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Abstract- This paper expresses the planning model of the backup distributed generation (DG) and lines hardening 12 

and tie lines in distribution networks according to resilient architecture (RA) strategy under natural disaster 13 

conditions such as earthquakes and floods. Indeed, the proposed deterministic problem of resilient distribution 14 

system planning considers the minimization of the daily investment, operation and resiliency (repair and load 15 

shedding) costs as objective functions subject to constraints of AC power flow equations, system operation limits, 16 

planning and operation model of backup DG and hardening and tie lines, as well as network reconfiguration 17 

formulation. The problem formulation is based on a mixed integer non-linear programming (MINLP) model, which 18 

is converted to a mixed integer linear programming (MILP) model on the basis of Benders decomposition (BD) 19 

approach using linearization approaches to achieve the optimal solution with the lower computational efforts and 20 

error. Besides, a hybrid stochastic/robust optimization (HSRO) based on the bounded uncertainty-based robust 21 

optimization (BURO) and a scenario-based stochastic optimization is used to model the uncertainties of load, energy 22 

price and availability of the network equipment under the extreme weather conditions. Finally, the proposed RA 23 

strategy is applied on 33-bus and 119-bus distribution test systems to investigate its capabilities in different case 24 

studies.       25 

 26 

Keywords: Backup distributed generation; Hardening and tie lines; Resilient architecture; Hybrid stochastic/robust 27 

optimization.   28 
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Nomenclature 29 

1) Indices and Sets 30 

m, nf Index and total number of the iterations of the primal sub-problem to be feasible, respectively 

(n,j), t, w, l, k Indices of bus, time, scenario, linearization segments of voltage magnitude term and circular 

constraint, respectively   

N, ST, S, L, K Sets of bus, time, scenario, linearization segments of voltage magnitude term and circular 

constraint, respectively 

nl, nk Total number of linearization segments for voltage magnitude term and circular constraint, 

respectively  

r, ni Index and total number of the iteration of the primal sub-problem to be infeasible, respectively 

2) Parameters 31 

A Bus incidence matrix (if a line exists between buses b and j, Ab,j is equal to 1, and 0 otherwise) 

cdg, chl, ctl Investment cost (in $) for backup DG, hardening and tie lines, respectively 

crg, crl Repair cost (in $) for backup DG and distribution line, respectively 

du, Y Duration time (in day) of extreme weather events, planning year, respectively  

G, B Line conductance and susceptance in per unit (pu), respectively 

M Large constant 

Nbus Total number of network buses 

PD, QD Active and reactive loads in pu, respectively 

SDGmax Maximum loading of backup DG in pu 

slop  Line slope in the linearized segments for voltage magnitude function  

SSmax, SLmax Maximum loading of distribution station and line in pu, respectively 

VOLL Value of lost load in $/MWh 

,V V   Minimum and maximum voltage magnitude in pu, respectively 

 Angle deviation  

 Occurrence probability  

, dg Energy price and operation price of DG in $/MWh 
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 Uncertainty level  

3) Variables: All variables are in per unit (pu) 32 

PDG, QDG Active and reactive power of backup DG, respectively  

PL, QL Active and reactive power of distribution line, respectively  

PNS, QNS Active and reactive power not supplied, respectively  

PS, QS Active and reactive power of distribution station, respectively 

V, V,  Magnitude, deviation and angle of voltage (in rad), respectively 

xdg, xhl, xtl, x0 Binary variables related to investment state of backup DG, hardening line, tie line and existing 

lines, respectively 

y, yhl, ytl, y0 Binary variables related to switch state of line, hardening line, tie line and existing lines, 

respectively 

sub, sub Dual variables of equality and inequality constraints in the primal sub-problem, respectively 

 33 

1. Introduction  34 

1. 1. Motivation 35 

The distribution systems are developed generally according to normal weather conditions [1], but, this case is not 36 

suitable for these systems under natural disaster condition such as earthquake, flood, and storm [2-3]. Hence, the 37 

resilient architecture (RA) approach is necessary in this case to protect the distribution grids under extreme weather 38 

condition [4-5]. To improve the network resiliency, the RA strategy can employ the backup distributed generation 39 

(DG), hardening and tie lines, and other power devices in the network, where all of the equipment are resilient 40 

against the extreme weather events [6]. Therefore, to implement the proposed strategy, it is needed to develop 41 

optimal planning model for all of the equipment to place the optimal location of these devices in the distribution 42 

network while minimizing the planning cost and maximizing the network resiliency.       43 

 44 

1.2. Literature review             45 

In the area of power system resilience, there are different researches such as [6] to improve the resiliency in the 46 

distribution network using back-up DG, hardening and tie lines, wherein the linearized distribution flow 47 

(LinearDistFlow) method is used in the stochastic resilience-oriented design model. In [7], time-to-event models are 48 
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combined to estimate the distribution system resilience as a probabilistic model according to various natural disaster 49 

conditions. In [8], a risk assessment method is expressed to investigate the probability of potential disturbances of 50 

the distribution networks and obtain an accurate model for trading renewable energy customers according to the 51 

resilience network capabilities. Also, the effects of the critical loads and variability and scarcity of DGs to improve 52 

the distribution system resiliency is investigated in [9] and [10], respectively. Moreover, the network reconfiguration 53 

method under the extreme weather conditions is modeled in [11] to improve the distribution system resiliency.  54 

