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Abstract  

Providing efficient support mechanisms for renewable energy promotion has drawn much attention from researchers 

in the recent years. The connection of a new renewable power plant to the transmission system has impacts on different 

electricity market indices since the other strategic generation units change their behaviour in the new multi-agent 

environment. In this paper, as the main contribution to the previous literature, a combination of multi-criteria decision-

making approach and multi-agent modelling technique is developed to obtain the maximum possible profits for an 

intended renewable generation plan and also direct the investment to be located in a way to improve electricity market 

indices besides supporting renewable energy promotion. Fuzzy Q-learning electricity market modelling approach in 

combination with the technique for order preference by similarity (TOPSIS) is used as a new decision support system 

for promotion of renewable energy for the first time in the literature. The proposed interactive multi-criteria decision-

making framework between the independent system operator (ISO) and the renewable power plant planner provides 

a win-win situation that improve market indices while help the renewable power plant planning. The effectiveness of 

the proposed method is examined on the IEEE 30-bus test system and the results are discussed. 
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Nomenclature 

A. Sets 

Ω஻  Set of indices of buses. 

Ω஽  Set of indices of demands. 

Ω஽.௭ Set of indices of demands located in bus ݖ. 

Ωீ  Set of indices of generation units. 

Ωீ.௭  Set of indices of generation units located in bus ݖ. 

Ωୗ Set of all states (different values of RPP output power) 

B. Parameters 

 .ݖ ௠௭ Inductive reactance of the line connecting buses ݉ andݔ

ܿ௜ Intercept of marginal benefit function of ݅th demand. 

݀௜ Slope of marginal benefit function of ݅th demand. 

௝ݑ  Intercept of ݆th generation unit's marginal cost function. 

௝ܾ Slope of ݆th generation unit's marginal cost function. 

௠ܲ௭
୫ୟ୶ Thermal/stability active power limit of the line connecting buses ݉ and ݖ. 

ܶ Number of iterations in learning phase of multi-agent model. 

ீܰ  Number of generation units. 

஻ܰ Number of transmission system buses. 

C.Variables 

஽ܲ.௜௧ Active power consumption of ݅th demand in hour ݐ. 

ܲீ .௝௧  Active power production of ݆th generation unit in hour ݐ. 

௅ܲ.௠௡௧    Active power flow from bus ݉ to bus ݊ in hour ݐ. 

δ௭௧  Voltage angle of bus ݖ in hour ݐ. 

α௝௧  Intercept of bid function of ݆th generation unit in hour ݐ. 

ܯܮ ீܲ.௝௧ Locational marginal price of the bus to which generation unit ݆ is connected in hour ݐ. 
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ܯܮ ஽ܲ.௜௧ Locational marginal price of the bus to which ݅th demand is connected in hour ݐ. 

ܯܮ ௡ܲ௧  Locational marginal price of ݊th bus in hour ݐ. 

1. Introduction 

A. Motivation and Background 

Battling with climate change by decreasing carbon emission has been considered as a serious agreement of 

governments across the globe in the Paris Climate Change conference at the end of 2015 in order to better reduce the 

global warming. For realizing this objective, undoubtedly, a shift in electricity generation paradigm from fossil fuels 

to the more environmental-friendly renewable generation is an obligation. This issue enforces countries to set their 

targets for increasing the share of renewable energy in the energy generation mix. As a vision for 2030, the contribution 

of renewable energy in electricity generation of European Union is set 27% [1]. This target would be 20% for China, 

and 12% for the United States [1]. Globally, the share of renewable energy in the total mix of generation is estimated 

to reach 45% in 2040 [2]. Considering these ambitious targets highlights the requirements for more attentions to the 

provision of motivations and support for the new renewable investment projects. There are some mechanisms that 

have been proposed and applied in different countries for renewable energy expansion. Giving attention to the stressful 

situation of power system around the world, a successful promotion mechanism needs to carefully consider power and 

energy market operation and planning issues. The importance of these considerations becomes better clarified by 

considering rapid world energy consumption that will increase 56% by 2040 according to Energy Industry Agency 

[3]. Considering power system and energy market issues in any promotion mechanism for renewable energy expansion 

emerges as an important research gap which needs to be addressed in new studies. 

B. Relevant Background 

In recent years, different renewable support mechanisms have been examined in different countries. Renewable 

portfolio standard and feed-in-tariff are recognized as the examples of the most popular supporting mechanisms [4-6]. 

