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Abstract 11 

A vital element in making a sustainable world is correctly managing the energy in the domestic sector. Thus, this sector 12 

evidently stands as a key one for to be addressed in terms of climate change goals. Increasingly, people are aware to saving 13 

electricity by turning off the equipment that is not been used, or connect electrical loads just outside the on-peak hours. 14 

However, these few efforts are not enough to reduce the global energy consumption, which is increasing. Much of the 15 

reduction was due to technological improvements, however with the advancing of the years new types of control arise. 16 

Domestic appliances with the purpose of heating and cooling rely on thermostatic regulation technique. The study in this 17 

paper is focused on the subject of an alternative power management control for home appliances that require thermal 18 

regulation. In this paper a Model Predictive Control scheme is assessed and its performance studied and compared to the 19 

thermostat with the aim of minimizing the cooling energy consumption through the minimization of the energy cost while 20 

satisfying the adequate temperature range for the human comfort. In addition, the Model Predictive Control problem 21 

formulation is explored through tuning weights with the aim of reducing energetic consumption and cost. For this purpose, 22 

the typical consumption of a 24 h period of a summer day was simulated a three-level tariff scheme was used. The new 23 

contribution of the proposal is a modulation scheme of a two-level Model Predictive Control’s control signal as an interface 24 

block between the Model Predictive Control output and the domestic appliance that functions as a two-state power switch, 25 

thus reducing the Model Predictive Control implementation costs in home appliances with thermal regulation requirements. 26 

 27 
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 29 

Nomenclature  30 
 31 

Aw The wall area. 
At The surface area of the tank. 
A The state (or system) matrix. 
B The input matrix. 
C The output matrix. 
Cin The thermal capacitance of the indoor air. 
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CRFi The heat storage capacity of the refrigerator. 
Cwa The thermal capacitance of the water. 
Cwl The thermal capacitance of the wall. 
ho The combined convection and radiation heat transfer coefficient. 
k Sampling instant and the current control interval. 
k+i The time instant associated to the future state prediction for i=1…N. 
m The water mass. 
N The prediction horizon. 
P The control horizon. 
Qwa The water specific heat 
Qac The cooling power input to the room. 
Qeg The heating element electric rated power. 
Qs The heat flow into an exterior surface of the house subjected to solar radiation 
Tin The temperature of the room. 
TRF The fridge internal temperature. 
TRFe The inlet temperature of the evaporator’s refrigerant. 
Tout The ambient temperature. 
Ts The wall surface temperature. 
Twa The water temperature variable. 
Twa_inlet The incoming water temperature. 
Twl  The wall temperature. 
r(k+i) The set point reference. 
Rwd The thermal resistance of the windows. 
RRFw The thermal resistance of the wall insulation. 
RRFwe The thermal resistance of the wall between the cabinet and the evaporator. 
Rwl The thermal resistance of the wall. 
S(t) A binary variable that emulates the turn-on and turn-off of the thermostat. 
U The overall heat transfer coefficient for the WH wall. 
u(k) The present input. 
u(k+i|k) Future control signals for i=0…P-1. 
Umin The lower limit of the control signal. 
Umax The upper limit of the control signal. 
x(k) The state vector. 
y(k) The system output. 
y(k+i|k) The estimated outputs. 
Ymin The minimum limit of future outputs. 
Ymax The maximum limit of future outputs. 
Λ(k) The two level input vector. 
φu The control signal tracking error. 
φΔu The equivalent cost function term that minimizes control signal increments. 
φy Optimization of the error due to the output reference trajectory. 
φε The constraint violation performance index. 
Ψ Input vector. 
ωi

y Weighting factor that allocates more relevance to the term. 
ωi

u Weighting factor that allocates more relevance to the term. 
ωΔu Weighting factor that penalizes high differences between successive estimated input signals uk 
ρε A constraint violation penalty weight. 
εk A slack variable at control interval k. 
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ζ A dimensionless controller constant. 
η The electrical resistance heating element efficiency. 
  

Table of abbreviations  32 
AC Air Conditioner 33 
BTU       British Thermal Units 34 
HVAC    Heating, Ventilation and Air Conditioning 35 
MPC Model Predictive Control 36 
TH Thermostat 37 
WH Water Heater 38 
QP Quadratic Programming 39 
RF Refrigerator 40 
SISO Single-Input and Single-Output  41 
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1. Introduction 42 

The energy consumption in buildings is accountable for roughly 33% of the entire energy use, thus, 43 

contributing to the global CO2 emissions [1]. The present environmental circumstances require firm 44 

investigation concerning the energy efficiency and possible energy savings in the building sector. 45 

Consequently, many new projects are supported by policy makers and researchers in order to improve the 46 

energy efficiency [2], to intensify the energy production from renewable resources and reduce the greenhouse 47 

gas emissions [3]. In the residential sector the energy efficiency and savings is gaining more and more 48 

importance, enthused either by economic concerns or environmental reasons [4]. 49 

