the spring and 
summer seasons. In other words, the dependency of the model on electric power in spring and 
summer is higher than the dependency of the model on thermal power.  

However, when ௦ܲ,௧
ௗ,௪ = 1.8 ௦ܲ,௧

ௗ, the energy hub operator is forced to enable the 
emergency DR program, which is costly for the system but necessary to meet the balance 
between the generation and consumption sides (as seen in Fig 6.10).  

The utilization of a risk management approach leads to an expense for the entity making 
the decision, i.e., opportunity cost, an essential factor to consider.  

 

 
Figure 6.9 - The behavior of the emergency DR program when we consider 푃 = 1.5 푃 . 



 

98 

 

 

Figure 6.10 - The behavior of the emergency DR program when we consider ௦ܲ,௧
ௗ,௪ = 1.8 ௦ܲ,௧

ௗ. 

 

Figure 6.11 - Multi-energy hub opportunity cost considering several function values. 

 
As shown in Figure 6.11, the opportunity cost of the system increases substantially with 

greater values of the IGDT opportunity function. It is possible that this cost could exceed the 
profit obtained by reducing operational costs through the use of the IGDT method. Therefore, 
decision-makers must weigh the potential benefits of the method against its associated costs 
before making a final decision. 

 

 

 

×1000 
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6.4- Conclusions 

This chapter developed a model for an energy hub consisting of various components/entities. 
The energy hub met the electric, heating, and cooling loads by using electricity and natural 
gas purchased from the external grid. Multiple integrated DR programs were also utilized to 
move a part of shiftable loads or change a portion of electric, heating, and cooling demand 
from the peak to the off-peak periods. This was done to reduce the cost of the energy hub 
operator. An ESS was employed in this energy hub to complement the different technologies. 
An approach based on the opportunity information-gap decision theory was implemented as 
the risk measure to ensure that the decision-maker achieved its target cost by electric, heating, 
and cooling load deviations from expected values. Three load sectors were considered as being 
uncertain parameters. Results demonstrated that using the proposed method imposed certain 
costs for the decision-maker. 

 The results revealed that the costs of the application of the risk measure sometimes were 
greater than the benefits gained by the decision-maker. Thus, the cost imposed through the 
application of the IGDT approach was a crucial factor to consider when the outcome of this 
method relied on it. Another significant result relates to employing integrated DR programs. 
The time-of-use DR program moved a portion of the shiftable loads from the periods with high 
demand to other periods, which could reduce the operational costs of the energy hub. 
Additionally, due to the high cost associated with the emergency DR program, the operator was 
willing to avoid activating this program unless there was an imbalance between supply and 
demand. 
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Chapter 7  

Hybrid IGDT-Stochastic Self-Scheduling of a 
Distributed Energy Resources Aggregator in a 
Multi-Energy System  

The optimal management of DERs and renewable-based generation in MESs is crucial. To 
optimally manage these numerous and diverse entities, an aggregator is required. Hence, this 
chapter proposes the self-scheduling of a DER aggregator through a hybrid IGDT-stochastic 
approach in an MES. In this approach, there are several renewable energy resources. The 
approach also considers an EV parking lot and thermal energy storage systems (TESs). 
Moreover, two DR programs from both price-based and incentive-based categories are 
employed in the microgrid to provide flexibility for the participants. The uncertainty in the 
generation is addressed through stochastic programming. At the same time, the uncertainty 
posed by the energy market prices is managed through the application of the IGDT method. A 
major goal of this model is to choose the risk measure based on the nature and characteristics 
of the uncertain parameters in the MES. 

 

7.1- Introduction 

7.1.1- Motivation and Background 

The volume of energy generated from distributed energy resources (DERs) is significantly 
increasing in energy systems. Therefore, it is essential to manage the operation of these devices 
in the energy systems and a DER aggregator agent can provide this service. This can be done 
by aggregating the various offers from DERs, including the amount of DR and the amount of 
power through distributed generations, and trading it into the wholesale electricity market to 
maximize profit [49]. Moreover, it should be considered that the flexibility of a DER aggregator 
can be enhanced by operating within a multi-energy system (MES) [210]. Before the 
modernizing of the energy system, a microgrid was mainly focused on the electric power sector. 
However, after the introduction of new models that merge different independent single energy 
systems into an MES, the microgrid can also be utilized for the thermal energy sector [211]. 
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Additionally, as a direct consequence of energy systems restructuring, on the one hand, 
and unprecedented renewable energy utilization on the other, the uncertainties of the energy 
systems are becoming more challenging. This fact intensifies the difficulty of decision-making 
in the energy system; therefore, the uncertainty analysis of the system performance is 
necessary. Moreover, one of the characteristic features of energy system operation and 
planning is that the decision-making problem is confronted with serious levels of uncertain 
information in the presence of renewable energy resources and wholesale electricity market 
prices. Therefore, the management of uncertainty through various risk measures such as 
stochastic programming, information-gap decision theory (IGDT), and robust optimization in 
the energy system models is crucial [212]. Meanwhile, each uncertain parameter can have its 
exclusive characteristics which means that employing a single risk-management method for all 
of these sources of uncertainty might result in misleading outcomes for a decision-maker. 
Therefore, to cope with this issue, a hybrid risk management method that manages several 
uncertain parameters in the MESs based on their characteristics can be proposed. 

The DR programs are one of the main solutions to help the energy system cope with several 
challenges and issues it has [18]. Meanwhile, the end-user consumers are playing the main role 
in this area. Hence, it is sufficient to design and offer DR programs in a way to increases the 
participation rate of the consumers in the DR programs. There are two main classifications for 
DR programs, price-based DR (PBDR) and incentive-based DR (IBDR) programs [213,214]. Thus, 
consumers will find it more convenient to adjust their energy usage pattern based on the 
various available DR programs rather than a single DR program. 

7.1.2- Literature Review  

Several studies addressing the management of MESs have been proposed in the literature. For 
example, the planning and operation of MESs are investigated in [73] through a two-stage 
method that determines the optimal type and capacity of electrical and thermal equipment. 
In this study, electrical, heating, and cooling loads participate in DR programs through an 
energy pricing strategy. The DER uncertainties in the optimization model are not considered in 
this work. In [215], a cooperative framework is proposed to coordinate the operation of a 
network of MESs that contain electrical and heating loads participating in DR through price-
based and incentive-based programs. The behavior of EVs is not simulated in the microgrid and 
there is no EV parking lot in the energy hub. The authors of [216] developed a modular energy 
management system for MESs that is generally applicable to various possible electrical, heating, 
and cooling components. 

The management of MESs is subject to several sources of uncertainties such as demand, 
renewable generation, and electricity market prices. The uncertainty of wind power generation 
is taken into account in [217] through a two-stage stochastic formulation that seeks to minimize 
the operational cost of an MES. In [218], interval linear programming theory is used to model 
uncertainties of renewable generation (PV and wind) and demand in the optimal planning of 
MESs. Wang et al. [219] depict the uncertain behavior of electricity market prices as stochastic 
scenarios and use robust optimization to describe the uncertainties of renewable generation in 
a stochastic-robust optimization model for MESs operation. Yet, in [217–219], the 
implementation of DR programs is not studied. The study presented in [220] investigates the 
use of fuzzy logic to take into account the uncertainties of renewable generation and demand 
when optimizing the operation of MESs. 
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 In [221], robust optimization for renewable generation uncertainty and a price-based DR 
program are considered in the day-ahead scheduling of MESs. In another work [222], robust 
optimization is used for renewable generation and demand uncertainties in an MES that 
implement DR based on an incentive program. The authors of [223] integrate an incentive-
based DR program into a hybrid robust stochastic approach for scheduling MESs. Demand 
uncertainty is modeled through stochastic scenarios, and wind power uncertainty is taken into 
account using robust optimization. 

The connection of electric vehicles (EVs) increases the complexity of the management of 
MESs due to the consumption characteristics of the load type. Ata et al. [224] present an 
optimization framework that schedules the MESs operation considering the impact of EVs, 
uncertainties of renewable generation through stochastic optimization, and a time-of-use 
pricing scheme. However, the uncertainty of wholesale market prices, which has a significant 
impact on the behavior of the decision-maker, is not analyzed. Uncertainties of EVs are 
considered in [225] by using a stochastic model predictive control framework that optimizes 
the MES schedule considering the TOU pricing for electricity. Stochastic optimization is also 
used in [21] to model uncertainties of renewable generation and EVs in the MES scheduling 
problem, considering price-based and incentive-based DR programs. All uncertain parameters 
in [21,225] are modeled through a risk-management method disregarding the characteristics 
and nature of the uncertainties.  

A salient characteristic of IGDT is its property of handling the uncertainty problem without 
depending on the descriptions of the function or fluctuations in the range of uncertain 
variables. IGDT has been used to model uncertainties in issues related to power systems, such 
as the optimal bidding of DER aggregators and optimal bidding of smart microgrids [226], [227]. 

The authors of [228] present a comprehensive approach that models the optimal scheduling 
of MESs considering uncertainties due to wind energy, demand, EV consumption patterns, and 
electricity market prices through robust optimization. Further, responsive loads participate in 
an incentive-based DR program. However, the impact of the favorable variations of the 
uncertain parameters for a risk-seeking decision-maker is not demonstrated. The authors in 
[229] proposed a stochastic-IGDT approach for the management of integrated energy systems. 
This energy hub consists of a PV unit, a CHP unit, a heat pump (HP) unit, an absorption chiller 
(AC) unit, a thermal energy storage (TES) system, electric energy storage (EES) system, and an 
energy demand for heat, cooling, and electricity. The uncertainty of the wholesale market 
prices is not included in this model. It should be noted that addressing the risk posed by the 
electricity market prices is crucial for the decision-maker to better inform the self-scheduling 
strategy. Moreover, the effects of demand-side management methods on the operation of the 
energy hub and its correlated benefits are neglected.  

