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Abstract: A new decentralised demand response (DR) model relying on bi-directional communications is developed in this
study. In this model, each user is considered as an agent that submits its bids according to the consumption urgency and a set
of parameters defined by a reinforcement learning algorithm called Q-learning. The bids are sent to a local DR market, which is
responsible for communicating all bids to the wholesale market and the system operator (SO), reporting to the customers after
determining the local DR market clearing price. From local markets’ viewpoint, the goal is to maximise social welfare. Four DR
levels are considered to evaluate the effect of different DR portions in the cost of the electricity purchase. The outcomes are
compared with the ones achieved from a centralised approach (aggregation-based model) as well as an uncontrolled method.
Numerical studies prove that the proposed decentralised model remarkably drops the electricity cost compare to the
uncontrolled method, being nearly as optimal as a centralised approach.

 Nomenclature
Indices (sets)

i N index (set) of hours
t T index (set) of agents

Parameters

Dmax, DR
t maximum potential of DR participation at hour t (kW)

Dmax, ac
t maximum amount of loads to be supplied at hour t (kW)

Pmax, M
t maximum amount of power to be purchased at hour t

(kW)
DC total critical loads (kW)
DL total load demand (kW)
at special action for Q-learning algorithm
αt learning rate for Q-learning algorithm
Pday, exp expected amount of electricity to buy in a day (kW)
w penalty factor
β1 electricity price once no need to supply controllable

loads (€/kWh)
β2 sensitivity of the agents to pay for buying electricity
πac

t price of selling power to customers from local DR
market's viewpoint (€/kWh)

πMCP
t local DR market price (€/kWh)

πDR
t DR price from local DR market's viewpoint (€/kWh)

Variables

DTS amount of controllable loads (kW)
πstate bidding for controllable loads (€/kWh)
L load demand (kW)
DDR

t scheduled DR purchased from customers (kW)

Dac
t accepted amount of loads for agents to sell power (kW)

PM
t purchased power from local DR market (kW)

Qt Q-value at hour t for Q-learning algorithm
Rn reward in Q-learning algorithm for agent n

Pday, real electricity that is purchased in real by the agents during
the day (kW)

1 Introduction
1.1 Motivation

Electricity consumption level is growing and rising, which caused
some problems in electricity networks [1]. Hence, some
measurements such as consumption reduction/shifting during peak
period may be carried out to keep the energy balance with the
lowest costs. Demand response (DR) programs enable end-users to
modify the usual consumption and turn it into a cost-efficient
pattern.

In the presence of electricity markets, customers are able to play
an active role in a way that bids are based on their willingness to
pay for electricity. Furthermore, with the existence of smart grid
which include smart equipment such as advanced metering
infrastructure and various communication facilities such as WiFi or
Zigbee as well as Internet of Things potentials, customers are being
able to accomplish two-way communications to utility for billing
or monitoring [2]. Thus, all these facilities come up with the idea
of considering customers as different DR agents who are able to
bid actively in a competitive environment. Due to large number of
end-users and to avoid computation burden, multi-agent systems
(MASs) along with market-based control can be introduced from
customers’ side. Moreover, as decentralisation aims to make
decisions based on the local needs, it helps to avoid irregular
functionality of the market due to wrong decisions might be made
by a central controller within wholesale market.

1.2 Literature review

Some articles have dealt with load participation in the electricity
market. Customers in [3] are able to participate in electricity
market through definition of a DR mechanism for improvement of
the efficiency of renewable energy sources integration in the
electric network. Papavasiliou et al. [4] schedule short-term energy
consumption with considering an agent as an interface among end-
users and the control market.
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Some other studies have worked on various bidding strategies
for customers. In [5], a downward temperature-price bidding
function is presented for DR implementation, in a way that the
electricity price is associated with the real temperature at home. A
stepwise linearised profile via ten various fixed rates is introduced
in [6]. An incentive bidding has been also suggested in [7, 8]. A
linear bidding function has also proposed in [9].

