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Abstract 
The integration of storage systems into smart grids is being widely analysed in order to 
increase the flexibility of the power system and its ability to accommodate a higher 
share of wind and solar power. The success of this process requires a comprehensive 
techno-economic study of the storage technology in contrast with electricity market 
behaviour. The focus of this work is on lead-acid and vanadium redox flow batteries. 
This paper presents a novel probabilistic optimization model for managing energy 
storage systems. The model is able to incorporate the forecasting error of electricity 
prices, offering with this a near-optimal control option. Using real data from the Spanish 
electricity market from the year 2016, the probability distribution of forecasting error is 
determined. The model determines electricity price uncertainty by means of Monte 
Carlo Simulation and includes it in the energy arbitrage problem, which is eventually 
solved by using an integer-coded genetic algorithm. In this way, the probability 
distribution of the revenue is determined with consideration of the complex behaviours 
of lead-acid and vanadium redox flow batteries as well as their associated operating 
devices such as power converters. 
 
Keywords: lead-acid battery; vanadium redox flow battery; real-time pricing; genetic 
algorithm; smart grid. 
 
Nomenclature 

ݐ) Index of each element of the predicted prices ݐ = 1, … , ܶ). 
ℎ Index of each element of the large-scale price database (ℎ = 1, …  .(ܪ,
݌) Index of each coefficient of AR part ݌ = 1, … , ܲ). 
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ݍ) Index of each coefficient of MA part ݍ = 1, … ,ܳ). 
݈ Index for each lag of autocorrelation analysis (݈ = 1, … ,  .(ܮ
݉ Index for each MCS trial (݉ = 1, …  .(ܯ,
݃ Index of each generation of GA (݃ = 1, … ,  .(ܩ
݇ Index of each individual of GA (݇ = 1, …  .(ܭ,
݅ Index of each individual of GA (݅ = 1, … ,  .(ܫ
ܾ Index of each bit of individual ܽ⃗௞ (ܾ = 1, … ,  .(ܤ
 .th auto-regressive coefficient݌ ௣ܴܣ

 .th moving average coefficientݍ ௤ܣܯ

݁௛ Error of ARMA model at time ℎ. 
ܧ ௛ܲ Electricity price at time ℎ (€/MWh). 
ܧ ௠ܲ௜௡ Minimum price of the large-scale price database (€/MWh). 
ܧ ௠ܲ௔௫  Maximum price of the large-scale price database (€/MWh). 
ܧܶ ௛ܲ Transformed electricity price at time ℎ. 
ܧܵܶ ௛ܲ Transformed and standardized electricity price at time ℎ. 
ܧܨ ௧ܲ Forecasted electricity price at time ݐ (€/MWh). 
ܧܶܨ ௧ܲ Forecasted transformed electricity price at time ݐ. 
ܧܵܶܨ ௧ܲ Forecasted transformed and standardized electricity price at time ݐ. 
ܳ௦௧௔௧  Ljung-Box statistic. 
 .݈ ௟ Autocorrelation of the residuals at lagݎ
 .Significance level (0.05) ߜ

߯ఋଶ Chi-square distribution with ܮ − ܲ − ܳ degrees of freedom and 
significance level δ. 

 .ே CDF of a normal distributionܨ
 .ா௉ CDF of the large-scale price databaseܨ

ி݂ா,௧ PDF of electricity price at time ݐ (beta PDF). 

 .(beta PDF) ݐ ிா,௧ CDF of electricity price at timeܨ

௧ߚ ,௧ߙ  Parameters of beta PDF at time ݐ. 

஽݂஺,௧ PDF of electricity price at time ݐ used for day-ahead prediction. 

 .Average forecasted prices (€/MWh) ܲܨܣ
 .Standard deviation of forecasted prices (€/MWh) ܲܨܦܵ
ܧܶܣ ௧ܲ Averaged transformed electricity price at time ݐ. 
ܲܧܨ ௧ܵ,௠ Forecasted electricity price scenario at time ݐ and trial ݉ (€/MWh). 
ܧܨܰ ௧ܲ Normalized forecasted electricity price (€/MWh). 

ܲܧܨܰ ௧ܵ,௠ Normalized forecasted electricity price scenario at time ݐ and trial ݉. 

 .௧,௠ Correlated random variable with normal distributionݑ
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߮ Correlation coefficient. 
 .Non-correlated variable with normal distribution ߦ
ܺ Crossover rate of GA (ARMA model). 
ܴ Mutation rate of GA (ARMA model). 
݂ீ ஺,௦ Fitness function of individual ݏ. 

 .Population of GA (ARMA model) ܣ
ܼ Population of GA (battery control). 
ܽ⃗௞ Individual ݇ of GA (ARMA model). 
 .௜ Individual ݅ of GA (battery control)ݖ⃗

ܽ௕௞  Value of bit ܾ of individual ܽ⃗௞. 

 .݅ for individual ݐ ௧௜ Control decision at timeݖ
ܰܵ Number of batteries in serial. 
ܰܲ Number of batteries in parallel. 
ܴ ௜ܸ Revenue of individual ݅. 

ௌܲ௒ௌ,௧ Power of battery bank at time ݐ. 
ܼ ௌܲ௒ௌ,௧,௜ Power of battery bank at time ݐ for individual ݅. 

஺ܶ,௧ Ambient temperature at time ݐ (K). 

ாܶ Electrolyte temperature (K). 

௧ܷ Battery voltage under general conditions (V). 
ܷ௠௜௡  Minimum battery voltage (V). 
ܷ௠௔௫  Maximum battery voltage (V). 

௅ܷ஺஻,௧
஼  Battery voltage of LAB under charging conditions (V). 

௅ܷ஺஻,௧
஽  Battery voltage of LAB under discharging conditions (V). 

௏ܷோ஻,௧
஼  Battery voltage of VRFB under charging conditions (V). 

௏ܷோ஻,௧
஽  Battery voltage of VRFB under discharging conditions (V). 

 .ݐ ௧ SOC at timeܥܱܵ
 .௠௜௡ Minimum SOCܥܱܵ
 .௠௔௫ Maximum SOCܥܱܵ
 .ݐ ௧ DOD at timeܦܱܦ
 .௧ Current of LAB (A)ܫ

௧ܲ Battery power of VRFB (kW). 
 .ே Battery rated capacity (Ah for LAB and kWh for VRFB)ܥ
 .ଵ଴ Capacity in 10h of LAB (Ah)ܥ
 .ଵ଴ Current in 10h of LAB (A)ܫ
ܫீ ,ை Normalized gassing current for a 100Ah battery (A). 
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ீܷ,ை Nominal voltage under gassing conditions (V). 

ܶீ ,ை Nominal temperature under gassing conditions (K). 

 .ݐ ூே௏,௧ Efficiency of the inverter at timeߟ

௏,௧ߟ
஼  Voltage efficiency of VRFB during charging at time ݐ. 

ா,௧ߟ
஼  Power efficiency of VRFB during charging at time ݐ. 

௏ோ஻,௧ߟ
஼  Efficiency of VRFB during charging at time ݐ. 

௏,௧ߟ
஽  Voltage efficiency of VRFB during discharging at time ݐ. 

ா,௧ߟ
஽  Power efficiency of VRFB during discharging at time ݐ. 

௏ோ஻,௧ߟ
஽  Efficiency of VRFB during discharging at time ݐ. 

 .ݐ ௏ோ஻,௧ Efficiency of VRFB at timeߟ

ܫ ூܲே௏
ଵ ܫ , ூܲே௏

ଶ  Inverter parameters. 
ܸ ௅ܲ஺஻

ଵ ⋯ܸ ௅ܲ஺஻
ଵଶ  Voltage parameters of LAB. 

ܸ ௏ܲோ஻
ଵ ⋯ܸ ௏ܲோ஻

଻  Voltage parameters of VRFB. 
ܥ ௅ܲ஺஻

ଵ ܥ⋯ ௅ܲ஺஻
ଷ  Current parameters of LAB. 

ܧ ௏ܲோ஻
ଵ ܧ⋯ ௏ܲோ஻

ଶ଴  Efficiency parameters of VRFB. 
 