Feed-in-tariff mechanism is a pricing policy which is realized by purchasing renewable energy at a guaranteed price 

while renewable portfolio standard is a quota system that enforces producers to consider a certain amount of renewable 

energy in their mix [7]. To the best of our knowledge, neither feed in tariff and renewable portfolio standard nor most 

of the other incentive mechanisms consider power system technical problems.  
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From another viewpoint, several studies were conducted to include power system technical considerations in 

renewable power generation expansion planning [8-15] in the recent years. These studies can be divided into two 

groups in terms of the size of the renewable units: i) bulk renewable generation plans, and ii) small-scale renewable 

plans. Some of the papers in the first category considered transmission expansion planning in coordination with 

renewable power generation expansion to support the set renewable energy target [8-10]. A few papers considered 

renewable generation expansion within the scope of conventional generation planning schemes [11, 12].  

As for the latter, a few research tasks such as in [13-15] can be mentioned. Renewable generation expansion was 

modelled in a bi-level optimisation framework in [13] by considering demand response. In [14], a subsidy objective 

function as the pollution not emanated was proposed in a multi-objective optimisation model as an encouraging 

mechanism in the favour of small-scale renewable resource promotion.  

In [15] an optimisation framework was proposed for renewable resources, energy storage, and distribution system 

expansion planning. To the best of our knowledge, none of the power system planning studies considered the effect 

of renewable investment on the strategic behaviour of the other market players [16]. This important gap affects directly 

the profit of the new renewable power generation plan and also the other electricity market indices which have 

influence totally on market operation.  

In general, strategic behaviour of electricity market was modelled by equilibrium [17, 18] or agent-based approaches 

[19, 20].  As discussed in [20], due to the inherent intermittency of renewable generation resources, agent-based 

approaches are more preferable. In [19] a Least Squares Continuous Actor-Critic algorithm with a robust market 

clearing approach was deployed for day-ahead electricity market modelling in the presence of renewable 

generation.  

In [20], output power of renewable resources was considered as the state in modelling of electricity market. Since 

fuzzy Q-learning approach has been successfully applied for dealing with continuous states in reinforcement learning, 

this approach was examined for electricity market modelling [20, 21]. Also, in [20], some electricity market indices 

such as Nash index, social welfare, and congestion cost were taken into consideration.  

Since the mentioned indices reflect different attributes, it is necessary to utilize effective multi-criteria decision-

making techniques. Recently, multi-criteria decision-making approaches have been successfully applied for evaluation 

of renewable power generation plans in different regions of the world [22-24].  
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In [22], analytical hierarchical process (AHP) was applied for estimating and ranking barriers of renewable energy 

development in Nepal. A hybrid decision-making trial and evaluation laboratory and analytic network process 

(DEMATEL-ANP) model was used for selecting alternative renewable energies in [23]. In [24], a new renewable 

energy source strategy was evaluated using a multi-criteria decision-making model by implementing hesitant fuzzy 

linguistic term set. 

The technique for order of preference by similarity to ideal solution (TOPSIS) is one of the powerful multi-criteria 

decision-making techniques. Based on TOPSIS approach, the selected alternative has the shortest geometric distance 

from the positive ideal alternative and the longest geometric distance from the negative ideal alternative [25]. In the 

previous literature, TOPSIS has been used in congestion management of transmission system [26], evaluation of power 

generation plans [26], strategy selection in a game-based congestion management approach [27], and resiliency 

assessment [25]. As it is observed from these papers, there is a lack of enough research regarding the application of 

TOPSIS for location prioritization of renewable power plan which is discussed in this paper. 

C.Content and Contributions  

In this paper, we provide an interactive decision-making model between ISO and a renewable power plant planner 

to locate the intended renewable power generation plan while improving market indices. To this end, a combination 

of well-established reliable multi-criteria decision-making approach and multi-agent modelling technique is used to 

find the best locations in a transmission system for integration of a proposed renewable power generation plan by the 

investor’s average payments and electricity market behavioural indices. Based on the proposed method, a proper 

incentive is determined to motivate the investors to select a location in which not only maximum average profit is 

achieved by the investor, but also maximum improvement is achieved for electricity market indices. The major 

contributions of the paper are listed as follows:  

 Proposing a new interactive multi-criteria decision-making model for simultaneously supporting the proposed 

renewable power generation plans by providing them with an incentive to maximize their profits while gaining 

the most possible improvement in electricity market behavioural indices. 

 Simulation of the effects of renewable energy plans on electricity market indices. 