A control signal of price is determined for ISO to motivate all
players for modification of demand and supply in [10] by using a
decentralised approach.

Based on [11], some DR programs (DRPs) are employed and
designed for domestic end-users. However, expanding various
types of technology with respect to smart grid, residential DR is
being more applicable [12]. Implementation of DR in [13–16] is
just practical through smart grid concept with smart facilities.
Moreover, Shafie-Khah and Siano [17] describe the application of
DRPs in a residence with aid of smart meters and advanced
communication potentials.

According to [18], the smarter controlling systems of the
domestic customers lead towards the more effective power
management of end-users. Some other works [19] have studied the
interaction among customers and upper utilities for the
accomplishment of DR. DR can be applied in a pool-based market
in [20]. Moreover, DR can be employed in the form of DR
exchange (DRX) in day-head market [21, 22].

All the mentioned literatures have employed a central approach
for cost-minimisation relying on a bi-directional communication
between customer and upper aggregators that directly control end-
users’ DR potential. Besides privacy issues, for huge amount of
customers, the central approach is not applicable due to the
complexity and high computation burden. Therefore, decentralised
control approach can be employed to overcome the problem [23].

To this end, customers’ constraints can be considered in an
aggregated way like [24–26] have accomplished. In [24], an agent
approach has been applied for large number of appliances to
participate in DR based on temperature constraints. A blockchain
decentralised DR method has been used in [25] for financial
settlement of DR based on consensus algorithm. Another multi-
agent based approach has been performed in [26] for DR in
microgrids in order to determine DR price and incentive through
Lagrangian multiplier. However, once the influence of DR-enabled
customers’ bid is not considered, undesirable events such as
avalanche effects, which is simultaneous reactions or errors can
occur in foreseeing consumers’ behaviour related to the price
signals. To avoid these mentioned outcomes, bi-directional
communications are considered in the new decentralised approach.
Besides, applying bidding procedures [27], or iterative approaches
[28], can overcome load synchronisation problems in case of rising
the communication requirements. In [29], DR in virtual power
plants can be traded within the DRX framework in a decentralised
way in connection with intraday market. Likewise in [30], the
interconnection of decentralised control of DR with bulk power
market has been discussed.

There are not many studies that considers customers as several
agents who are able to bid DR prices that can be optimised via a
machine learning algorithm in a specific electricity market. The
current study aims to cover and complete the previous studies in
area. Outputs of this strategy can be useful for customers in
different aspects such as minimisation of buying electricity.

1.3 Contributions

The intention of the current paper is to develop a decentralised
scheme under consideration of responsive loads. In other words,
the proposed model runs a market that DR-enabled end-users can
bid based on their energy needs and the market responds them.
Utilising a Q-learning algorithm, all bids can be optimised. End-
users, as different agents, decide to purchase electricity cost-
efficiency based on the local DR market clearing price (LDRMCP)
as well as the previously determined demand bid curves. These
curves have been considerably optimised via Q-learning algorithm
in a convergent iterative process. All bids are sent to local markets
that communicates the bids into the system operator (SO). Instead

of considering a DR aggregator, customers can buy electricity from
the local market in a decentralised cost-efficient way by running a
minimisation program for electricity purchase. In fact, in this
paper, using an incentive-based DR program, customers can bid the
DR quantity and price according to the optimised approach to
define the best price. It means that customers bid based on the
results of Q-learning algorithm.

The contributions of the paper are briefly as follows:

• Considering end-users as different agents who are able to bid
actively in a decentralised market-based control scheme.

• Applying a Q-learning algorithm to optimise the customers’
bids.

• Running an optimisation program by local DR market to
maximise social welfare.

1.4 Organisation

The remainder of the paper is structured as below. Section 2
represents the bidding strategy including MAS, market scheme,
bids aggregation and clearing method of local DR market applied
for this approach. In Section 3, Q-learning algorithm and the
implementation method in this work are introduced. Case study
and numerical results are described in Section 4. The conclusion is
in Section 5, and centralised method used for making a comparison
among the proposed scheme and centralised one is presented in the
Appendix.