1. Introduction 
 
Integration of renewable energies is seen as a way to harmonize technological progress 
with environment conservation. However, renewable natural resources are highly 
variable, which directly contrasts with the operating philosophy of energy conversion 
systems. To solve this dilemma, the adopted option has been to increase the flexibility 
of the power system by incentivizing consumers to modify their consumption behaviour 
or by installing energy storage devices in a centralized or de-centralized manner so that 
the power consumption from renewable sources is enhanced. 
Many efforts have been made to develop devices capable to store energy at different 
magnitudes. According to their technical characteristics, storing technologies can be 
used for different tasks of power-system operation such as integration of renewable 
power generation, emergency and telecommunications power support, ramping and load 
following, peak-shaving, and load levelling [1]. However, their economic integration 
into energy business and electricity markets is difficult and depends on many important 
factors. 
Regarding the techno-economic analysis for the integration of energy storage in 
European Union (EU) countries, according to the results reported by Zafirakis et al. in 
[2], those electricity markets with low degree of competitiveness and highly dependent 
on energy imports offered the highest opportunities for the successful incorporation of 
energy storage. In such markets, energy imports are used to cover peak loads, which 
results in high peak-prices and favourable conditions for energy storage operation. The 
transition toward a power system strongly based on renewable energies is currently 
under analysis in EU countries. According to the most recent studies, pumped 
hydroelectric storage (PHS) can play a key role in the mitigation of power fluctuation 
related to wind-power generation, while other technologies such as conventional 
batteries and hydrogen-based storage units are not economically viable [3]. In the 
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United States, Bradury et al. [4], analysed the integration of a wide range of storage 
technologies in several electricity markets and concluded that economic benefit depends 
on charging and discharging efficiencies, the corresponding self-discharge ratios, and 
capacity. According to the study’s results, economic benefit increases as the conversion 
efficiency of the corresponding storage device improves provided that it has a relevant 
effect on the power transaction between the storage unit and the power system. On the 
other hand, the storage capacity of less than half a day offers higher benefits. In 
addition, the volatility of electricity prices and daily behaviour are important factors 
because the highest revenue is obtained under peak-price conditions.  
Similarly, using data from the United States, de Sisternes et al. [5] concluded that 
storage technologies are particularly required when high reduction rates of carbon 
dioxide (CO2) emissions are among the main goals. This was particularly observed for 
conventional battery technologies with low capacity (around 2 hours), while storage 
units of higher magnitudes (specifically PHS- based with 10 hours of duration) were 
found to be suitable when massive deployment was required. In Great Britain, 
interesting results were reported by Dunbar et al. in [6], where the influence of wind 
power generation on electricity prices and storage-unit profitability was evaluated. 
According to the observed results, the incremental capacity of wind-power generation 
could reduce electricity prices and reduce the frequency of price spikes, reducing the 
benefits obtained from the operation of storage units at peak prices. On the other hand, 
this situation could introduce uncertainty about the profitability of storage device 
installation due to yearly variations in revenue. In Germany, the transition to a power 
system powered by clean energies has been also analysed. Weitemeyer et al. [7] 
estimated that up to 50% of electricity demand could be supplied if the power 
generation mix was based on wind and solar energies combined with the appropriate 
capacity of flexible generation units. In this way, renewable power curtailment and 
energy storage integration could be avoided. However, if more than 80% of electricity 
demand has to be supplied by clean power sources, then storage units of high efficiency 
and small capacity should be installed. An analysis of storage unit integration in the 
National Electricity Market of Australia [8] concluded that the most convenient storage 
capacity is around 6 hours, while the main source of economic benefit is related to the 
price spikes, so that storage efficiency does not play an important role. 
In the specific case of conventional and flow batteries, their installation in small 
capacity (typically less than half a day) could be viable under very special conditions in 
markets with high electricity price volatility, a high share of renewable energy sources, 
and strict CO2 reduction requirements. 
In this context, the control of conventional and flow batteries becomes a problem that 
should be carefully analysed, taking into account the most important characteristics of 
the corresponding battery technology under analysis, as well as the electricity 
forecasting tools required to perform the management of stored energy in an optimal 
way. This problem has been widely studied in the technical literature. Powell et al. in 
[9] analysed the concept of a district energy system to take advantage of the flexibility 
of thermal energy storage. A storage system based on a polygeneration system is 
operated in order to minimize total costs on a daily basis. To solve the optimization 
problem, an algorithm based on the decomposition of the original optimization problem 
into several mixed-integer nonlinear programming (MINLP) sub-problems is 
introduced. The operation of a system installed in a university campus participating on 
the wholesale electricity market of Texas revealed a reduction of 16.5% in total costs. 
Tan et al. in [10] developed a strategy based on balancing revenue and battery lifetime 
through determining the Pareto optimal arbitrage policy to be applied on the control of 
conventional batteries. The relationship between battery lifetime and its economic 
performance are jointly analysed using a constrained stochastic shortest path (CSSP) 
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model combined with a parallel algorithm in order to determine the optimal solution. 
Zhang et al. in [11] paid special attention to the effects of charging and discharging 
costs on a real-time basis. Authors analysed discharging opportunity costs and marginal 
charging costs to include them in an operating strategy composed of two layers known 
as the higher layer and the lower layer. The higher layer is designed to perform a look-
ahead dispatch, which is later corrected by the lower layer, improving the effectiveness 
of the control algorithm. Kim et al. in [12] studied the interaction between conventional 
battery operation, power system, and load consumption profile using data from an urban 
railway in Korea, considering time of use (TOU) tariff. Dvorkin et al. in [13] analysed 
the optimal placement and sizing of large-scale storage devices in transmission systems 
to reduce operating and capital costs using a mathematical model based on a bi-level 
strategy formulated as a mixed-integer linear programming (MILP) problem. Xu and 
Tong in [14] developed an optimization model based on dynamic programming (DP). 
Considering correlated electricity prices and load demands, an operating strategy based 
on two thresholds was proposed. Sakti et al. in [15] presented an interesting 
mathematical model based on the MILP approach to model conventional batteries 
(specifically lithium-ion batteries). The model was formulated based on basic physical 
phenomena such as thermodynamics, charge conduction, charge transfer at an interface, 
and mass transport. Geem and Yoon in [16] proposed an optimization model based on a 
harmony search algorithm, which was later compared with a real-coded genetic 
algorithm (RCGA). The effectiveness of the proposed method was verified using data 
from the northwest quadrant of the United States, including a TOU dynamic tariff. 
Wankmüller et al. in [17] analysed the effect of lifetime degradation of conventional 
batteries on revenue. Using data from Midcontinent Independent System Operator 
combined with two mathematical models of battery degradation, a 12–46% reduction in 
revenues was estimated. Moreover, incorporation of penalty costs related to this effect 
could improve the economic performance of the storage system. In a previous work 
[18], the authors studied the impact of forecasting errors and technical limitations of the 
power system on the operation of conventional batteries working in isolation or in 
aggregated form. The analysis was performed using data from the Spanish electricity 
market combined with detailed computational models. The optimization problem for 
energy arbitrage was mathematically formulated and solved using an integer-coded 
genetic algorithm (ICGA) able to consider the non-linear characteristics of conventional 
batteries. In addition, the importance of operating and dispatch analysis considering the 
specific characteristics of the battery under analysis, including its control devices, and 
the forecasting errors of the specific prediction tool, among other factors, was put in 
evidence.  
Once the overview of storage technology integration has been presented and discussed 
in a wide range, the importance of an effective computational tool for continuous 
control and management is needed. This fact can be clearly observed by discussing the 
influence of the conversion efficiency. According to some studies previously described, 
efficiency is reported to be important or not [4,8] and influences the revenue estimations 
depending on how this is mathematically represented, (i.e., through a constant value or 
by means of a mathematical function) [15]. This panorama has motivated us to extend 
our previous research [18] to significantly contribute to the state of the art in several 
different ways, including: 

 The model analysed in our previous study [18] was developed using only lead-
acid batteries (LABs); in this paper, the computational model was extended to 
include vanadium redox flow batteries (VRFBs), as well as the electricity price 
forecasting error. 
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 Using recent information from the Spanish electricity market, from years 2015 
and 2016, an optimal time series methodology was used to determine a suitable 
forecasting model, which is used to measure the probability distribution function 
(PDF) of hourly forecasting error included in the optimization problem by 
means of Monte Carlo simulation (MCS) approach. 

 The model presented in this paper is able to estimate a near-optimal scheduling 
for LABs and VRFBs including the distribution of the corresponding economic 
benefit. Unlike previous works based on MILP, MINLP, CSSP, DP, and RCGA, 
an ICGA has been adopted. 

The rest of the paper is organized as follows: section 2 describes the electricity price 
forecasting and its error, section 3 presents the mathematical models of LABs and 
VRFBs used, section 4 carefully presents the proposed methodology, which is later 
illustrated in section 5 through a case study; finally, the main conclusions are discussed 
in section 6.  
 