Wang et. al. considered the IGDT method to handle the uncertainty in their proposed MES 
model [230]. To this end, the uncertainties on renewable energy and load are addressed 
through a single IGDT method. However, the characteristics of the uncertain parameters are 
ignored in this paper. Moreover, consideration of a single shifting DR program might reduce the 
tendency of the end-user consumers to participate in the demand-side management process. 

The authors in [231] utilized a hybrid IGDT-robust approach for the self-scheduling of multi-
carrier energy systems. The uncertainty posed by wind power generation is handled through 
the implementation of an IGDT method and the uncertainty of the electricity market price is 
modeled by the robust optimization approach. The applied IGDT-robust method aims to 
maximize the horizon of the uncertainty of wind power generation in the worst-case scenarios. 



 

104 

 

 

Therefore, the IGDT applied to the wind power generation and robust method is managing the 
day-ahead market prices. The differences between our work relative to this work are 
mentioned as follows: The generation from various power sources including wind turbines and 
PV panels and EV charging/discharging patterns is managed through stochastic programming 
through the generation of various scenarios. The uncertainty of wind power generation in [231] 
is handled through robust optimization where only it is managing the worst-case scenarios. Two 
DR programs from each of the DRP categories are considered in our work to encourage the 
consumers and end-users to participate more actively in the proposed DR programs. In other 
words, this provides more flexibility for the consumers to choose the DRP which is more suitable 
for them. The behavior of both risk-averse and risk-seeking decision-makers is analyzed in our 
model. While the authors in [231] only consider the risk-averse behavior of the decision-maker. 
The study of the risk-seeking behavior of the DER aggregator is beneficial as there is the 
possibility of large spikes in the observed electricity market prices which is favorable for the 
decision-maker and the risk-seeking decision-maker would be interested in having this 
information beforehand. Thus, risk-seeking decision-makers prefer to pursue the additional 
benefits of uncertainty can pursue an improved goal, and minimize the negative disturbance 
of uncertain parameters. Furthermore, the authors in [232] have implemented a hybrid 
decentralized stochastic-robust model for the optimal coordination of an EV aggregator and 
energy hub entities. Stochastic programming is used to model the uncertainties of the EV 
patterns, while the uncertainties of the locational marginal prices are modeled via robust 
optimization to capture the worst-case realization. In this work, the authors considered the EV 
aggregator and the energy-hub operator as two independent entities while in our model, the 
DER aggregator is responsible for managing the EVs as well as controlling the generation from 
the renewable energy resources, designing the DR programs and offering them to the end-
users. While the DR programs are not taken into account in [232]. Besides that, merging the 
role of the EV aggregator, DR aggregator, and the energy-hub operator could lead to making 
the transaction procedure simpler. Having three different independent entities which in some 
situations have conflicts of interest might make the optimization procedure more complex. 

7.1.3- Contributions and Chapter Organizations  

As shown in the literature review, the consideration of a suitable risk management method 
based on the nature and characteristics of the uncertain parameters is found to be an important 
issue for the DER aggregators in the management and scheduling of MESs. For instance, 
according to the features of the generation of renewables and DERs, applying the stochastic 
approach can more accurately address their corresponding uncertainty since the generation of 
these entities controls the DER aggregator. An aggregator has enough information about the 
amount of generation from their devices in the MES. However, the DER aggregator does not 
control the wholesale energy market prices as the aggregator is a price-taker, not a price-
maker.  

Therefore, with uncertain parameters, the application of the IGDT method is deemed 
practical. Moreover, the consideration of various DR programs from price-based and incentive-
based categories provides flexibility for consumers and encourages them to participate more 
actively in the DR programs, which is included in this model. The novel contributions are 
presented as follows: 



 

105 

 

 

 Proposing a hybrid IGDT-stochastic approach for the self-scheduling of a DER aggregator 
in an MES. Therefore, through the application of this hybrid method, solutions for two 
different types of DER aggregators (risk-averse and risk-seeker decision-makers) are 
provided which makes it easier for the decision-makers to choose the model based on 
their preferences.  

 Considering multiple uncertainties posed from both sides of the entity, which are the 
market side of the aggregator and the consumption side of it, simultaneously. Besides 
that, the most suitable risk measures for the decision-maker are chosen based on the 
characteristics of the uncertain parameters, which leads to a more precise decision. 

The organization of the chapter is presented as follows. The proposed hybrid IGDT-
stochastic model is explained in detail in Section 7.2. In Section 7.3, the numerical results are 
discussed to demonstrate the model's effectiveness. Finally, the conclusion includes the most 
critical findings, as presented in Section 7.4. 

7.2. The Proposed Optimization Model  

The main objective of the proposed model in the first step, i.e., the sole stochastic 
programming step, is the maximization of the profit of the DER aggregator through handling 
the risks associated with the generation of RES and EV charging/discharging patterns. In the 
second step, based on the risk strategy, the maximum or minimum deviation of the uncertain 
parameter from the predetermined values is obtained, while the critical or target profits of 
the risk-averse or risk-seeker DER aggregator are met and guaranteed. Hence, the proposed 
MES framework for the DER aggregator includes several sources of DERs such as CHP, boiler 
units, RESs such as PV and wind units, and thermal energy storage (TES). An EV parking lot is 
also considered in our model. The inclusion of EVs in the MES could significantly reduce the 
amount of excess renewable energy produced and also provide more flexibility for the DER 
aggregator to reduce its management and operational costs, making our model more 
comprehensive. The schematic of the proposed model is depicted in Figure 7.1. As shown in 
this figure, this model has two inputs (gas and electricity) and two outputs (electrical and 
thermal loads). As illustrated in Figure 7.1, the electricity from the MES is being supplied in 
two different directions, electrical loads of buildings and the EVs. It should be noted that the 
DR programs are only implemented on the electrical load of the buildings. The MES under 
consideration studies several DERs, including CHP units, ABs, and TES systems. Additionally, 
wind and PV units are included as renewable energy producers. EVs are also included. 

As mentioned in the previous section, the two main classifications are price-based DR 
(PBDR) and incentive-based DR (IBDR) programs. In this model, DR programs from both 
categories are considered to provide more flexibility to consumers and encourage them to 
actively participate in the DR programs. In this case, the flexibility of consumers willing to 
participate in the DR programs will be increased. A TOU program is from the PBDR group and 
the emergency DR programs are from the IBDR group. 
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Figure 7.1 - The schematic of the proposed model. 

 
To describe the model characterization more in detail, a flowchart of the proposed 

approach is depicted in Figure 7.2. Several sources of uncertainty are managed through a hybrid 
approach. The behavior of EV owners and the amount of power generated through renewable 
units, including PV and wind turbines, are modeled with stochastic programming.  

The uncertainty relating to the wholesale market prices is managed using IGDT. This 
combination of stochastic and IGDT risk management methods leads to a hybrid IGDT-Stochastic 
model. In the MES, the DER aggregator has several costs and revenues and this model aims to 
optimize the self-scheduling model for the aggregator. The proposed model finds the most 
suitable solution for risk-averse decision-makers. The hybrid IGDT-Stochastic function is 
modeled in such a way as to protect the aggregator against unfavorable deviations of the 
uncertain parameter [15], as shown in Figure 7.2.  

Moreover, it can be seen that two sub-stages are considered which form the main hybrid 
stage. In the first stage, it is assumed that the stochastic risk management method is applied 
to the associated uncertain parameters such as PV and wind units’ generation and the charging 
pattern of the EVs. Therefore, the uncertainty posed by the electricity market prices is 
disregarded. In other words, in the first step, it is assumed that there is no uncertainty in the 
electricity market prices and that the aggregator has perfect foresight about the market prices. 
Thus, the objective function in this step will become a typical stochastic approach to maximize 
the profit of the DER aggregator in the MES. Then, in the second sub-section, the IGDT 
programming is taken into account. The uncertainty of the market prices is measured and 
addressed in this step. Therefore, the output from the stochastic risk-management method is 
being used as the input for the IGDT model. These two steps together form the main stage, 
i.e., the hybrid stochastic-IGDT approach.  

The mathematical model is formulated from two different perspectives to analyze the risk-
averse and risk-seeking behaviors of the DER aggregator. Therefore, the optimization strategy 
is determined at the beginning of the second sub-section. It should be stated that the 
associated constraints of each step are listed in the flowchart. These constraints will be 
described in detail in the mathematical formulation subsection. 
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Figure 7.2 – The Flowchart of the proposed hybrid model. 
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7.2.1- Sole stochastic problem formulation  

In this step, the stochastic approach is applied to the MES. Hence, to address the uncertainty 
of the PV, wind units, and EVs, stochastic modeling is well-suited and has been used extensively 
[21]. Historical data are used to produce the probability distribution functions for each hour to 
generate the scenarios. The scenario tree method is utilized to generate the scenarios, and the 
Kantorovich distance method is utilized to reduce the number of scenarios to ease the 
computation burden. This is done by measuring the distance between several generated 
scenarios. Then, the scenarios with the minimum Kantorovich distance are found. These 
scenarios will be omitted and their correlated probability will be added to the reference 
scenario. Finally, this procedure is repeated until the last batch of scenarios is found [233]. 

The full description of the parameters, variables, and terms used in the problem 
formulation is presented in Table 7.1. 

