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Abstract—Demand response (DR) programs offer tremendous 

opportunities to those who have concerns about the future of 
energy. Since the DR strategies facilitate new technologies to take 
part in the power systems, the idea of spreading of electric vehicles 
(EVs) attracts the researchers around the world. In this study, an 
optimal energy management strategy for EV parking lots 
considering peak load reduction (PLR) based DR programs is 
built in stochastic programming framework, denoted by EV 
parking lot energy management (EV-PLEM). The proposed EV-
PLEM aims to maximize the load factor during the daily 
operation of an EV parking lot taking into account the uncertain 
behavior of EVs such as arrival and departure times together with 
the stochasticity of the remaining state-of-energy (SoE) of EVs 
when they reach the parking lot. A set of case studies is conducted 
to validate the effectiveness of the suggested EV-PLEM concept, 
and credible results and useful findings are reported for the cases 
in which the EV-PLEM is implemented. 
 

Index Terms—Energy management, EV parking lots, demand 
response, stochastic systems, user interfaces. 

NOMENCLATURE 

The abbreviations, sets and indices, parameters along with 
variables used in this study are alphabetically given in 
following tables. The others non-listed are explained where 
they first appear.  

 
TABLE I 

ABBREVIATIONS 

DR Demand response 

EV Electric vehicle 

GHG Greenhouse gas emissions 

LSE Load serving entity 
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PLEM Parking lot energy management 

PLR Peak load reduction 

RFID Radio frequency identification 

SoE State-of-energy 

TABLE II 
SETS AND INDICES ℎ  Set of electric vehicles. ݏ  Set of scenarios. ݐ  Period of the day index in time units [min]. 

TABLE III 
PARAMETERS ܧܥ௛ா௏  Charging efficiency of EV ℎ. ܴܥ௛ா௏  Charging rate of EV ℎ [kW]. ௧ܲௗ௘௦௜௥௘ௗ  Desired power in PLR during period	ݐ [kW]. ௧ܲ,௦௥௘௙  Reference power during period ݐ for scenario ௛ா௏,ௗ௘௦   Desired SoE of EV ℎ at the departure time [kWh]. ௛ܶ,௦௔ܧ݋ܵ .௛ா௏,௠௜௡  Minimum SoE of EV ℎ [kWh]ܧ݋ܵ .௛ா௏,௠௔௫ Maximum SoE of EV ℎ [kWh]ܧ݋ܵ .[kWh] ݏ ௛ா௏,௜௡௜  Initial SoE of EV ℎ for scenarioܧ݋ܵ .[kW] ݏ   Arrival time period of EV ℎ for scenario ݏ. ௛ܶ,௦ௗ   Departure time period of EV ℎ for scenario ܶ߂ .ݏ  Time granularity. ߨ௦  Probability value of scenario ݏ for reference power profile. ݐଵ  Starting period of the PLR oriented DR ݐଶ  Ending period of the PLR oriented DR 

 
TABLE IV 

VARIABLES 

௦ܲ,௛,௧ா௏,௖௛ Charging power of EV ℎ during period ݐ for scenario ݏ [kW]. ௦ܲ,௧௚௥௜ௗ  Power drawn from the grid during period	ݐ for scenario ݏ [kW]. ௦ܲ௚௥௜ௗ,௔௩௚  Average power drawn from the grid for scenario ݏ [kW]. ௦ܲ௚௥௜ௗ,௠௔௫ Maximum power drawn from the grid for scenario ݏ [kW]. ௧ܲ,௦௥௘௙ Reference power during period ݐ for scenario ௦,௛,௧ா௏ܧ݋ܵ .[kW] ݏ SoE of EV ℎ during period ݐ for scenario ݏ [kWh]. 

I. INTRODUCTION 

A. Motivation and Background 

UE to the gradually increase of energy demand, electricity 
industry needs to be upgraded majorly so as to meet the 

related demand in an efficient and economic manner.  
In particular, the rising penetration of renewable energy 

systems on the generation side on account of environmental 
concerns has begun to constitute uncertainty on the demand 
side as well as the generation side.  
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In this context, it has recently become a significant field of 
study to consider the demand side as a source of flexibility in 
modern power system operation thanks to the smart grid 
paradigm [1]. Another innovation provided by smart grid is to 
facilitate the integration of electric vehicles (EVs) into the 
power system in daily-life. The spread of EVs has accelerated 
even more in the last decade because of providing less 
greenhouse gas emissions (GHG) and more efficient use of 
energy.  

One of the revealed report claimed that the transportation 
industry accounts for 14% of total GHG emission in 2010. 
Furthermore, it is supposed to be doubled by 2050 in [2]. Yet 
another report [3] announced that the transportation sector is 
liable for 23% of current global energy-related GHG emissions 
in 2017. As indicated in [3], EV stock has exceed 2 million all 
around the world and the inevitable rising on number of EVs 
will further proceed unceasingly. In addition to valuable pros of 
EVs, this increase brings undeniable concerns with it for the 
power system operation. As an outcome, the aforementioned 
circumstances draw attention for associating energy 
management approach with the charging operations of EVs by 
designing a parking lot energy management concept [4], [5]. 
B. Relevant Background 

In recent years, the topic of scheduling of charging operation 
in EV parking lots is followed and also contributed by various 
researchers around the world. Shafie-khah et al. [6] proposed a 
model considering both price-based and incentive-based 
demand response (DR) strategies in order to derive optimal 
strategies for EV parking lots. Furthermore, the uncertainties of 
arrival time of EVs and electricity markets were taken into 
account. Nonetheless, it was stated that the objective function 
of the designed model was to maximize the profit of EV 
parking lot; however, load factor was not noticed during the 
operation.  

Both [7] and [8] investigated an optimal parking lot 
planning. While [7] considered power loss and voltage profile, 
the rising of reliability in distribution network was aimed in [8]. 
Although the proposed models were performed under various 
DR programs, stochasticity of EV habits and load factor were 
also not noticed in those papers. Reference [9] evaluated the 
allocation of EV parking lots in a distribution system to 
minimize system costs by taking into account restrictions 
regarding power system in a stochastic manner. It should be 
stated that the importance of load factor and DR programs were 
neglected in the proposed method.  

Akhavan-Rezai et al. [10] presented a real-time energy 
management system to enhance the participation of EV parking 
lots to DR programs. The aim of the suggested model was to 
maximize the delivered energy and minimize the cost of 
energy. Besides, arrival time and energy demand of the EVs 
were also considered in a stochastic manner. Nevertheless, load 
factor for daily operation was neglected in that paper.  