2. Electricity price forecasting and its error 
 
Economic management of energy corporations requires forecasts of electricity prices in 
order to determine and implement the appropriate operative decisions, thus ensuring the 
profitability and economic sustainability of the generation company [19]. In this sense, 
forecasting models could be categorized as multi-agent models, fundamental methods, 
reduced-form models, statistical approaches, computational intelligence techniques, and 
hybrid techniques. Multi-agent models are able to perform a price forecast by taking 
into account the interaction between the different generation units and specific bidding 
considerations commonly observed in competitive electricity markets. In fundamental 
methods, essential factors such as load behaviour and environmental conditions are 
independently predicted and later included on the price prediction model, which is 
formulated to consider the relationship between these factors and energy prices. 
Reduced-form models aim to represent the behaviour of electricity prices on a daily 
basis, including the energy price dynamic behaviour and correlation useful for risk 
management. Statistical approaches are based on the application of a mathematical 
relationship between past and current values to carry out the corresponding prediction; 
such a relationship is frequently established using econometric models. Computational 
intelligence techniques represent the energy price dynamic by means of the combination 
of heuristic approaches. Finally, hybrid techniques combine two or more of the 
aforementioned methodologies to improve the quality and accuracy of the price 
prediction [20].   
In this paper, a statistical model based on an auto-regressive moving average (ARMA) 
model has been adopted. In addition, its ability for day-ahead forecasting has been 
measured in terms of the forecasting error, which has been represented by means of a 
beta PDF. A detailed description of the procedure required for fitting and forecasting 
electricity prices is explained in the next subsections. 
 
2.1 ARMA model structure and parameterization 
A general expression of the ARMA model is shown in (1), which is composed of the 
auto-regressive (AR) and moving average (MA) parts, presented in the first and second 
terms, respectively. Time series analysis requires the availability of a large-scale price 
database with ܪ elements represented by the index ℎ. As the PDF of price time series 
could be non-Gaussian, incorporation of a transformation process is required in order to 
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obtain a Gaussian distribution. Then the resulting time series is standardized, resulting 
in a transformed and standardized electricity price (ܶܵܧ ௛ܲ  ∀ ℎ = 1,  .time series (ܪ…
This time series is then used to determine the order of AR (ܲ) and MA (ܳ) parts, as well 
as the value of their coefficients (ܴܣ௣ ∀ ݌ = 1, … , ܲ and ܣܯ௤ ∀ ݍ = 1, … ,ܳ).  

ܧܵܶ ௛ܲ = ෍ܴܣ௣ܶܵܧ ௛ܲି௣

௉

௣ୀଵ

+ ෍ܣܯ௤݁௛ି௤

ொ

௤ୀଵ

 ∀ ℎ = 1, …  (1)           .ܪ,

The next subsections explain the transformation and standardization, order estimation, 
day-ahead forecasting, and optimal fitting of ARMA models. 
 
2.1.1 Transformation and standardization 
As stated before, through transformation and standardization processes applied over the 
large-scale price database (ܧ ௛ܲ ∀ ℎ = 1, … ,  results in a time series with an (ܪ
approximated Gaussian PDF with mean zero and standard deviation of one 
ܧܶ) ௛ܲ ∀ ℎ = 1, …  This transformation is presented in Fig. 1 and (2) [21]; to .(ܪ,
implement this transformation, the discretized cumulative density function (CDF) of 
electricity prices (ܨா௉) has to be estimated using the elements of the large-scale 
database. In addition, the CDF of a Gaussian PDF with a mean zero and standard 
deviation of one (ܨே) is also required. On the one hand, the function ܨா௉ is defined 
between the minimum (ܧ ௠ܲ௜௡ = ܧ}݊݅݉ ௛ܲ ∀ ℎ = 1, … ,  and the maximum ({ܪ
ܧ) ௠ܲ௔௫ = ܧ}ݔܽ݉ ௛ܲ ∀ ℎ = 1, …  values of the large-scale database. On the other ({ܪ,
hand, a discretized version of the normalized Gaussian distribution defined in the 
interval [−5,5] is used [22]. 

 
Fig. 1: Probability transformation of the electricity price database. 

 

ܧܶ ௛ܲ = ܧ)ா௉ܨேିଵ൫ܨ ௛ܲ)൯ ∀ ℎ = 1, … ,  (2)                                  .ܪ

Once the price database has been transformed and standardized, the diurnal stationarity 
is removed by subtracting the hourly average (ܧܶܣ ௧ܲ ∀ ݐ = 1, … , ܶ) as shown in (3) 
[23]. 

ܧܵܶ ௛ܲ = ܧܶ ௛ܲ − ܧܶܣ ௧ܲ ∀ ℎ = 1, … , ;ܪ ݐ  = 1, … , ܶ.                     (3) 
Then, the order and coefficients of ARMA model can be estimated using this 
transformed and standardized time series. 
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2.1.2 Order estimation and statistical checking 
 
Order estimation consists of determining a suitable number of elements for the AR and 
MA parts, represented by ܲ and ܳ, respectively. This task is traditionally performed by 
means of the Bayesian Information Criterion (BIC) [24] or the Akaike Information 
Criterion (AIC) [25]. Statistical checking process is carried out to verify the quality of a 
determined ARMA model with ܲ auto-regressive coefficients and ܳ moving average 
coefficients. Statistical checking is performed by using the Ljung-Box test presented in 
(4) [26], 

ܳ௦௧௔௧ = ܪ)ܪ + 2)෍
௟ଶݎ

ܪ − ݈

௅

௟ୀଵ

;                                                 (4) 

where the statistic ܳ௦௧௔௧ is compared with the value of a chi-square distribution with 
ܮ − ܲ − ܳ degrees of freedom and a significance level ߜ. 
 

2.1.3 Optimal fitting of ARMA model by ICGA 
 
In order to optimize the process of ARMA model fitting, an ICGA [27] is going to be 
implemented to minimize the number of coefficients (݌ +  and ensure the quality of (ݍ
the evaluated model through the application of the Ljung-Box test. Fig. 2 shows the 
form of the individual ݇ of the genetic algorithm (GA) used here, where both the order 
of the AR part (݌) and the order of the MA part (ݍ) are represented using binary 
numbers. This individual could be mathematically expressed using (5) with a total 
number of ܤ bits, while the variable ܽ௕௞ ∈ {0,1} ∀ ܾ = 1, … ;ܤ, ݇ = 1, … ,  Finally, the .ܭ
population of GA (ܣ) is represented as in (6) in matrix form. 

 
Fig. 2: Structure of individual ܽ⃗௞ of GA. 

 

ܽ⃗௞ = [ܽଵ௞ ⋯ ܽ௕௞ ⋯ ܽ஻௞];                                          (5) 

ܣ =

⎣
⎢
⎢
⎢
⎡ܽ⃗ଵ⋮
ܽ⃗௞
⋮
ܽ⃗௄⎦
⎥
⎥
⎥
⎤

.                                                                  (6) 

The proposed GA for ARMA model fitting can be implemented using the following 
procedure: 
Step 1: Estimate discretized PDF of electricity prices using the large-scale database. 
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Step 2: Apply the probability transformation to the large-scale electricity price database. 
Step 3: Eliminate diurnal non-stationarity by subtracting the hourly average.  
Step 4: Set the parameters of GA (number of generations (ܩ), population size (ܭ), 
crossover rate (ܺ), and mutation rate (ܴ)). 
Step 5: Set the number of bits used to represent the order of AR and MA parts (2/ܤ). 
Step 6: Initialize the GA population (ܣ) with binary numbers using an integer random 
number generator. 
Step 7: Analyse the first generation by setting ⃪݃1. 
Step 8.1: Evaluate the first individual by setting k⃪1 . 
Step 8.2: Using binary-to-integer numerical conversion, obtain the order of AR part (݌) 
and MA part (ݍ) by converting the two segments of the binary vector ܽ⃗௞. 
Step 8.3: Using the values of ݌ and ݍ previously obtained in Step 8.2, calculate the 
coefficients of the ARMA model and perform the Ljung-Box test (4). If some degree of 
correlation is observed, then the objective function is assigned to a value artificially 
high; if not, the value of objective function is assigned to ݌ +  .ݍ
Step 8.4: If (݇ < ⃪݇݇ then analyse the next individual by assigning ,(ܭ + 1 and go to 
Step 8.2; else go to Step 8.5. 
Step 8.5: To analyse the value of the objective function of the first individual, set 1⃪ݏ. 
Step 8.6: Calculate the fitness of the ݏth individual using (7), 

݂ீ ஺,௦ = ܭ) + 1 − (ݏ ∑ ܭ) + 1 − ௄(ݓ
௪ୀଵ⁄ ;                            (7)  

Step 8.7: If (ݏ < ݏ⃪ݏ then set ,(ܭ + 1 and go to 8.6; else go to Step 8.8. 
Step 8.8: Apply the reproduction, crossing, and mutation procedures according to the 
parameters previously defined in Step 4. 
Step 8.9: If (݃ < ⃪݃݃ then set ;(ܩ + 1  and go to Step 8.1; else stop. 
 
The individual with the highest fitness in the entire population (ܣ) defines the order and 
characteristics of the ARMA model to be used on the forecasting process. 
 