In this step, the objective is to maximize the profit of the DER aggregator considering the 
uncertainty posed by the PV, wind units, and EVs. It should be noted that the aggregator model 
contains several terms, which are the primary terms indicating the profit sources and other 
terms showing the costs of the entity. The energy purchased to satisfy the loads is the main 
source of income, as well as the DR, sold to the customers in peak demand. Finally, the energy 
sold to the EV owners is the last income term for the aggregator. On the other hand, the main 
sources that impose costs on the aggregator are the gas and electricity bought from the grid; 
the DR purchased from the participants in DR programs, the battery degradation cost, and the 
electricity purchased from the EVs.  

 

Table 7.1 — Indices, parameters and variables used in this chapter (Part 1). 

Indexes  

s Scenarios 

n EVs in the microgrid 

ܾ, ܾᇱ Buses in the network 

Parameters  

 Profit deviation value ߪ

 ௦ Probability of scenariosߩ

,௧,௦ܥܱܵ
௫, ,௧,௦ܥܱܵ

 Max/min SOC of EV at time t scenario s 

⬚ܲ
ு௫, ⬚ܲ

ு Max/min generation of CHP 

,ுߟ  ௧ு Electric and thermal efficiency of CHPߟ

௧ܲ,௦
ௐ,௫, ௧ܲ,௦

,௫ Maximum generation of wind and PV units 

⬚ܪ
 Minimum heat of boiler 

 ௧ Thermal efficiency of boilerߟ

ܸ௫
⬚ , ܸ

⬚ , ⬚ܸ
ே Max/min and nominal voltage 

ܴᇲ ,ܺᇲ Resistance and reactance of the lines 

 ௧ᇲ The upper limit in the discretization of quadraticܵ߂

flow 
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Table 7.2 — Indices, parameters and variables used in this chapter (Part 2). 

Variables  

 ௧௨௧௬ Optimum opportunity valueߙ

 ௨௦௧ Optimum robustness valueߙ

PR௦ stochastic Sole stochastic profit of the DER aggregator 

ܴܲ௧ Critical profit of the DER aggregator 

ܴܲ௧  ௧ Target profit of the DER aggregator 

௧ܲ,௦
ௐ, ௧ܲ,௦

 Power generation of wind and PV units 

ܱܥ ⬚ܲ
ு Coefficient of the heat pump 

௧ܲ
,ு Power required by the heat pump 

௧ܲ
ு Generation of CHP 

 ௧ Heat rate of the boilerܪ

 ௧ு Heat rate recovered by the CHPܪ

ܴܷு,ܴܦு Ramp-up/ramp-down generation of CHP 

ܲ,௧,௦
  Demand of customers 

ܲ݁݊௧ Penalty in DR programs 

 ௧ Incentive of DR programsܣ

ܲ,௧,௦
,ோ Demand by implementing DR 

ܲ,௧,௦
 Contracted power in DR programs 

⬚ܲ
௫ Maximum generation of boiler 

ܲ,௧,௦
,ா, ܲ,௧,௦

ௗ௦,ா Charging and discharging power of EVs 

 ௧ Electricity price after DRߣ

  Price of natural gasߣ

 ௧ௗ௦ Discharging tariff of EVsߣ

 ௧ா Price of electricity bought by EVsߣ

 ௧ Price of electricity from the DA marketߣ

௧ܲ,௦
௦௦ Power loss of the system 

V, V2 Voltage, squared voltage  

I, I2 Current flow, Squared current flow 

P+, P- Active power flows in down/upstream sides 

Q+, Q- Reactive power flows in down/upstream sides 

ܾ݅௧ Binary variable of boiler 

ܾ݅௧ு Binary variable of CHP 
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Thus, the objective function for this stage is written as follows: 

푀푎푥 푃푅  stochastic = 휌
=

(퐹1,s + 퐹 − 퐹 − 퐹 ) (7.1) 

where ܴܲ௦ stochastic is the sole stochastic objective function. The first parameter is the 
probability of each scenario. 1ܨ,s is the aggregator's income from selling electricity to the 
consumers in the MES. ܨଶ,௦ is the amount of profit obtained through trading with the EVs. ܨଷ,௦ 
is the cost of purchasing energy from the upstream network. Finally, ܨସ,௦ is the cost of 
implementing the DR programs on the proposed MES. The detailed problem formulation for the 
first source of income, i.e., 1ܨ,s is given as follows: 

퐹1,s =  푃  휆  푑
==

 (7.2) 

Thus, in Eq. (7.2), ܲ,௧,௦
  indicates the load demand on bus b, time t, and scenario s that is 

being sold at the electricity price of ߣ௧ and ݀௧ is the time interval. The second income source 
of the DER aggregator is the amount of revenue obtained from selling energy to the EVs minus 
the cost of buying energy from the EV owners as given in Eq. (3). In this equation, ܲ,௧,௦

,ாand 

ܲ,௧,௦
ௗ௦,ா are the charging and discharging values of the EVs where n is the index for the EV, t is 

the correlated charging time, and s indicates the scenario. The charging and discharging prices 
of EVs are denoted by ߣ௧ and ߣ௧ௗ௦, respectively. Then, in the last term of this constraint, the 
degradation cost of the EV battery is calculated, which usually occurs during the discharge. As 
stated in [234], the life cycle of EV batteries is usually affected by the depth of discharge. 
Therefore, to motivate the EV owners to participate in the scheduling plan of the DER 
aggregator, this cost is reasonable to be covered by the aggregator. Otherwise, the EV owners 
will not be encouraged to follow the charging and discharging patterns managed by the 
aggregator. Hence, the aggregator pays the degradation cost on each discharging period based 
on a specific price denoted by ܥௗ. 

퐹 =
푃 휆 푑

−푃 휆 푑 − 푃 퐶 푑==
 (7.3) 

Eq. (7.4) shows the costs of trading energy with the upstream electricity and gas markets. 

ௌܲ,௧,௦
 ௧݀௧ shows the cost of buying electricity, i.e., ௌܲ,௧,௦ߣ

  from the day-ahead market with a 
 ௧ electricity day-ahead market price. The second and third terms are the costs of purchasingߣ
gas to feed the CHP units. Thus, ௧ܲ

ு/ܪ௧ு is the amount of power/heat generated through 
CHP, ߟு and ߟ௧୦ு are the electric and thermal efficiency of CHP and ܪܮ ܸ showing the lower 
heat value of natural gas. The last term in this constraint is the cost of the auxiliary boiler, 
where ܪ௧ is the heat that is generated by the unit considering the thermal efficiency of the 
boiler and ܪܮ ܸ. The upstream gas price is denoted by ߣ௧

. 

퐹 = 푃 휆 푑 + 푃
휂 퐿퐻푉

+ 퐻
휂 퐿퐻푉

휆 푑
==

 (7.4) 

The cost of implementing the DR programs in the proposed framework is considered in Eq. 
(7.5). Two DR programs are assumed for this model, the TOU and the emergency DR programs. 
These programs are applied to make the proposed framework more comprehensive by providing 
more flexibility to the consumers to choose the DR method based on their preferences and 
encouraging the consumers to participate more actively.  
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The TOU program belongs to the price-based DR category, and the emergency DR is 
categorized as an incentive-based DR program. In the following constraint, ܣ௧ is the value of 
the incentives of the DR program; ܲ,௧,௦

  indicating the initial demand of the end-user consumer 
at bus b, time t, and scenario s. Then, ܲ ,௧,௦

,ோ is the amount of demand after the implementation 
of the DR program from the consumer. The difference between these two values is the amount 
of DR available for the DER aggregator. However, there is a possibility that the consumers do 
not participate in the DR program which is deducted from the cost that is imposed on the 
aggregator which is calculated through the second part of the constraint that is indicated by a 
negative sign, where ܲ,௧,௦

 is showing the contracted power in DR programs. 

퐹 =
퐴 푃 − 푃 −

푃푒푛 푃 − 푃 + 푃==
 (7.5) 

The related constraints regarding the DR program are given as follows: 

퐸 = 휆
푃

. 휕푃
휕휆

 (7.6)

퐸 =
휆
푃

.
푃 − 푃
휆(푡)− 휆

≤ 0 (7.7)

퐸 =
휆
푃

.
푃 − 푃
휆 − 휆

≥ 0 (7.8)

푃 = 푃 1 +
휆 − 휆 +퐴 + 푃푒푛

휆
퐸

∈ T
(7.9)

The price elasticity is introduced in Eq. (7.6), which is the reaction of the load change to 
a change in the price. The self-elasticity and cross-elasticity values are calculated through Eq. 
(7.7) and Eq. (7.8), respectively. The load value after implementing the DR programs is 
calculated by Eq. (7.9). ܲ,௧,௦

  is the initial load without activating the DR programs. The new 
and initial prices are denoted by λt and λ0,t, respectively. ܣ௧ሖ  is the incentive amount of the 
emergency DR program, ܲ݁݊௧ሖ  is the amount of penalty that must be paid if the DR is not 
exercised and ܧ௧,௧ሖ  is the elasticity value based on the time of the DR application. This elasticity 
calculation method is extracted from [235]. 