The space heating to improve thermal comfort in dwellings and workplaces seems to be particularly 50 

relevant. For instance, as of 2008, circa 50% of the total energy demand for heat generation was utilized with 51 

the purpose of space heating [5]. Until now most of the efforts to lower the energy in building and residential 52 

have been concentrated on studying alternative materials that could reduce heat loss in the construction itself or 53 

by improving the operation of the domestic appliances. In this sense, a good example have is the paradigm shift 54 

from classical incandescent light bulb to led technology with significant energy savings since energy 55 

conversion efficiency is much higher. Also, over the years the manufacture of appliances has been modernizing 56 

different aspects of the domestic devices operation. At the moment, variable speed drives are common in 57 

vacuum cleaners, washing machines or air conditioning units (HVAC). Moreover, Modern HVAC systems are 58 

introducing variable speed compressors which set a new level of efficiency and comfort [6]. Despite these 59 

continuous improvements, most of domestic applications for regulating temperature are still based on 60 

conventional control techniques as is the case of the bang-bang control that has been around for decades. The 61 

thermostatic technique, extensively used in home HVAC system, space heater, water heater or washing 62 

machines, has shown several drawbacks [7]. The thermostat maintenance limits are the same which does not 63 

take into account the house thermal characteristics, the weather where the house is located or the HVAC system 64 

efficiency rating level. In addition, for example, there is no method to assess the rise in outdoor temperature 65 

that could prevent a continuous injection of heat inside the room by the thermostat in order to avoid the house 66 

to get overheated. In sum, the conventional thermostatic technology is built with standard rules that may be 67 

adequate to some houses and HVAC systems but not to others. 68 

In the past, any usage of computational power was prohibitive. But to now, low power and powerful 69 

microcontroller units (MCUs) at derisory prices are revolutionizing the embedded systems market [8]. Plenty 70 

resources for floating point operations based mathematical calculations opens new possibilities to implement 71 
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advanced energy management techniques from appliances point of view. This means that for optimizing 72 

temperature regulation in terms of energy savings at maximum comfort, dedicated thermal model can be 73 

acquired and personalized according to the house, weather, HVAC systems and area occupancy rates. Such 74 

amount of computational capacity could also enable the inclusion of novel energy usage related user behaviour 75 

prediction tools to precise load matching without compromising the comfort of the user [9]. 76 

This signifies that a growing number of electronic appliances and devices in a typical dwelling create 77 

space for efficiency increases on energy consumption and combined operations can be made to tackle energy 78 

waste in dwellings [10]. A possibility is implementing new tariff policies related to demand response programs 79 

that assist the customer with the alteration of their electricity consuming behaviours [11]. An alternative 80 

method consists in modernizing the control equipment specifically the domestic appliances with controlled 81 

temperature.  82 

Normally, in a usual dwelling, the equipment with the greater energy consumption and that tends to be the 83 

one that are constantly in operation throughout the day is the one that offers heating and cooling (i.e. water 84 

heater (WH), air conditioning (AC), and less significantly the refrigerator (RF)) [12]. By adopting energy 85 

efficiency measures there is room for real and tangible potential for energy savings that can reach up to 30% 86 

[13]. Consequently, one of the methods towards the goal of reducing the energetic demand is by modernizing 87 

the control technology that runs such types of home appliances. With the purpose of regulating the temperature 88 

the cooling and heating equipment utilize typical ON-OFF solutions. Given its low production price and that 89 

are so common the ON-OFF devices have proven to be the first choice by appliance manufacturers. 90 

Currently, the Model Predictive Control (MPC) has been accepted by academics and industry as a very 91 

compelling method with solid theoretical foundations and proven capability to deal with a large number of 92 

control challenges[14]. This method is considered to be a broadly spread technology in industry intended for 93 

control design of very complex multivariable processes [15]. The MPC is a control method with the main goal 94 

to optimize a sequence of manipulated variable modifications influenced by a prediction horizon through the 95 

use of a process model with the purpose to optimize forecasts of process behaviour centred on a linear or 96 

quadratic objective, this objective being regulated by equality or inequality constraints [16]. On condition that 97 

the model is sufficiently precise and the constraints and performance index express correct and accurate 98 

performance objectives, then the MPC delivers a near-optimal execution. However, some cautions have to be 99 

taken since there is a necessity of a trade-off amongst complexity of the optimization and model accuracy – if 100 
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the model is simpler, then easier will be to solve the optimization while if the model is more complex the 101 

optimization will require a higher computational power to optimize in a suitable time period [17].  102 

As a part of MPC controller design process there is a need to set up the control objectives as a singular 103 

cost function. It is not likely to satisfy all the control objectives at the same time since usually the particular 104 

control actions have an increased significance over former actions. Consequently, performance compromises 105 

must to be reached among the contending control objectives. Thus, to the input and output variables of the 106 

process are associated specific weight factors, and as a result, enhancing the prioritization of the individual 107 

performance in order to carry out the control restricted by process constraints. Hence, the MPC utilizes distinct 108 

weights on tracing errors [18] and the attribution of control variables weight is called MPC tuning [19]. 109 