2.1.4 Day-ahead price forecasting 
 
Using the ARMA model obtained from the implementation of the methodology 
described in the previous subsections, price forecasting on a daily basis can be 
estimated by using (8)-(10), 

ܧܵܶܨ ௧ܲ = ෍ܴܣ௣ܧܵܶܨ ௧ܲ

௉

௣ୀଵ

+ ෍ܣܯ௤݁௧ି௤

ொ

௤ୀଵ

ݐ ∀  = 1, … , ܶ;                   (8) 

ܧܶܨ ௧ܲ = ܧܵܶܨ ௧ܲ + ܧܶܣ ௧ܲ ∀ ݐ = 1, … , ܶ;                                      (9) 

ܧܨ ௧ܲ = ܧܶܨ)ேܨா௉ିଵ൫ܨ ௧ܲ)൯ ∀ ݐ = 1, … , ܶ.                                      (10) 
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In (8), transformed and standardized daily forecasting is calculated, resulting in a vector 
with Gaussian PDF. Then in (9), the diurnal stationarity is added, while the forecasting 
profile is finally obtained from the application of the probability transformation 
previously explained in subsection 2.1.1 (Fig. 1) and mathematically expressed in (10). 
Analytical representation of forecasting error that accompanies the corresponding 
prediction is carefully described in the next subsection. 

2.2 PDF of forecasting error and its measurement 
In general, many PDFs have been suggested in the literature to represent the forecasting 
error of a determined mathematical model, as well as the confidence interval related to 
such distribution; in this way, the values to be forecasted and their uncertainty can be 
quantitatively estimated. Recently, several theoretical methods have been created to 
predict confidence intervals. For instance, the factor quantile regression averaging 
approach [28] is appropriate for dealing with the selection of a set of models to be 
combined in the forecasting process, as well as the accurate determination of prediction 
intervals. On the other hand, spatial interpolation techniques have been also suggested 
in the literature [29] to estimate several possible price conditions from the combination 
of probabilistic information related to uncertain variables and a wholesale electricity 
market equilibrium model. 
In this paper, the forecasting model previously described in subsection 2.1.4 has been 
evaluated using a large amount of electricity price data in order to measure the 
characteristics of PDF forecasting error for each hour; specifically, a standard beta PDF 
has been used to represent such error. Fig. 3 describes the form of PDF used (shaded 
area), the PDFs ி݂ா,௧ ݐ ∀  = 1, … , ܶ are obtained from the evaluation of the ARMA 
model over the large-scale price database and they are modelled as beta PDFs. These 
PDFs are then truncated between the minimum (ܧ ௠ܲ௜௡ ∀ ݐ = 1, … , ܶ) and maximum 
ܧ) ௠ܲ௔௫ ݐ ∀  = 1, … , ܶ) prices observed on the large-scale database in order to estimate a 
tight confidence interval. The truncated distributions have been identified using the 
variable ஽݂஺,௧ ∀ ݐ = 1, … , ܶ, which is mathematically described in (11) and represented 
by the shaded area in Fig. 3, 

஽݂஺,௧(ܧܨ ௧ܲ) =

⎩
⎪
⎨

⎪
⎧

0, ܧܨ ௧ܲ < ܧ ௠ܲ௜௡
ܧ)ிா,௧ܨ ௠ܲ௜௡), ܧܨ ௧ܲ = ܧ ௠ܲ௜௡

ி݂ா,௧(ܧܨ ௧ܲ), ܧ ௠ܲ௔௫ > ܧܨ ௧ܲ > ܧ ௠ܲ௜௡
1 − ܧ)ிா,௧ܨ ௠ܲ௔௫), ܧܨ ௧ܲ = ܧ ௠ܲ௔௫

0, ܧܨ ௧ܲ > ܧ ௠ܲ௔௫

.                  (11) 

 
Fig. 3: PDF of forecasting error. 
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2.3 MCS approach for representing prediction error 
 
Uncertainty could be modelled using an analytical version of the PDF that represents 
the error; however, in our problem where an entire day is analysed (ܶ = 24 h), the 
analytical representation of such multivariable distribution is overwhelming due to the 
high number of combinations and possible cases involved. In this sense, several 
scenarios are randomly generated by means of copula theory according to the algorithm 
described below [30]: 
Step 1: Perform the electricity price prediction for the day of interest. 
Step 2: Using the large-scale price database, determine the parameters of forecasting 
error PDF at each hour ݐ = 1, … , ܶ. 
Step 3: Calculate the one-lag correlation coefficient using the large-scale price database. 
Step 4: Define the number of MCSs (ܯ) to be generated. 
Step 5: Calculate the normalized forecasted electricity prices using (12), 

ܧܨܰ ௧ܲ =
ܧܨ ௧ܲ − ܲܨܣ

ܲܨܦܵ ݐ ∀  = 1, … , ܶ;                                    (12) 

where ܲܨܣ and ܵܲܨܦ are the mean and standard deviation of forecasted electricity 
prices (ܧܨ ௧ܲ ∀ ݐ = 1, … , ܶ), respectively.  
Step 6: Generate ܯ correlated random vectors using (13), 

௧,௠ݑ = ௧ିଵ,௠߮ݑ + ݐ ∀ ߦ = 1, … , ܶ;݉ = 1, …  (13)                         ;ܯ,

Step 7: Calculate ܯ correlated random vectors following the forecasted electricity price 
profile using the results obtained in Step 6 combined with (14), 

ܲܧܨܰ ௧ܵ,௠ = ௧,௠ݑ + ܧܨܰ ௧ܲ ∀ ݐ = 1, … , ܶ;݉ = 1, …  (14)                  ;ܯ,

Step 8: Using the forecasting error PDF estimated in Step 2, apply a probability 
transformation similar to that shown in Fig. 1 over each of the ܯ vectors previously 
obtained in Step 7 in order to finally calculate the required MCSs (ܲܧܨ ௧ܵ,௠ ∀ ݐ =
1, … , ܶ;݉ = 1, …  ,Such probability transformation is described in (15) .(ܯ,

ܲܧܨ ௧ܵ,௠ = ஽݂஺,௧
ିଵ ቀܨே൫ܰܲܧܨ ௧ܵ,௠൯ቁ ∀ ݐ = 1, … , ܶ.                        (15) 

 

3. Battery energy storage system model 
In this paper we paid special attention to LABs and VRFBs due to their technical 
characteristics, which make them appropriate to be installed in a distributed way [31]. 
The control of storage system developed in this work considers the charging and 
discharging power as the control variables. The state variables of storage system are the 
battery bank voltage and its state of charge. Technical constraints related to the 
operating limits of state of charge, battery voltage as well as battery power, which are 
values frequently suggested by the manufacturers according to the corresponding 
technology, are also incorporated into the optimization model as mathematical 
constraints. Next subsections carefully describe the model computationally 
implemented to represent these storage technologies in a dynamic electricity pricing 
paradigm. 
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3.1 Lead-acid battery model 
LABs have been extensively used and studied for energy support in remote areas. A 
completed mathematical model derived from the modification of Shepherd equations 
was developed and presented in [32]. This is a general representation of a typical 2V 
cell, whose capacity (ܥே) is frequently reported as the discharging capacity in 10 h (ܥଵ଴) 
in Ah units. This formulation was developed in order to consider the effects of open-
circuit voltage when the battery is totally charged, as well as its variations with state of 
charge (SOC); in addition to these aspects, the ohmic losses are also taken into account. 
LAB behaviour is analysed for charging (ܫ௧ > ݐ ∀ 0 = 1, … , ܶ) and discharging (ܫ௧ <
ݐ ∀ 0 = 1, … , ܶ) processes separately, as shown in (16) for battery voltage estimation. 

௧ܷ = ቊ ௅ܷ஺஻,௧
஼ ; ௧ܫ  > 0

௅ܷ஺஻,௧
஽ ; ௧ܫ  ≤ 0

ݐ ∀  = 1, … , ܶ.                                             (16) 

During charging conditions, LAB voltage is calculated by using (17); while under 
discharging, this is calculated as shown in (18). Regarding SOC and depth of discharge 
(DOD) estimation, this can be carried out using (19)-(21), where the impact of the 
gassing current is considered. 