The related constraints of the renewables, DERs, EV, and the network and line limitations 
for the proposed model are presented as follows: 

푃 ≤ 푃 ≤ 푃  (7.10) 

푃 ≤ 푃 ≤ 푃  (7.11) 
The constraints (7.10) and (7.11) ensure that the renewables in the MES have a minimum 

and maximum capacity of generation for each time interval and that their generation cannot 
exceed these values. Then, the following section presents the constraints for each DER. In 
these constraints, the binary variables are denoted by ܾ ݅௧ாோ  representing whether the devices 
are active or not.  
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7.2.1.1- CHP  

The constraints related to the CHP unit are written as follows: 

푏푖 푃 ≤ 푃 ≤ 푏푖 푃 ,∀푡 (7.12) 

푅퐷 ≤ 푃 − 푃 − ≤ 푅푈 ,∀푡 (7.13)

퐻 = 푃 휂
휂

,∀푡 (7.14)

where ௧ܲ
ு is the total amount of the generated power by the CHP unit in Eq. (7.12). This 

value should be within the allowed range as it cannot be lower or higher than the minimum 
and maximum capacities, respectively. The ramping constraints are presented in Eq. (7.13). 
This constraint shows that the amount of increase or decrease in electric power generation of 
CHP is dependent on various parameters such as its amount of generation in the previous time 
interval ( ௧ܲିଵ

ு), ramp-down value (ܴܦு) and ramp-up value (ܴܷு).  In Eq (7.14), the heat 
generated by the CHP unit is calculated, which is dependent on the generated power through 
the CHP unit, and the thermal and electrical coefficients. 

7.2.1.2- Boiler  

The constraint related to the boiler is presented as follows: 

푏푖 퐻 ≤ 퐻 ≤ 푏푖 푃 ,∀푡 (7.15) 
The heating generation through the boiler is limited through this constraint, where ܪ௧ is 

the heating generation value limited by its min/max capacities where they are denoted by 
 ,/ܲ,௫, respectively. The binary variable (ܾ݅௧) indicates whether the boiler isܪ
being exercised in time interval t or not. 

7.2.1.3- Thermal Energy Storage  

In the proposed MES, TES stores the extra heat that is not required by the consumers. This 
energy will be supplied to the consumers when there is a demand for heat and the heat 
generation in that period is not enough. 

퐻 = 퐻 − 1− 휑⬚ + 퐻 −퐻 ,∀푡 (7.16) 

퐻 ≤ 퐻  (7.17) 

퐻 ≥ 0 (7.18) 

퐻 ≥ 0 (7.19) 

퐻 ≥ 0 (7.20) 

퐻 ≤ 퐻  (7.21) 
The heat stored in time interval t is dependent on its previous value and the amount of 

energy added or removed as stated in Eq. (7.16). In this equation, the losses are denoted by 
்߮ாௌ, which indicates the thermal energy loss for each time interval. The charge and discharge 
rates of the TES are denoted by ܪ௧

,்ாௌ and ܪ௧
௦,்ாௌ, respectively. The remaining constraints 

(7.17) -(7.21) clarify the capacity limitations of the TES. The TES has a maximum capacity 
which is given in (7.17). Moreover, the variables associated with the stored amount of heat, 
charge, and discharge rates of the TES cannot be negative, as stated in (7.18) -(7.20).  
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Finally, the last constraint regarding the TES ensures that the charging rate of the TES must be 
lower or equal to the heat stored at time interval t. 

7.2.1.4- Other Constraints  

In this step, the constraints related to the active, reactive, and heating power balancing 
equations are presented. 

 
푃 + 푃 + 푃 + 푃 + 푃 −

=
푃

=
+ (푃+

∈
− 푃− )

− [(푃+

∈
− 푃− ) + 푅 퐼2 ] = 푃       ∀푡,∀푏 

                                                  

(7.22)

푄 +푄 +푄 +푄 + 푄 −
=

푄
=

+ (푄+

∈
−푄− )

− [(푄+

∈
−푄− ) +푋 퐼2 ] = 푄       ∀푡,∀푏 (7.23)

퐻 +퐻 +퐻 = 퐻 +퐻 ,∀푡 (7.24)

 푉 2 − 2푅 (푃+ − 푃− )− 2푋 (푄+ −푄− )− (푅 +

푋 )퐼2 − 푉 2 = 0  ∀푡,∀푏 

 

 (7.25)

The active power balance is presented in Eq. (7.22) where the input of the power to the 
MES should be equal to its output. Thus, the amount of power traded with the wholesale 
electricity market and generated power from the PV, wind, and CHP units and the 
charging/discharging values of EVs in the parking lot and active power flows in downstream 
directions ( ௧ܲ,,′

ା ) and active power flows in upstream directions ( ௧ܲ,,′
ି ) should be equal to the 

demand from the consumers after the implementation of the DR programs. Similarly, the 
reactive power balance is also considered in constraint (7.23). Then, Eq. (7.24) shows the 
heating power balance. According to the constraint, the heat generated through CHP, boiler, 
and the discharged rate of TES must be equal to the head demand of the consumers and the 
charging rate of the TES. Finally, the voltage balance is calculated through Eq. (7.25). To 
calculate the active and reactive power balance, two auxiliary constraints should be calculated 
as shown by Eq. (7.26) and Eq. (7.27). The nominal voltage is denoted by ܸே and maximum 
current flow from bus b to bus ܾ ′ is denoted by ܫ,′

ெ௫. The linearized power flow calculations for 
the radial network are considered in equations (7.28)–(7.35), where the linearization technique 
is taken from [236]. The authors in [236] validated the accuracy of this linearization technique 
for optimal power flow through an illustrative example. The correlated constraint for 
calculating the power factor is given in Eq. (7.36). 

 

푃+ + 푃− ≤ 푉 퐼        ∀푡,∀푏 (7.26)

푄+ +푄− ≤ 푉 퐼         ∀푡,∀푏 (7.27)

푉 2 퐼2 = (2휏 − 1)훥푆 훥푃  (7.28)
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                           + (2휏 − 1)훥푆 훥푄     ∀푡,∀푏 

푃+ + 푃− = 훥푃 (휏)         ∀푡,∀푏 
(7.29)

푄+ +푄− = 훥푄 (휏)         ∀푡,∀푏 
(7.30)

훥푃 (휏) ≤ 훥푆 ,훥푄 (휏) ≤ 훥푆      ∀푡,∀푏 (7.31)

퐼2 ≤ (퐼 )      ∀푡,∀푏 (7.32)

푉 ≤ 푉2 ≤ 푉    ∀푡,∀푏 (7.33)

푉 2 = (푉 )     ∀푡,∀푏 (7.34)

훥푆 =
푉 퐼

휏
       ∀푡,∀푏 (7.35)

푃 ̄ 푡푎푛( 푐표푠− (− 휃)) ≤ 푄 ̄ ≤ 푃 ̄ 푡푎푛( 푐표푠− ( 휃))       ∀푡,∀푏 (7.36)
In addition, it should be noted that each line in the considered MES has limits regarding its 

thermal energy capacity. Thus, the apparent power in each bus in each scenario is denoted by 
ܵ,௧,௦ should be lower or equal to its maximum value denoted by ܵ,௧

ெ௫ at time interval t, as in 
Eq. (7.37). Similar limitations also exist for the voltage in each bus voltage, as stated in Eq. 
(7.38). In other words, the voltage level of bus b in scenario s and time t ( ܸ,௧,௦) should be 
higher or equal to 0.95 and lower or equal to 1.05. 

푆 ≤ 푆  (7.37) 

0.95 ≤ 푉 ≤ 1.05 (7.38) 
As stated before, in the proposed framework, it is considered that the microgrid has several 

EVs and their corresponding effects on the problem formulation should be taken into account. 
Therefore, the constraints related to the EVs are written as follows: 

0 ≤ 푃 ≤ 푏푖 푃        ∀푛,∀푡,∀푠 (7.39) 

0 ≤ 푃 ≤ 푏푖 푃        ∀푛,∀푡,∀푠 (7.40) 

0 ≤ 푏푖 + 푏푖 ≤ 1      ∀ n, ∀t, ∀푠 (7.41) 

푆푂퐶 = 푆푂퐶 − +
푃 휂 푑
퐸

−
푃 푑
퐸 휂

 + SOCn,t,s
EV, Arv

 (7.42) 

푆푂퐶 ≤ 푆푂퐶 ≤  푆푂퐶     ∀n,∀t,∀푠 (7.43) 

푆푂퐶 = SOCn,t,s
EV, dep    ∀n,∀t,∀푠 (7.44) 

In our proposed model, the charging and discharging power of each EV is denoted by ܲ,௧,௦
,ா 

and ܲ ,௧,௦
௦,ா in the time interval t and scenario s cannot be more than their maximum capacities, 

as stated in (7.39) and (7.40), respectively. Moreover, the binary variables (ܾ݅,௧,௦
,ா and ܾ݅,௧,௦

௦,ா) 
indicate that EVs cannot be charged or discharged simultaneously, which this limitation is 
employed through Eq. (7.41). The state of charge (SOC) for each EV is determined by its SOC 
in the previous time interval (ܱܵܥ,௧ିଵ,௦

ா ) plus the amount of charging or discharging in the 
current time interval considering the charging and discharging coefficients, which are denoted 
by ߟ and ߟ௦, see Eq. (7.42). Moreover, ܧு,ெ௫ is the maximum energy level of the EV battery 
which is required in the calculation of SOC. It should be noted that the SOC cannot exceed its 
maximum and minimum values, as seen in Eq. (7.43). The last equation related to the EV, Eq. 
(7.44), shows that when the EV departs from the charging point, the SOC of the EV should reach 
the value desired by the consumer, denoted by ܱܵܥ,௧,௦

ா,ௗ. 
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7.2.2- Hybrid IGDT-Stochastic Optimization Framework  

In this stage, the uncertainty of the wholesale energy market price is considered by 
implementing the IGDT approach. In other words, the output of the stochastic programming is 
now utilized as a baseline to employ the IGDT approach. Therefore, this requires converting 
the solely stochastic problem formulation into a hybrid IGDT-stochastic problem formulation 
based on the characteristics of the uncertain parameters and considering the most suitable risk 
measure. The robust structure of the IGDT approach is applied to manage the proposed model 
for a risk-averse decision-maker. In contrast, the opportunity structure of the IGDT approach 
is applied to a risk-seeker decision-maker. Risk seekers prefer to pursue the additional benefits 
of uncertainty, have the opportunity to pursue an improved result, and minimize the negative 
disturbance of the uncertain parameters. As we considered the electricity-market prices as the 
uncertain parameter, which is being addressed by IGDT, it should be mentioned that 
unexpected high price spikes occur in electricity markets, and are favorable price variations 
for the DER aggregator. A risk-seeker decision-maker desires to benefit from these favorable 
variations using an opportunity function. 