Jannati and Nazarpour [11] developed an optimal energy 
management model for an EV parking lot containing local 
generators and renewable energy sources.  

It was stated that the proposed model aims to minimize the 
operation costs of upstream grid, local generators along with 
charging and discharging cost of EV parking lot under different 
case studies. On the other hand, uncertain behavior of arrival 
time of EVs and the load factor were not taken into account.  

Also in [12], a management system was designed to operate 
EV charging in an EV parking lot based on prioritizing EVs so 
as to determine the charging order by considering the departure 
times and SoE of EVs. Nonetheless, the power system 
constraints and any DR program were not included in [12].  

Heydarian-Forushani et al. suggested a two-stage stochastic 
programming approach for a system including flexible 
components such as DR, energy storage systems, and EV 
parking lots in order to cope with the uncertain nature of 
market operations and with high penetration of renewable 
energy sources [13]. It was underlined that the ramp market on 
a sub-hourly basis was modeled in first time and flexibility 
tools were considered comprehensively. However, significance 
of load factor to enhance benefit of using the power system 
components was not evaluated.  

Farzin et al. investigated the increase of the reliability of the 
renewable-based distribution system during a malfunction. 
Moreover, EV parking lot was assumed as a power source with 
the vehicle-to-grid option [14]. It was stated in contributions 
that the uncertain charging habits of EV owners were modeled 
based on real data; however, consideration of load factor and 
implementation of a DR strategy were not even touched. 

Zhang and Li [15] compared day-time charging case in an 
EV parking lot near commercial places with night-time 
charging case in an EV parking lot for a residential building in 
order to prove the impacts on energy cost. The arrival and 
departure times and the initial SoE of EVs were taken into 
account in a stochastic manner by dynamic programming 
framework. It is worthy to note that load factor for scheduling 
of EV parking lot and any DR strategy were not evaluated in 
that study. 

Awad et al. suggested an optimization model for optimal 
usage of solar-based renewable energy system and energy 
storage systems as well as for defining the optimal charging 
price for EV parking lot’s owner. It was stated that the main 
objective of the optimization problem was to rise the profit 
from the EV charging while satisfying the technical 
restrictions. Neither load factor nor any DR program were 
taken into account in favor of the power system [16].  

Lastly, there are many comprehensive literature studies 
emphasizing the significance of energy management of EV 
parking lots from different points of view such as [17] and [18] 
that reviewed the EV parking lots interaction with renewable 
energy sources. More detail reviews devoted to the topic can 
also be found in [19], [20], and [21]. 

Aforementioned studies along with many other studies that 
cannot all be referred in this study considered the topic from 
different points of view so as to enhance the efficient use of 
energy based on smart grid paradigm in EV parking lots. 
However, none of them considered simultaneously the 
implementation of a peak load reduction (PLR) oriented DR 
program and the consideration of load factor maximization 
(which is a crucial factor for effective and efficient use of 
power system assets) together with the several uncertainty 
sources in the energy management of an EV parking lot.  

C. Contributions  
In this study, a linear programming model of a parking lot 

energy management concept denoted by EV parking lot energy 
management (EV-PLEM) is proposed with the objective of 
investigating the operation of charging EVs in the parking lot. 
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Because the arrival time and the initial SoE of EVs before the 
charging are generally unpredictable, the propounded EV-
PLEM strategy is evaluated by using a stochastic approach to 
dispose of the aforementioned concerns.  

The main objective of the EV-PLEM system is to maximize 
the load factor to enhance the beneficial usage of other power 
system components. The novelties of the paper can also be 
highlighted as follows:  

• The stochasticity of arrival time related to the EVs and 
uncertain behavior of initial SoE of EVs before charging 
are considered by using different driving cycles, 
resulting in eight different scenarios for reference power 
profiles for EV parking lot. 

• The PLR based DR program is performed in an 
optimization problem, which aims to maximize the load 
factor for the first time in the literature. 

• An interactive interface is developed to provide a more 
user-friendly tool for EV owners to facilitate the 
charging operation in parking lots. 

D. Organization 

The remainder of paper is organized as follows. The 
mathematical model of motion and the proposed EV-PLEM 
model are expressed in Section II. Thereafter, the Section III 
describes the case studies and provides discussions on the 
related results. Finally, concluding remarks and future studies 
are presented in Section IV. 

II. METHODOLOGY 

The demonstration of the proposed (EV-PLEM) strategy is 
shown in Fig. 1. As can be seen from Fig. 1, the energy 
management concept manipulates the charging operation of the 
EVs by considering the DR strategy demanded by the load 
serving entity (LSE) and by maximizing load factor to support 
operation and planning of the power system. The significant 
obstacle for carrying out this type of charging operation 
strategies is to provide participants of EV owners in these 
irregular charging operations due to the battery degradation. It 
is worth underlining that the battery degradation is neglected 
during the charging transactions in this study. The rest of this 
section gives the details about the mathematical background of 
an EV motion and the proposed EV-PLEM model. 

A. Mathematical Model of EV Motion 

In order to obtain reference power scenarios for EV parking 
lot, the mathematical model of EV motion is used by 
considering different driving cycles. It is also acquired that how 
much SoE belong to the EV will remain when it reaches to the 
parking lot by using this motion model. The mathematical 
details relevant to the EV motion will be analyzed in this 
subsection. The mathematical model of EV motion can be 
analyzed by using Newton one dimensional motion law. It 
should be stated that not only road topology affects the 
consumed power, but also the characteristics of EVs have great 
influence on the motion.  

In (1), ܲ(ݐ) represents the electrical power demand of the 
EV in period t, in watt; ௩ܲ(ݐ) is mechanical power demand in 
period t, in watt, and ɳௗ is the drive efficiency. ௩ܲ(ݐ) is 
obtained by multiplying vehicle speed (ݐ)ݒ in m/s in period t, 
and total traction force ܨ௧(ݐ) in Newton acts on the EV in 
period t in (2).  