௅ܷ஺஻,௧
஼ = ܸ ௅ܲ஺஻

ଵ − ܸ ௅ܲ஺஻
ଶ (௧ܦܱܦ) + ܸ ௅ܲ஺஻

ଷ ൬
௧ܫ
ேܥ
൰                                         

+ܸ ௅ܲ஺஻
ସ ܸ ௅ܲ஺஻

ହ ൬
௧ܫ
ேܥ
൰ ቆ

௧ܥܱܵ
ܸ ௅ܲ஺஻

଺ − ௧ܥܱܵ
ቇ ;                                                

௧ܫ > ݐ ∀ 0 = 1, … , ܶ;                                                       (17) 

௅ܷ஺஻,௧
஽ = ܸ ௅ܲ஺஻

଻ − ܸ ௅ܲ஺஻
଼ (௧ܦܱܦ) + ܸ ௅ܲ஺஻

ଽ ൬
௧ܫ
ேܥ
൰                                       

+ܸ ௅ܲ஺஻
ଵ଴ ܸ ௅ܲ஺஻

ଵଵ ൬
௧ܫ
ேܥ
൰ ቆ

௧ܦܱܦ
ܸ ௅ܲ஺஻

ଵଶ ௧ܦܱܦ−
ቇ ;                                           

௧ܫ ≤ ݐ ∀ 0 = 1, … , ܶ.                                                     (18) 

௧ܥܱܵ = ௧ିଵܥܱܵ + න ൬
ఛܫ − ܫீ ,ఛ

ேܥ
൰

௧

௧ିଵ
ݐ ∀ ߬݀ = 1, … , ܶ;                         (19) 

௧ܦܱܦ = 1− ௧ܥܱܵ ݐ ∀  = 1, … , ܶ;                                     (20) 

ܫீ ,௧ = ቆ
ேܥ

ܥ ௅ܲ஺஻
ଵ ቇ ൫ீܫ ,ை൯݁݌ݔ൫ܥ ௅ܲ஺஻

ଶ ൣ ௧ܷ − ீܷ ,ை൧ + ܥ ௅ܲ஺஻
ଷ ൣ ஺ܶ,௧ − ܶீ ,ை൧൯                  

ݐ ∀ = 1, … , ܶ;                                                       (21) 
 
In Tables 1 and 2 [32], the parameters of a typical flat-plate battery (OGi) with a 
flooded electrolyte are presented; this technology is frequently recommended by several 
manufacturers for photovoltaic systems. 
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Table 1: Parameters of LAB model (Battery voltage). 
Parameter Value Parameter Value 

ܸ ௅ܲ஺஻
ଵ  2.1 V ܸ ௅ܲ஺஻

଻  2.1 V 
ܸ ௅ܲ஺஻

ଶ  0.076 V ܸ ௅ܲ஺஻
଼  0.076 V 

ܸ ௅ܲ஺஻
ଷ  0.42 ΩAh ܸ ௅ܲ஺஻

ଽ  0.699 ΩAh 

ܸ ௅ܲ஺஻
ସ  0.42 ΩAh ܸ ௅ܲ஺஻

ଵ଴  0.699 ΩAh 

ܸ ௅ܲ஺஻
ହ  0.888 ܸ ௅ܲ஺஻

ଵଵ  0.0464 

ܸ ௅ܲ஺஻
଺  1.001 ܸ ௅ܲ஺஻

ଵଶ  1.75 

 
Table 2: Parameters of LAB model (Battery current and SOC). 

Parameter Value Parameter Value 

ܥ ௅ܲ஺஻
ଵ  100 Ah ீܫ ,ை 0.020 A 

ܥ ௅ܲ஺஻
ଶ  11 1/V ீܷ,ை 2.23 V 

ܥ ௅ܲ஺஻
ଷ  0.06 1/K ܶீ ,ை 298 K 

 

3.2 Vanadium redox flow battery model 
VRFB is a promising technology to be integrated in a distributed way for energy storage 
at the residential level. As in the case of the LAB modelling previously described, a 
typical battery of 5 kW, 20 kWh, and 50 V was adopted. This model has been 
experimentally measured and characterized in [33]-[35]; however, additional 
information about this technology can be found [36]. The behaviour of this battery is 
expressed in terms of charging ( ௧ܲ > ݐ ∀ 0 = 1, … , ܶ) or discharging ( ௧ܲ < ݐ ∀ 0 =
1, … , ܶ) power as expressed in (22) and (23), where battery voltage and its efficiency 
have been considered. 

௧ܷ = ቊ ௏ܷோ஻,௧
஼ ;  ௧ܲ > 0

௏ܷோ஻,௧
஽ ;  ௧ܲ ≤ 0

ݐ ∀  = 1, … , ܶ;                                             (22) 

௏ோ஻,௧ߟ = ቊ
௏ோ஻,௧ߟ
஼ ;  ௧ܲ > 0
௏ோ஻,௧ߟ
஽ ;  ௧ܲ < 0

ݐ ∀  = 1, … , ܶ.                                          (23) 

During charging and discharging processes; battery voltage, as well as voltage and 
power efficiencies as a function of SOC and battery power are shown in (24)-(31) for 
the typical 5 kW/20 kWh battery [34]. Equations (24)-(27) model the charging process, 
while equations (28)-(31) represent the battery discharging process. Once conversion 
efficiency has been determined, SOC can be estimated using (32). 

௏ܷோ஻,௧
஼ = (ܸ ௏ܲோ஻

ଵ ௧ܥܱܵ + ܸ ௏ܲோ஻
ଶ ) ௧ܲ + ܸ ௏ܲோ஻

ଷ ௧ܥܱܵ + ܸ ௏ܲோ஻
ସ ݐ ∀  = 1, … , ܶ;     (24) 

௏,௧ߟ
஼ =

ܧ ௏ܲோ஻
ଵ

ாܶ(ܱܵܥ௧ − ܧ ௏ܲோ஻
ଶ ) + ܧ ௏ܲோ஻

ଷ

ܧ) ௏ܲோ஻
ସ ௧ܥܱܵ + ܧ ௏ܲோ஻

ହ ) ௧ܲ + ܧ ௏ܲோ஻
଺ ௧ܥܱܵ + ܧ ௏ܲோ஻

଻ ݐ ∀  = 1, … , ܶ;    (25) 

ா,௧ߟ
஼ =

ܧ) ௏ܲோ஻
଼ ௧ܥܱܵ + ܧ ௏ܲோ஻

ଽ ) ௧ܲ + ܧ ௏ܲோ஻
ଵ଴ ௧ܥܱܵ − ܧ ௏ܲோ஻

ଵଵ

௧ܲ
ݐ ∀  = 1, … , ܶ;    (26) 

௏ோ஻,௧ߟ
஼ = ௏,௧ߟ

஼ ா,௧ߟ
஼ ݐ ∀  = 1, … , ܶ;                                        (27) 
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௏ܷோ஻,௧
஽ = ܸ ௏ܲோ஻

ହ | ௧ܲ| + ܸ ௏ܲோ஻
଺ ௧ܥܱܵ + ܸ ௏ܲோ஻

଻ ݐ ∀  = 1, … , ܶ;                    (28) 

௏,௧ߟ
஽ =

ܧ ௏ܲோ஻
ଵଶ | ௧ܲ| + ܧ ௏ܲோ஻

ଵଷ ௧ܥܱܵ + ܧ ௏ܲோ஻
ଵସ

ܧ ௏ܲோ஻
ଵହ

ாܶ(ܱܵܥ௧ − ܧ ௏ܲோ஻
ଵ଺ ) + ܧ ௏ܲோ஻

ଵ଻ ݐ ∀  = 1, … , ܶ;                 (29) 

ா,௧ߟ
஽ =

| ௧ܲ|
ܧ ௏ܲோ஻

ଵ଼ | ௧ܲ| + ܧ ௏ܲோ஻
ଵଽ ௧ܥܱܵ)௧ܥܱܵ − 1) + ܧ ௏ܲோ஻

ଶ଴ ݐ ∀  = 1, … , ܶ;        (30) 

௏ோ஻,௧ߟ
஽ = ௏,௧ߟ

஽ ா,௧ߟ
஽ ݐ ∀  = 1, … , ܶ;                                        (31) 

௧ܥܱܵ = ௧ିଵܥܱܵ + න ൬ ఛܲߟ௏ோ஻,௧

ேܥ
൰

௧

௧ିଵ
ݐ ∀ ߬݀ = 1, … , ܶ.                    (32) 

 
Table 3 and 4 shows the parameters required for the 5 kW/20 kWh battery 
representation [34], including battery voltage, as well as voltage and power efficiencies. 
 

Table 3: Parameters of VRFB model (battery voltage and power inverter). 
Parameter Value Parameter Value 

ܸ ௏ܲோ஻
ଵ  1.895 V/kW ܸ ௏ܲோ஻

଺  6.3606 V 
ܸ ௏ܲோ஻

ଶ  1.552 V/kW ܸ ௏ܲோ஻
଻  47.335 V 

ܸ ௏ܲோ஻
ଷ  6.82 V ாܶ 298.15 K 

ܸ ௏ܲோ஻
ସ  46.79 V ܫ ூܲே௏

ଵ  0.015784 
ܸ ௏ܲோ஻

ହ  -2.72 V/kW ܫ ூܲே௏
ଶ  0.078815 

 
Table 4: Parameters of VRFB model (battery efficiency). 