The problem formulation is presented in two different designs, that is, robust and 
opportunity forms. In the formulation for the risk-averse DER aggregator, the objective is to 
maximize the horizon of the uncertainty (denoted by ߙ௨௦௧) of the energy market prices, 
while the critical profit of the entity is guaranteed, which is denoted by ܴܲ௧. The critical 
profit is defined as the minimum possible amount of profit considering the horizon of 
uncertainty. Thus, the hybrid IGDT-stochastic model for the risk-averse aggregator is 
formulated mathematically through Eq. (7.45) to Eq. (7.49). The defined robust function 
requires fulfillment of a set of constraints that can happen in the worst-case scenarios. In other 
words, the DER aggregator wants to immune its self-scheduling from the scenarios that can 
prevent the aggregator from achieving lower profits than the critical value.  

As stated in (7.46), the robust profit of the DER aggregator should be higher or equal to the 
predetermined critical profit denoted (PR௧). The critical profit is calculated by a 
percentage of the result obtained from the stochastic programming (ܴܲ௦ stochastic). Therefore, 
 is the profit deviation factor. As the profit deviation factor increases, the decision-maker ߪ
would become more conservative against the unfavorable variations of the wholesale 
electricity market prices. Hence, ߪ controls the level of uncertainty which is a value between 
0 and 1. ߪ = 0 means that the DER aggregator is risk-neutral against the electricity market 
prices while the uncertainties managed through stochastic programming are applied. In 
constraint (7.47), the fractional info-gap uncertainty model is presented [151]. The model is 
also still governed by Eq. (7.10) through Eq. (7.44). 

훼⏜ (푃 ,푃푅 ) =푀푎푥 훼  (7.45) 

Subject to:  

PR ≥ PR = (1− 휎)푃푅  stochastic (7.46) 

(1− 훼 )푃푅  stochastic≤PR ≤ (1 + 훼 )ܴܲ  stochastic (7.47) 

Eq. (7.10) – (7.44) (7.48) 
To formulate the problem in a way that the worst-case scenario occurs, the low range of 

the uncertain parameter, which is the day-ahead electricity market prices, should be chosen. 
Thus, if PR௨௦௧ = (1 −  .௨௦௧)ܴܲ௦ stochastic, the lowest amount of the profit will be obtainedߙ
Therefore, in the above problem formulation, Eq. (7.47) is replaced by Eq. (7.49). 
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PR = (1− 훼 )푃푅  stochastic (7.49) 
On the other hand, the objective of the risk-seeker DER aggregator is to determine the 

minimum value for the uncertainty horizon denoted by ߙ௧௨௧௬  of the energy market prices, 
which can lead to the achievement of target profit for the entity, denoted by ܴܲ௧௧. 
Therefore, the full hybrid IGDT-stochastic model for the risk-seeker aggregator is formulated 
mathematically by Eqs. (7.50) – (7.53). 

The objective function is formulated in Eq. (7.50). The risk-seeker decision-maker desires 
to analyze the amount of uncertainty horizon if the uncertain parameter deviates favorably 
using the opportunity form of the IGDT method. It is common to observe high spikes in the 
electricity market prices. The opportunity profit, denoted by PR௧௨௧௬ is profit the DER 
aggregator will gain if the uncertain parameter deviates favorably. This value should be greater 
or equal to the target profit denoted by PR௧  ௧. Target profit is calculated based on the 
percentage of the result obtained from the stochastic programming. Similar to the robust form, 
the degree of risk-seeking is chosen by ߪ as the profit deviation factor. As ߪ increases, the 
decision-maker becomes more risk-seeking relative to the wholesale market prices. The 
constraint (7.52) indicates that the opportunity profit can be within a range that is dependent 
on the horizon of the uncertainty (ߙ௧௨௧௬) and profit of the aggregator gained from the 
stochastic programming. The model is also still governed by Eq. (7.10) through Eq. (7.44). 

훽⏜ (푃 ,푃푅 ) = 푚푖푛  훼  (7.50) 

Subject to:  

PR ≥ PR = (1 + 휎)푃푅  stochastic (7.51) 

(1− 훼 )푃푅  stochastic≤PR

≤ (1 + 훼 )푃푅  stochastic 
(7.52) 

Eq. (7.10) – (7.44) (7.53) 

 
To formulate the model in the opportunity form, the best-case scenarios should ensure that 

the profit of the DER aggregator reaches the target profit. This situation happens only if 
favorable deviations for the uncertain parameter from the baseline values occur. Thus, the 
highest amount of value for opportunity profit will be obtained if PR௧௨௧௬ = (1 +
 ௧௨௧௬)ܴܲ௦ stochastic. Therefore, the constraint (7.52) in the above form of problemߙ
formulation is replaced by Eq. (7.54). 

 

PR = (1 + 훼 )푃푅  stochastic (7.54) 

7.3- Discussion of Results 

7.3.1- Data Preparation and Assumptions 

The proposed hybrid IGDT-stochastic model is formulated as a mixed-integer non-linear 
programming (MINLP) problem. The problem is modeled in GAMS and two different solvers are 
utilized: SBB and DICOPT. The model is simulated using a PC with 6GB RAM and 2.43GHz CPU 
speed and The Network-Enabled Optimization System (NEOS) Server [237].  
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Load data is taken from [21], where the model is employed on the modified IEEE 15-bus system 
which is illustrated in Figure 7.3. The expected wholesale day-ahead market prices are taken 
from [10]. However, MESs were not considered in [10], while this paper considers a multi-
energy framework for the DER aggregator with CHP, boiler units, RESs (namely wind and PV 
units, installed on bus 12 with nominal power of 200 kW), and TES.  

The EV parking lot is allocated to bus 11 in the test system with a capacity of 50 EVs. For 
the implementation of the DR programs, the time horizon is divided into three-time slots, 
namely peak periods (11:00-15:00 and 19:00 - 21:59), mid-peak periods (7:00-10:59 and 15:00-
18:59), and an off-peak period (22:00-6:59). The elasticity matrix for the DR programs is 
presented in Table 7.3. The charge and discharge efficiencies of the EVs are 95% and 90%, 
respectively. The nominal capacity of the EV battery is equal to 50 kWh with a 10kW/h SOC. It 
is assumed that the EV batteries can be charged to a maximum of 85% of the nominal value. 

7.3.2- The sole stochastic optimization stage 

In the first stage, it is assumed that there is no uncertainty in the electricity market prices, 
which are the same as the expected values. Hence, the only uncertainty on the demand side is 
the generation of the DERs and this is modeled through stochastic programming. Hence, several 
scenarios are being generated based on historical data. In this case, the value of the objective 
function, which is the profit of the DER aggregator, is equal to €112,900. 

 

Figure 7.3 - The structure of the studied modified IEEE 15-bus test system. 

 

Table 7.3 — Matrix of elasticity 

 Peak Mid-peak Off-peak 

Peak -0.3 0.15 0.1 

Mid-peak 0.15 -0.3 0.01 

Off-peak 0.1 0.01 -0.3 
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In the MES, there is a set of CHP units used to produce a percentage of power supplied to 
the consumers. Based on the details of the problem formulation, Figure 7.4 illustrates the 
cumulative value of the power generated from each CHP unit. Due to its characteristics and 
size, CHP 5 is responsible for the highest generation among the CHP units. The generation of 
the units is managed by the aggregator. According to this figure and the generation of wind 
units and PV arrays presented in Figure 7.5 and Figure 7.6, the CHP units are being used at 
their maximum capacities when there is low generation from the other DERs. For instance, at 
13:00, there is insufficient generation from both PV and wind units. Therefore, the CHPs 
generate a significant amount of energy to meet the demand and control the fluctuations due 
to renewables. The generation of renewable energy resources is highly dependent on weather 
conditions such as wind speed and solar radiation. 

There are hours with low solar irradiation, for example at 14:00 in Figure 7.5. Similarly, 
the wind speed also fluctuates rapidly causing high output in some periods and low output in 
others, such as at 13:00 in Figure 7.6. These fluctuations are controlled and managed by the 
DER aggregator through other generation units and the implementation of the DR program. A 
DR program is applied to the proposed model to shift a percentage of the demand from the 
peak period to the off-peak or mid-peak hours. Figure 7.5. shows the load demand profile in 
the studied time horizon. 

According to Figure 7.7, when there is no DR program, there is a significant difference in 
consumption. There is low demand during the off-peak period and high demand during the high-
peak period. By implementing the DR program, some of the demand is shifted from the peak 
hours to the off-peak or mid-peak periods. In the early hours of the morning, with a low demand 
before the DR program, this load is now increased. The DR program increases electricity usage 
during the off-peak period and decreases consumption during the peak period. 

 
 

 

Figure 7.4 - Power generation of CHP units. 
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Figure 7.5 - Power generation of the PV unit. 

 

 

Figure 7.6 - Power generation of wind turbines. 