In [12], it models the resilience enhancement strategy in the coupled distribution network and urban transportation 55 

system to determine the optimal placement of lines hardening and DGs when outages occur in distribution lines and 56 

traffic lights. Moreover, the Great Britain distribution system operator has proposed various RA methods under 57 

flood conditions in [13]. In [14], a tri-level resilience enhancement strategy is modeled to minimize the grid 58 

hardening investment and load shedding costs under different natural disasters. In [15], a novel distribution system 59 

operation approach is proposed by forming multiple micro-grids energized by DGs. Also, the effects of different 60 

power devices such as power electronics, energy storage and power distribution architecture on the power network 61 

resiliency during extreme events are investigated in [16] and [17].  62 

Proposing an effective objective function by utilizing optimal weighting factors plays an important role in the 63 

electrical networks to optimally enhance the quality and efficiency of evaluating the position and capacity of DGs. 64 

This case is investigated in [18] as a comprehensive study of different effective objective functions. Also, two-stage 65 

planning of DGs in active distribution networks including energy storages is presented in [19], wherein it determines 66 

the DG location and capacity in the first stage and it obtains DGs’ impacts on the distribution network in the second 67 

stage. In [20], the planning of lines’ hardening and renewable DG is presented to improve the network resiliency. In 68 

[21], the robust planning of DGs is modeled in this network to obtain the higher resiliency level. The authors of [22] 69 

have expressed a decision support method for power system operators to restore electricity to the critical loads in a 70 

distribution system after an earthquake. In [23], a multi-period traffic assignment model with time-shiftable traffic is 71 

used in the distribution network including electric vehicles’ parking lot. 72 

     73 

1.3. Contributions              74 

According to the available literature, the research gaps of the current research in the area of the distribution 75 

network resiliency are as follows:  76 
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- There are different methods to improve the distribution system resiliency against natural disaster conditions 77 

such as network expansion planning by lines hardening, planning of backup DGs in the distribution grids, 78 

and reconfiguration method. Also, in [6], the combination of all methods have been considered to increase 79 

the resiliency.  80 

- Besides, different research works have modeled the stochastic RA strategy as the mixed integer non-linear 81 

programming (MINLP). However, the stochastic modeling is based on the scenarios and it requires 82 

knowledge to specify probability distribution function (PDF) of the uncertain parameters to attain a 83 

guaranteed solution with the cost of the high calculation efforts. In addition, the drawback of the MINLP 84 

formulation lies in the fact that solving that by available MINLP algorithms is difficult and it usually takes 85 

a large computation time. Also, because of the existence of discrete variables and non-convex equations in 86 

the real world problems, the solution of a large-scale MINLP suffers from a lack of global optimality, 87 

robustness, reliability and efficiency. In this regard, the mixed integer linear programming (MILP) based on 88 

the LinearDistFlow method has been proposed by [6], but this method does not consider the power loss of 89 

active and reactive power in distribution lines as well as imaginary part of the voltage in the model. 90 

Therefore, the stochastic MINLP model of RA cannot be implemented on a large-scale distribution 91 

networks.  92 

To cope with the above issues, in this paper, as seen in Fig. 1, the backup DG and line hardening and tie lines 93 

planning in the distribution system has been developed based on a hybrid stochastic/robust resilient architecture 94 

(HSR-RA) method against earthquake and flood. Noted that the back-up DGs are able to provide on-site power for 95 

critical facilities and load centers, and contribute to energizing networks to restore load after an extreme weather 96 

events. Also, installing tie switches can improve network reconfiguration that can re-route power to on-outage 97 

portions of distribution networks, shorten the restoration time and enhance the restoration capability. Therefore, the 98 

proposed deterministic problem includes an objective function of minimizing the summation of investment, 99 

operation, repair and load shedding costs, and its constraints are AC optimal power flow equations, backup and 100 

network equipment’s planning model, and reconfiguration formulation. Also, this paper converts the original 101 

MINLP model of RA strategy to MILP based on Benders decomposition (BD) method using conventional 102 

linearization approaches to achieve the optimal solution with the lower computational burden.  103 
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HSR-RA 
strategy 

Distribution 
network 

Planning of backup DGs, reinforcement and tie lines 

Load, energy price, availability of network equipment’s 
in the extreme weather condition 

 104 
Fig. 1. The proposed RA framework in the distribution network 105 

 106 

Moreover, in this problem, it is required to cope with the uncertainty of load, energy price and availability of 107 

network equipment under the extreme weather condition. Accordingly, the hybrid stochastic/robust optimization 108 

(HSRO) is implemented to model these uncertain parameters such that the first and second uncertain parameters are 109 

modeled based on the bounded uncertainty-based robust optimization (BURO) and the uncertainty of the availability 110 

of network equipment is modeled using the scenario-based stochastic optimization. Briefly, to the best of authors’ 111 

knowledge, the main contributions of this paper can be summarized as follows: 112 

– Presenting a RA strategy for the distribution system to obtain the optimal location of backup DG and line 113 

hardening lines and tie lines in the network to improve the system resiliency under extreme weather 114 

conditions.    115 

– Modeling the RA strategy using MILP formulations based on the BD approach to achieve the optimal 116 

solution with the lower computational efforts in the large-scale distribution networks.  117 