2 Bidding strategy
2.1 Multi-agent system

MASs allow to manage the complex systems, which are modelled
as groups of intelligent agents. MASs enables interacting among
different agents and adapting their attitudes thoroughly. Hence,
MASs would be used in a vast diversity of issues, ranging from
market modelling to grid control and automation [31].

As mentioned, in the proposed model, end-users are considered
as agents with their own local aims and are also able to bid in the
market. Therefore, they need to interact with a market in order to
work more efficiently. To this end, a market-based control scheme
is presented as follows.

2.1.1 Market-based control scheme: The employed market-
based scheme is on the basis of demand–supply models for price
definition. Thoroughly, agents compete with each other through
bidding to the market based on their willingness to purchase the
electricity. Bids are sent to a local DR market where DR market
price is cleared and after LDRMCP definition, it is communicated
in the reverse direction to end-user. The market price serves as the
control signal that is sent to customers to assign the resources.
Thus, the amount of electricity to purchase is set based on
equilibrium price and individual bids.

Fig. 1 presents the proposed scheme. The communication
between the three considered levels of a MAS and the integration
of players in the market-based control strategy are depicted.

2.1.2 Loads: Demand of end-users is divided into two categories
including controllable and non-controllable (critical) loads. Non-
controllable loads are not able to be managed and ought to be
supplied all the time; otherwise, customers encounter major
problems in their lifestyle such as refrigerator usage. While,
controllable loads can be controlled by customer without facing
any problem during the day, e.g. HVAC systems whose
consumption can be scheduled within a suitable period of time.

A control function for each house is defined as follows [32]:

DTS + DC ≤ DL (1)

DTS = ∑
i = 1

N
DTS, i (2)
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DC = ∑
i = 1

N
DC, i (3)

The variable DTS represents the sum of controllable loads DTS, i,
DC indicates the sum of non-controllable loads DC, i and DL is the
maximum power that the user can receive from the network. Thus,
this formulation can model the willingness of each agent to buy
electricity. It means each agent needs to purchase a volume of
power within a bound, in which the minimum is critical loads and
the maximum is total possible power to receive.

2.2 Demand bids

As mentioned earlier, unidirectional communication in the
decentralised control schemes leads to obstacles for customers
regarding DR bidding. Thus, for accomplishment of bidding
process via each individual agent who is customer, bidirectional
communication is applied.

The bid function is set in two intervals including inelastic and
flexible intervals. The former is in respect with critical loads and
the latter represents controllable loads. Two steps are considered in
the second interval, which allows two degrees of freedom. The
relevant stepwise linear curve is depicted in Fig. 2 and formulated
in (4) as follows:

demand (price) =
πmax, 0 ≤ L ≤ DC

πstate, DC ≤ L ≤ Dint

πint, Dint ≤ L ≤ DL

(4)

where

Dint = (DL + DC)
2 (5)

Also, DC and DL represent the critical loads and maximum possible
demands at each hour. πint is introduced in (8). πmax indicates the
maximum allowed price in the market that is allocated to critical
demands. πstate is the DR price that end-users bid for controllable
loads, which can be calculated as

πstate = t
T ∗ DC

t + DTS
t

DL
(6)

where t denotes each hour in horizon time T and since the problem
is in a day-ahead market T is 24 h. DTS

t  is the amount of
controllable demands at each hour t in which the summation DTS
have to be supplied during the horizon time. In other words, once
each agents buys electricity at each hour t, DTS decreases because a
part of DTS has been covered through the purchased power. DC
denotes the volume of critical loads that an agent should satisfy.
The intention of πstate is to define a DR price for agents who
participate in DR based on their DR portion and possibility of load
shifting within a day.

Accordingly, if the agents do not purchase enough electricity to
cover DTS until the end of the day, they have to buy more
electricity at the end of the day, which leads to higher πstate. The
bidding curve is different for agents, since each agent has different
willingness and attitude. For example, if two agents have the same
decisions to supply their controllable loads at a special hour, πstate is
higher for the agent that has higher critical loads.