 
 

 

Figure 7.7 - Daily profile of the consumers before and after DR implementation. 
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7.3.3- Hybrid IGDT-Stochastic Optimization Stage 

In the next stage, the uncertainty of the electricity market price is considered through IGDT. 
In this case, the uncertain parameters from both sides are considered. The uncertainty around 
the wholesale market side is managed through the IGDT method, and the uncertainty of 
renewable energy resources and EV charging/discharging patterns are assessed through 
stochastic programming. Therefore, the hybrid IGDT-stochastic optimization is implemented in 
this stage which is mentioned as one of the contributions of our work as considering the 
different risk measures for multiple sources of uncertainty based on their characteristics. The 
DER aggregator is assumed to have the forecasted wholesale market prices, i.e., ൛̅ߣଵ, ,ଶߣ̅ … ,  .ଶସൟߣ̅
Then, the hybrid IGDT-Stochastic model is solved for several variations of σ. Therefore, several 
ܴܲ௧ values are obtained. As stated in the problem formulation section, the proposed model 
for both types of decision-makers, risk-averse and risk-taker DER aggregators, is studied. The 
risk-averse decision-maker aims to guarantee the critical profit even if the worst-case scenario 
occurs. This type of uncertainty can be studied by implementing the robust function of the 
IGDT approach. On the other hand, the risk-seeking aggregator accepts the risks when targeting 
higher profits if a favorable scenario happens. Thus, the behavior of risk-seeking decision-
makers is addressed through the opportunistic function of the IGDT approach. Therefore, the 
effect of considering the uncertain parameters in several risk strategies is depicted in Figs. 7.8 
to 7.10. 

In Figure 7.8, the optimum robustness value for different σ variations is presented. As 
expected, increasing σ leads to higher amounts of  ߙො. To explain the behavior of the optimum 
robustness function value for different variations of σ, an arbitrary value is chosen. Let us 
assume that, for σ = 0.2, the risk-averse decision-maker wants to be sure that in the worst-
case scenario, its critical profit won’t be lower than ܴܲ௧ = (1 − ௦ ௦௧௦௧ܴܲ(ߪ =
(1 − 0.2) 112,900 = €90300 .  In this case, the optimum robustness value will be equal to 0.08. 
This means that if the observed market prices deviate by a maximum ߙො = 0.08  or 8%, 
unfavorably, this amount of critical profit is still guaranteed for the aggregator. 

In Figure 7.9, the optimum opportunity function values for different σ variations are shown. 
By increasing the electricity market prices, higher values for ߚመ can be found. Similar to the 
explanation given for the robustness function, an arbitrary σ amount is selected. If σ = 0.2, the 
target profit of the risk-seeking DER aggregator will be equal to ்ܴܲ௧ = (1 +
௦ ௦௧௦௧ܴܲ(ߪ = (1 + 0.2)112,900 =  €135,500. To reach the €135,500 aggregator profit, the 
wholesale market prices should be at least ߚመ = 0.08 or 8% lower than the forecasted values. 

In Figure 7.10, the optimum robustness function values (ߙො) for various profit amounts of 
the DER aggregator are depicted. On the other side of the graph, the optimum opportunity 
function value (ߚመ) for different variations of profits is shown. For the risk-averse aggregator, 
the robust performance of the model is desirable. For instance, as the critical profit decreases, 
the optimum robustness function increases. This indicates that higher unfavorable deviations 
of the uncertain parameter are possible for lower guaranteed critical profits, ߙො, when the 
decision-maker chooses the risk-averse strategy. On the other hand, ߚመ is the minimum amount 
of favorable deviation of the observed values from the forecasted values of the wholesale 
market prices that ensure the target profit. Another interesting result is that the optimum 
robustness values and opportunity value for the same variation from the deterministic profit 
are almost the same and this is illustrated in Figure 7.10. Therefore, the optimal values for the 
two completely different objective functions (risk strategies) result in very similar outcomes. 



 

121 

 

 

 
Figure 7.8 - Optimum robustness values of ߙො for different variations of σ in a risk-averse strategy. 

 

 
Figure 7.9 - The optimum robustness value ߚመ for different variations of σ in a risk-seeking strategy. 

 

 

 
Figure 7.10 - Optimal ߙො and ߚመ for different profits of DER aggregators in both risk-averse and risk-seeking 
strategies. 
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The optimal values for the stored heat level of the installed TESs are illustrated under 
various risk strategies in Figure 7.11. It can be seen that TES 5 stores a significant level of heat. 
It should be noted that TES 5 is located on the same bus as the hospital. Therefore, it is 
essential to ensure that there is enough heat reserve to supply this important consumer. 
Moreover, it is shown that as the decision-maker chooses to be risk-averse, the level of energy 
in the TES increases. It is due to the characteristics of the risk strategy. The risk-averse DER 
aggregator prefers to have the highest possible level of energy stored in the TES to make sure 
it will satisfy the demand of the consumers. In contrast, the risk-seeking aggregator is looking 
for higher profits which results in lower costs associated with the TES. Therefore, the total 
energy level of the TES in the risk-seeking strategy would be lower than the other strategies, 
i.e., risk-neutral and risk-averse. 

The behavior of the EVs in the PL in different conditions is shown in Figure 7.12. Figure 
7.12 (a) and (b) present the charging of EVs in robust and opportunity conditions, respectively. 
Similarly, sub-figures Figure 7.12 (c) and (d) show the discharging of the EVs in robust and 
opportunity conditions, respectively. Three scenarios are chosen for each of the robust and 
opportunity conditions to analyze the impact of the risk attitude of the proposed approach for 
various scenarios. It can be seen that the number of EVs based on the several scenarios 
considered robust and opportunity strategies do not affect the behavior of the EVs in the 
parking lot significantly. While considering risk management strategies for the decision-maker, 
being robust or opportunistic does not affect the optimal result of the proposed model. 
Therefore, in either strategy, there are periods that the parking lot is occupied at its maximum 
capacity, 50 EVs, regardless of the aggregator’s risk attitude. 

 
 
 

 

Figure 7.11 - The optimum stored heat of TESs under various risk strategies. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 7.12 - The behavior of the owners of the EVs in the PL in (a) charging mode in the robust approach; 
(b) charging mode in the opportunity approach; (c) discharging mode in the robust approach; (d) 
discharging mode in the opportunity approach. 
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To go more in detail, the total amount of power that is exchanged between the microgrid 
and the vehicles is also depicted in Figure 7.13. This figure indicates that the total amount of 
power in whether grid to vehicle (G2V) or vehicle to grid (V2G) is not affected significantly in 
both risk-seeking and risk-averse strategies. Therefore, this figure validates the results 
achieved in Figure 7.12. where different risk strategies do not have a serious impact on the 
operation and scheduling of EVs, and the total amount of power exchanged between the EVs 
and the microgrid is not so sensitive against the risk strategy.  

Furthermore, the implementation of any risk management model for addressing the 
uncertainties will impose some costs on the decision-maker. It will be essential to identify and 
quantify these costs to determine what level of risk management the decision-makers should 
enact based on their level of risk-seeking or risk-aversion. Table 7.4 and Table 7.5 display the 
robustness and opportunity costs of the hybrid stochastic-IGDT method for different optimum 
robustness index values against variations in σ. According to these results, increasing the level 
of the risk aversion of the aggregator leads to higher robustness or opportunity cost, which is 
entirely reasonable. The decision-maker is responsible for evaluating the MES and deciding the 
degree to which the aggregator is risk-averse in the robustness approach and risk-seeking in 
the opportunity approach. 

 
 

 
Figure 7.13 - The optimum values for the grid to vehicle (G2V) and vehicle to grid (V2G) under 

different risk strategies. 
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Table 7.4 — The robustness cost for various robustness function values 

 

σ ߙො Robustness cost (€) 

0 0 0 

0.1 0.043 4327.8 

0.2 0.0812 6874.4 

0.3 0.122 9003.5 

0.4 0.163 11476.3 

0.5 0.204 13994.2 

0.6 0.245 15602.1 

0.7 0.286 18109.5 

0.8 0.327 20478.1 

 

Table 7.5 — The opportunity cost for various opportunistic function values 

 

σ ߚመ Opportunity cost (€) 

0 0 0 

0.1 0.041 4571.4 

0.2 0.082 7226.9 

0.3 0.12 9103.5 

0.4 0.163 12051.3 

0.5 0.204 15190.3 

0.6 0.244 15889.8 

0.7 0.285 18933.4 

0.8 0.326 22468.1 
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7.4- Conclusions 

A hybrid IGDT-stochastic approach is proposed for a DER aggregator in an MES microgrid. The 
uncertainty posed by the generation of renewable resources and DERs is addressed through 
stochastic programming. As the DER aggregator is the operator of these entities, the level of 
generation is under the control of the aggregator. However, the energy market prices are not 
under the control of the aggregator, and additionally, there is a lack of information about the 
prices. Therefore, the uncertainty posed by market prices is managed through the IGDT 
method. There are two different structures for IGDT approaches, the robust structure, and the 
opportunity structure. The robust IGDT function can find the maximum value of the uncertain 
horizon, which can guarantee the critical profit of the aggregator in the worst case, even if 
unfavorable cases occur, which is the main aim of risk-averse decision-makers. However, the 
opportunity function of the IGDT approach can find the minimum value of the uncertain horizon 
that can lead to higher possible profits if favorable deviations of the uncertain parameter 
occur, which is the main goal of risk-seeking decision-makers. The results indicate that the 
aggregator manages the generation of DERs when there is a lack of generation from the 
installed renewable resources. For instance, in periods with low PV or wind generation, the 
CHP unit increases its generation to compensate for the shortage. Moreover, the optimum 
robustness and opportunistic function values for various amounts of profits of the DER 
aggregator are calculated to provide several risk levels for risk-averse and risk-seeking decision-
makers. By increasing the deviation of the risk factor, σ, the obtained values for ߙො and ߚመ also, 
increase. Therefore, as ߚመ arises, the aggregator becomes more risk-seeking. Similarly, as ߙො 
arises, the aggregator becomes more risk-averse. Moreover, the imposed cost to the aggregator 
due to choosing the risk measure and its corresponding level is a crucial factor that should not 
be neglected. In terms of future work, different energy market structures could be explored 
to determine the optimal behavior of the DER aggregator. 