– Developing the hybrid stochastic/robust RA (HSR-RA) strategy to model the uncertainty of load, energy 118 

price and availability of network equipment.  119 

 120 

1.4. Paper organization              121 

The rest of the paper is organized as follows: Section 2 describes the deterministic RA model as MINLP and 122 

MILP models, and Section 3 presents the HSRO model based on the BD approach. Sections 4 and 5 address the 123 

numerical simulations and the main conclusions of the paper, respectively. 124 

 125 

 126 

 127 
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2. Proposed Problem Formulation  128 

2.1. Original MINLP Model 129 

The proposed RA strategy model in the distribution network is developed in this section. In the proposed 130 

optimization model, the summation of daily costs of planning, operation and resilience, i.e., repair and load shedding 131 

cost due to earthquake and flood, is considered as an objective function. The optimization model subjects to AC 132 

power flow constraints, system operation limits, sources and network equipment’s planning model, and 133 

reconfiguration formulation. The proposed problem is based on the hybrid model of planning and operation studies 134 

while considering distribution network operation and backup DG, hardening, tie and existing lines planning. Also, 135 

this paper investigates the daily operation of the distribution network to assess the earthquake or flood. Hence, the 136 

proposed problem models the daily operation. However, this model can be developed for the higher time horizons 137 

by increasing the hours and reducing the value of du. Therefore, the proposed approach can be formulated as 138 

follows:        139 

1) Objective function: The objective function of the RA strategy is expressed in equation (1), wherein the first and 140 

second parts of this equation refer to daily investment and repair costs of backup DG, hardening and tie lines, 141 

respectively [6]. Also, the operation cost of the network and DG is formulated in the third part [24], and load 142 

shedding against earthquake and flood is presented in the fourth part of (1) [25]. In this equation of the proposed 143 

problem, the repair and load shedding cost is considered as resiliency indices, so that the highest resiliency can be 144 

obtained in the distribution network in the case of zero costs for these terms. Noted that the proposed model is based 145 

on a day that the earthquake or flood is happening, thus, du is equal to the total days containing these extreme 146 

weather events. It should be noted that in the first row of (1), the investment cost of DGs and lines is over whole 147 

days of the planning years. But, their daily repair cost against extreme events, and daily operation and load shedding 148 

costs are modeled under extreme events conditions based on the second and third rows of this equation.  Therefore, 149 

the total cost of the equipment is considered in this equation. Moreover, in (1), variables of xdg, xhl and xtl are the 150 

states of the investments related to back-up DG, hardening and tie lines, respectively. For example, if xdg = 1, thus, 151 

new back-up DG should be installed in the distribution network.           152 
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(1) 

2) AC power flow constraints: These constraints are expressed in (2)-(6) that are referred respectively to nodal 153 

active and reactive power balance, active and reactive power flow in distribution lines, voltage angle value in the 154 

slack bus [26-28].  155 

, , , , , , , ,S DG L D NS
n t n t n j n j t n t n t

j N

P P A P P P n t


      (2) 

, , , , , , , ,S DG L D NS
n t n t n j n j t n t n t

j N

Q Q A Q Q Q n t


      (3) 

       2
, , , , , , , , , , , , , ,cos sin , ,L

n j t n j n t n t j t n j n t j t n j n t j t n j tP G V V V G B y n j t          (4) 

     2
, , , , , , , , , , , , , ,( ) cos sin , ,L

n j t n j n t n t j t n j n t j t n j n t j t n j tQ B V V V B G y n j t           (5) 

, 0 Slack bus,n t n t     (6) 

3) System operation limits: In this paper, the system operation limits include distribution line and station capacity 156 

limitations and voltage limit of buses, where these terms are modeled as constraints (7)-(9), respectively [29-31].  157 

     2 2 2max
, , , , , , ,L L L

n j t n j t n jP Q S n j t    (7) 

     2 2 2max
, , Slack bus,S S S

n t n t nP Q S n t     (8) 

, ,n tV V V n t    (9) 

4) Planning and reconfiguration constraints: The hybrid model of DGs and network equipment’s planning and 158 

system reconfiguration is formulated in constraints (10) to (16). As shown in Fig. 2, the distribution line switch 159 

state, open or close, is modeled by (10), where this state depends on the distribution line construction state based on 160 

constraints (11) to (13). Moreover, the logical limit of (14) shows if there is an existing, hardening or tie line 161 

between buses n and j.  162 
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Bus n Bus j 

 

y0 = 1 (close) if x0 = 1 

yhl = 1 (close) if xhl = 1 
 

ytl = 1 (close) if xtl = 1 
 

Note: There is only one line between busses n and j 

 163 
Fig. 2. Distribution line planning and network reconfiguration scheme    164 

In (15), the constraint of the redial structure of the distribution network is modeled. Noted that in this paper as 165 

done in [32], it is considered that the distribution network includes one slack bus and several PQ buses. The slack 166 

bus is the distribution’s substation bus, and loads and DGs are located in PQ buses. Hence, the radiality constraint 167 

implies that the total number of distribution lines is equal to the total number of PQ buses (total number of network 168 

busses – 1) [32]. Moreover, the backup DG planning with considering its capacity limit is formulated in (16). 169 