(ݐ)ܲ = ௩ܲ(ݐ)ɳௗ  (1)

௩ܲ(ݐ) = (ݐ)ݒ ∙ (2) (ݐ)௧ܨ

Fig. 2 depicts the forces that have effects on the EV motion 
during the trip to the parking lot. Moreover, the total traction 
force expression is given in (3). The total traction force is 
obtained by the summation of aerodynamic drug force,	ܨ௔(ݐ), 
rolling friction (resistance) force, ܨ௥(ݐ), the force caused by the 
gravity when driving on non-horizontal roads, ܨ௚(ݐ), the 
disturbance force that summarizes all other effects, ܨௗ(ݐ), and 
lastly the force by the acceleration of the vehicle [22]. ܨ௧(ݐ) = ݉௩ ݐ݀(ݐ)ݒ݀ + (ݐ)௔ܨ + (ݐ)௥ܨ + (ݐ)௚ܨ + (ݐ)ௗܨ (3)

(ݐ)௔ܨ = 12 ∙ ߩ ∙ ܣ ∙ ௫ܥ ∙ 	ଶ(ݐ)ݒ (ݐ)௥ܨ(4) = ݉௩ ∙ ௥ܥ ∙ ݃ ∙ 	(ߙ)	ݏ݋ܿ (ݐ)௚ܨ(5) = ݉௩ ∙ ݃ ∙ 	(ߙ)	݊݅ݏ (6)

Equations (4), (5), and (6) state the aerodynamic drug force, 
the rolling friction force, and the gravity force, respectively. 
Herein, ܣ expresses front surface of the vehicle in m2, ܥ௫ and ܥ௥ represent the drag coefficient and rolling resistance 
coefficient, respectively. ߩ ,݃ ,ߙ, and ݉௩ are road slope in rad, 
gravity of earth in m/s2, air density in kg/m3, and mass of the 
vehicle in kg, respectively. It is worthy to underline that the 
force caused by acceleration will be negative if the vehicle is 
slowing down.  

Furthermore, ܨ௚(ݐ) will be negative if the vehicle goes 

downhill. Besides, the expression of acceleration 
ௗ௩(௧)ௗ௧  can be 

simply obtained by the difference between consecutive values 
of (ݐ)ݒ divided by the time step as in (7). ∆ܶ is the time 
granularity that must be in seconds in (7). 

 

 
Fig. 1. The proposed energy management strategy for EV parking lot. 

 
Fig. 2. Forces acting on the EV motion. 
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ݐ݀(ݐ)ݒ݀ = (ݐ)ݒ − ݐ)ݒ − 1)∆ܶ 	 (7)

B. EV Parking Lot Energy Management Model 

The proposed EV-PLEM system is modeled as an 
optimization problem in this study. The objective of the energy 
management strategy is to maximize the load factor. In other 
words, the objective is to obtain benefit from the capacity of 
power system components in the most effective manner as 
much as possible at all time periods of the day. 

Eq. (8) reflects the objective function adopted in the EV-
PLEM strategy proposed in the study.  ݉ܽݔ෍ߨ௦ ௦ܲ௚௥௜ௗ,௔௩௚௦ܲ௚௥௜ௗ,௠௔௫௦ 		 (8)

Due to its nonlinear structure, Eq. (8) cannot be solved by 
using linear programming techniques. Regarding this fact, the 
objective function is rearranged to serve the same purpose, 
maximizing the load factor, as indicated in (9). It should be 
noted that (9) naturally results in the maximization of the load 
factor defined in (8), by maximizing the numerator and 
minimizing the denominator in (8) in order to minimize the 
subtraction in (9). ݉݅݊෍ߨ௦൫ ௦ܲ௚௥௜ௗ,௠௔௫ − ௦ܲ௚௥௜ௗ,௔௩௚൯௦ 	 (9)

Equation (9) is composed of the probability value (ߨ௦) of the 
related reference power consumption for EV parking lot and 
the difference between the maximum power drawn from the 
grid ( ௦ܲ௚௥௜ௗ,௠௔௫) and the average power drawn from the grid 

( ௦ܲ௚௥௜ௗ,௔௩௚) during the scenario ݏ. Furthermore, these variables 
are obtained via (10) and (11). 

௦ܲ௚௥௜ௗ,௠௔௫ ≥ ௧ܲ,௦௚௥௜ௗ, ,ݏ∀ 		ݐ∀ (10)

௦ܲ௚௥௜ௗ,௔௩௚ = ∑ ௧ܲ,௦௚௥௜ௗ௧(ݐ)ݐ݋ݐ , 	ݏ∀ (11)

It should be reminded that in related expressions, ௦ܲ௚௥௜ௗ,௠௔௫ 
is minimized naturally by the solution technique since the aim 

is to minimize the difference between ௦ܲ௚௥௜ௗ,௠௔௫ and ௦ܲ௚௥௜ௗ,௔௩௚. 

Besides, even if (8) is an inequality constraint,	 ௧ܲ,௦௚௥௜ௗ  cannot 
take a value above the maximum value. Herein, the power 

drawn from the grid ( ௦ܲ,௧௚௥௜ௗ) is equal to the sum of charging 

power of EVs ( ௦ܲ,௛,௧ா௏,௖௛) in parking lot. 

௦ܲ,௧௚௥௜ௗ =෍ ௦ܲ,௛,௧ா௏,௖௛௛ , ,ݐ∀ 	ݏ∀ (12)

Equation (13) describes that the charging power for each EV 
cannot be greater than the charging station capacity of the 
related EV. ௦ܲ,௛,௧ா௏,௖௛ ≤ ,	௛ா௏ܴܥ ,ݏ∀ ∀ℎ, ݐ ∈ ൣ ௛ܶ,௦௔ , ௛ܶ,௦ௗ ൧	 (13)

Equation (14) expresses the relationship between the SoE of 
the EV for the previous time interval (ܵܧ݋௦,௛,௧ିଵா௏ ) and charging 

energy supplied from the grid ( ௦ܲ,௛,௧ா௏,௖௛ ∙ ௛ா௏ܧܥ ∙ ∆ܶ) in order to 
obtain the SoE of the EV for each time interval. ܵܧ݋௦,௛,௧ா௏ = ௦,௛,௧ିଵா௏ܧ݋ܵ + ௦ܲ,௛,௧ா௏,௖௛ ∙ ௛ா௏ܧܥ ∙ ,ݏ∀,ܶ∆ ∀ℎ, ݐ ∈ ൣ ௛ܶ,௦௔ , ௛ܶ,௦ௗ ൧	 (14)

As far as the initial SoE values of EVs are concerned, after 
journey of the EV to the parking lot, remaining SoE of the EV 
is assumed as initial SoE of the EV (ܵܧ݋௛ா௏,௜௡௜) for the charging 

operation by (15). It is worthy to highlight that the initial SoE 
of EV should be considered as a variable to perform the 
journey stochasticity of EVs according to the related scenarios. ܵܧ݋௦,௛,௧ா௏ = ,௦,௛ா௏,௜௡௜ܧ݋ܵ ,ݏ∀ ∀ℎ, ݐ = ௛ܶ,௦௔ (15)