There are several benefits in using the MPC technique in building energy control such as several 110 

constraints from environmental, physical, and safety angles being able to be incorporated into the optimization 111 

problem; existing a methodical process to produce a dynamic building thermal model for the objective of 112 

predictive control; and the ability of the impact of disturbances, such as solar radiations and ambient 113 

temperature, to be handled in real-time [14]. On the other hand, the MPC has one major disadvantage. In order 114 

to solve an open-loop optimal problem a great volume of calculations needs to be performed at every sampling 115 

instant [16]. Therefore, the implementation of the controller demands for high computational capabilities in 116 

order to come up with a solution at every sampling instant [20]. 117 

This method has been subject of increasing popularity in different fields of application [21]. In the 118 

literature, various different MPC schemes have been developed aimed at the residential sector such as those 119 

that are utilized with the intention to improve the dwelling thermal comfort, decrease the peak load, and reduce 120 

the energetic expenses [22]. Generally, the MPC tool is intended for ventilation, heating, cooling and air 121 

conditioning (HVAC) equipment with the intention of minimizing the energetic expenses for more than just a 122 

simple reduction of the consumed energy [23]. In [24] is presented a MPC strategy with the purpose of 123 

improving the supply air temperature control of HVAC units by operating directly with the associated 124 

uncertainties and constraints. A MPC logic based on weather forecasts has been applied to the analysis of 125 

power management in a domestic off-grid system [25] and in a real-time building energy simulation [26]. 126 

Another implementation was the application of a MPC based thermal dynamics for office building energy 127 

management purposes [27] while in [28] a MPC strategy for energy efficient buildings with demand-response 128 

is proposed. A mixed-integer MPC for hybrid energy supply systems in buildings is analysed in [29].  129 

 130 
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In this paper a MPC scheme is proposed and its performance studied and compared to the thermostat with 131 

the purpose to minimize the cooling energy consumption through the minimization of the energy cost while 132 

satisfying the adequate temperature range for the human comfort. Three domestic appliances that are 133 

permanently connected to the grid are utilized for the MPC performance evaluation. These appliances convert 134 

electrical energy in thermal energy and regulated by a thermostat. The chosen appliances are the room 135 

temperature control by AC, the WH and RF. The novelty of the proposal is a power interface that modulates 136 

the MPC output command signal dynamic range into a discrete two level control signal. Thus, a linear power 137 

switch is not necessary between power and load. By proposing this modification in the MPC operation mode it 138 

is possible to limit the costs of its integration as a standard control solution for the studied domestic appliances. 139 

The paper is organized as follows. The MPC formulation is depicted in Section II. Section III presents the 140 

domestic appliances under study and their thermal model and the testing methodology for MPC performance 141 

evaluation. Section IV contains the simulations and provides results discussion. Finally, the conclusions are 142 

summarized in Section V.  143 

 144 

2. Model Predictive Control formulation 145 

  Any system to be controlled requires a sequence of control signals in the form of input vector u  �  and 146 

the observation of the system response with the output vector y  � .  As the core of concept the MPC strategy 147 

incorporates a dynamic model of the system which is characterised by a state vector x � . Domestic loads are 148 

normally described by first-order differential equations which mean a linear state-space representation can be 149 

applied. The discrete-time MPC formulation requires the system to be represented by a discrete-time state-150 

space equation.   151 

        A B1  x k x k u k   (1) 152 

      y k x kC   (2) 153 

where the matrices A and B are computed from the continuous –time state-space representation and u(k) is the 154 

system input signal and y(k) is the system output as the controlled variable at sampling instant k. The u(k) 155 

control signal is normally identified as the manipulated variable. Based on current state, the dynamic model is 156 

used to forecast future system states x(k+i|k) and outputs y(k+i|k). 157 

  158 

 159 
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The control problem formulation methodology with MPC lies on time horizon prediction calculations. That 160 

is, the controller plays with future outputs and future control signals to keep to a feasible extent the system 161 

close to the set point reference. Finite control horizon for the future outputs is called prediction horizon N. The 162 

time frame implies that the set of future outputs are estimated at every sampling instant k. The estimated outputs 163 

are formulated as y(k+i|k). Thus, k represents the current control interval and k+i denotes the time instant 164 

associated to the future state prediction for i=1…N. Future manipulated variable u(k+i|k), i=0…P-1, in which P is 165 

the control horizon, are estimated by a satisfying performance criterion algorithm. In other words, the input set 166 

calculated consist of the current input u(k) and P-1 future inputs. These inputs are estimated in such way that 167 

calculated future outputs y(k+i) allow the system to reach the set-point in an optimal form. 168 