Therefore, the bidding curve shown in Fig. 2 illustrates general
patterns for agents, as each agent may have various statuses with
different bidding profile. The bidding curve for agents who have no
controllable loads is formed with only one block with maximum
possible price why DC is equal to DL. On the other side, for agents
without critical loads, bidding curve has two blocks due to the fact
that DC is zero.

In this method, πstate and DTS are the variables to define the
price, however sensitivity of the price and the electricity purchase
through the market should be modelled in order to obtain optimum
bidding.

2.2.1 Optimum demand bidding: To adapt the bidding curves of
customers to the market price, some actions must be carried out to
determine the sensitivity of electrical energy needs to the prices.

To obtain an optimum bidding in a pricing function, the cost of
electricity purchase should depend on the level of consumption.
Therefore, multiple pricing rates are assigned to customers based
on their consumption level. The pricing model can consist of
several parameters in which each one determines a level of pricing
rate.

It is noteworthy that the number of parameters forms the bid
blocks; however the extra number has a direct impact on
convergence speed while optimising in learning algorithm, which
will be discussed in Section 3.

Hence, just two parameters are considered in this work, which
divide the controllable load part of bidding curve into two parts.
Accordingly, the optimum amount of πstate, the second bid block, is
calculated through (7) with obtaining the two parameters β1 and β2
via a learning algorithm. Moreover, the third bid block is calculated
as (8)

Fig. 1  Communication between the MAS levels
 

Fig. 2  Demand bid curve
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πstate = β1 + β2 ∗ t
T ∗ DC

t + DTS
t

DL
(7)

πint = πstate
2 (8)

β1 is the price that an agent considers low enough once the
customer has no need to buy the electricity to supply controllable
loads. In other words, this parameter is independent from the
customers’ consumption and can be considered as the lowest
willingness of agents to pay for the electricity. On the other hand,
β2 can be interpreted as the sensitivity of the agents to pay for
buying electricity in order to supply their controllable loads. It
must be highlighted that the impact of the level of consumption on
the price is modelled by this parameter.

A wide range of values can be assigned to these parameters.
Modifying the parameters’ volume leads to achieve the minimum
operation cost or maximum social welfare. Therefore, with
employing the learning machine algorithm, a wide range of
numbers is automatically tested to find the best price, which leads
to minimisation of the total cost of electricity purchase.

2.2.2 Local market: To avoid the huge computation burden and
make the method practical, it is essential to introduce a local DR
market that receives individual bids sending the integrated bids to
the wholesale market. This local market is introduced to remove
the role of aggregators in the decentralised approach. Aggregators
are designed for centralised approach, while in a decentralised
control algorithm a market scheme fits better to settle the DR
trading. In fact, local DR market receives the DR bids from end-
users and clears the market based on available bids. To this end, the
demand bidding curves will be summed up horizontally as depicted
in Fig. 3. In other words, demand loads and related price are
defined by horizontal sum of various individual demand bidding
curves. The final curve would have a stepwise linear function with
the number of steps equals to the amount of various prices in every
single demand bidding curve. It is noteworthy that each local DR
market is introduced in the distribution level in this paper. The
local market is in a close connection with wholesale market with
exchanging the required data. For example, local market receives
the MCP from wholesale market to use in its algorithm to obtain
LDRMCP. Then, the LDRMCP will transfer to end-user (agents) to
make the final decision about buying the electricity. Fig. 3 shows
bidding curve in a local DR market, which is in charge of bids of
three agents.

Thus, three agents send their bidding curves to this local DR
market and they are finally formed like what has been depicted in
the curve. Inflexible loads are summarised with one relative
maximum price, while flexible loads are formed in a stepwise
shape based on the number of agents in the local DR market.

2.2.3 Market clearing formulation: The proposed market strategy
in this paper is based on pool market which gathers all supply and
demand information to clear the market in a competitive way. In
other words, all price signals control the responses to buy and sell
DR and energy. It means consumers’ bids have an effect on market
prices, also after determination of LDRMCP, customers decide
about power and DR.