Parameter Value Parameter Value 

ܧ ௏ܲோ஻
ଵ  0.038 V/K ܧ ௏ܲோ஻

ଵଵ  0.59 kW 
ܧ ௏ܲோ஻

ଶ ܧ 1.1755  ௏ܲோ஻
ଵଶ  -2.72 V/kW 

ܧ ௏ܲோ஻
ଷ  61.2674 V ܧ ௏ܲோ஻

ଵଷ  6.3606 V 
ܧ ௏ܲோ஻

ସ  1.895 V/kW ܧ ௏ܲோ஻
ଵସ  47.335 V 

ܧ ௏ܲோ஻
ହ  1.552 V/kW ܧ ௏ܲோ஻

ଵହ  0.038 V/K 
ܧ ௏ܲோ஻

଺  6.82 V ܧ ௏ܲோ஻
ଵ଺  1.1755 

ܧ ௏ܲோ஻
଻  46.79 V ܧ ௏ܲோ஻

ଵ଻  61.2674 V 
ܧ ௏ܲோ஻

଼ ܧ 0.128-  ௏ܲோ஻
ଵ଼  1.0334 

ܧ ௏ܲோ஻
ଽ ܧ 1.05  ௏ܲோ஻

ଵଽ  1.727 kW 
ܧ ௏ܲோ஻

ଵ଴  0.19 kW ܧ ௏ܲோ஻
ଶ଴  0.596 kW 
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3.3 Charge controller model 
Conversion between alternating current (AC) and direct current (DC) is carried out 
using a power converter; the efficiency of this device varies according to the amount of 
power under conversion. Typically, efficiency decreases as the power to be converted is 
reduced according to (33). Using this expression, the power to be taken from or sent to 
the smart grid (SG) ( ௌܲ௒ௌ,௧ ݐ ∀  = 1, … , ܶ) can be calculated through (34), 

ூே௏,௧ߟ =
| ௧ܲ|

ܫ ூܲே௏
ଵ ( ூܲே௏

ே ) + (1 + ܫ ூܲே௏
ଶ )| ௧ܲ|

ݐ ∀  = 1, … , ܶ;                      (33) 

ௌܲ௒ௌ,௧ = ±
| ௧ܲ| − ܫ ூܲே௏

ଵ ( ூܲே௏
ே )

(1 + ܫ ூܲே௏
ଶ ) ݐ ∀  = 1, … , ܶ.                           (34) 

Parameters required to model power converter efficiency are reported in Table 3, 
obtained from the laboratory results previously published by Rampinelli et al. in [37]. 
The storage system models presented in subsections 3.1 and 3.2 can be scaled using 
several batteries connected serially (ܰܵ) and in parallel (ܰܲ) in order to complete a 
determined storing capacity. 
 

3.4 Energy storage operating strategy 
Fig. 4 shows a simplified representation of the battery storage incorporated to SG. 
Under real-time pricing, it is assumed that energy prices are available to residential 
consumers at each hour; distributed generators and storage systems interact with SG 
through the smart meter; then, the battery bank is continuously supervised by a control 
system that measures its voltage, power, and SOC in order to maintain these variables 
within acceptable values. 

 
Fig. 4: VRFB integrated to SG. 

A key device for battery operation is the charge controller (included in Fig. 4 in the 
battery control system block); this element controls the battery current and power in 
order to maintain the battery voltage and SOC within determined values frequently 
suggested by the manufacturers. In fact, the charge controller is responsible for the 
implementation of bulk, absorption, and float stages required during charging process. 
The limit values used in this work for the operation of LABs and VRFBs are presented 
in Table 5. 
 
 
 
 

Smart
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Table 5: Limit values for battery operation [32]-[35]. 
Control variable LAB VRFB 

 ௠௜௡ 0.3 0.15ܥܱܵ
 ௠௔௫ 1 0.9ܥܱܵ
ܷ௠௜௡  1.9 V 42V 
ܷ௠௔௫  2.23 V 56.5 V 

 
Nguyen et al. in [34] experimentally measured and mathematically formulated the 
power to be applied during charging process as a function of SOC and voltage settings. 
Alternatively, another option consists of using the mathematical model previously 
formulated in subsections 3.1–3.3 to determine the appropriate power to be charged or 
discharged to or from the battery. LAB control has been extensively analysed in our 
previous research [18]; however, with the increasing interest in VRFBs, we pay special 
attention to its modelling and control. 
During VRFB charging, two main procedures are needed. First, the maximum charging 
power to be applied in order to take the actual value of SOC (ܱܵܥ௧ିଵ) to its maximum 
value (ܱܵܥ௠௔௫) is estimated using (25)-(27), and (32). In the second step, the maximum 
charging power previously calculated is used as a new limit constraint in the estimation 
of the power to be injected so that the battery voltage is less than or equal to its 
maximum value (ܷ௠௔௫); in this procedure, VRFB is fully incorporated using (24)-(27) 
and (32). Note that, in the first step, only the voltage and power efficiencies are included 
regardless of battery voltage. This gives us a first constraint to the battery power or, in 
other words, an approximation of the maximum power to be applied. This result is then 
used to determine the proper power value by incorporating the battery voltage. A similar 
strategy is followed during the VRFB discharging process, the maximum power to be 
discharged is first estimated in order to take the SOC from the actual condition 
 .This is carried out using (29)-(31) and (32) .(௠௜௡ܥܱܵ) to its minimum value (௧ିଵܥܱܵ)
In the second step, the maximum discharging power previously calculated is used as a 
new limit constraint in the estimation of the power to be taken so that the battery 
voltage is higher than or equal to its minimum value (ܷ௠௜௡). In this procedure, VRFB is 
fully incorporated using (28)-(31) and (32). Another important point to take into 
consideration is that charging and discharging power are both calculated from an 
interval so that the non-linear algebraic equations involved in the simulation can be 
solved by means of a bisection method. 
 

4. Proposed methodology 
 

4.1 Deterministic management of LABs and VRFBs 
Under deterministic assumptions, when only a specific forecasting profile is considered, 
battery systems can be managed using an ICGA [18] in which operating decisions are 
represented by means of three integer numbers, −1 to represent the discharging process, 
0 to represent battery disconnection, and 1 to represent the charging process. The form 
of a determined individual ݅ (݅ = 1, … , ௧௜ݖ is shown in (35), where (ܫ ∈ {−1,0,1}. The 
corresponding population (ܼ) to which the individual ݖ௧௜ belongs to is shown in (36). 
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௜ݖ⃗ = ଵ௜ݖൣ ⋯ ௧௜ݖ ⋯ ௜்ݖ ൧ ∀ ݅ = 1, …  (35)                                ;ܫ

ܼ =

⎣
⎢
⎢
⎢
⋮ଵݖ⃗⎡
௜ݖ⃗
⋮
ூݖ⃗ ⎦
⎥
⎥
⎥
⎤

.                                                                  (36) 

Revenue (ܴ ௜ܸ  ∀ ݅ = 1, … ,  obtained from the implementation of the control policy (ܫ
represented by the individual ݅ (⃗ݖ௜ ∀ ݅ = 1, … ,  is computed according to (37), where (ܫ
the forecasted electricity prices (ܧܨ ௧ܲ ∀ ݐ = 1, … , ܶ), as well as the charging and 
discharging (ܼ ௌܲ௒ௌ,௧,௜ ݐ ∀  = 1, … , ܶ; ݅ = 1, … ,  have been considered. It should be (ܫ
highlighted that ܼ ௌܲ௒ௌ,௧,௜ is calculated in the same way as the variable ௌܲ௒ௌ,௧ through 
(34). These variables only differ on the index ݅; however, both of them have the same 
value. 

ܴ ௜ܸ = ෍(ܧܨ ௧ܲ)൫ܼ ௌܲ௒ௌ,௧,௜൯
்

௧ୀଵ

 ∀ ݅ = 1, … ,  (37)                                .ܫ

The optimization problem consists of finding the control policy (charging, discharging, 
or disconnection of the storage system) that minimizes the objective shown in (37); it 
should be highlighted that according to the convention of positive battery power for 
charging and negative battery power for discharging, the battery system obtains the 
highest economic benefit when the objective (ܴ ௜ܸ) becomes negative. More details can 
be found in our previous study [18]. 
 