In order to take end-user comfort into account, SoE of the 
EV (ܵܧ݋௦,௛,௧ா௏ ) at the departure time is achieved to be equal to 

the desired SoE value of the EV (ܵܧ݋௦,௛,௧ா௏,ௗ௘௦௜௥௘ௗ) by using (16). 
Moreover, the SoE of the EV is restricted in allowed maximum 
SoE capacity of EV (ܵܧ݋௛ா௏,௠௔௫) as indicated in (17). ܵܧ݋௦,௛,௧ா௏ = ,௦,௛,௧ா௏,ௗ௘௦௜௥௘ௗܧ݋ܵ ,ݏ∀ ∀ℎ, ݐ = ௛ܶ,௦ௗ ௦,௛,௧ா௏ܧ݋ܵ(16) ≤ ,௛ா௏,௠௔௫ܧ݋ܵ ,ݏ∀ ∀ℎ, ݐ∀ (17)

It should be noted that designated variables for each EV 
should not be any value when they are not in parking lot. In 
order to satisfy this constraint, therefore, (18) is defined in the 
proposed EV-PLEM model. ܵܧ݋௦,௛,௧ா௏ , ௦ܲ,௛,௧ா௏,௖௛ = 0, ,ݏ∀ ∀ℎ, ݐ ∉ ൣ ௛ܶ,௦௔ , ௛ܶ,௦ௗ ൧ (18)

Lastly, it should be clarified that the reference power patterns 
are provided for management of the charging interactions of 
EV-PLEM under the PLR based DR events. The uncertainty of 
the reference power pattern is related to arrival time and 
remaining SoE level of each EV. In order to conduct the EV-
PLEM under a PLR based DR strategy, (19) is modeled. Thus, 
reducing the charging power of the EVs according to the 

reference power profile ( ௧ܲ,௦௥௘௙) at the level demanded ( ௧ܲௗ௘௦௜௥௘ௗ) by the LSE is achieved. It is worthy to underline that 
regarding PLR based DR program, the interaction between EV 
owners and parking lot operator are not evaluated in this study. 
It is assumed that EV owners have already accepted to 
participate in the DR program. It should be recalled that there 
cannot be any peak curtailment if the reference power is equal 
to zero, hence (20) restricts the proposed model in this manner. 

௧ܲௗ௘௦௜௥௘ௗ ≤ ௧ܲ,௦௥௘௙ − ௦ܲ,௧௚௥௜ௗ, ,ݏ∀ ݐ∀ ∈ ,ଵݐ] [ଶݐ (19)

௦ܲ,௧௚௥௜ௗ = 0, ∀ ௧ܲ,௦௥௘௙ = 0, ,ݏ∀ ݐ ∈ ,ଵݐ] [ଶݐ (20)

III. TEST AND RESULTS 

With the aim of maximizing load factor along with the 
evaluation of stochasticity of the initial SoE of EVs and 
uncertainty of the arrival time for each EV to the parking lot, 
the energy management of the EV parking lot is modeled by 
using linear programming. The proposed EV-PLEM strategy is 
tested in GAMS v.24.1.3 software with commercially available 
solver CPLEX v.12 [23]. It should also be clarified that the 
reference power profiles for the EV parking lot are obtained via 
MATLAB/Simulink [24]. Input data and relevant results to the 
different cases will be analyzed in following subsections, 
respectively. The key challenge for implementing the proposed 
EV-PLEM can be the computational burden. But, even for the 
longest case, it takes only 0.18 s to solve the devised EV-
PLEM using a Dual Core Laptop with 2.5 GHz CPU and 8 GB 
RAM, which can give an insight of the computation time 
required for the methodology. 

A. Input Data 

In this paper, 10 different commercially existing EV types 
and 8 dissimilar driving cycles are taken into account. 
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Furthermore, 10 different vehicles of each type of EV model 
that have different arrival time and initial SoE in order to reach 
more appropriate assessments with the real life are evaluated. 
Table V covers the whole EV models analyzed in this study 
along with their electrical characteristics. 

As mentioned before, in order to consider the stochasticity of 
the arrival time of EVs to the parking lot and uncertainty 
regarding the initial SoE of EVs, 8 different driving cycles [35] 
detailed with the journey times in Table VI are utilized. The 
reason for using different drive cycles is that each of the drive 
cycles represents the different external factors that have 
impacts on the power consumption of an EV. Therefore, at the 
end of every drive cycle, each of EVs will have different initial 
SoE level when they arrive at the parking lot, just before the 
charging operation. 

In Fig. 3, the reference power patterns based on generated 
scenarios by using driving cycles for an EV parking lot are 
shown. For a clearer representation, another subfigure  
is demonstrated between 1 pm and 4 pm for scenarios 5, 6,  
and 7. 

To obtain more realistic scenarios, 8 different driving cycles 
(i.e., 8 different scenarios) and a total of 100 EVs including 10 
different models are taken into account in the study. The 
distribution of the arrival times relevant to each EV for each 
scenario is shown in Fig. 4.  

It can be seen in the demonstration that EVs are assumed to 
use the parking lot between 7 am and 7 pm throughout the day, 
thereby, it can be approved that the generated scenarios are 
close to real-life. 

TABLE V 
ELECTRICAL CHARACTERISTICS OF ELECTRICAL VEHICLES 

EV Types 
Battery Capacity 

[kWh] 
Charging Rate 

[kW] 

Volkswagen E-Golf [25] 36 7.2 

BMW i-3 [26] 33 7.7 

Mercedes B-Class [27] 28 10 

Tesla Model-S [28] 100 10 

Fiat 500E [29] 24 6.6 

Ford Focus Electric [30] 23 6.6 

Kia Soul EV [31] 27 6.6 

Mitsubishi i-MiEV [32] 16 3.6 

Chevy Volt [33] 18 3.6 

Nissan LEAF [34] 40 6.6 

 

TABLE VI 
CONSIDERED DRIVING CYCLES TO GENERATE REFERENCE POWER PROFILES 

FOR EV PARKING LOT 

Driving Cycles [35] Journey Time (s) 

UDDS 1370 

EPA IM240 240 

FTP 1875 

HDUDD 1060 

HWFET 765 

US06 600 

EUDC 400 

LA92 1435 

 
Fig. 3. The generated scenarios for reference power profiles for EV charging. 

 

Fig. 4. The distribution of arrival times in the day for 100 EVs according to 
the 8 different scenarios. 