 Provision of a new decision support system by combination of multi-agent modelling and multi-criteria 

decision-making approaches. 
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For achieving the goals of this paper, we adopt fuzzy Q-learning approach that we proposed in [20] as an effective 

market modelling method in the presence of renewable power penetration. In the current paper, we use this approach 

for evaluating the behaviour of electricity market as well as obtaining the electricity market indices by integrating a 

proposed renewable energy plan. Also, TOPSIS approach is used as the employed multi-criteria decision-making 

technique. Various successful power system applications of TOPSIS could be referred to [26-28]. 

D. Organization 

After having provided the introductory information in Section I, Section II describes the proposed methodology. 

This section is divided into three major parts. In the first part, market modelling through multi-agent fuzzy Q-learning 

is described and in the second part, 8 important market modelling indices are provided and finally in the third part 

TOPSIS is applied to rank the transmission nodes based on electricity market indices. In Section III, the proposed 

methodology is applied on a case study including IEEE 30-bus transmission system. Finally, Section IV concludes the 

paper. 

2. Methodology 

A renewable power plant planner intends to integrate a new renewable power producer (RPP) to the power system. 

The evaluation of the impact of the RPP on electricity market indices is depicted in the block diagram shown in  

Fig.  1.  

The proposed evaluation system considers the investors’ proposal for different capacities of RPP investment. 

Different candidate locations are considered based on the geographical aspects of the considered renewable resources, 

i.e. wind power plants. It is mentioned that the approach is flexible enough to consider any types of renewable 

resources.  

The goal of this evaluation system is to assess and rank the candidate buses based on average RPP profit and 

electricity market indices to incentivize the renewable investor to install RPP with maximum possible profit while 

improving electricity market indices.  

As the procedure shown in Fig. 1 demonstrates, the installation of RPP in each location is examined by means of a 

combination of multi-agent fuzzy Q-learning and TOPSIS approach as a decision-making tool for ranking-based 

simulation of electricity market behaviour in interaction by electricity market clearing model. The rest of this section 

elucidates the proposed procedure.  
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Market Clearing

Market Indices
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TOPSIS

Investors Candidate Plans for 
Renewable Expansion
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Multi-agent Fuzzy Q-learning 
Market Modeling

 

Fig.  1. Overview of the proposed interactive multi-criteria decision-making framework. 

A. Multi-agent fuzzy Q-learning market modelling 

In the proposed method, the agents or market players are conventional generation units. The strategic agents offer 

their bid to participate in market clearing procedure. The bid of each generation unit is a linear supply function (α୨୲ +

b୨Pୋ.୨୲) that the agent plays its role in the electricity market by controlling and offering of its intercept (α୨୲) [20]. The 

interactions of these strategic agents, independent system operator (ISO), non-strategic agents (demands), and 

renewable energy units are shown in Fig. 2.  

In this paper, we consider elastic demands, which means that demands are not strategic, but they are assumed to 

react to the price change. This means they offer “Fixed Bid”. We consider renewable resources as feed-in-tariff. So, 

they do not offer bids in the electricity market. It means that they offer “Zero bid”.   

As shown in Fig. 2, ISO receives bids from the agents and after clearing the market,  the output power of the agents, 

and the locational marginal prices (LMPs) of each bus are calculated.  

For this purpose, the following mathematical model is to be solved: 

Maximize௉ಸ.ೕ೟.∀௝;௉ವ.೔೟.∀௜

෍ ൬ܿ௜ ஽ܲ.௜௧ +
1
2
݀௜ ஽ܲ.௜௧

ଶ ൰ − ෍ ൬α௝௧ܲீ .௝௧ +
1
2 ௝ܾ ீܲ.௝௧

ଶ ൰
௝∈ஐಸ௜∈ஐವ

 (1) 
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subject to:  

෍ ீܲ.௝௧
௝∈ஐಸ.೥

− ෍ ஽ܲ.௜௧
௜∈ஐವ.೥

= ෍ ൬
δ௭௧ − δ௠௧

௠௭ݔ
൰

௠∈ஐಳ

ݖ∀ ∈Ω஻ (2) 

ฬ
δ௠௧ − ௭௧ߜ
௠௭ݔ

ฬ ≤ ௠ܲ௭
୫ୟ୶ ∀݉. ݖ ∈ Ω஻  (3) 

ீܲ.௝
୫୧୬ ≤ ீܲ.௝௧ ≤ ீܲ.௝

୫ୟ୶ ∀݆ ∈ Ωீ (4) 