Finally, the constraints of this section should be merged by the network model, (2)-(9), using equations of (4) and 170 

(5).  171 

0
, , , , , , , , , ,hl tl

n j t n j t n j t n j ty y y y n j t     (10) 

0 0
, , , , ,n j t n jy x n j t   (11) 

, , , , ,hl hl
n j t n jy x n j t   (12) 

, , , , ,tl tl
n j t n jy x n j t   (13) 

0
, , , 1 ,hl tl

n j n j n jx x x n j     (14) 

 
, ,

,
1n j t bus

n j N
y N t



    (15) 

     2 2 2max
, , ,DG DG dg DG

n t n t n nP Q x S n t    (16) 

 172 

2.2. Equivalent MILP model 173 

The original RA formulation, (1)-(16), is as a non-convex MINLP, where the non-convexity refers to equations 174 
(4) and (5) [31, 33].  175 
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It should be mentioned that the linear formulation of this optimization problem generally includes following 176 
merits: 177 

- Computational time is low; hence, the proposed optimization problem can be applied on large-scale problems 178 

[24]. 179 

- The optimal solution obtained by different solvers in the linear problem is unique for all the solvers. But, the 180 
occurrence probability of this statement is low in the non-convex NLP problems [28].  181 

- All the solvers for the linear problem are able to certainly achieve the global optimal solution. However, some 182 

of them can obtain the global optimal solution for non-convex NLP problems, while their adjusting 183 
parameters will be changed if the model or data of the non-convex NLP problem is changed [30, 31].   184 

Also, to apply Benders Decomposition model for the proposed RA strategy it is needed to have a linear 185 
formulation [33]. 186 

Accordingly, it is most probable that the MINLP finds the locally optimal solution in the best condition due to 187 
non-convexity and nonlinearity of some equations [26-31]. Therefore, this paper converts the proposed MINLP 188 
model to an equivalent MILP model with considering following linearization approaches to achieve the globally 189 
optimal solution at the lower calculation time:   190 

1) Linearized AC power flow equations: In the AC power flow constraints, equations (4) and (5) are as mixed 191 

integer nonlinear formulations. However, the voltage angle difference across a line is less than 6 degrees 192 

[33], and the voltage magnitude can be approximated by l
l L

V V


   according to the piecewise linearization 193 

method [20]. Therefore, terms of  , ,cos n t j t  ,  , ,sin n t j t  , V2 and VnVj can be approximated by 1, 194 

 , ,n t j t  ,  2
l l

l L
V slop V



   and    2
, ,. n l j l

l L
V V V V



    , respectively, where V << 1 and the slope 195 

is the voltage deviation as the line slope. Moreover, equations (4) and (5) are as a = bz, while b and z are 196 

continuous and binary variables. According to Big M approach [24], this term can be linearized as -M(1 – z) 197 

 a – b  M(1 – z ) and bminz  a  bmaxz, where bmin, bmax and M refer to minimum/maximum value of b, 198 

and a large constant, respectively.  199 

Noted that the linearized distribution flow (LinearDistFlow) can be used to obtain the linear format of the 200 

proposed problem, but it does not consider the power loss (active and reactive) of the distribution lines, and it 201 

is suitable for unidirectional radial power distribution network [6, 34]. But, the proposed linearization method 202 

here can be used for the distribution networks with different structures.   203 
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2) Circular plane constraints: The capacity limits of distribution line and station and backup DG follow the 204 

circular plane constraint as a non-linear equation 2 2 2P Q S  . Noted that this plane can be approximated by 205 

a polygon plane [24, 33], where each edge of a polygon is a straight line and their equations are obtained 206 

from tangents of the circle at different points as    cos sinP k Q k S       in the PQ plane and 207 

radius of S [33]. Therefore, the linear format of non-linear equation of 
2 2 2P Q S  is expressed as208 

   cos sinP k Q k S       , where  = 2/nk is the angle deviation and nk is the total number of 209 

the straight lines in a polygon. Finally, the index of k should be defined for the set of    K = {1, 2, …, nk}. 210 

As a result, The MILP method of the RA can be written as follows:  211 

   
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n N n j N

c x c x c x
Y
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du Y

  

 
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, , ,.S dg DG NS
t n t n n t n t

t ST n N t ST n N
P P VOLL P 

   


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(17) 

S.to: 212 

       

 

2
, , , , , , , , , , , ,

, ,

. 1 .

. 1 , ,
l

L
n j t n j t n j l n t l j t l n j n t j t

l

n j t

M y P G m V V V V V B

M y n j t


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
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(19) 
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, , , , , , ,

2cos . sin . . , , , {1, 2,..., },L L L
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k

P k Q k S y n j t k K n
n
         �  

(20) 

    max
, ,cos . sin . Slack bus, ,S S S

n t n t nP k Q k S n t k        (21) 

    max
, ,cos . sin . , ,DG DG dg DG

n t n t n nP k Q k x S n t k       (22) 

 , ,0 / , , {1,2,..., }n t l l lV V V n n t l L n      �  (23) 
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Constraints (2), (3), (6), (10) to (15)  (24) 

The objective function of the proposed MILP method, (17), is the same with (1), and constraints (18) and (19) 213 

refer to the linear model of (4) and (5) based on the first linearization method. Moreover, constraints (7), (8) and 214 