B. Simulation and Results 

The performance of EV-PLEM model has been examined by 
considering base case along with 7 different case studies. The 
evaluated case studies are listed below: 

• Case-1: No peak load reduction is demanded by the 
LSE and EVs are free to depart after the time of the 
minimum full charge without any time constraint. 

• Case-2: 30 kW peak load reduction is demanded 
between 1 pm and 3 pm by the LSE and EVs can be 
departed between the time of the minimum full charge 
and 12 am. 

• Case-3: 30 kW peak load reduction is demanded 
between 1 pm and 3 pm by the LSE and EVs can be 
departed between the time of the minimum full charge 
and 10 pm. 

• Case-4: 30 kW peak load reduction is demanded 
between 1 pm and 3 pm by the LSE and EVs can be 
departed between the time of the minimum full charge 
and 8 pm. 

• Case-5: 70 kW peak load reduction is demanded 
between 1 pm and 3 pm by the LSE and EVs can be 
departed between the time of the minimum full charge 
and 12 am. 

• Case-6: 70 kW peak load reduction is demanded 
between 1 pm and 3 pm by the LSE and EVs can be 
departed between the time of the minimum full charge 
and 10 pm. 

• Case-7: 70 kW peak load reduction is demanded 
between 1 pm and 3 pm by the LSE and EVs can be 
departed between the time of the minimum full charge 
and 8 pm. 
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The time of the minimum full charge is obtained by 
considering the difference between the maximum SoE of the 
EV and the initial SoE of the EV immediately before charging. 
Besides, the arrival time of the EV to the parking lot, the rate of 
charge, together with the capacity and the efficiency of the 
charging station of relevant EV are the components of the 
calculation. It should also be indicated that all the EVs’ owners 
are assumed to be willing to depart from the parking lot with 
the maximum SoE. There are 100 EVs with different arrival 
and departure times in addition to SoE of EVs under 8 case 
studies evaluated in this study. This means that hundreds of 
results are obtained. Therefore, it is worthy to underline that the 
assessments of the graphical results are conducted based on 
some selected cases and scenarios for the sake of clarity. 
Selected results are determined to manifest the impacts of the 
mentioned variables most prominently. 

Fig. 5 shows the power drawn from the grid for each 
scenario in Case-4. It is obvious that generated scenarios have 
remarkable impacts on the drawn power pattern. It can also be 
understood from the mentioned figure that after the LSE 
demanded peak load reduction between 1 pm and 3 pm, the 
charging power profile is affected directly. 

In order to clarify the effects of different case studies on the 
power drawn from the grid for EVs charging, all cases can be 
observed for one selected scenario and Fig. 6 is illustrated in 
this context. It should be mentioned that the impacts of 
departure time restrict have great influence on the power 
pattern rather than peak load curtailment demand. A subfigure 
is demonstrated in Fig. 6 so as to show up the impact of peak 
load reduction based DR strategy as the effect of DR is 
eliminated when the SoE of EVs reaches a certain level. In 
order to take an attention on significance of the departure time 
constraint for EV-PLEM system, however, Case-1 can be 
compared with the others in Fig. 6. It can be concluded that 
thanks to disposed of time constraints the EV-PLEM system 
can schedule the charging operations in a more flexible fashion. 

The variation of the SoE of a Volkswagen type EV and the 
drawn power from the grid are presented for a short time 
interval in Case-5 during Scenario 1 in Fig. 7.  It is obvious in 
Fig. 7 that after introducing of peak load reduction demand of 
the LSE, the power drawn from the grid is curtailed and the 
charging of the EV is stopped for a while.  

Table VII encapsulates the comparison of the base case 
along with 7 different cases analyzed in this study according to 
the main objective of the proposed EV-PLEM strategy. It can 
be deduced from Table VII that base case can be accepted as 
the worst case since there is no energy management concept.  
Case-1 that includes neither DR strategy nor departure time 
restrict provides the best load factor value at the end of the day. 
As seen in the mentioned table, with the introduction of the 
EV-PLEM, load factor has increased to 0.9293 almost equal to 
1 with the increase rate of 150.3%.  

Case-2 reveals the effect of PLR demanded by LSE in first. 
Moreover, comparing Case-2 with Case-3, and Case-4, it can 
be observed how the dissimilar departure time constraints affect 
the objective of the EV-PLEM. 

It is obvious that after demanding PLR by LSE, the EV-
PLEM system is restricted to shed the charging load of EVs. 
Even there are departure time and PLR restrictions, in Case-2, 
Case-3, and Case-4, EV-PLEM has raised the load factor by the 
rate of 70.3%, 45.8%, and 19.6%, respectively.  

As a result of variations on departure times, the load factor 
value is getting smaller gradually since EV-PLEM has a limited 
area in a day period for scheduling.  

 

 
Fig. 5. The power drawn from the grid to charge EVs in parking lot for each 

scenario in case-4. 
 

 
Fig. 6. The power drawn from the grid for scenario 4 in each case study. 

 

 
Fig. 7. The SoE variation of Volkswagen E-Golf number 9 and the power 

drawn from the grid for scenario 1. 
 

TABLE VII 
COMPARISON OF DIFFERENT CASE STUDIES 

Case 
Studies 

Amount of 
PLR 

Departure Time 
Constraint 

Load 
Factor 

Increase 
Rate 

Base Case -- -- 0.3712 - 

Case 1  -- -- 0.9293 150.3% 

Case 2  30 kW 12 am 0.6322 70.3% 

Case 3  30 kW 10 pm 0.5413 45.8% 

Case 4  30 kW 8 pm 0.4442 19.6% 

Case 5  70 kW 12 am 0.6020 61.6% 

Case 6  70 kW 10 pm 0.5133 38.2% 

Case 7  70 kW 8 pm 0.4087 10.1% 
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When it comes to Cases 5, 6, and 7, the increase of amount 
of PLR demanded by LSE is also quite influential on arranging 
of the load factor. It can be deduced from the above-mentioned 
implications that Case-7 has the smallest load factor which is 
equal to 0.4087 by the rate of 10.1% in comparison with Base 
Case due to high power demand and restrain time to charging 
operation of EVs. The comparison of the Case-1 and Case-7 
reveals the effects of the departure time and PLR constraints on 
the load factor maximization evidently, in which it can be seen 
that the mentioned constraints decrease the load factor by the 
rate of 56%.  

In order to reflect the impacts of the PLR based DR on the 
devised EV-PLEM strategy, additional cases are provided, 
namely Case-8, Case-9, and Case-10, which are with different 
departure time constraints (12am, 10pm, 8pm, respectively) but 
no PLR limit is demanded by the LSE. The relevant results are 
given in Fig. 8 where the DR period is further zoomed to 
enable a better comparison.  