஽ܲ.௜
୫୧୬ ≤ ஽ܲ.௜௧ ≤ ஽ܲ.௜

୫ୟ୶ ∀݅ ∈ Ω஽ (5) 

ܲீ .௝௧ . ஽ܲ.௜௧ ≥ 0 ∀݆ ∈ Ωீ . ∀݅ ∈ Ω஽  (6) 

 

In this model, social welfare (1) is maximized subject to a set of constraints: balancing active power based on 

Kirchhoff current law for each bus is shown in (2). The active power across transmission lines, output power of 

generation units, and consumed energy by the loads are enforced to be within their limits as given in (3), (4), and (5), 

(6), respectively.  
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Fig.  2. Interaction between market agents. 
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According to Fig. 2, by feeding back the transmission buses’ LMPs and the output power, each strategic player 

calculates its own profit by (7): 

௝௧ݎ = ீܲܯܮ .௝௧ ீܲ.௝௧ − ൬ݑ௝ܲீ .௝௧ +
1
2 ௝ܾ ீܲ.௝௧

ଶ ൰ (7) 

In this paper, similar to that of [20], renewable power generation output is considered as the state and the intercept 

of bid function is defined as action. For example, if we have two renewable resources, then we have two states.  Also, 

the calculated profit from (7) is considered as the agent reward.  

In fuzzy Q-learning procedure, in each state, after receiving reward, Takagi-Sugeno fuzzy system becomes updated. 

For further explanation and mathematical formulation about updating procedure, the reader is referred to [20].  

After updating the fuzzy system, the agent determines its next action (its preferred bid), and sends it to the ISO for 

the next hour market clearing. The action selection process is performed by ɛ-greedy approach using Q values of fuzzy 

system [20]. 

B. Market modelling indices 

After accomplishing learning procedure described in subsection A, the market indices are evaluated. For this 

purpose, Ωୗ as the set of all states (different values of RPP output power) is considered.  

The average value of market indices over Ωୗ is considered for evaluation procedure because of the possible 

renewable power intermittency. To this end, the considered RPP is examined in different candidate transmission buses 

and the average of indices over Ωୗ is calculated for each of the buses. The candidate buses are selected based on 

geographical situation for the specific renewable generation which is to be expanded. The considered indices are 

presented in the follows. It is worth mentioning that this list is open to include any index which could be of interest 

for the market operators. Also, in the following equations, the asterisk is considered to differentiate the variables in 

this phase (testing) with the variables in the previous subsection (training). 

1)  Total load  

RPP location affects the outcome of the electricity market. In this paper, we consider the average of total load as 

one of the indices for the assessment of the effects of RPP location: 

ܮܶ = ෍ ஽ܲ.௜்
∗

௜∈ஐವ

 (8) 
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2)  Standard deviation of LMP 

This index reflects the LMP differences in all buses. The less standard deviation of LMP in a transmission system, 

the loads and generation units across the system experience the more equal price. Hence, the average of this index is 

considered in the assessment procedure proposed in this paper. 

௅ெ௉݀ݐݏ = ඩ 1
஻ܰ − 1

෍ ቌܯܮ ௡்ܲ
∗ −

1
஻ܰ
෍ ܯܮ ௡்ܲ

∗

௡∈ஐಳ

ቍ

ଶ

௡∈ஐಳ

 (9) 

3) Average of Lerner index 

Since by installing the new RPP, the conventional power generation units change their strategic behaviour, some of 

these market players might experience market power. In this regard, in this study, the average of market power index 

is considered as one of the indices.  

One of the most frequently used market power indices is Lerner index [29] and its average is formulated as: 

LI =
1
ܰீ

෍
ீܲܯܮ .௝்

∗ − ௝ݑ) + ௝ܾܲீ .௝்
∗ )

ܯܮ ீܲ.௝்
∗

௝∈ஐಸ

 (10) 

4)  Social welfare 

The major objective of the electricity market clearing procedure is to maximize social welfare. RPP location might 

affect this index that is calculated as the difference between the overall benefit of the consumers and overall declared 

cost of the producers [30]: 

ܹܵ = ෍ ൬ܿ௜ ஽ܲ.௜்
∗ +

1
2
݀௜ ஽ܲ.௜்

∗ ଶ൰ − ෍ ൬α௝்∗ ܲீ .௝்
∗ +

1
2 ௝ܾܲீ .௝்

∗ ଶ൰
௝∈ஐಸ௜∈ஐವ

 