Accordingly, an objective function is represented in (9) to
maximise the social welfare from the local DR market viewpoint.
Social welfare is the difference between customers’ (agents’)
income and their cost. The first term in (9) indicates the accepted
loads (Dac

t ) sold to all customers with the price (πac
t ). The second

term is the DR (DDR
t ) bought from all agents with the bid (πDR

t ).
The third term is all power (PM

t ) bought from the local DR market
with LDRMCP (πMCP

t ). Inequalities (10), (11) and (12) denote the
limitation of demand, DR and power, respectively. Moreover, (13)
is the balancing constraint for demand and supply. It is noted that
decision variables are Dac

t , DDR
t  and PM

t

Max∑
t

∑
ac

πac
t Dac

t − ∑
DR

πDR
t DDR

t − ∑
M

πMCP
t PM

t (9)

subject to

0 ≤ Dac
t ≤ Dmax, ac

t (10)

−Dmax, DR
t ≤ DDR

t ≤ Dmax, DR
t (11)

0 ≤ PM
t ≤ Pmax, M

t (12)

∑
ac

Dac
t − ∑

DR
DDR

t = ∑
M

PM
t

(13)

3 Reinforcement learning: Q-learning algorithm
There are three types of machine learning methodologies
including: supervised, unsupervised and reinforcement learnings
[33].

In supervised algorithms, labelled data are used to teach each
agent, however in the unsupervised algorithms unlabelled data are
utilised to teach agents. In the reinforcement algorithms, the
learning process is to analyse the reward signal achieved by
accomplishing a certain action [34]. Therefore, agents (customers
in this paper) are able to find their optimum bidding strategy by
this method with the interaction among electricity market.

The intention of the reinforcement learning is to maximise the
rewards [35]. Thus, the algorithm tries to define the sequence of
actions, which leads to obtain optimum rewards. According to this
model, agents can conduct various actions which are defined as
different prices for different load types [36].

There are several Q-values that are the expected rewards of
possible actions on pair (β1, β2). In a particular action, a reward is
assigned to this pair and preserved in a Q-matrix every time.
Finding a strategy, which leads to maximisation of values in Q-
matrix, called Q-value is the main goal of the proposed approach.
Hence, Q-learning is employed to converge the action-value
function Q to optimise the values. Since there are large number of
customers and to decrease complexity, Q-values are considered
independent from state of flexible loads consumption.
Nevertheless, the state of flexible loads consumption are modelled
easily in demand bid block in a way that πstate reflects the state of
consumption for controllable loads. Thus, Q-function would be

Qt + 1 at = Qt at + αt at ∗ Rt + 1 − Qt(at) (14)

where Qt + 1(at) indicates the new Q-value or the updated Q-value
by action at at the special hour. Qt at  is the previous Q-value in
that time. α at  presents the learning rate, varying from 0 to 1 and
determines the weight of new values compared with old values.
This parameter has the key role in the convergence speed of this

Fig. 3  Bidding curve in local DR market for three agents
 

716 IET Smart Grid, 2020, Vol. 3 Iss. 5, pp. 713-721
This is an open access article published by the IET under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/3.0/)



approach. Rt + 1 is the reward obtained from implementing the
action a.

All rewards are related to the action conducted by the agents in
a particular iteration; therefore, they are independent from
iteration. Accordingly, rewards are calculated as follows:

Rn = − ∑
t = 1

24
πMCP

t PM
t + w Pday, exp − Pday, real (15)

In (15), the first term indicates the cost of purchasing electricity in
a day. The second term presents the penalty for all agents that
refuse to purchase sufficient or better-expected power in a day.
This term helps to find the maximum of the reward faster through
actions, because the actions caused to buy less electricity than
expected are able to mislead the algorithm in a way that wrong
actions can be pretended as higher relevant reward.