As seen, when PLR limit is not imposed, a reduction may be 
observed in peak load between ݐଵ and ݐଶ in some cases 
compared to the reference power curve. However, it is not 
guaranteed to achieve a certain lower level of reduction in peak 
demand when PLR limits are not imposed. Thus, the reason for 
applying PLR limits here is to obtain a certain amount of 
reduction in peak load during stressful conditions for the grid, 
rather than a reduction amount that is uncertain from the lower 
bound point of view. The PLR limit oriented constraints impose 
a lower bound for the reduction that is decided by upper 
hierarchical levels of grid operation. 

C. Interactive User Interface for EV Parking Lots 

The abovementioned EV-PLEM concept is modeled for the 
LSE and EV parking lot operators; however, the new-
generation parking lots need to be adopted to also EV owners. 
Therefore, a user-friendly interactive interface is developed for 
EV owners as a mobile phone application in the scope of this 
work. The operation diagram of the user interface is illustrated 
in Fig. 9 and the following bullets summarize this process step 
by step. 

When the EV owner arrives the parking lot and plugs the EV 
to the charging station, the EV-PLEM recognizes it and sends 
notification to the mobile app of the end user via radio 
frequency identification (RFID) based communication. 
Afterwards, via the mentioned mobile app, the EV-PLEM 
offers two options to the user, which are named as pick up on a 
specific date and time or pick up at desired SoE level, as shown 
at the top of  Fig. 10.  

 

 
Fig. 8. Analysis of the impacts of neglecting PLR limits on EVPL operation 

(DR period further zoomed). 

Operation steps of the interactive user interface 

1. EV owner plugs the EV to charging station, 

2. EV-PLEM notices the EV via RFID, 

3. EV-PLEM sends a notification to the mobile app of EV owner, 

4. EV owner chooses the proper option as time or charging, 

5. EV-PLEM makes the decision for charging operation based on the EV 
owner's request, 

6. The mobile app shows the pick-up date or battery level. 

 
Fig. 9. The block diagram of interactive interface for EV owners. 

 

 
Fig. 10. User interface of options asked to the EV owners. 

 
The user who has priority on date will choose the option 

called date and time. After determining the pick-up date and 
time, application sends data to cloud and asks for maximum 
possible SoE for showing it on the user interface. Then, the 
user can only select above the current and below the maximum 
possible SoE level as the desired departure SoE value. Another 
choice for the user who has time constraint is to pick up the EV 
at a desired SoE level.  
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When the user select SoE option, the application will ask for 
SoE level and then calculate the proper date for departure 
considering the grid loads. First, the nearest appropriate time is 
shown for the specified SoE level the user desires. Besides, EV 
owner can determine a later time for picking up the EV. The 
interactive interface of the aforementioned options can be seen 
at the bottom part of Fig. 10. 

IV. CONCLUSION 

For the purpose of reducing the dependence on fossil fuels 
and providing flexibility for LSEs thanks to the bi-directional 
energy flow, EVs and their management have a key role for the 
new power system. This study proposed an EV-PLEM strategy 
based on a linear programming framework, aiming to maximize 
the load factor during the daily operation of an EV parking lot 
under the peak load reduction based DR program. The arrival 
and departure time, together with the remaining SoE of EVs 
just before charging operation were evaluated in a stochastic 
manner in this study. Eight different driving cycles and ten 
different commercially available EV models (100 EVs in total) 
were considered during the generation of scenarios to increase 
the accuracy of the suggested EV-PLEM. It should be 
highlighted that bi-directional power flow was not considered 
in the scope of this study. Thus, EV-PLEM system managed 
the charging operation of EVs in the parking lot. Moreover, 
several case studies were performed by considering different 
departure time constraints and a different amount of demand 
power for peak load reduction by the LSE to validate the 
effectiveness of the designed concept. It should also be 
underlined that an interactive interface for EV owners was 
developed in order to simplify them to be adjusted to new 
generation parking lots in this study. The results showed that 
the load factor, which is a significant parameter to take 
advantage of other power system components in an effective 
way, can be improved by using the proposed EV-PLEM.  
For the case in which no energy management strategy is 
implemented, assumed as the worst and base case, the load 
factor obtained was as 0.3712. In order to illustrate the impacts 
of the EV-PLEM strategy, the base case was compared with 
Case-1 in which the load factor is at the maximum level equal 
to 0.9293 by the increase rate of 150.3% due to not considering 
either departure time or any PLR constraints. Cases 2, 3, and 4 
were created to show the effects of the departure time variation 
with 30 kW peak load reduction based DR program. One of the 
astonishing results was that the departure time plays a key role 
to arrange the load factor during the scheduling of the charging 
operation. Further, Cases 5, 6, and 7 were explored to observe 
how the load factor will response to the change in the amount 
of demanded power for PLR, which was desired to be 70 kW. 
The best option to show up the impacts of the departure time 
and PLR constraints is the comparison of Case-7 with Case-1, 
in which the decrease rate of the load factor is 56%. In the light 
of these results, it can be deduced that increasing the amount of 
PLR also causes extra stress on the EV-PLEM system during 
the load factor maximization. In this study, the aforementioned 
EV-PLEM model constructed using linear programming was 
examined by considering just the charging operation of EVs. 
This research may be extended by including bi-directional 
power flow thanks to the vehicle-to-grid feature, and also 
considering the battery degradation due to the irregular 
charging operation as a future work. 

REFERENCES 
[1] N. G. Paterakis, O. Erdinç, and J..P.S. Catalão. "An overview of Demand 

Response: Key-elements and international experience," Renewable and 
Sustainable Energy Reviews, vol. 69, pp. 871-891, March 2017. 

[2] R. K. Pachauri et al., “Climate change 2014: Synthesis report. 
Contribution 586 of Working Groups I, II and III to the fifth assessment 
report of the Intergovernmental Panel on Climate Change,” IPCC (AR5), 
Geneva, Switzerland, 2014. 

[3] A. Majoe et al., “Global EV Outlook 2017: Two million and counting,” 
International Energy Agency, Paris, 2017, pp. 1–71. [Online]. Available: 
https://www.iea.org/publications/freepublications/publication/GlobalEV
Outlook2017.pdf  Accessed on: Jan. 25, 2018 

[4] V. Mohan, S. Jai Govind, and O. Weerakorn. "Sortino ratio based 
portfolio optimization considering EVs and renewable energy in 
microgrid power market," IEEE Transactions on Sustainable Energy, 
vol. 8, no. 1, pp. 219-229, Jan. 2017.  