4.2 Probabilistic Management of LABs and VRFBs 
Under uncertain conditions, the optimization problem to be solved consists on finding 
the scheduling of the battery bank in order to maximize the economic benefit, taking 
into account the influence of all the scenarios considered (scenarios used to represent 
the uncertainty associated to the electricity price forecasting). This task is performed by 
analyzing each scenario individually (as explained in sub-section 4.1), obtaining the 
control action (charging, discharging, or battery bank disconnection) with the highest 
probability of maximize the economic benefit. In other words, considering a determined 
type of battery bank (LAB or VRFB), a determined forecasting tool (ARMA model) 
and its associated forecasting error, the problem consists on determining the control 
action (ܤ ௧ܵ ݐ ∀  = 1, … , ܶ), so that the resulting probability distribution of economic 
revenue contains on its confidence interval the maximum benefit under actual 
conditions. The GA originally proposed in our previous work [18] has to be modified in 
order to consider the uncertainty introduced by the forecasting error of electricity prices. 
Such modification is achieved by implementing the algorithm explained as follows: 
Step 1: Set a determined number of MCSs (ܯ). 
Step 2: Perform the electricity price forecasting and generate ܯ scenarios according to 
section 2. 
Step 3: Create three vectors initialized to zero in order to represent the probability of 
charging ( ஻݂ௌ,௧(ܤ ௧ܵ = 1)), discharging ( ஻݂ௌ,௧(ܤ ௧ܵ = −1)), and disconnection 
( ஻݂ௌ,௧(ܤ ௧ܵ = 0)) of the storage system. 

Step 4: Analyse the first scenario by setting ⃪݀1. 
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Step 5: Determine the scheduling of the storage system using the GA described in 
subsection 4.1 [18]. 
Step 6: Analyse the decisions obtained from Step 5 at each time step ݐ = 1, … , ܶ. If the 
decision obtained at time ݐ corresponds to the charging process, then increment the 
probability of the vector created in Step 3 in 1/ܯ. If the decision corresponds to the 
discharging process, then increment the value of the corresponding vector in 1/ܯ; a 
similar procedure should be followed with regard to the battery disconnection decision. 
Step 7: If (݉ < ⃪݉݉ then set ;(ܯ + 1 and go to Step 5, else go to Step 8. 
Step 8: From Step 7, a probabilistic matrix similar to that shown in Fig. 5 is going to be 
obtained. Using this matrix, the definitive control decision is derived from that 
condition with the highest probability (statistical mode). For example, in Fig. 5, at 
time ݐ, the decision that corresponds to the charging process should be taken because it 
has 80% probability of being required for operation. 

 
Fig. 5: Matrix of probabilistic optimization. 

 
The probabilistic methodology proposed in this research work for the control of LABs 
and VRFBs is illustrated using a case study, which is carefully explained in the next 
section. 
 

5. Case study 
In this section, we illustrate the proposed methodology through the analysis of a case 
study of a battery bank operating in the Spanish electricity market [38], specifically, on 
January 5th, 2017. The large-scale price database (ܧ ௛ܲ ∀ ℎ = 1,  consists of the (ܪ…
time series from December 1st, 2015 to January 4th, 2017. Two different battery 
technologies, LAB and VRFB, have been analysed and modelled according to section 3. 
For these battery banks (one based on LABs and another one based on VRFBs), 10 
batteries connected serially and 100 batteries connected in parallel (ܰܵ=10 and 
ܰܲ=100) have been considered. The initial SOC (before ݐ = 1) was assumed to be 
equal to the minimum suggested value for each technology. 
In the case of battery bank based on VRFBs, this is supposed to be built from the 
connection of several 5 kW/20 kWh batteries. It is important to highlight that 20 kWh is 
the amount of effective energy to be stored on the system, so the system’s maximum 
capacity (ܥே) is estimated as 26.6667kWh (ܥே[ܱܵܥ௠௔௫ −  ௠௜௡] = 20 kWh). Theܥܱܵ
total capacity of the battery bank is estimated at 2 MWh, while its maximum power is 
estimated at 500 kW. Regarding the battery bank based on LABs, this is supposed to be 
built from the connection of several batteries with a rated capacity (ܥே =  ଵ଴) of 1430ܥ
Ah in order to have a total capacity of 2 MWh (ܥே=2MWh/[2V(ܰܵ)(ܰܲ)(1-
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 ௠௜௡)]≈1430Ah). The maximum battery current was assumed to be equal to theܥܱܵ
battery current in 10 h (ܫଵ଴), whereas the rated voltage of the bank is 20 V.  
Operating constraints shown in Table 5 related to battery voltage and SOC limits were 
also considered. In the next subsections, the ARMA model estimation, energy price 
prediction, and battery bank control for our case study are going to be analysed 
thoroughly. A general value for significance level of 5% was assumed (5% = ߜ). 
Regarding the ambient temperature profile, it was assumed to be constant and equal to 
298 K ( ஺ܶ,௧=298 K ∀ ݐ = 1, … ,24).  

Forecasting, simulation, and optimization models were implemented in a personal 
computer with i7-3630QM CPU at 2.4 GHz with 8 GB of memory and a 64-bit 
operating system. In addition, the computational language used was MATLAB©. 

5.1 ARMA model fitting for Spanish market during 2015 and 2016 
As an example of the process required for the fitting and estimation of the ARMA 
model using a large-scale database, the results obtained from the analysis of December 
2015 are shown in Fig. 6-9. Fig. 6 and 7 show the partial and simple autocorrelation 
functions, and Fig. 8 illustrates discretized PDFs of the transformed and standardized 
time series (ܶܵܧ ௛ܲ ∀ ℎ = 1, …  which was built using 250 intervals and shows a ,(ܪ,
PDF distribution that is approximately Gaussian. The fitting procedure described in 
subsection 2.1.3 was implemented by considering 15 generations (15 = ܩ), 50 
individuals (50 = ܭ), a crossover rate of 95% (ܺ=95%), and a mutation rate of 5% (ܴ = 
5%). Each individual was represented using 12 bits (12 = ܤ), so that a maximum order 
of 63 coefficients for AR and MA parts can be chosen. Fig. 9 presents the evolution of 
the GA, which converges to an ARMA model with 10 coefficients. Table 6 shows the 
results obtained from December 2015 to December 2016, including the number of 
parameters and the statistical checking. 

 
Fig. 6: Partial autocorrelation function (December 2015). 
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Fig. 7: Simple autocorrelation function (December 2015). 

 

 
Fig. 8: PDF of transformed and standardized time series (December 2015). 

 
Fig. 9: Convergence of GA (December 2015). 
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Table 6: ARMA model fitting for 2015 and 2016. 

Year Month ܲ ܳ ܮ − ܲ − ܳ ܳ௦௧௔௧  ߯ఋଶ 
2015 Dec 2 8 134 156.9008 162.0156 

2016 

Jan 1 2 141 147.0294 169.7113 
Feb 4 4 136 156.8868 164.2162 
Mar 6 2 136 161.0417 164.2162 
Apr 10 21 113 136.5337 138.8114 
May 3 0 141 157.0895 169.7113 
June 7 24 113 131.9534 138.8114 
July 8 4 132 148.8228 159.8135 
Aug 6 0 138 163.1772 166.4153 
Sept 12 6 126 147.2023 153.1979 
Oct 4 20 120 140.615 146.5674 
Nov 5 4 135 163.0477 163.1161 
Dec 5 8 131 153.3704 158.7119 

 
Using the characteristics of the ARMA models shown in Table 6, forecasting error was 
determined by evaluating the model explained in subsection 2.1.4 over the year 2016. 
For example, the forecasting-error time series of January 2016 was measured by 
evaluating the ARMA model of the previous month (December 2015). This procedure 
was sequentially applied for every month of the year 2016, resulting in a representative 
time series of forecasting error.  
Finally, a discretized PDF of forecasting error for each time step ݐ =  1, … , ܶ was built 
using 250 intervals and the corresponding parameters of beta PDF (ߙ௧ and ߚ௧ ݐ ∀  =
1, … , ܶ) were found, these parameters are presented in Table 7. It is important to pay 
attention to the fact that the forecasting-error time series was normalized to have values 
within the interval [0, 1] by applying a linear relationship with the minimum and 
maximum values shown in the Table 7 caption. 
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Table 7: PDF of forecasting error 
(Minimum -22.529071 and maximum 38.6241888). 