 

(11) 

5)  Congestion cost 

Congestion is one of the barriers of free trading in electricity market. Several factors such as the low capacity of 

transmission network and load increase the effects of congestion. Congestion cost, which is an effective index for 

reflecting transmission congestion, is considered as one of the indices in this study and its average is calculated as 

[31]:  

ܥܥ = ෍ ෍ ௅ܲ.௠௡்
∗ ܯܮ) ௡்ܲ

∗ − ܯܮ ௠்ܲ
∗ )

௡∈ஐಳ௠∈ஐಳ

 (12) 
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6)  Sum of the generation units’ declared cost 

In electricity market, each generation unit offers its bid to the ISO for electricity market clearing depending on its 

real cost function. Generation unit's declared cost is calculated based on its offered bid. The following equation gives 

the sum of generation unit's declared cost: 

ܥܦܶ = ෍ α௝்∗ ܲீ .௝்
∗ +

1
2 ௝ܾ ீܲ.௝்

∗ ଶ

௝∈ஐಸ

 (13) 

Since the sum of declared cost of all generation units affects social welfare, it is considered as one of the indices in 

this study.   

7)  Nash index 

In electricity market modelling approach, in each iteration, Nash index is defined equal to 1 if the play reaches to 

Nash equilibrium otherwise it yields 0, see [20].   

8) Consumer payment 

After market clearing, the LMP of each transmission buses is calculated and afterwards consumer payment is 

determined as one of the considered indices:   

ܲܥ = ෍ ஽ܲ.௜்
∗ ܯܮ ஽ܲ.௜்

∗

௜∈ஐವ

 (14) 

C. Application of TOPSIS 

After calculating the respective market indices, the candidate locations are evaluated and ranked by using TOPSIS. 

The calculation process of TOPSIS is shown in Fig. 3.  

 

Fig.  3. Evaluation procedure through TOPSIS. 
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Each of the candidate transmission bus and its respective indices are shown in Table 1 as matrix H. For applying 

TOPSIS, each column should be normalized by dividing it by its respective infinite norm. By considering the essence 

of indices, it is found out that social welfare, total load, and Nash index are getting more preferable while they increase. 

However, the case for other 5 indices is vice versa. In order to homogenize all indices, we subtract the mentioned 3 

indices by one. It is noted that the way to treat these homogenized indices in TOPSIS process is the same as that of 

[27]. The calculated matrix is Z. 

The values of these market indices might vary in different transmission systems and electricity markets. Hence, we 

need to consider the weights for each index which have been provided by market operators.  

 Table 1 Typical Decision Matrix 

 ࡺࡵ  ࢟ࡵ  ૚ࡵ 

ܱ1 ℎ11  ℎ1ݕ  ℎ1ܰ 

      

 ܰݔℎ  ݕݔℎ  1ݔℎ ݔܱ

      

 ܰܯℎ  ݕܯℎ  1ܯℎ ܯܱ

 

By multiplying each weight by the column of  Z matrix, we have: 

݁௫௬ = ௫௬ݖ .  ௬ (15)ݓ

where ݓ௬ is weight for yth index and ݖ௫௬  is the x,y entry of matrix ܼ. The ideal positive and negative ideal indices are 

calculated as: 

݁௬୫ୟ୶ = max
௫

  ݁௫௬  (16) 

݁௬୫୧୬ = min  
௫

݁௫௬  (17) 

Afterwards, the Euclidean distance of each index to the positive and negative ideal indices is calculated as: 

௫ܱ
ା = ඩ෍൫݁௫௬ − ݁௬୫ୟ୶൯

ଶ
ே

௬ୀଵ

ݔ        = 1.2.  (18) ܯ…
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௫ܱ
ି = ඩ෍൫݁௫௬ − ݁௬୫୧୬൯

ଶ
ே

௬ୀଵ

ݔ     = 1.2.  (19) ܯ…

where ܰ is the number of indices and ܯ is the number of candidate locations. Finally, ranking index (λ௫) is calculated 

as follows: 

φ௫ = ௫ܱ
ି

௫ܱ
ା + ௫ܱ

ି ݔ =  (20) ܯ⋯.1.2

λ௫ =
φ௫

∑ φ௙
ெ
௙ୀଵ

ݔ =  (21) ܯ⋯.1.2

The related market indices of each candidate location with less λ୶ are more preferable. 

3. Test and Results 

This section is organized as follows: General data and assumptions are brought in 3-A. To show the performance of 

the proposed approach, we devote 3-B to a wind power plant as the considered renewable resource. 