[5] H. Farzin, F. F. Mahmud, and M. A. Moein, "Reliability Studies of 
Modern Distribution Systems Integrated With Renewable Generation 
and Parking Lots," IEEE Transactions on Sustainable Energy, vol. 8, no. 
1, pp. 431-440, Jan. 2017. 

[6] M. Shafie-khah, et al., "Optimal behavior of electric vehicle parking lots 
as demand response aggregation agents," IEEE Transactions on Smart 
Grid, vol. 7 no. 6, pp. 2654-2665, Nov. 2016. 

[7] A. Mohsenzadeh, et al., "Optimal planning of parking lots and demand 
response programs in distribution network considering power loss and 
voltage profile," in Proc. ISGT, Washington, DC, USA, 2015, pp. 1-5. 

[8] S. Pazouki, M. Amin, and H. Mahmoud-Reza, "Optimal planning of 
parking lots and DLC programs of Demand Response for enhancing 
distribution networks reliability." in PES General Meeting| Conference 
& Exposition, National Harbor, MD, USA, 2014, pp. 1-5. 

[9] N. Neyestani, et al., "Allocation of plug-in vehicles' parking lots in 
distribution systems considering network-constrained objectives,"  
IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2643-2656, 
Sept. 2015. 

[10] E. Akhavan-Rezaei, et al., "New EMS to Incorporate Smart Parking Lots 
into Demand Response," IEEE Transactions on Smart Grid, to be 
published. DOI: 10.1109/TSG.2016.2587901. 

[11] J. Jannati, and N. Daryoosh. "Optimal energy management of the smart 
parking lot under demand response program in the presence of the 
electrolyser and fuel cell as hydrogen storage system," Energy 
Conversion and Management, vol. 138, pp. 659-669, Feb. 2017. 

[12] E. Akhavan-Rezai, et al., "Online intelligent demand management of 
plug-in electric vehicles in future smart parking lots," IEEE Systems 
Journal, vol. 10, no. 2, pp. 483-494, June 2016. 

[13] E. Heydarian-Forushani, et al. "Optimal Operation of Emerging Flexible 
Resources Considering Sub-hourly Flexible Ramp Product." IEEE 
Transactions on Sustainable Energy, to be published. DOI: 
10.1109/TSTE.2017.2766088. 

[14] H. Farzin, F. F. Mahmud, and M. A. Moein, "Reliability Studies of 
Modern Distribution Systems Integrated With Renewable Generation 
and Parking Lots." IEEE Transactions on Sustainable Energy, vol. 8, no. 
1, pp. 431-440, Jan. 2017. 

[15] L. Zhang and L. Yaoyu, "Optimal management for parking-lot electric 
vehicle charging by two-stage approximate dynamic programming," 
IEEE Transactions on Smart Grid, vol. 8, no. 4, pp. 1722-1730,  
July 2017. 

[16] A. SA. Awad, et al., "Optimal resource allocation and charging prices for 
benefit maximization in smart PEV-parking lots," IEEE Transactions on 
Sustainable Energy, vol. 8, no. 3, pp. 906-915, July 2017. 

[17] J. Y. Yong, et al., "A review on the state-of-the-art technologies of 
electric vehicle, its impacts and prospects," Renewable and Sustainable 
Energy Reviews, vol. 49, pp. 365-385, Sept. 2015. 

[18] F. Mwasilu, et al., "Electric vehicles and smart grid interaction: A review 
on vehicle to grid and renewable energy sources integration," Renewable 
and Sustainable Energy Reviews, vol. 34, pp. 501-516, June 2014. 

[19] K. Mahmud, et al., "Integration of electric vehicles and management in 
the internet of energy." Renewable and Sustainable Energy Reviews, vol. 
82, no. 3, pp. 4179-4203, Feb. 2018. 

[20] I. Rahman, et al., "Review of recent trends in optimization techniques  
for plug-in hybrid, and electric vehicle charging 
infrastructures." Renewable and Sustainable Energy Reviews, vol. 58, 
pp. 1039-1047, May 2016. 



1949-3029 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2018.2859186, IEEE
Transactions on Sustainable Energy

 
 

9

[21] F. Ahmad, S.A. Mohammad Saad and A. Mohammad, "Developments in 
xEVs charging infrastructure and energy management system for smart 
microgrids including xEVs." Sustainable Cities and Society, vol. 35, pp. 
552-564, Nov. 2017. 

[22] Bender, Frank A., Martin Kaszynski, and Oliver Sawodny. "Drive cycle 
prediction and energy management optimization for hybrid hydraulic 
vehicles." IEEE Transactions on vehicular technology, 62.8 (2013): 
3581-3592. 

[23] GAMS, “CPLEX 12 Solver Description,” 
https://www.gams.com/latest/docs/S_CPLEX.html, 2012, [Online].  
Accessed on January 25, 2018. 

[24] MATLAB – Simulink, 
https://ch.mathworks.com/products/simulink.html, 2017, [Online].  
Accessed on January 25, 2018. 

[25] Volkswagen E-Golf Specifications, 
http://www.plugincars.com/volkswagen-electric-e-golf-blue-e-motion, 
[Online].  Accessed on January 25, 2018. 

[26] BMW i3 Specifications, http://www.plugincars.com/bmw-i3.html, 
[Online].  Accessed on January 25, 2018. 

[27] Mercedes B-Class Specifications, http://www.plugincars.com/mercedes-
b-class-e-cell, [Online].  Accessed on January 25, 2018. 

[28] Tesla Model S Specifications, http://www.plugincars.com/tesla-model-s, 
[Online].  Accessed on January 25, 2018. 

[29] Fiat 500E Specifications, http://www.plugincars.com/fiat-500e, [Online].  
Accessed on January 25, 2018. 

[30] Ford Focus Electric Specifications, http://www.plugincars.com/ford-
focus-electric, [Online].  Accessed on January 25, 2018. 

[31] Kia Soul Specifications, http://www.plugincars.com/kia-soul-ev, 
[Online].  Accessed on January 25, 2018. 

[32] Mitsubishi i-MiEV Specifications, 
http://www.wikizero.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVka
WEub3JnL3dpa2kvTWl0c3ViaXNoaV9pLU1pRVY, [Online].  
Accessed on January 25, 2018. 

[33] Chevy Volt Specifications, http://www.plugincars.com/chevrolet-volt, 
[Online].  Accessed on January 25, 2018. 