 

 

Chapter 8  

Conclusions, Directions for Future Work and 
Contributions  

In this chapter, the main conclusions of the thesis are highlighted based on answering the 
research questions that constituted the main motivation of this research, and some directions 
for future work are also discussed. Finally, the contributions of this work are highlighted by 
presenting the set of publications, in journals with high impact factor (first quartile), as book 
chapters, or in conference proceedings of high standard (IEEE), leading to this thesis work. 

8.1- Main Conclusions 

The main conclusions drawn from the thesis work, about the research questions presented in 
Section 1.6, are summarized as follows. For the sake of clarity, the research questions are 
reproduced here. 

 
 What are the recent developments and trends in DR programs and energy storage 

technologies within MESs, specifically focusing on the main challenges and optimization 
techniques in Energy Hub System models? 

 
Due to the limited capabilities of the current power system, demand-side resources cannot 

be integrated very easily. DR helps to overcome these limitations and thus can help to integrate 
more demand-side resources. To capture the full potential of these resources, DRPs should 
consider various carriers of energy such as electricity and natural gas. This can be achieved 
through the use of Energy Hubs. This will help to maximize the benefits of DRPs and also 
minimize the side effects, such as consumer discomfort. This is a major advantage of using 
MES. Additionally, in the context of ESS in the MES, by integration of the various energy forms 
and developing the concept of the MESs, one of the key components of multi-energy systems is 
ESSs. The main role of the ESSs in multi-energy systems is to compensate for the fluctuations 
introduced by renewable energy resources. Therefore, it is crucial to review the main 
definitions of the DR, ESS, and multi-energy systems. Thus, a comprehensive literature review 
was done to achieve a clear definition of these terms. Then, the advantage of the energy hub 
over the conventional power system was addressed.  
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Then, some recent modeling of the DR and ESS technologies in the energy-hub environment 
is studied. The comprehensive review that has been done in this work can be a reference for 
future research and improvements in applying the DR and ESS in the energy-hub systems. The 
emerging keywords that have been extracted from the studied works show that the “integrated 
DR” is getting more interest and is one of the main keywords that is linked to the energy-hub 
topic. The work that has been done has identified some findings when it comes to implementing 
DRP in MES and these are as follows: 

 The capability of converting between various forms of energy: Some limitations restrict 
the possibility of converting between the different energy carriers across time and for 
different consumers. For instance, there are some consumers with must-run loads that 
the only available form of energy is electricity. Therefore, it is not possible to 
participate in the DRPs through the reviewed works. 

 For an optimization model, it is suggested to consider both consumer discomfort and 
profit at the same time. Since there have been some researches that only focused on 
decreasing the discomfort rate of the consumers that participating in the DRPs in MESs. 
On the other hand, the main aim of some studies is to increase the profit of the 
consumers through their participation in the DRPs in the MES. However, there is a 
capability of developing models that consider minimizing the uncomforting rate of the 
consumers while increasing their profit from employing DRPs. 

This work has gathered and summarized the most recent work concerning DR programs 
within MES. It has shown that there is a growing increase in the field and this is because of the 
several advantages that DR and MES can contribute to the future energy system. Both will be 
important as the energy transition takes hold and the combination of these two strategies can 
yield multiplicative advantages for both system operators and consumers. This work has 
provided a summarized foundation for future researchers to consult when working in this 
exciting and important field. Additionally, in this chapter, ESS technologies in the context of 
multi-energy systems are presented and explained. Moreover, in the context of the multi-
energy system, the storage unit can be installed on both sides of the input or output of the 
system as hydrogen and electrical storage can be installed on both sides, while, thermal storage 
usually is employed on the output side of the system. Moreover, it is shown that the ESS can 
also be a complementary component for the DR actions to provide more flexibility for the 
operation of the energy hub, especially during high consumption periods. 

 

 What is the behavior of a risk-seeking DR aggregator in the presence of several DR 
programs on the demand-side of the aggregator, and the day-ahead electricity market 
on the market side? How does the aggregator manage uncertainty on both sides? 

 
To answer this question, we investigate the behavior of a risk-seeking DR aggregator within 

the context of a complex energy landscape characterized by multiple DR programs on the 
demand side and the dynamics of the day-ahead electricity market on the market side. The 
primary objective was to ascertain how such an aggregator navigates and capitalizes on the 
inherent uncertainty that permeates both sides of its operations. Our model, designed to shed 
light on this intricate interplay, showcased the DR aggregator's propensity to pursue higher 
profits, leveraging favorable deviations in uncertain parameters observed in the day-ahead 
electricity market. To assess the DRA's risk tolerance and strategy, we employed the 
opportunity-based IGDT method as a risk measure. 
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In this thesis, we simultaneously considered two pivotal uncertain parameters from each 
side of the aggregator's operations—the upper side and the downside. On the demand side, we 
scrutinized the unpredictability of day-ahead market prices and the participation rate of 
consumers in the RBDR program. This approach allowed us to comprehensively gauge the 
aggregator's response to variations in these critical factors. Through rigorous simulations 
encompassing a spectrum of profit deviation factors, our research revealed a direct correlation 
between these factors and the optimal opportunity function value. This relationship not only 
elucidated the aggregator's risk-seeking behavior but also offered insights into its ability to 
harness uncertainty for profit optimization. To provide a deeper understanding of our model's 
implications, we selected a representative profit deviation factor and presented a detailed 
analysis of the correlated results. Notably, our findings underscored the integral role played by 
industrial consumers among the three consumer categories—industrial, commercial, and 
residential—in the adoption of TOU programs. This observation highlighted the significance of 
industrial consumers in shaping the DRA's operational strategies within the broader DR 
landscape. Therefore, Chapter 3 provides a perspective on the behavior of a risk-seeking DR 
aggregator operating within multiple DR programs and a volatile day-ahead electricity market. 
By shedding light on the aggregator's approach to managing uncertainty on both sides of its 
operations, we contribute valuable insights into the evolving dynamics of the modern energy 
ecosystem and the strategies employed by aggregators to thrive within it. 

 
 How does it improve the scheduling and risk-based operation of the DR aggregator? 

How does the incorporation of DRPs and an energy storage unit enhance consumers' 
flexibility in engaging with the DR aggregator's operations? 

 
To address this question, Chapter 4 has produced valuable insights into the enhancement 

of scheduling and risk-based operation of a DR aggregator through the incorporation of DRPs 
and an ESS, ultimately providing consumers with greater flexibility in engaging with the 
aggregator's operations. The contributions of our proposed model can be succinctly summarized 
as follows: 

1- Hybrid MILP Optimization Framework: We introduced a hybrid mixed-integer linear 
programming (MILP) optimization framework tailored for DR aggregators. This 
framework deftly addresses the multifaceted uncertainties inherent in both the market 
and consumer sides by seamlessly integrating robust and stochastic methodologies. This 
novel approach allows the aggregator to make informed decisions considering a diverse 
range of uncertain parameters. 

2- Robust-Stochastic Model: A key innovation in our research is the development of a 
hybrid robust-stochastic model. This model adeptly manages stochastic and non-
stochastic uncertain parameters, significantly improving the scheduling and risk-based 
operation of the DR aggregator. It equips the aggregator to navigate adverse scenarios 
while optimizing DR program scheduling for end-users. 

3- Enhanced Consumer Flexibility: By considering two types of DRPs and integrating an 
ESS, our model substantially enhances consumer flexibility. Consumers can now engage 
with DR aggregators in a more tailored manner, aligning their participation with their 
preferences and priorities. 
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Our hybrid stochastic-robust model provides a nuanced analysis of the DR aggregator's 
operations, particularly in evaluating adverse scenarios. On the demand side, we employed a 
stochastic method to manage consumer engagement rates across three sectors: industrial, 
residential, and commercial end-users. Simultaneously, we implemented a robust approach on 
the market side, specifically within the wholesale electricity market, to account for 
fluctuations in day-ahead market prices that may impact the aggregator's profitability. Within 
this framework, we harnessed TOU and ibDR programs for consumers and strategically operated 
an ESS under unique peak and off-peak periods for each consumer sector. Our findings revealed 
that industrial consumers' demand during peak periods had a substantial impact on the 
aggregator's profitability, underscoring the significance of considering different consumer 
categories. The behavior of the ESS was found to be consistent in all scenarios, primarily in 
charging mode during the initial hours of off-peak periods. In adverse scenarios, the ESS 
transitioned to discharge mode to prevent economic losses for the aggregator. Moreover, we 
observed that as price fluctuations in the market increased, the aggregator's total profit 
decreased, emphasizing the importance of effectively managing market uncertainties. In 
conclusion, our research not only enhances the scheduling and risk-based operation of DR 
aggregators but also empowers consumers with greater flexibility, paving the way for more 
dynamic and responsive energy systems in the future. 

 
 What are the impacts of incorporating an ESS unit on the performance of a DR 

aggregator? How can the flexibility of end-users for their engagement in the DR 
programs be enhanced? 

 
This thesis has presented insights into the impacts of integrating an ESS on the performance 

of a DR aggregator, while also enhancing the flexibility of end-users in their participation in DR 
programs. The contributions of our study in this regard can be summarized as follows: 

1- Comprehensive Analysis of ESS Impact: We developed a comprehensive model for 
analyzing how the presence of an ESS unit influences the performance of a DR 
aggregator. This analysis was conducted considering various end-user categories, 
including residential, commercial, and industrial loads, actively participating in short-
term electricity markets, such as day-ahead and balancing markets. 