A. General data and Assumptions 

The proposed method is applied on IEEE 30-bus test system [32] and the results are analysed. As depicted in Fig. 

4, six fossil-fueled generation units, whose cost functions and capacities are adopted from [18], are connected to this 

network.  

Loads are assumed to be elastic and their related information is given in Table 2. It is assumed that a wind power 

plant is already installed in bus 10 which has a capacity of 20 MW.  

The same investment cost and wind speed pattern is considered for investment of the new RPP in these buses. 

Because of possible network congestion, different RPP locations can cause different profits for the investor. The 

investor has very limited information from market, network and other participates. Because of the lack of enough 

information, the ISO helps the renewable power generation investors to find the best place for the new RPP installation.  
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Fig. 4. The modified IEEE 30-bus test system. The red buses {1,2,8,10,11,18,22,23,26,27,28} are considered as the 

candidate for the integration of new wind plant.  

Table 2 Demand Data 

݀௜  ܿ௜ ஽ܲெ஺௑.௜  ஽ܲெூே.௜  Bus ࢏ ݀௜ ௜ܿ  ஽ܲெ஺௑.௜  ஽ܲெூே.௜  Bus ࢏ 

-0.1 53 19 0 17 11 -0.1 50 31.7 0 2 1 

-0.1 45 13.2 0 18 12 -0.1 45 12.4 0 3 2 

-0.1 44 19.5 0 19 13 -0.1 48 17.6 0 4 3 

-0.1 60 12.2 0 20 14 -0.1 55 32.8 0 7 4 

-0.1 45 27.5 0 21 15 -0.1 40 40 0 8 5 

-0.1 35 13.2 0 23 16 -0.1 45 15.8 0 10 6 

-0.1 42 18.7 0 24 17 -0.1 60 21.2 0 12 7 

-0.1 57 18.5 0 26 18 -0.1 50 16.2 0 14 8 

-0.1 44 12.4 0 29 19 -0.1 52 18.2 0 15 9 

-0.1 50 20.6 0 30 20 -0.1 40 13.5 0 16 10 
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To this end, in this study, a new approach is proposed to help the renewable investors make the highest profit while 

improving the overall market indices at the same time.  

The set of the provided bids for fossil-fueled generation units is shown in Table 3. It should here be noted that the 

RPPs are considered to adopt the feed-in-tariff as implied in different countries around the world. Also, the vector of 

weights ቂଵ
ଽ

, ସ
ଶ଻

, ସ
ଶ଻

, ହ
ଶ଻

, ସ
ଶ଻

, ଶ
ଶ଻

, ଵ
ଶ଻

, ସ
ଶ଻
ቃ is assigned to the electricity market indices of subsection 2-B, respectively.  

Table 3 Bid Set of fossil-fueled Generation Units 

 ܬ ௝ܣ ܬ ௝ܣ

{10, 15, 20, 25, 30, 35, 40} 4 {20, 25, 30, 35, 40} 
1 

{30, 35, 40} 5 {20, 25, 30, 35, 40} 
2 

{35, 40} 6 {30, 35, 40} 3 

 

B.  ISO-Wind plant planner decision-making framework 

It is also assumed that an investor decides to build a new wind power plant with a capacity of 30 MW which will be 

connected to transmission system. By considering the wind speed in different geographical areas in which the 

transmission system is expanded, 11 buses for this new RPP installation are considered as the candidates. These 

candidate buses are indicated in red font in Fig. 4. Also, Weibull distribution is used for characterization of wind 

speed.  The Weibull PDF is ௩݂(ݒ) = (௞
௖

)(௩
௖
)௞ିଵ݁ି(ೡ೎)ೖ where k and c are shape and scale factors, respectively. The 

output power of a wind turbine is obtained as follows [33]: 

௪ܲ௥ = ቐ
ݒ                 0 < ௜௡ݒ ௜௡ݒ < ݒ
ଷݒܽ + ܾ ௥ܲ ௜௡ݒ ≤ ݒ ≤ ௥ݒ
௥ܲ                      ݒ௥ ≤ ݒ ≤ ௢௨௧ݒ

 
 