It should be noticed that despite a set of P inputs are determined at each sampling instant, just the first 169 

element is actually used for generating the control signal.    170 

In order to satisfy the control objectives the calculation of future states, outputs, and manipulated variables 171 

are processed through a cost function which translates into a scalar cost value. By finding the minimum value 172 

of the cost function, the optimal u(k) signal is extracted from the first element of the most suitable sequence of 173 

manipulated variables u(k+i|k) according to the prediction timeframe used for the scenario.  174 

From a control system point of view, the cost function consists of three standard terms, each one with a 175 

weight factor that penalizes the prediction variable effort. In other words, it establishes control objectives with 176 

an output penalty, an input penalty and an input rate penalty. Thus, the general expression for an objective 177 

function is: 178 

  min     , y u uU
P N           (3) 179 

where φy optimizes the error due to the output reference trajectory, φu is the control signal tracking error, φΔu 180 

minimizes control signal increments and φε is associated to constraint violations. Since the cost function has a 181 

quadratic form, a quadratic programming (QP) solver generates an input vector Ψ solution as: 182 

      |    1|     1|T T Tu k k u k k u k P k          (4) 183 

In case of domestic appliances where only the temperature has to be controlled, a single-input and single-184 

output (SISO) model is only necessary. Therefore, output variables number is limited to one. Then, the 185 

performance index for minimizing the tracking error is as follows: 186 

   2

1
| ( | )  

N
y

y i
i

r k i k y k i k 


        (5) 187 
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where r(k+i|k) defines the set-point reference, y(k+i|k) is the estimated output scaled by a weighting factor ωi
y 188 

that allocates more relevance to the term.  189 

Input signal tracking control objective is: 190 

   2

1
| ( | )  

P
u

u i t
i

u k i k u k i k 


        (6) 191 

where u(k+i|k)  is the control signal, ut(k+i–1|k) is the goal to be reached by the control signal. The difference 192 

error is multiplied by a weighting coefficient ωi
u that gives more importance to this term. 193 

Input signals wide variations are penalised to no allow abrupt changes on input variables. The equivalent 194 

cost function term is defined as:  195 

   2

1
| ( 1| )  

P
u

u i k
i

u k i k u k i k  




         (7) 196 

where u(k+i–1|k) is the input signal from the previous sampling instant k–1 and ωΔu penalizes high differences 197 

between successive estimated input signals uk. 198 

Constraint violation performance index is formulated as: 199 

 2  k      (8) 200 

where ρε is a constraint violation penalty weight and εk is a slack variable at control interval k. 201 

Weights ωi
y and ωi

u must be tuned to guarantee the system performance desired. For instance, giving more 202 

importance to weight ωi
y in preference to the weight ωi

u, the controller goal is to estimate successive sets of 203 

future outputs that minimize the predicted divergences from the set point reference. On contrary, if ωi
y is 204 

reduced, then the gap between the reference tracking to the plant output is going to rise. 205 

MPC can be implemented considering constraints in the minimization problem. That is, fixing bounds in 206 

the amplitude and in the slew rate of the variables, the controller forces the system operation to respect physical 207 

operational limits. 208 

Therefore, the formulation of a quadratic programming based constrained MPC is given by the Eq. 3 and 209 

the following constraint expressions:  210 

          |   ,    1 :y y
min k min max k maxY i i Y k i k Y i i i N           (9) 211 

          1| ,  1 :u u
min k min max k maxU i i U k i k U i i i P            (10) 212 

where Ymin and Ymax are  the minimum and maximum limits of future outputs, the parameter ζ is a dimensionless 213 

controller constant and the lower and upper bounds for the control signal are represented by Umin and Umax, 214 

respectively. 215 
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3. Models and control problem formulation 216 

     Linear models are introduced here with the purpose to model the appliances. Then, a modulation scheme of 217 

a two-level MPC’s control signal is proposed as the novelty of this study.  218 

3.1 Thermal models for domestic appliances 219 

A description of the thermal modelling approach for three domestic appliances which performs thermal 220 

regulation is made in this section. 221 

a) Indoor environment temperature control 222 

To create thermally comfortable indoor environments such as living rooms or bedrooms energy has to be 223 

used to add or remove heat. In this way the comfort level desired is set by setting a reference temperature and 224 

by measuring the space air temperature. Comfort level based on temperature is disturbed by the thermal mass 225 

of the space itself, the number of occupants that use the house division and the thermal exchange through the 226 

external walls from the external environment.  Therefore, the temperature dynamics of a house division results 227 

from energy balances between the outside environment temperatures, the device (AC) that adds or remove heat 228 

from the division combined with the indoor thermal mass as depicted in Fig. 1.  229 

 230 

Fig. 1 – Indoor environment temperature control. 231 

In order to evaluate and compare controller’s performance a thermal mass model using a resistance-232 

capacitance circuit analogy is employed. The model comprises the heat flow balance between the external wall 233 

and windows of a house division and the thermal capacitance regarding the indoor air. The following 234 

expressions were derived from [30]:  235 

 wl s in wl

wl wl wl

dT Q T T
dt C R C

 
   (11) 236 

 
 acin out in

in in wd in

wl in

wl

Q S tdT T T T T
dt C RC C R


 