(16) are linearized respectively by (20)-(22) according to the second linearization approach. Noted that, the variable 215 

y appeared in the line capacity limit, (20), due to Big M approach in the proposed MILP model. Limitation (23) 216 

presents the voltage deviation limit in the new RA model as the voltage limit, because, the variable of voltage 217 

deviation is used in the proposed method. Finally, the constraint (24) considers all the linear equations of the 218 

original RA model, (1)-(16).    219 

     220 

3. HSR-RA Model Based on BD Approach 221 

A. Original HSRO model to RA: The parameters of active and reactive load, PD and QD, energy price, , and 222 

repair cost, crg and crl, are the main sources of the uncertainty in the proposed RA strategy. Moreover, the repair cost 223 

of different sources and network equipment is dependent to availability of these devices in the extreme weather 224 

events such as earthquake or flood. Therefore, this cost will be imposed for an equipment if it is located in a zone 225 

including earthquake or flood. In this paper the HSRO model is adopted, because if the stochastic programming is 226 

deployed for all uncertain parameters, consequently, the calculation time will be increased for large scale networks 227 

and in some cases it results in infeasibilities. Also, to obtain accurate analysis for the load shedding cost and EENS, 228 

it is better to use the stochastic programming to model availability of the network equipment in the extreme weather 229 

events, but to achieve low calculation time, the robust model can be used for other uncertain parameters. 230 

Noted that, in this paper, the HSRO method, as shown in Fig. 3, is used to model the uncertain parameters. In this 231 

regard, the BURO models the uncertainty of load and energy price, and the stochastic programming based on 232 

roulette wheel mechanism (RWM) generates different scenarios to model the availability of the different devices in 233 

the extreme weather events according to normal probability distribution function (PDF). In BURO, the true value of 234 

each uncertain parameter is between (1 )P and (1 )P , where   0 refers to the uncertainty level or the 235 

forecasting error and P is the normal or forecasted value of the uncertain parameter. Next, the uncertain parameter 236 

is equal to its upper or lower value depending on the optimization problem type, i.e., it is equal to (1 )P  for max 237 

or min function and (1 )P  for min function [35]. Finally, the proposed model to RA will be written as follows: 238 
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   

 
 
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0
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,

1min
365

1 .

dg dg hl hl tl tl
n n n j n j n j n j

n N n j N n j N

rg dg rl hl tl
w n w n n j w n j n j n j

w S n N n j N

c x c x c x
Y

c x c x x x
du Y



  

  

     
   
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 

 
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, , , , , ,1 .S dg DG NS
w t n t w n n t w w n t w

w S t ST n N w S t ST n N
P P VOLL P    
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
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(25) 

S.to: 239 

, , , , , , , , , , , ,(1 ) , ,S DG L D NS
n t w n t w n j n j t w n t w n t w

j N

P P A P P P n t w


       (26) 

, , , , , , , , , , , ,(1 ) , ,S DG L D NS
n t w n t w n j n j t w n t w n t w

j N

Q Q A Q Q Q n t w


       (27) 

Constraints (6), (10)-(15), (18)-(23) considering the index of w for continuous variables; (28) 

 

Forecasted 
load 

Forecasted 
energy price 

BURO 

Worst-case scenario of load and 
energy price considering the 

uncertainty level,  

Mean and 
standard deviation 

of repair cost  

RWM-based stochastic programing   

Generated scenario samples  

RA mechanism 

 240 

Fig. 3. The proposed HSRO scheme     241 

 242 

In the above problem, the term of (1 + ) is used for energy price and load according to the BURO technique, 243 

also, these parameters and all proposed binary variables are not dependent of index w, because, they do not depend 244 

to uncertainty of availability of the different devices in the extreme weather events. In addition, in the proposed 245 

HSRO, the BURO is implemented in problem (25)-(28) to model the uncertainty of load and energy price and it is 246 

solved over different generated scenarios related to uncertainty of the availability of the different devices in the 247 

extreme weather events. Hence, in the proposed method both the stochastic and robust programming are 248 

implemented, simultaneously. The proposed HSRO based on BURO as a simple method benefits from the lower  249 
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calculation time and suitable accuracy. However, in other robust models based on the adaptive robust programming, 250 

the method is complex and it includes more calculation time with respect to BURO [36].  251 

It is noted that the proposed HSR-RA can be converted to the deterministic RA model by choosing zero values for 252 

the  and the standard deviation.     253 

B. Applying BD on HSR-RA modelBD approach: The proposed HSR-RA model is based on MILP modeling in 254 
(29), where the proposed binary/continuous variables are x/ z, and a to g refers to constants in the model of (25)-255 
(28).     256 

 ( , )min . . ( , ) {0,1}, | . , . .T T
x z a x b z x z x z c x d e x f z g       � �  (29) 

To accelerate the optimization solution procedure, the proposed MILP problem of (29) is decomposed by BD 257 
approach [37]. This approach includes the master problem (MP) and sub-problem (SP) [37], where the MP model of 258 
the proposed RA strategy in (29) is as follows: 259 