[34] Nissan Leaf Specifications, http://www.plugincars.com/nissan-leaf, 
[Online].  Accessed on January 25, 2018. 

[35] U.S. Environmental Protection Agency, “Vehicle and Fuel Emissions 
Testing: Dynamometer Drive Schedules”. [Online]. Available: 
https://www.epa.gov/vehicle-and-fuel-emissions-testing/dynamometer-
drive-schedules, Accessed on: April 5, 2018. 

BIOGRAPHIES 
 

İbrahim Şengör (S’15) received the B.Sc. degree 
from Istanbul Technical University, and M.Sc. degree 
from Yıldız Technical University, ˙Istanbul, Turkey in 
2013 and 2016, respectively. He is currently working 
as a Research Assistant at the Electrical Engineering 
Department of Yıldız Technical University, Turkey 
while pursuing his Ph.D. studies. His research interests 
include electric vehicles, smart grid, and renewable 
energy systems.  
 

 
 

Ozan Erdinç (M’14-SM’16) received the B.Sc., 
M.Sc., and Ph.D. degrees from Yildiz Technical 
University (YTU), Istanbul, Turkey, in 2007, 2009, 
and 2012, respectively. Until May 2013, he worked in 
the private sector in different positions including 
electrical installations, renewable energy investments 
and as procurement expert. In June 2013, he became a 
Postdoctoral Fellow with the University of Beira 
Interior, Covilhã, Portugal, under the EU-FP7 funded 
Project “Smart and Sustainable Insular Electricity 

Grids Under Large-Scale Renewable Integration”. Later, he joined the 
Department of Electrical Engineering, YTU, Istanbul, where in April 2016 he 
obtained the title of Doçent Dr. (Associate Prof. Dr.).  

Prof. Erdinç is an Editor of the IEEE TRANSACTIONS ON SUSTAINABLE 

ENERGY and an Associate Editor of the IET Renewable Power Generation. His 
research interests are hybrid renewable energy systems, electric vehicles, power 
system operation, and smart grid technologies. 

 

Barış Yener is currently B.Sc. student at Electrical 
Engineering Department of Yıldız Technical 
University, Turkey. He is also working as IoT 
Hardware Engineer at PeakUp Information 
Technologies Co.  His research interests include smart 
grid technologies, programming OS and Kernel. 

 
 

 
 

 
 

Akın Taşcıkaraoğlu (S'12-M'14) received the B.Sc., 
M.Sc., and Ph.D. degrees from Yildiz Technical 
University, Istanbul, Turkey, in 2006, 2008, and 2013, 
respectively. From 2012 to 2017, he has been a 
researcher in the Department of Electrical Engineering, 
Yildiz Technical University, Istanbul. From 2013 to 
2014 he was also a Postdoctoral Scholar at the 
University of California, Berkeley. Since 2017, he is an 
Assistant Professor at the Department of Electrical and 
Electronics Engineering, Mugla Sitki Kocman 

University, Mugla, Turkey.  
Dr. Taşcıkaraoğlu is an Associate Editor of the IET Renewable Power 

Generation. His research interests include among others forecasting, renewable 
energy, power system operation, smart grid, and demand response. 

 
 

 
João P. S. Catalão (M’04-SM’12) received the M.Sc. 
degree from the Instituto Superior Técnico (IST), 
Lisbon, Portugal, in 2003, and the Ph.D. degree and 
Habilitation for Full Professor ("Agregação") from the 
University of Beira Interior (UBI), Covilha, Portugal, 
in 2007 and 2013, respectively. 

Currently, he is a Professor at the Faculty of 
Engineering of the University of Porto (FEUP), Porto, 
Portugal, and Researcher at INESC TEC, INESC-
ID/IST-UL, and C-MAST/UBI. He was also appointed 

as Visiting Professor by North China Electric Power University, Beijing, China. 
He was the Primary Coordinator of the EU-funded FP7 project SiNGULAR 
("Smart and Sustainable Insular Electricity Grids Under Large-Scale 
Renewable Integration"), a 5.2-million-euro project involving 11 industry 
partners. He has authored or coauthored more than 645 publications, including 
235 journal papers (more than 70 IEEE Transactions/Journal papers), 360 
conference proceedings papers, 2 books, 34 book chapters, and 14 technical 
reports, with an h-index of 41, an i10-index of 159, and over 6500 citations 
(according to Google Scholar), having supervised more than 70 post-docs, 
Ph.D. and M.Sc. students. He is the Editor of the books entitled “Electric 
Power Systems: Advanced Forecasting Techniques and Optimal Generation 
Scheduling” and “Smart and Sustainable Power Systems: Operations, 
Planning and Economics of Insular Electricity Grids” (Boca Raton, FL, USA: 
CRC Press, 2012 and 2015, respectively). His research interests include power 
system operations and planning, hydro and thermal scheduling, wind and price 
forecasting, distributed renewable generation, demand response and smart grids. 

Prof. Catalão is an Editor of the IEEE TRANSACTIONS ON SMART GRID, an 
Editor of the IEEE TRANSACTIONS ON POWER SYSTEMS, and a Subject Editor 
of the IET Renewable Power Generation. From 2011 till 2018 (seven years) he 
was an Editor of the IEEE TRANSACTIONS ON SUSTAINABLE ENERGY and an 
Associate Editor of the IET Renewable Power Generation. He was the Guest 
Editor-in-Chief for the Special Section on "Real-Time Demand Response" of 
the IEEE TRANSACTIONS ON SMART GRID, published in December 2012, and 
the Guest Editor-in-Chief for the Special Section on "Reserve and Flexibility 
for Handling Variability and Uncertainty of Renewable Generation" of the 
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, published in April 2016. 
Since May 2017, he is the Corresponding Guest Editor for the Special Section 
on "Industrial and Commercial Demand Response" of the IEEE TRANSACTIONS 

ON INDUSTRIAL INFORMATICS. Since March 2018, he is the Lead Guest Editor 
for the Special Issue on "Demand Side Management and Market Design for 
Renewable Energy Support and Integration" of the IET Renewable Power 
Generation. He was the recipient of the 2011 Scientific Merit Award UBI-
FE/Santander Universities, the 2012 Scientific Award UTL/Santander Totta, 
the 2016 FEUP Diploma of Scientific Recognition, and the Best INESC-ID 
Researcher 2017 Award, in addition to an Honorable Mention in the 2017 
Scientific Awards ULisboa/Santander Universities. Moreover, he has won 4 
Best Paper Awards at IEEE Conferences.  
 