 
   (12) 237 

 wA ( )o out ss h TQ T    (13) 238 
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where Qac is the cooling power input to the room, Tout is the ambient temperature, Tin is the room’s temperature, 239 

Twl is the wall temperature, Cwl is the thermal capacitance of the wall, Rwl is the thermal resistance of the wall, 240 

Rwd is the thermal resistance of windows, Cin is the thermal capacitance of the indoor air, Qs is the heat flow into 241 

an exterior surface of the house subjected to solar radiation,  ho is the combined convection and radiation heat 242 

transfer coefficient, Aw is the wall area, Ts  is the wall surface temperature and S(t) is a binary variable that 243 

emulate the turn-on and turn-off of the thermostat. The AC operation is a power switch block without internal 244 

loss. The value of the physical parameters is obtained from [31]. 245 

b) Water heater 246 

Based on the energy flow inside it, the WH model utilised in this paper was generated to acquire the electric 247 

power demand of the WH. Generally, the electric energy consumed by the WH is utilised to satisfy the 248 

following goals: the compensation for the thermal losses from the WH tank to the ambient and the heating of 249 

the inlet cooled water that substitutes the heated water extracted from the tank. In the WH model used for this 250 

study the heated water is assumed to be entirely homogeneous inside the storing container. As a result, the 251 

temperature is also expected to be homogeneous in the tank and to be the only hot water temperature variable 252 

utilised in the WH model for this paper – Twa. The model of WH follows the method presented in [32]:  253 

 _( ( )
 

) egwa inletwa t amb

wa

wa w

wa wa

wa
QT TdT UA T TQ

dt C C C
  

     (14) 254 

where ρ is the water density, Qwa is the water specific heat, Twa_inlet is the incoming water temperature, Cwa is 255 

the thermal capacitance of water, U is the overall heat transfer coefficient for the WH wall, At is the surface 256 

area of the tank, Qeg is the heating element electric rated power and η the electrical resistance heating element 257 

efficiency. Parameters for model simulation were taken from [31]. 258 

c) Refrigerator 259 

RFs are very familiar home appliances, existent in virtually every house which signifies that most people utilize 260 

them every single day. The fridge internal temperature is represented by TRF and is intended to describe the system 261 

behaviour and to be suitable for control. TRF is elevated by the ambient temperature (Tout ≥ 0°C) and lowered by the 262 

inlet temperature of the evaporator’s refrigerant (TRFe < 0°C). The heat transfers are delimited by the thermal 263 

resistance of the wall between the cabinet and the evaporator (RRFwe) and the thermal resistance of the wall insulation 264 

(RRFw). Besides, the behaviour of the RF is additionally influenced by its heat storage capacity (CRFi). The thermal 265 

dynamic behaviour is approximated with the equations (15-16) where for the warm-up (15) and the cool-down 266 

(16) phases are represented as follows [33]: 267 
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 FRi FRi out

FRi FRw FRi FRw

T
R

dT T
dt C C R

     (15) 268 

 Re

( )
FRi FRi out

FRi FRw FRwe FRi FRw FRi F

F

Rwe

dT TT
R

T
dt C R C R C R

      (16) 269 

3.2 MPC design for domestic load control 270 

a) Proposed architecture 271 

The implementation of the MPC is represented in Fig. 2. Typically, the MPC composition is made of the 272 

blocks prior to the 2-level signal modulator block. The proposed enhanced version of the MPC has an 273 

additional signal processing block represented by the grey area in Fig. 2. 274 

 275 

Fig. 2 – The general view of the 2-level control signal operated MPC. 276 

b) Two level signal modulator  277 

Any signal to be translated to actuator device is subject to the physical constraints of the device itself in 278 

terms of output. A conventional actuator can have a linear response; however, it is limited by lower and upper 279 

bounds. From a classic design view point the manipulated variable response is constrained according to the 280 

actuator physical constraints. In order for the adoption of MPC as an alternative controller to be affordable all 281 

potential costs have to be minimised. Consequently, it should be noticed the actuator itself is an expensive part. 282 

Thus, linear power management requires an adequate power switch. For instance, solid state relays that are 283 

good choices still have prohibitive costs for the simple domestic appliance control. Rather than using a linear 284 

power switch, in this paper a two-level control signal interface is proposed that modulates the limited 285 

continuous set of manipulated variables to a discrete set of integers. The two-level input vector Λ(k) is given 286 

by:   287 

 {0,1}(k)    (17) 288 

In order to code u(k) signal dynamic range into a 2-discrete power control signal, a simple comparison 289 

operator is proposed which has the following operating behaviour: 290 
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max
max

max

1            ( )
2

0              0 ( )  
2

U u k U

(k)
Uu k

  