 ௧ߚ ௧ߙ ݐ
1 30.43776 51.19635 
2 23.7881 39.97743 
3 20.60996 35.03246 
4 18.70024 31.72744 
5 15.63682 26.70307 
6 10.63028 18.33883 
7 7.020232 11.92807 
8 5.076296 8.287134 
9 4.459585 7.256877 
10 3.611737 5.577152 
11 5.895707 9.531455 
12 6.796847 11.09506 
13 6.985656 11.4902 
14 6.600518 10.927 
15 6.133457 10.20937 
16 5.358248 8.918988 
17 5.045798 8.35324 
18 5.492391 8.96503 
19 5.506971 8.784628 
20 6.135035 9.799125 
21 4.323731 7.095468 
22 6.298924 10.42099 
23 7.851146 13.2495 
24 7.260967 12.28328 

 

5.2 Price forecasting for January 5th, 2017 
Using the ARMA model of December 2016 combined with data from December 2016 
and January 2017, energy prices for January 5th, 2017 were predicted. In addition, 300 
price scenarios were generated using the MCS approach as explained in subsection 2.3 
and considering the one-lag autocorrelation coefficient (߮) to be 0.9234. The results are 
shown in Fig. 10, the grey lines represent all the scenarios generated while the black 
line represents the actual values of the electricity market. It is possible to observe how 
the minimum (ܧ ௠ܲ௜௡=35.2 €/MWh≈35 €/MWh) and maximum (ܧ ௠ܲ௔௫=75.5 
€/MWh≈76 €/MWh) energy prices lead to a tight price forecasting. 
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Fig. 10: Scenarios and actual energy prices (1/5/2017). 

 
The next subsections describe the scheduling process of LAB and VRFB banks, 

including the impact of forecasting error on storage-system operation. 
 

5.3 Control of LAB for January 5th, 2017 
Using similar parameters to those employed for the ARMA model fitting reported in 
subsection 5.1 and the scenarios generated in subsection 5.2, control of LAB was 
performed, obtaining the matrix shown in Table 8. In this matrix, it is possible to 
observe that, during some hours (7,…,4 = ݐ), the battery bank has to be charged 
regardless of the price uncertainty. This time frame corresponds to those hours with 
energy prices close to the minimum historical value. On the other hand, the probability 
of battery discharging reached its highest value when energy prices reached a value 
close the maximum historical level; specifically, during the time frame between 19 = ݐ 
and 20 = ݐ. 
The dynamic behaviour of the LAB bank is shown in Figs. 11–13, this was obtained by 
taking into consideration the operating scheduling reported in the last column of Table 8 
ܤ) ௧ܵ ∀ ݐ = 1, … ,24). From these results, it is possible to note that the battery bank 
should be charged during the valley hours in order to later be discharged during high-
price hours. In this sense, the formulation and solution of the control problem in a 
probabilistic way allows us to determine charging and discharging periods accurately. 
Fig. 14 shows the probability mass function of economic benefit obtained from the 
operation of the LAB bank for the day in question, which is highly influenced by the 
PDF of forecasting error, modelled as a beta distribution. 
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Table 8: Matrix of probabilistic optimization (LAB). 

ܤ)஻݂ௌ,௧ ݐ ௧ܵ = 1) ஻݂ௌ,௧(ܤ ௧ܵ = −1) ஻݂ௌ,௧(ܤ ௧ܵ = ܤ (0 ௧ܵ 
1 0 0.5133 0.4866 -1 
2 0.9533 0.0200 0.0266 1 
3 0.9966 0 0.0033 1 
4 1 0 0 1 
5 1 0 0 1 
6 1 0 0 1 
7 1 0 0 1 
8 0.6366 0.0833 0.2800 1 
9 0.0866 0.6566 0.2566 -1 

10 0.0433 0.8200 0.1366 -1 
11 0.0266 0.8366 0.1366 -1 
12 0.0266 0.7466 0.2266 -1 
13 0.0600 0.5233 0.4166 -1 
14 0.1400 0.3733 0.4866 0 
15 0.3700 0.2200 0.4100 0 
16 0.7766 0.0766 0.1466 1 
17 0.5433 0.1433 0.3133 1 
18 0.0233 0.5266 0.4500 -1 
19 0 0.9133 0.0866 -1 
20 0 0.9333 0.0666 -1 
21 0 0.8366 0.1633 -1 
22 0 0.8500 0.1500 -1 
23 0 0.7400 0.2600 -1 
24 0 0.6066 0.3933 -1 

 
 

 
Fig. 11: LAB power (1/5/2017). 
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Fig. 12: LAB state of charge (1/5/2017). 

 

 
Fig. 13: LAB voltage (1/5/2017). 

 

 
Fig. 14: LAB operating cost (1/5/2017). 
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5.4 Control of VRFB for January 5th, 2017 
In this subsection, VRFB bank operation is analysed in order to determine the 
scheduling and dynamic behaviour in terms of battery bank power, SOC, and voltage. 
The matrix for probabilistic optimization in shown in Table 9, where the charging 
period between 3 =ݐ and 7 =ݐ, which does not depend on the price uncertainty, can be 
easily recognized. On the other hand, the discharging hours can be recognized by their 
high probability; specifically, between 19 =ݐ and 23 =ݐ. 

 
Table 9: Matrix of probabilistic optimization (VRFB). 

ܤ)஻݂ௌ,௧ ݐ ௧ܵ = 1) ஻݂ௌ,௧(ܤ ௧ܵ = −1) ஻݂ௌ,௧(ܤ ௧ܵ = ܤ (0 ௧ܵ 
1 0 0.5466 0.4533 -1 
2 0.4866 0.2766 0.2366 1 
3 1 0 0 1 
4 1 0 0 1 
5 1 0 0 1 
6 1 0 0 1 
7 1 0 0 1 
8 0.0800 0.1100 0.8100 0 
9 0 0.6566 0.3433 -1 

10 0 0.8600 0.1400 -1 
11 0 0.8733 0.1266 -1 
12 0 0.8100 0.1900 -1 
13 0.0033 0.6400 0.3566 -1 
14 0 0.6166 0.3833 -1 
15 0.0566 0.4366 0.5066 0 
16 0.4600 0.0866 0.4533 1 
17 0.2900 0.0800 0.6300 0 
18 0.0033 0.5566 0.4400 -1 
19 0 0.9866 0.0133 -1 
20 0 0.9933 0.0066 -1 
21 0 0.9800 0.0200 -1 
22 0 0.9733 0.0266 -1 
23 0 0.9233 0.0766 -1 
24 0 0.8733 0.1266 -1 

 
Based on the results presented in Table 9 related to the battery bank scheduling, the 
completed simulation of VRFB-bank operation was carried out using the formulation 
discussed in subsection 3.2 and resulted in the profiles shown in Figs. 15-17 for battery 
power, SOC, and voltage, respectively. 
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Fig. 15: VRFB power (1/5/2017). 

 

 
Fig. 16: VRFB state of charge (1/5/2017). 

 

 
Fig. 17: VRFB voltage (1/5/2017). 
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Fig. 18 shows the probability mass function of operating cost for this storage 
technology, which is also influenced by the beta distribution used to represent the 
forecasting error. 

 
Fig. 18: VRFB operating cost (1/5/2017). 

 
Table 10 presents the extreme and average values of the revenue for each technology, as 
well as its actual value. These extreme values were directly obtained from the CDF of 
distributions presented in Figs. 14 and 18 considering a significance level of 5%. It is 
possible observing how the proposed model is able to estimate an interval with a 
reasonable level of reliability; the interval could be extended by considering a 
significance level closer to zero. 
In addition, from the analysis of Figs. 11 and 15 combined with Table 10, it is possible 
to observe that the LAB bank exchanges less power with the SG than the VRFB bank 
does; however, the LAB bank results in higher revenue than that estimated from the 
operation of VRFB bank. These results reveal the importance of considering the 
variable efficiency of each battery technology as well as the power converter. The 
efficiency of LAB bank is mainly influenced by gassing current during the charging 
process, while the efficiency of the VRFB bank is influenced by circulation pumps, 
among other instruments and devices. On average, the computation required to solve 
this problem took 44.732 minutes. 
 

Table 10: Extreme and average values of operating cost (1/5/2017). 
Cost LAB VRFB 

Minimum (€) -45.493976 -37.763052 
Average (€) -38.554217 -30.349398 

Maximum (€) -29.590361 -20.012048 
Actual (€) -44.300481 -19.483770 

 
Finally, as the interest in researching the interaction between distributed storage systems 
and SG has been growing [39-41]. The proposed approach could be extended to control 
a storage system aggregator taking into account the limitations related to distribution 
network in terms of voltage profile and power flow. 
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6. Conclusions 
In this paper, a novel probabilistic optimization model for the control of LABs and 
VRFBs enrolled in real-time pricing programs that takes into account the forecasting 
error of electricity prices has been presented. It has been numerically illustrated by 
analysing a representative case study of a 2 MWh storage system operating in the 
Spanish electricity market. Relevant factors and phenomena related to LAB operation, 
such as the gassing process, as well as VRFB charging and discharging efficiencies 
have been carefully included on the energy arbitrage problem, which allowed reliable 
prediction intervals in the estimation of daily revenue according to a determined 
significance level. In addition, the comparison of LABs and VRFBs under similar 
operating conditions has shown the importance of operating conversion efficiency, 
which varies with the charging and discharging of power and is frequently represented 
by a constant value in many works found in the technical literature. 
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