Likewise Pday, exp indicates the expected amount of electricity to
buy in a day, however Pday, real represents the electricity that is
purchased in real via the agents in the horizon time. In fact, Pday, exp
is a given data and is supposed to be available for each end-user
based on historical demand data.

Considering penalty also aids the local DR market to
compensate the small deviation between expected and real
purchase power for agents. As once agents respond to the market
based on their bids, they likely purchase more or less electricity
than the expected one.

In the case of purchasing higher than expected, higher quantity
is assigned to the local market price. Thus, agents’ payments are
based on the level of deviations. The Q-matrix can be formulated
as follows:

Q =
Q1, 1 ⋯ Q1, m

⋮ ⋱ ⋮
Qn, 1 ⋯ Qn, m

(16)

where the rows denote the agents and each column indicates a
possible action. Moreover, n is the number of agents, while m
would be the number of possible actions.

Q-learning algorithm needs a policy for making the decision
regarding the best and most profitable action. Using ε-Greedy
policy, agents enable to choose actions that maximise the reward
each time. Accordingly, agents select a random available action a

out of all actions with the probability of 1 − ε and the action with
the highest Q-value, or reward, is performed by agents with
probability 1 − ε. Therefore, the agents are able to check all actions
and the relevant reward and then the highest related reward is
selected.

Briefly, β1 and β2 are supposed to be optimised through
assignment of different values based on reinforcement learning
method known as Q-learning algorithm. Implementing this method,
agents can realise their optimum bidding strategy with the
interaction among the local DR market. The Q-values are the
expected rewards for pairs (β1, β2) which are defined as the
controllable loads price by updating in each iteration of the
algorithm.

The different stages of implementing the proposed method in
the paper is listed as follows and shown in Fig. 4. It is noted that
convergence in this procedure occurs once the difference among
two iterations is very low close to zero.

(i) Performing actions: From the first hour of day onward, the each
action is performed via every single agent and determined based on
ε-Greedy policy;
(ii) Determining the bids: The demand bids which represent the
willingness of every single agent to purchase electricity would be
determined;
(iii) Sending bids to local DR market: The bids of every single
agent are sent to the local market;
(iv) Clearing the electricity market: All bids for flexible load and
critical loads are collected with supply offer in the market to clear
the electricity market at each hour.
(v) Updating the consumption status: Every single agent responds
to price signals by updating the bids and consumptions. The reward
related to the agent and the relative action are concurrently
updated;
(vi) Updating the Q-matrix: Q-matrix is updated at each hour and
new sets of actions are selected for all agents individually.

4 Case study and numerical results
4.1 Case studies

To evaluate the effectiveness of this approach, the outcomes are
compared with those achieved from centralised approach as well as
the outcomes achieved by the method disregarding DR. Both
problems are solved in MATLAB and the computation time for
centralised approach is 0.45 s and for decentralised one is 0.30 s.
Moreover, to assess the impact of the DR participation portion on
the outcomes, four DR participation portions are taken into
account.

The first DR portion is 15% where DR launches having a
remarkable effect on the market prices as well as the demand
profile. The second and third participation levels equal to 30 and
60%, while in the fourth case study, DR is not considered; hence
demand is taken inflexible into account.

Here, 100 customers are considered, and ε value in ε-Greedy
algorithm is given 0.1 to encourage the algorithm for more
exploration during the training period. Learning algorithm α is set
to 0.65. The maximum bid price πmax is €3000 in this market.
Meanwhile, the stepwise market bidding price for a day is in Fig. 5.

Fig. 4  Flowchart of the proposed method implementation
 

Fig. 5  Market bidding price
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4.2 Consumption profiles

Fig. 6 shows customers load profile in different DR share levels
and for uncontrollable loads. It represents the amount of electricity
purchase in different DR states obtained from the proposed model.
Results for 15% DR share in part (a), for 30% DR share in part (b)
and 60% DR share in part (c) are depicted. As shown, the higher
participation level of DR would be, the lower deviation among the
minimum and maximum quantity of purchased electricity would
happen.