( ) ( )( )
1,2,...,

( ) ( )
1,2,...,

{0,1} | 1) . ,
2) . ,

min ( ) 3) . ( ) | ,

4) ( ) 0 |
f

i

T
lower

T m mx lower
lower sub sub m n

r r
sub sub r n

x z a x
c x d

z x z a x J

J










  
 

 
    

  

�  

(30) 

zlower is the MP’s objective function that is equal to the first part of equation (29) according to constraint (1) in set 260 

of ( )x , where it refers to the summation of daily investment (first row of (25)) and repair (second row of (25)) 261 

costs. Constraints (2)-(4) of this set refer respectively to logical limits in the proposed RA method, feasibility and 262 

infeasibility cuts of BD approach. Noted that constraint (2) of ( )x  is equal to the distribution line planning and 263 

network reconfiguration models in equations (10)-(15). Finally, the MP output variable, x, as constant is applied to 264 
SP [37], where SP model is as (31) for the problem (29).    265 

 ( )min . ( ) | . .T
z subJ b z z z f z g e x     � �  (31) 

Jsub is the SP’s objective function that is equal to the second part of the equation (29), where it is the same as the 266 

summation of operational and load shedding costs in the third row of the equation (25). Constraint . .f z g e x 267 

refers to the linear and HSRO model of the constraints (2)-(9) and (16). Noted that the feasibility region of SP, 268 

( )z , depends on the value of x, therefore, it is changed in different iterations of the BD method [37]. To cope with 269 

this issue and obtain independent feasibility region from x, ( ) , the dual format of SP with the name of Dual Sub-270 

Problem (DSP) is used as (32): 271 

    ( )max . . ( ) | . , ,T
subJ g e x f b    

       � �  (32) 
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   The dual formulation has been expressed in [37].  Also, in (32),  is the dual variable of constraint . .f z g e x  in 272 

the problem (31). Moreover, the operators of  /=/  are selected in constraint of  . , ,f b     if z is 273 

positive/free/negative [37]. Finally, there are three states for DSP based on the dual approach theory [37]: 274 
1. DSP has bounded value for its objective function: The feasibility cut as (33) is added to the MP, (30), 275 

where ˆ
sub  refers to the optimal value of  in the problem (32).    276 

( ) ( )
ˆObjective funcˆ ˆ( ) ( tionof (32) )
sub

m m
lower sub sub sub subz J J


     (33) 

2. DSP has unbounded value for its objective function: The infeasibility cut as (34) is added to MP, so that 277 
ˆ

sub  is achieved from (35). 278 

( ) ( )
ˆ

ˆ ˆ( ) 0 ( ) Objective function of (35)
sub

r r
sub sub sub subJ J      (34) 

    ( )max . . ( ) | . , , , 1T
subJ g e x f b     

        � �  (35) 

3. DSP is infeasible: The proposed HSR-RA, (25)-(28), has the infeasible solution. 279 

Finally, the proposed HSR-RA will be converged if the term upper lowerz z    is satisfied, where   is the 280 

BD’s convergence tolerance, and zupper is calculated as (36). It is noted that the second part of (36) is the objective 281 
function of DSP and zlower is determined by (32). The flowchart of the proposed algorithm is presented in Fig. 4.       282 

ˆ ˆ. ( ) Objective functionof (32( ) )T
upper sub sub sub subz a x J J      (36) 

 

Solve MP (30) with considering constraints (1) and (2) in set of ( )x    

Solve DSP, (32)  

Feasible solution? 

Solve MP of (30)  

No solution     

Infeasible     

upper lowerz z    

Bounded      

Solution    

Yes     

Add feasibility cut, (33) 

No     

Solve problem (34), and add 
infeasibility cut, (35)  

Unbounded     

 283 
Fig. 4. Flowchart of the proposed BD solution method 284 

 285 
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4. Numerical Results and Discussion 286 

4.1. Case studies  287 

The proposed HSR-RA strategy is studied on 33-bus and 119-bus radial distribution test networks depicted by 288 

Fig. 5 [38]. The line characteristics and peak load data are expressed in [38], but daily load data is considered as the 289 

multiplication of peak load value and daily load factor that is based on data shown in Fig. 3(a) [27]. Moreover, the 290 

characteristics of the backup DG, hardening and tie lines are presented in Table 1. It is assumed that the backup DG, 291 

hardening and tie lines are resistant against the natural disasters. Therefore, it is possible that their repair cost is very 292 

low, which is omitted in this study. Hence, this paper considers that the repair cost is zero for these devices and it is 293 

3211$/pole for existing line. It is possible that buses (11-16), (20-22), (23-24), (29-31) in 33-bus test are exposed by 294 

the earthquake, flood, earthquake and flood, respectively. Also, it is anticipated that buses (21-25), (28-30, 53, 53), 295 

(39-43), (70-73), and (114-118) in 119-bus system are endangered respectively by earthquake, earthquake, flood, 296 

flood, and flood, respectively. In addition, daily curve of energy price is presented in Fig. 6(b) [39], but VOLL is 297 

considered to 100 $/MWh to achieve a network with high resilience. Finally, RWM generates 30 scenario samples to 298 

model the uncertainty of availability of the DGs and network equipment’s under extreme weather events based on 299 

the normal PDF with standard deviation of 10%. Also, the uncertainty of energy price and load is based on BURO 300 

model in the worst-case scenario.           301 

 