                                (22) 

where ܽ =  ௉ೝ
௩ೝయି௩೔೙

య   and ܾ =  ௩೔೙
య

௩ೝయି௩೔೙
య  [33]. Different geographical parameters are considered for the wind speed of the 

considered candidates that are shown in Table 4. It is worthy to highlight that we used fuzzy Q-learning modelling 

approach that we have proposed in our previous work [20]. Similar to that work, the state of each agent is considered 

as the output power of wind power generation and the action is its bid. The used fuzzy sets are depicted in Fig. 5.  
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Fig. 5. The wind plants’ fuzzy sets 

For applying TOPSIS, we assumed that each market operator assigns a weight for each of the indices based on its 

preference. Similar to any machine learning approaches, fuzzy Q-learning has two phases: training and testing. In the 

training phase, the aim is to provide the agents with this possibility to experience all states through a sufficient number 

of iterations. If we use Weibull distribution and Eq. (22), a very large number of iterations is required to provide the 

agents with this possibility to experience the states with low probability. To tackle this problem, we use uniform 

distribution to experience all the points of the ranges of 0-20 and 0-30 MW in a lower number of iterations. However, 

in the testing phase, we use Weibull distribution and Eq. (22) for characterization of the output power of wind turbines 

in different buses. By deploying the proposed method of Section III, fuzzy Q-learning approach has been performed 

50000 times for each of the candidate locations. 

It is noted that ε-greedy approach (ε is equal to 0.1) is considered as the action selection technique in the simulation. 

The learning rate of fuzzy Q-learning approach is 0.2. Based on the definition of state in our reinforcement learning – 

based problem which is renewable power generation output, in this paper, we have two states, the first one is related 

to the output of wind farm of bus 10 and the second is related to the wind plant which is going to be located in the 

candidate bus. For the first and second states, 3 and 4 triangular fuzzy sets are considered, which cover 0-20 and 0-30 

MW in a uniform spacing, respectively.  
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Table 4 Wind distribution data in different bus locations 

bus c k ݒ௜௡ ݒ௢௨௧ ݒ௥  

1 15 3 3 30 12 
2 16 2 3 30 12 
8 17 3 3 30 12 

10 15 1 3 30 12 
11 12 2 3 30 12 
18 11 1 3 30 12 
22 16 3 3 30 12 
23 17 1 3 30 12 
26 18 3 3 30 12 
27 15 2 3 30 12 
28 13 1 3 30 12 

 

After finishing the market modelling procedure, the market indices are derived for each wind plant location. Then, 

different locations are sorted by applying TOPSIS. The iteration number for learning through fuzzy Q-learning 

approach is set as 50000. This number of iterations is sufficient for all q values to be evolved and therefore all 

generation units reach to their evolved bidding strategy.  

In Fig. 6, the q values related to rule R22 corresponding to generation unit 2 when the new wind plant is located in 

bus 1 is depicted. More information about the used Takagi-Sugeno fuzzy rules is referred to subsection 3.2 of [20]. As 

shown in Fig. 6, the q values are settled after about 20000 iterations, which is less than 50000.    

The market indices and the average profit for the wind plant are given in Table 5. As shown in this table, the 

maximum of average wind plant’s profit is 1121 [$/h] which is realized in bus 8. In Table 5, the corresponding row is 

shown in red. Also, by considering the vector of weights ቂଵ
ଽ

, ସ
ଶ଻

, ସ
ଶ଻

, ହ
ଶ଻

, ସ
ଶ଻

, ଶ
ଶ଻

, ଵ
ଶ଻

, ସ
ଶ଻
ቃfor all of the indices, bus 26 is 

selected as the best location for wind plant investment from the prospective of electricity market indices by applying 

TOPSIS. The corresponding row is shown in green. Based on the proposed method, the investor is motivated to locate 

its wind plant in bus 26 by providing him/her with 1121-1038, i.e., 83 $/h as the investment incentive. This procedure 

is considered as a win-win decision from the prospective of renewable energy investment and electricity market 

behavior as shown in Table 5. By installing the wind plant in bus 26, the market indices are improved even in 

comparison with the case of before installing wind plant.  

For demonstrating the advantages of selecting bus 26 as wind plant installation bus, three fairness reflective indices 

of Table 5 including std_LMP, congestion cost and social welfare are normalized and compared.  
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The comparison result shows that the values of std_LMP, congestion cost, and social welfare are respectively 61% 

less, 60% less and 3% higher than those of the average related values in all candidate buses. The related normalized 

values are shown in Fig. 7. From this figure, it is also observed that the studied electricity market has been improved 

by installing wind plant in bus 26 in comparison with the case study before the investment.  