Therefore, considering higher DR share caused more uniform
electricity consumption during the day.

4.3 Market clearing price

Fig. 7 illustrates LDRMCP for all case studies including four DR
portions. The LDRMCP is reduced during peak hours and would
be higher during valley hours. LDRMCP in peak hours varies from
around 90 to 50€/MWh in different cases. The reason is related to
agents who participate in DRP buy power once the price is lower
and there would be less competition for buying electricity in peak
hours. Hence, increasing the number of DR participants,
competition for buying electricity during valley hours rises
followed by increasing price during such hours. However, higher
portion of DR penetration leads to decrease in the variation of
demand during the day, which causes a reduction in LDRMCP,
considerably.

4.4 Average power cost

The average costs of electricity purchased by agents (CEA) in four
case studies are compared in Table 1. This cost is calculated
throughout the following formulation:

CEA =
∑t ∑n πac

n, tDac
n, t

∑t ∑n Dac
n, t (17)

where n and t are the number of agents and hours. According to
Table 1, it is concluded that as the customers’ participation in DRP
raises, the CEA increases as well. However, even for high portion
of DR penetration, the CEA is considerably low compared with
once there is no DR penetration. This result proves that the
proposed model with DR can reduce CEA, remarkably. Moreover,
the trend of CEA optimisation for 15, 30 and 60% DR penetration
share in the iteration process are shown in Figs. 8–10. The cost
would tend to change remarkably in iteration process once lower
DR share is applied. For example, CEA for 15% DR share varies
during the iteration process from 27 to 47€/MWh, while this
element varies around 32 to 40€/MWh and 30 to 32€/MWh in 30
and 60% DR share, respectively.

Fig. 6  Results of total power purchased by customers in decentralised and
centralised approaches in different cases
(a) 15% DR participation, (b) 30% DR participation, (c) 60% DR participation

 

Fig. 7  LDRMCP for different DR share percentage
 

Table 1 Average cost of purchasing electricity
DR level Cost – decentralised

method, €/MWh
Cost – centralised
method, €/MWh

0% 48.67 48.67
15% 27.47 25.74
30% 29.75 28.10
60% 31.57 29.58
 

Fig. 8  Iteration of CEA for 15% DR share
 

Fig. 9  Iteration of CEA for 30% DR share
 

Fig. 10  Iteration of CEA for 60% DR share
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The cost of purchasing electricity reaches about 30€/MWh in
15% DR penetration. For 30% DR share, the CEA without DR is
48.67€/MWh. However CEA, by using the proposed model, drops
during the iterative process and reaches to 34€/MWh at the end of
300 iterations which can be seen in Fig. 9. The same attitude takes
place for 60% DR portion in a way that the CEA would reach to
32.2€/MWh (Fig. 10).

4.5 Agents’ behaviour

In Fig. 11, summation of consumption (purchased power) for 30
agents with considering DR and disregarding DR are compared. 
Moreover, load profiles of three samples of agents out of these 30
agents are depicted before and after decentralised DR
implementation to illustrate the impact of the model on the
consumption behaviour of each agent in detail. According to
Fig. 11a, total consumption of an agent in a day can be less or more
than once no DR is applied. For example, for agent number 16, the
total consumption during a day after DR implementation is lower
than before DR, although the consumption is optimised based on
Fig. 11c in a way that most of peak-hour loads are shifted to the
valley hours and others are totally curtailed. On the other hand, for
the agent number 9 that the total consumption after running DR is
more than before running DR, the load consumption in peak hours
is reduced based on Fig. 11b and shifted to off-peak hours and also
some new consumptions are scheduled for off-peak and valley

hours. This attitude for daily load profile is the same for the agent
number 26 that no big difference is among total load consumption
after and before DR application based on Fig. 11d.

4.6 Reward

In this section, the average variation of reward for all agents during
the iteration process for three cases including 15% DR share, 30%
DR share, and 60% DR share are demonstrated in Fig. 12. Based
on Fig. 12a–c, the variation of reward in 15% DR penetration is
higher than two other cases in a way that this volume varies among
−€2200 to −€1500 in 300 iterations, while this variation is about
€200 and €90 in 30 and 60% DR penetration, respectively.