1 2 3 8 9 10 11 12 13 14 15 16 17 18 7 6 5 4 

19 20 21 22 

23 24 25 26 27 28 29 30 31 32 33 

 302 
 (a) 303 
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Fig. 5 Distribution test networks, (a) 33-bus, (b) 119-bus [38] 306 

(a) (b) 

Fig. 6. Daily curve of, (a) load factor [27], (b) energy price [39]  307 

 308 
Table 1: Characterizes of the backup DG, hardening and tie line [6] 309 

Device  Candidate location Capacity Investment cost  Operation cost 

Backup DG All buses  500 kVA 1500 $/kVA 20 $/MWh 

Lines hardening  All line section  All data is same with existing line  5924 $/pole -  

Tie line Dashed line in Fig. 3 -  15000 $ -  
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4.2. Results  310 

The proposed problem of (25)-(28) based on the BD approach is programmed in GAMS, employing the CPLEX 311 
solver to investigate the capabilities of this method [40].   312 

1) Comparison of different model results: Table 2 presents the results of the deterministic RA model by different 313 
approaches, i.e. MINLP, MILP and BD-based MILP, for 33-bus and 119-bus networks. According to Table 2, the 314 

calculation error of MILP method with respect to the original MINLP method ([variable value in MINLP – variable 315 
value in MILP]/variable value in the MINLP) for the power and voltage is about 2.3% and 0.45%, respectively, in  316 
different distribution networks. It is noted that the MILP method can obtain the optimal solution at 64 and 127 317 
seconds for 33-bus and 119-bus networks, respectively, while MINLP solves the deterministic RA problem at 794 318 
and 2106 seconds for these networks, respectively. Moreover, the MILP model based on BD approach is able to 319 
achieve the optimal solution at 17 and 31 seconds with 13 and 18 convergence iteration numbers for these 320 
distribution systems. Therefore, this method is a faster solver and approach for the proposed RA strategy with the 321 
low calculation error in comparison with the original RA model in the different distribution grids. Noted that the 322 
proposed BD approach can obtain the optimal solution at 31 seconds in the 119-bus distribution network while the 323 
original MINLP model is executed by 2106 seconds. It is possible that the original model cannot be able to achieve 324 
the optimal solution for a large-scale real distribution network due to complexities of the original model. Thus, to 325 
cope with this issue, it is necessary to use relaxation or decomposition methods. Also, the Benders decomposition 326 

method can be applied to linear formulations, accordingly, this paper has proposed the MILP format for the 327 
proposed problem. The proposed problem can obtain optimal solution in different sizes of the distribution network 328 
based on Table 2. Moreover, benefits of the linearized AC optimal power flow in this paper are:     329 

- The total network variables such as active and reactive power, active and reactive power loss, magnitude 330 
and angle of voltage can be calculated in this method, while the linearized distribution flow method in [6] 331 
ignores the active and reactive power loss and imaginary part of voltage, or DC method does not consider 332 
reactive power, power loss and voltage drop. 333 

- Also, the proposed method is so accurate where its results are close to the original AC optimal power flow 334 
results based on Table 2.     335 

Consequently, these explanations demonstrate the benefits of the second contribution in section 1.3.  336 

 337 

 338 

 339 

 340 

 341 
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Table 2: Comparison between deterministic MINLP and MILP models at peak load hour (20:00)  342 
33-bus distribution network 

Parameter  MINLP MILP MILP based on BD method ( = 5$) 

Value Calculation error (%) Value  Calculation error (%) 

Total generation active power (MW) 3.850 3.764145 2.23 3.75683 2.242 

Total generation reactive power (MVAr) 2.393 2.335329 2.41 2.33496 2.425 

Mean of voltage magnitude (p.u) 0.957 0.9615936 0.48 0.961622 0.483 

Mean of voltage angle (rad) -0.0005 -0.00049795 0.41 -0.00049794 0.411 

Calculation time (seconds) 794 64 -  17 - 

Convergence iteration number  - - -  13  - 

119-bus distribution network 

Parameter  MINLP MILP MILP based on BD method ( = 5$) 

Value Calculation error (%) Value  Calculation error (%) 

Total generation active power (MW) 23.277 22.7626 2.21 22.7579 2.23 

Total generation reactive power (MVAr) 17.552 17.1325 2.39 17.1290 2.41 

Mean of voltage magnitude (p.u) 0.946 0.950541 0.48 0.950978 0.484 

Mean of voltage angle (rad) -0.0009 -0.00089635 0.405 -0.00089622 0.42 

Calculation time (seconds) 2106 127 - 31 - 

Convergence iteration number - -  18  - 

 343 
2) Economic and expansion planning results of the proposed RA strategy: The expansion planning results based 344 

on the proposed HSR-RA model, (25)-(28) are expressed in Table 3 for 33-bus and 119-bus distribution grids. In 345 

this Table, uncertain level of 5%, i.e.  = 0.05, is considered to the load and energy price, and standard deviation for 346 

the availability of the network equipment in the extreme weather condition is 10%. According to the comparison 347 

between this table and Fig. 5, it is seen that in these networks, lines hardening are installed in zones that are included 348 
extreme weather events such as earthquake or flood to obtain high resiliency for these networks at the proposed 349 
natural disaster conditions. Because, these lines are strong and the probability of their outage are low under these 350 
conditions with respect to conventional existing lines. Moreover, 3 and 5 backup DGs are installed respectively to 351 
33-bus and 119-bus distribution networks to improve the operation and resiliency indices such as voltage profile, 352 
load shedding condition, so that these systems are located in buses and zones that are placed farther from slack bus. 353 
Also, as shown in Table 3, the proposed RA strategy suggests 4 and 12 tie lines for 33-bus and 119-bus grids to 354 
improve the economic, operational and resiliency indices based on the minimization of the planning, operation and 355 
resiliency costs. The impacts of these planning results on the distribution network operation and resiliency 356 
conditions are expressed in sub-section 4.2.3.                 357 