  

  


  (18) 291 

The manipulated variable dynamic range is divided in two parts. All u(k) values below half of its dynamic 292 

range is processed by the 2-level modulation scheme as 0. Thus, the power delivered to the domestic load is 293 

zero. On the other hand, if the optimized u(k) signal is on the top half of the dynamic range the domestic load 294 

receives full power. In Fig. 3 is shown the use of the proposed two level power control modulation scheme. 295 

 296 

Fig. 3 – Two level modulation operation technique. 297 

4. Simulation and Results  298 

The testing framework consists of three domestic appliances commonly found in residences whose function 299 

is to provide heating and cooling services: WH, RF and AC. This set of loads where chosen since their use has 300 

a daily frequency or in many cases even hourly, while other appliances, even though consume more energy, are 301 

not utilised so frequently.  302 

The conventional thermostatic control serves as a reference to the MPC evaluation. A daily three level tariff 303 

scheme was utilised for this study. The assessment of the energy cost is based on the prices practiced in the 304 

Canadian residential market and is utilized throughout a period of 24 hours. The MPC controller is explored 305 

with two different weighting sets in order to evaluate the impact on electric bill reduction goal. As the 306 

calculation time horizon, P control moves number is set to 4 and 12 is the set of N predicted outputs. 307 

4.1 Case Study 308 

In this section the characteristics of the domestic loads used in the simulation are described. 309 
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a) Air conditioner  310 

The acclimatization of the room is provided by AC system having a cooling capacity of 8900 BTUs 311 

(2.608kW).  Heat exchange with the external environment through the external wall of the room, it is the main 312 

factor of disturbance to maintain the internal temperature in thermal comfort level desired. In order to test both 313 

control strategies, the rate of heat loss/generation through the external wall of the room is modelled using a 314 

temperature based time series with significant wide thermal amplitude variation upon 24 hours corresponding 315 

to a summer day. The TH device is configured with a setting of +/1º referred to a temperature of 23ºC. 316 

Constraints on MPC operation are valid for the same temperature range while the main focus is to minimise the 317 

power consumption. Thus, the temperature control objective for the desired temperature range is defined with 318 

soft constraints between 22.5ºC and 23.5ºC. The purpose of softening the constraints is to permit the controlled 319 

variables to violate their constraints by modest amounts, while in the case of hard constraints no violations are 320 

allowed [34]. The main simulation parameters are the following: the sampling time ∆ܶ is 15min and prediction 321 

horizon size is 48. 322 

b) Water heater 323 

The WH unit heats the water to be used on personal hygiene activities by the house habitants. Hot water 324 

consumption has a peak-hour at early on the morning and at evening before the sleeping period. Thus, 325 

temperature regulation system must preserve the water hot enough during those peak-periods.    326 

The heating element inside of WH is rated at 4.5kW and 184 L is the reservoir capacity of the unit. The TH 327 

set point (SP) is set to 55ºC with a hysteric range of +/-1.5 ºC. The same temperate fluctuation band is adopted 328 

for MPC configuration. WH external wall temperature is fixed at 23 ºC. The main simulation parameters are:  329 

the sampling time ∆ܶ is 5 min and prediction horizon is 144. 330 

c) Refrigerator 331 

The temperature of the interior is normally regulated by thermostatic relay. Opening the RF’s door 332 

increases the energy consumption to recover the previous internal temperature setting. The conventional control 333 

is compared to MPC alternative considering a RF with a compressor’s electric motor rated at 0.23kW.  334 

The MPC system is set up to preserve the internal temperature between 3.9ºC and 5.1ºC. Disturbing events 335 

are recreated with two door opening closing sequences, which are simulated at 10-11 pm and at 14-15pm 336 

respectively. The main simulation parameters are the following: the sampling time ∆ܶ is 15min and prediction 337 

horizon size is 48. 338 

4.2 Transient response characterization of the controllers  339 
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This section presents the essential outcomes by comparing two sets of MPC weights on controller 340 

performance versus the thermostatic relay response. 341 

a) Air conditioner controlled temperature 342 

The performance of the MPC technique is presented in Fig. 4, where two different weights set are employed 343 

to tune the controller and compared to the thermostatic approach. Data shown is related to the AC energy 344 

consumption, room internal temperature and environment temperature. As expected the room temperature 345 

when regulated by the thermostat shows a maximum and minimum deviation about the set-point, dictated by 346 

thermostatic hysteric characteristic.  On the other hand, room temperature profile is more erratic with the AC 347 

unit actuated by a MPC type controller. By applying different weighting set to the MPC controller, it can be 348 

seen that one of MPC weight set overpass the higher limit of the temperature regulation range, although the 349 

deviation is very small. In terms of temperature variation, the MPC shows lower amplitude. 350 

b)  Water heater 351 

In Fig. 5 one of the MPC weight set clearly worse the MPC performance since the temperature evolution 352 

does not respect the input constraint. In fact, temperature constraint violation can surpass 1ºC. In another period 353 

of the day, the same weight set denotes again some visible deviation.  354 

c) Refrigerator 355 

The simulation in Fig. 6 points out that the TH controller confines easily the successive disturbances 356 

impact, due to its hysteric nature. That is, in the first disturbance event which consists of opening the fridge’s 357 

door several times in a short amount of time, the controller performs a sequence of opening and closing of the 358 

switch associated to the TH. As for the next disturbance with the door kept open for a longer time, the 359 

refrigerator consumes additional energy to overcome internal cold air loss.  In this simulation scenario both 360 