2- Enhanced End-User Flexibility: A significant aspect of our research involved increasing 
the flexibility of end-users to participate in DR programs. We achieved this by 
developing distinct participation roles for end-users and introducing renewable energy 
resources on the demand side of the aggregator's operations. This innovation 
empowers end-users with greater control and options for their engagement in DR 
initiatives. 

The proposed optimal electricity trading model for the DR aggregator in Chapter 5 focused 
on the role of the ESS unit owned by the aggregator. The aggregator's responsibilities 
encompassed trading available energy within wholesale electricity markets, notably the day-
ahead and real-time balancing markets. Given the inherent uncertainty in electricity market 
prices, we employed a robust optimization approach as the chosen risk measure to account for 
these uncertainties. On the demand side, we considered three categories of end-users: 
residential, commercial, and industrial sectors. To facilitate their active participation in DR 
programs, we implemented two DR programs and equipped end-users with rooftop PV panels, 
enhancing their ability to engage in DR initiatives. 
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The model’s analysis revealed that the capacity of the ESS played a pivotal role in the 
aggregator's profitability. In particular, a larger ESS capacity provided greater protection 
against unfavorable scenarios for uncertain parameters, translating into increased profits for 
the aggregator. For instance, when the ESS capacity reached 400 kWh, the aggregator's profit 
saw a notable 3.5% increase compared to a scenario without an ESS unit, assuming a specific 
budget of uncertainty. Furthermore, in a situation with higher uncertainty, a 400 kWh ESS 
capacity resulted in a substantial 20% profit increase. The capacity of the ESS also significantly 
influenced the aggregator's trading strategy in the day-ahead and balancing markets. With a 
larger ESS capacity, the aggregator had more flexibility to adjust its transactions in the day-
ahead market, reducing the need for significant trading in the balancing market to avoid 
economic losses. While robust optimization is well-suited for risk-averse decision-makers, we 
acknowledge that alternative risk measures, such as information-gap decision theory or 
stochastic programming, may be more appropriate for risk-seeking decision-makers looking to 
explore favorable changes in uncertain parameters. Looking ahead, our research suggests 
exciting possibilities for upgrading the role of the DR aggregator entity to that of a Distributed 
Energy Resources (DER) aggregator. This transition would entail the control and management 
of multiple components within the energy system, including various renewables, distributed 
generation assets, and DR programs. Such an evolution could significantly enhance the 
aggregator's flexibility and expand the model's scope for optimizing profitability. In summary, 
in Chapter 5, the proposed model underscores the pivotal role of ESS units in DR aggregator 
operations, highlighting their impact on profitability and trading strategies. Simultaneously, 
we've demonstrated how end-user flexibility can be enriched through well-defined 
participation roles and the integration of renewable energy resources, paving the way for more 
dynamic and responsive engagement in DR programs. These findings have far-reaching 
implications for the future of DR and distributed energy management. 

 
 How can the integration of multiple DR programs for electrical, heating, and cooling 

loads provide increased flexibility to consumers while optimizing the operational 
efficiency of the distributed energy resources and the energy hub? 

 
To address this question, Chapter 6 has made steps in addressing the question of how the 

integration of multiple DR programs for electrical, heating, and cooling loads can not only 
provide enhanced flexibility to consumers but also optimize the operational efficiency of 
distributed energy resources within an energy hub. The primary contributions of our study are 
as follows: 

1- Opportunistic Risk Management: One of the key innovations in our research is the 
introduction of an innovative opportunistic risk management procedure applied to an 
energy hub comprising various components, including micro–combined heat and power 
(μCHP), electric heat pumps (EHP), boilers (BO), absorption chillers (AC), and an ESS. 
This opportunistic approach is particularly well-suited for risk-seeking decision-makers 
who seek to explore the benefits of favorable deviations in uncertain parameters to 
further reduce costs. We specifically considered three uncertain parameters related to 
consumers: electrical, heating, and cooling loads. 
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2- Integration of Multiple DR Programs: Another significant contribution of our research is 
the integration of multiple DR programs to offer consumers increased flexibility. 
Specifically, we proposed two DR programs for electrical loads, each serving a distinct 
purpose. The TOU DR program was designed to shift a percentage of electrical load from 
peak to off-peak periods, effectively minimizing the operational costs of both assets and 
the energy hub. Additionally, an emergency DR program was defined to control electric 
demand during periods of supply-demand imbalance. Furthermore, we introduced a 
shifting DR program for both heating and cooling loads. 

In the proposed model, we considered an energy hub comprising various entities responsible 
for supplying electric, heating, and cooling loads, while sourcing electricity and natural gas 
from the upstream network. The deployment of multiple integrated DR programs allowed us to 
strategically shift or alter a percentage of electric, heating, and cooling demand from peak to 
off-peak periods, thereby reducing the overall cost incurred by the energy hub operator.  
To manage uncertainties effectively, we adopted the information-gap decision theory 
opportunity approach as the risk measure. This approach empowered the decision-maker to 
align with a target cost while accommodating deviations in electric, heating, and cooling load 
values from their expected levels. Notably, our numerical results indicated that the application 
of this approach was contingent on the cost imposed on the system, underlining the importance 
of cost considerations. One significant outcome of our research pertained to the demonstrating 
positive impact of the time-of-use DR program. This program succeeded in shifting a percentage 
of demand to off-peak periods, which, in turn, positively influenced the minimization of the 
operational costs of the energy hub. Conversely, it also showed that the high cost associated 
with the emergency DR program made it less desirable for activation unless there was a clear 
imbalance between supply and demand. In conclusion, our research underscores the potential 
of integrated DR programs and opportunistic risk management to enhance consumer flexibility 
while optimizing the operational efficiency of distributed energy resources within an energy 
hub. These findings have practical implications for the effective and resilient management of 
energy systems in a dynamic and uncertain environment. 

 
 How can risk management be effectively utilized for uncertainties posed by the DER 

aggregator in an MES? 
 
To address this question, Chapter 7 has explored the effective utilization of risk 

management for uncertainties arising from a DER aggregator operating within a MES microgrid. 
The key contributions of this proposed model can be summarized as follows: 

1- Hybrid IGDT-Stochastic Approach: A central innovation in our research involves the 
proposal of a hybrid IGDT-stochastic approach for the self-scheduling of a DER 
aggregator within an MES. This approach caters to the diverse risk preferences of 
decision-makers, providing solutions for both risk-averse and risk-seeking individuals. 
By offering a range of models, our approach empowers decision-makers to choose the 
most suitable framework in alignment with their preferences. 

 
2- Management of Multiple Uncertainties: Our research simultaneously addresses 

uncertainties originating from both sides of the DER aggregator, encompassing 
uncertainties from the market side and consumption side. This holistic approach 
acknowledges the intricate interplay of uncertainties in an MES microgrid. Additionally, 
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we strategically select the most appropriate risk measures for decision-makers based 
on the characteristics of the uncertain parameters, enhancing the precision of decision-
making processes. 

In our proposed hybrid IGDT-stochastic approach, we navigate the uncertainties arising 
from the generation of renewable resources and DERs through the application of stochastic 
programming. While the DER aggregator exercises control over the generation of these entities, 
market energy prices remain beyond its control and often lack complete information. 
Consequently, we manage the uncertainties associated with market prices through the IGDT 
method. Within the IGDT framework, we consider two distinct structures: the robust structure 
and the opportunity structure. The robust IGDT function focuses on securing the maximum 
value of the uncertain horizon, thereby guaranteeing critical profits for the aggregator even in 
the worst-case scenarios—a primary concern for risk-averse decision-makers. Conversely, the 
opportunity function of the IGDT approach seeks to identify the minimum value of the uncertain 
horizon that can lead to higher potential profits when favorable deviations in uncertain 
parameters occur—a primary goal for risk-seeking decision-makers. Our findings indicate that 
the DER aggregator effectively manages the generation of DERs when facing a shortfall in 
generation from installed renewable resources. For example, during periods of low PV or wind 
generation, the Combined Heat and Power (CHP) unit increases its generation to compensate 
for the deficit. Furthermore, we calculate the optimum robustness and opportunistic function 
values across various levels of profits for the DER aggregator, thereby offering several risk 
levels for both risk-averse and risk-seeking decision-makers. We observe that as the deviation 
of the risk factor, σ, increases, so do the values of ߙො and ߚመ, signifying a shift towards increased 
risk-seeking behavior for the aggregator as ߚመ rises and heightened risk-averse behavior as ߙො 
increases. It is essential to note that the cost incurred by the aggregator due to the selection 
of a specific risk measure and its corresponding risk level is a critical consideration that cannot 
be overlooked. 

Finally, it can be observed that the main contribution of this thesis is developing hybrid 
optimization frameworks that consider various uncertainties with different inherent 
characteristics on both the supply and consumer sides through a combination of risk 
management methods. This approach is crucial for appropriately handling uncertain 
parameters. These research endeavors contribute to economically viable and environmentally 
friendly energy systems and make a significant impact on a sustainable future. 

8.2- Directions for Future Works 

The following points may be further studied to broaden the understanding of the topics treated 
in this thesis: 

1- Explore different energy market structures to further optimize the behavior of the DER 
aggregator. These efforts could offer additional insights into the adaptable and 
dynamic nature of risk management strategies within MES microgrids, ensuring the 
continued evolution and robustness of such systems. 

2- The implementation of multi-objective optimization problems to gain deeper insights 
into the independent impacts of uncertain factors. This approach could provide a more 
comprehensive understanding of the trade-offs and interactions within the energy hub's 
operations. 
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