4.7 Centralised versus decentralised model

In this part, the costs obtained throughout a centralised approach
are compared with the ones obtained from the proposed model. The
centralised model is presented in the Appendix. Indeed, impact of
applying DR in centralised and decentralised model on total load
profile is compared.

Moreover, CEA in centralised and decentralised models has a
difference between 1.5 and 2€/MWh according to Table 1.
Therefore, the results obtained by the employment of the proposed
model are substantially similar to the ones achieved from the
application of centralised method. It is verified that the results of
the proposed model are approximately as optimal as the centralised
model. Namely, local DR market has enough and completed
information to bid to the market optimally on behalf of the agents
in the proposed model.

5 Conclusions
A decentralised market-based scheme under consideration of DR
was proposed. The results of the proposed framework have been
compared with the case when there is no DR. Moreover, a
comparison has been conducted among decentralised and
centralised results. Proposing a bidding mechanism within a
decentralised market-based control scheme is the main aim of the
work. Accordingly, agents determine their optimum bids for
buying electricity by employing the Q-learning algorithm.
Therefore, electricity has been purchased based on the LDRMCP

Fig. 11  Comparison of purchased power for agents in 30% DR share with
and without DR
(a) Comparison of summation of purchased power in a day for 30 agents participated
in DR, (b) Effect of DR on load profile of agent 9 during a day, (c) Effect of DR on
load profile of agent 16 during a day, (d) Effect of DR on load profile of agent 26
during a day

 

Fig. 12  Variation of rewards during iteration process for three cases
(a) 15% DR penetration, (b) 30% DR penetration, (c) 60% DR penetration
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and pre-defined demand bidding curve. To evaluate the efficiency
of the method, four different percentages of DR penetration were
considered. For all non-zero DR penetration perception, the model
caused a decrease in the cost of electricity purchase compared with
when no DR was considered. Moreover, agents who participate in
DR buy more electricity during the hours with lower LDRMCP,
because their consumption in peak hours has dropped. The
proposed model not only caused a remarkable reduction on the
electricity costs, but also decreased the deviation among the
maximum and minimum amount of required electricity. Therefore,
ascending the DR perception, this variation diminishes, which
verifies the efficiency of the method in providing a more load
balance in peak and off-peak hours. Comparing the results of the
proposed method with the centralised method, it is transparent that
both are approximately similar. For example, the differences of
LDRMCP and load consumption between both methods are rather
small. Thus, the proposed model is a reliable alternative to a
centralised method because not only the results are very similar,
but also it could provide easier and more scalable solutions for
such complex problems.
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8 Appendix
 
8.1 Centralised model

In order to assess the proposed decentralised approach in this work,
the results are compared with the results of a centralised approach.

In the proposed framework, individual agents directly
participate in the local DR market by submitting their bids and
respond to the market clearing price according to them. While in a
centralised model, bidding is managed by a DR aggregator. In
other words, DR aggregators bid into the market directly on behalf
of customers. Therefore, in the centralised approach, DR
aggregator plays the main role to implement the DR and is an
interface among customers and the market.

The contract among DR aggregators and customers is in a way
that DR aggregators bid to the customers based on the evaluation
accomplished on customers’ capabilities by transferred data from
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customers to DR aggregators. Then, aggregators run DR contracts
in the market to determine optimal DR offer by maximisation of
their profit, and this data will be sent to SO.

Accordingly, the centralised objective function is presented as
(18) which maximises DR aggregator's profit. DR aggregator
income is to sell DR to market with considering MCP as the selling
price and the cost of DR aggregator can be DR purchase from
customers with predefined πDR

t

Max∑
t

πMCP
t DDR

t − πDR
t DDR

t
(18)

subject to

0 ≤ DDR
t ≤ Dmax, DR

t (19)

where (19) is limitation of DR assignment.
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