MPC weight sets lead to similar regulation responses. In addition, in both tuning sets when the second 361 

disturbance arrives, the performance response is insufficient, allowing the temperature rise observed in Fig. 6.   362 

4.3 Energy consumption and electric bill savings 363 

Tables I, II and III gather economic and electric nature data to characterize energy usage efficiency as 364 

function of the controller type employed. The energy costs associated to each time frame tariff of the day are 365 

also illustrated. One can see at Table I and Table II that MPC weight set 2 enables higher energy consumption 366 

reduction in relation to MPC weight set 1, despite its poorer performance in regulating the temperature 367 

according to the output constraint. Consequently, the second controller tuning set presents the lowest energy 368 

bill. 369 
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 370 

Fig. 4 – Air conditioner operation: a) Ambient temperature b) TH and MPC responses. 371 

 372 

Fig. 5 – Water heater operation: a) Water consumption b) TH and MPC responses. 373 

 374 

Fig. 6 – Refrigerator operation: TH and MPC responses. 375 
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 376 

Table 1 - Air Conditioner 377 

 

Thermostat MPC Weight Set 1 MPC Weight Set 2 
Energy 
(kWh) Cost ($) Energy 

(kWh) Cost ($) Energy 
(kWh) Cost ($) 

Off-Peak 5.005 0.310 5.065 0.314 5.012 0.311 
Mid-Peak 8.417 0.774 8.546 0.786 8.441 0.777 
On-Peak 12.934 1.397 12.661 1.367 12.661 1.367 

Total 26.356 2.482 26.272 2.468 26.114 2.455 
 378 

 379 

Table 2 - Water Heater 

 
Thermostat MPC Weight Set 1 MPC Weight Set 2 
Energy 
(kWh) 

Cost 
($) 

Energy 
(kWh) Cost ($) Energy 

(kWh) Cost ($) 

Off-Peak 5.919 0.367 6.278 0.389 6.480 0.402 
Mid-Peak 6.740 0.620 6.975 0.642 6.480 0.596 
On-Peak 4.939 0.533 4.185 0.452 4.320 0.467 
Total 17.598 1.521 17.437 1.483 17.280 1.465 

 380 

 381 

Table 3 - Refrigerator 

 
Thermostat MPC Weight Set 1 MPC Weight Set 2 
Energy 
(kWh) Cost ($) Energy 

(kWh) Cost ($) Energy 
(kWh) Cost ($) 

Off-Peak 0.824 0.051 0.828 0.051 0.840 0.057 
Mid-Peak 0.504 0.046 0.483 0.044 0.473 0.045 
On-Peak 0.549 0.059 0.552 0.060 0.550 0.064 
Total 1.878 0.157 1.863 0.155 1.863 0.156 

 382 

For these two domestic appliances, in both tuning sets loaded on the MPC controller, the cost of the energy 383 

consumed is lower than the appliance controlled TH. As there are three distinct tariffs during the 24h time 384 

frame, the goal is to diminish the energy cost for the period of ON peak hours. This is true for the AC and WH 385 

appliances. 386 

On the other hand, the same tuning set 2 in the case of the refrigerator the electricity bill is slightly higher, 387 

as can be verified in Table III. Nonetheless, the energy cost computed continues to be lower than the 388 

conventional solution based on TH control. It is now evident that to reduce the energy consumption using a 389 

MPC scheme type, the controller parameters values choice must be selected through a tuning procedure to 390 

achieve a good performance. However, to achieve this goal a penalizing effect may prevent to fulfil the 391 

constraint conditions.  392 

Finally, in Fig. 7, Fig. 8 and Fig. 9 the total energy costs relationship to energy consumption profile are 393 

shown for each appliance. In the case of both AC and WH the electricity bill reduction is aligned with the 394 

energy usage linearly which does not occur in the case of the RF. 395 
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 396 

Fig. 7 – AC: Energy consumption vs energy costs. 397 

 398 

 399 

Fig. 8 – WH: Energy consumption vs energy costs. 400 

 401 

 402 

Fig. 9 – RF: Energy consumption vs energy costs. 403 
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4.4 Varying the MPC weights 404 

In this section, several simulations are made by adjusting different MPC weights for several possible 405 

scenarios and estimate its consequences with the purpose of minimizing the amount of energy that is spent on 406 

the various appliances used within dwellings. For every electrical load the energy, the temperature variation 407 

and the cost are assessed and several results are presented by varying the different MPC weight combination. 408 