As another result of implementing TOPSIS, the ranking of transmission buses from the prospective of electricity 

market indices is calculated and depicted in  an ascending order in Fig. 8. As mentioned before, it is also understood 

from this figure that installing the wind plant in bus 26 has the most positive impact and, in contrast, investment in 

bus 22 has the least positive impact on the electricity market indices. 

Fig. 9 shows the LMP of the new wind plant when it is installed in bus 26 and bus 28. From this figure it can be 

inferred that installing wind plant in different locations can cause very different LMP profiles for new wind plant, and 

therefore it can change its average profit.  

 

Fig.  6. Development of fuzzy system variables corresponding to generation unit 2 when the new wind plant is 

located in bus 1. 
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Fig.  7. Normalized market indices for wind plant candidate location. 

 

Fig.  8. Ranking of difference wind plant locations based of market indices. 

Table 5 Average of market indices and wind plant’s average profit 

Candidate 

Bus 

 തതതതܮܶ

[MW] 

  തതതതത௅ெ௉݀ݐݏ

[$/MWh] 
 ܫܮ

ܹܵ  

[$/h] 

 ܥܥ

[$/h] 

 തതതതതതܥܦܶ

[$/h] 
 ܫܰ

 ܲܥ

[$/h] 

New RPP Profit 

[$/h] 

1 311 2.61 0.14 6677 350 8612 0.78 13190 921 

2 306 2.53 0.15 6100 322 9017 0.64 13075 817 

8 307 2.55 0.15 6015 333 9136 0.55 13086 1121 

10 286 2.47 0.18 5316 339 8922 0.45 12498 633 

11 311 2.56 0.13 6081 336 9204 0.37 13226 668 

18 304 2.54 0.15 5959 329 9067 0.43 13013 450 

22 304 2.60 0.17 6600 464 8413 0.31 13011 956 

23 305 2.70 0.14 5711 401 9323 0.52 13179 394 

26 307 0.93 0.17 6314 144 8872 0.33 13078 1038 

27 301 2.47 0.16 6478 354 8400 0.93 13019 841 

28 305 2.51 0.15 5984 329 9083 0.71 13103 551 

No Wind 297 2.40 0.16 5447 302 9281 0.61 12928 0 

0
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Fig.  9. RPP2's profit for various RPP's output when RPP 2 is located in bus 26 (left) and bus 28 (right). 

The simulation results show that the proposed mechanism is able to successfully support a considered renewable 

investment plan by firstly determining the maximum achievable profit and secondly giving an incentive to the investor 

to motivate him/her to locate the intended renewable generation plan in a bus in which electricity market indices are 

improved substantially. For example, ݀ݐݏതതതതത௅ெ௉, ܥܥതതതത, and ܹܵതതതതത are improved 61.2%, 52.3%, 15.9% respectively after 

installing the wind plant in the achieved optimal location. It is worthy to mention that some of the market indices such 

as the standard deviation of LMP are able to guarantee fairness in electricity market.  

4. Conclusion 

Renewable energy promotion is an inevitable task of the energy sector for preventing the ever-increasing climate 

change. In this regard, a new interactive multi-criteria decision-making framework between ISO and a renewable power 

plant planner is proposed in this paper for simultaneously supporting the intended renewable power generation plan and 

improving electricity market indices. The support mechanism has been developed by providing an incentive mechanism. 

The incentive mechanism provides the maximum achievable profits for the investor while gaining the most possible 

improvement in electricity market behavioral indices. This point is considered as a major research gap that is attempted 

to be filled in this paper in a way to simultaneously help the investor achieve its maximum profit and the market operator 

benefit from improving the electricity market indices. To this end, a combination of multi-agent fuzzy Q-learning 

modelling approach with TOPSIS is deployed to determine the best location from the prospective of renewable investor’s 

profit and the best preferable location from the viewpoint of the market operator. One of the advantages of this method 
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is to simulate and consider the strategic behavior of the other generation units after connecting the renewable power 

generation plan to each of the transmission buses. Simulations have been performed on the IEEE 30-bus test system and 

the results have been analyzed. The simulation results show that by applying the proposed method the market indices 

have been improved. For example, ݀ݐݏതതതതത௅ெ௉  തതതത, and ܹܵതതതതത are improved 61.2%, 52.3%, 15.9% respectively after installingܥܥ ,

the wind plant in the achieved optimal location. As a future outlook, the proposed approach can be developed for other 

types of renewable resources, such as solar power plants. Also, besides market indices, reliability criteria can be 

considered for proposing a reliability-based support for promotion of renewable energy.  
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