The weight tuning allows finding a set of coefficients to maximize the MPC performance regarding the 409 

minimization of the energy consumption. All the combinations of the weights ωy and ωu were tested between  410 

0 and 1 with 0.05 of resolution. 411 

a) Air conditioner  412 

Several results were obtained regarding the AC operation by running the model and adjusting the MPC 413 

weights vs the energy output, energy cost and temperature. Depictions of the energy profile of the AC run with 414 

the MPC can be observed in Fig. 10. In this case the variated arrangement concerning the weights only 415 

produces values near the frontier. However, by the reason of existing 3 distinct electricity tariffs throughout 416 

24h, the attempt is to decrease as much as possible the cost of the energy throughout the ON peak hours. The 417 

specific arrangement of weights shows advantages for the dwelling owner through the reduction of the energy 418 

consumption in the considered period of one day as can be observed the Fig. 11. Hence, the goal of keeping the 419 

temperature between the limits is also achieved as depicted by the Fig. 12. 420 

 421 

Fig. 10 – AC: Energy output vs weights tuning. 422 
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 423 

Fig. 11 – AC: Energy cost vs weights tuning. 424 

 425 

 426 

Fig. 12 – AC: temperature vs weights tuning. 427 

 428 

b) Water heater 429 

Four levels of energy consumption exist in the simulation made for the energy output vs weights tuning and 430 

are shown in Fig. 13. In the case of a lower limit of energy consumption the weights’ arrangements demand for 431 

the weight tuning of the model output to be adjusted with a decreased value despite the fact that no restrictions 432 

exist for the tuning of manipulated variable weight. However, in Fig. 14 the same tendency as the previous 433 

figure is not depicted, in this case the observed peak in the energy cost is a consequence of the price tariff 434 

effect. The requirement of the regulation is fulfilled as can be observed in Fig. 15. 435 
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 436 

Fig. 13 – WH: Energy output vs weights tuning. 437 

 438 

Fig. 14 – WH: Energy cost vs weights tuning. 439 

 440 

Fig. 15 – WH: Water temperature vs weights tuning. 441 
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c) Refrigerator 442 

Contrasting with the aforementioned home appliances, the results of the simulation in the case of the 443 

refrigerator indicate that the lowest level of energy is obtained by setting to 0 the weight of the output of the 444 

system when two weights are only acceptable on the manipulated value side. Such results can be observed in 445 

Fig. 16. For energy cost vs tuning of weights in the case of the refrigerator the highest level of the energy cost 446 

coincides with the highest level of the energy output as can be observed in Fig. 17. Through the use of the MPC 447 

it can be observed that in the preceding cases the condition limits were followed. However, this did not occur in 448 

the inside temperature case as observed in Fig. 18. 449 

In the case of the refrigerator can be noticed that having a goal to reach for the energy consumption 450 

minimum bears a negative consequence in the aim of keeping the temperature in the desired defined limits. 451 

 452 

Fig. 16 – Refrigerator: Energy output vs weights tuning. 453 

 454 

Fig. 17 – Refrigerator: Energy cost vs weights tuning. 455 
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 456 

Fig. 18 – Refrigerator: Inside temperature vs tuning of weights. 457 

5. Conclusion 458 

This paper presented a study concerning the adoption of an alternative control strategy in thermostat 459 

operated cooling and heating domestic equipment in the households. The MPC technique was investigated to 460 

assess its capability to improve energy consumption efficiency with the goal of reducing electric bill. Rather 461 

than using a linear power switch, in this paper is proposed a two-level control signal interface that modulate the 462 

bounded continuous set of manipulated variables to a discrete set of integers, as a new contribution to earlier 463 

studies. Three typical domestic loads were utilized as case studies. The MPC performance was explored by 464 

tuning the controller with two different weight sets and compared to a thermostat control. The simulation 465 

results made clear that there was reduction on the consumed energy when the thermostatic regulation was 466 

replaced by the MPC. Therefore, the MPC based thermal regulation had a positive impact of circa 2% on the 467 

energy bill reduction. Also, the two MPC weight sets have proven that it is necessary to adjust the controller 468 

weights in order to maximize the potential of energy cost savings. The results of the simulation by varying the 469 

MPC weights indicated that the studied appliances need a particular tuning of weights with the purpose to 470 

decrease the consumption of the energy to the lowest possible limit. The results indicate that by involving a 471 

multi-tariff structure the costs’ curve is considerably modified when a comparison is made to the curve of the 472 

energy. Thus, it is enough to follow the energy curve in order to estimate the tuning of the MPC weights. 473 

However, using the MPC does not always have positive results. In the case of the RF it can be noticed that 474 

having a goal to reach for the energy consumption minimum bears a negative consequence in the aim of 475 

keeping the temperature in the desired interval for the human comfort.  476 

 477 
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