 358 
 359 

 360 
 361 

 362 
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Table 3: Expansion planning results in different distribution networks in the HSR-RA model with considering  = 363 

0.05 364 
Network Optimal location of 

Backup DG in buses Lines hardening  Tie line between buses 

33-bus 13, 17, 30 Between buses 1-3, 28-31, 11-16, 

feeder 3-25, 2-22 

(9,15), (12,22), (18,33), (25,29) 

119-bus 25, 29, 41, 73, 110 Between buses, 1-2, 1-63, 1-100, 21-

26, 41-43, 70-74, feeders 3-30, 30-54, 

100-118 

(6,24), (8,46), (25,35), (54,62), (43,49), 

(38,62), (58,85), (73,80), (75,99), (94,108), 

(97,105), (110,118) 

 365 
In addition, the economic results of the proposed HSR-RA approach according to different values of uncertainty 366 

level of load and energy price, and 10% standard deviation for the availability of the network equipment in the 367 
extreme weather condition for the different proposed networks are shown in Fig. 7. Based on this figure, this 368 
approach can obtain zero resiliency, i.e., repair and load shedding cost in these networks, therefore, the VOLL with 369 
considering 100 $/MWh is suitable for these systems. Because, in this condition with the high VOLL, the system 370 

planner uses the high number of backup DGs, hardening and tie lines in the distribution network to minimize the 371 
load shedding cost according to (1). Also, the system repair cost will be minimized in this condition because these 372 
DGs and lines that are installed generally in the zones containing earthquake or flood include zero repair cost based 373 
on Section 4.1. Noted that in this case, based on the Roulette Wheel Mechanism (RWM) 30 scenario samples have 374 
been generated to model the uncertainty of availability of the network equipment in the extreme weather condition 375 
for each uncertainty level of load and energy price. In each scenario, several network equipments such as 376 
distribution line and back-up DG in zone including earthquake or flood should be disconnected from the network if 377 
their outage probability is high. But, since that strong equipments against natural disasters are installed in the 378 
network based on Table 3, where their outage probability is about zero in this paper, hence, the load shedding and 379 
repair cost is about zero. Therefore, these networks have high resiliency in this case and at different conditions of 380 

uncertainty levels. Moreover, the operation cost is increased with increasing , because, the load and energy price 381 

values will be increased if the uncertainty level is increased based on the model (25)-(28). But, the investment cost is 382 

the same for  = 0 and  = 0.05, and it is increased in  = 0.1 with respect to other values of . This statement refers 383 

that upstream network and backup DGs in Table 3 are able to supply total network demand at cases with  = 0 and  384 

= 0.05, but, the proposed networks needs more backup DGs at  = 0.1 in comparison with other cases to supply the 385 

increased load in this condition. Accordingly, the total RA cost based on equation (1) will be increased with 386 
increasing the uncertainty level. 387 

 388 
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 389 
(a) 390 

 391 
(b)  392 

 393 
Fig. 7 Economic results of the proposed HSR-RA in distribution network of (a) 33-bus, (b) 119-bus test networks 394 

 395 
3) Investigating operation and resiliency capability: Table 4 presents the operation indices results of 33-bus and 396 

119-bus distribution networks in cases I and II that are referred respectively to network power flow analysis and the 397 

proposed HSR-RA problem. In the case of  = 0, the proposed RA can reduce the maximum voltage deviation 398 

(MVD) and energy loss (EL) in the 33-bus and 119-bus networks, accordingly the MVD (EL) is reduced 399 
respectively about to 39% (31%) and 29% (33%) in these networks for Case II with respect to Case I. This statement 400 
is due to using local sources such as backup DGs and optimal operations of tie lines in these distribution systems. In 401 
addition, MVD and EL is increased by increasing the uncertainty level according to Table 4, because, the load value 402 

will be raised if the  is increased based on the model (25)-(28). In addition, the curve of the resiliency indices, i.e., 403 
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(investment + operation costs) versus VOLL according to different values of  in 33-bus and 119-bus distribution 405 

grids are plotted in Figs. 8 and 9, respectively. In the case of  = 0, according to these figures, these systems contain 406 

low resiliency in the VOLL = 0 (no incentive) due to the high value for ENNS and repair cost in this condition. 407 
Noted that the EENS and repair cost will be reduced if the VOLL is increased, but, the load shedding cost is 408 
increased/reduced if the VOLL is increased between 0 to 20 $/MWh / 20 to 100 $/MWh. Therefore, the high 409 
resiliency condition, i.e. EENS, repair and load shedding cost are zero, is obtained for 33-bus and 119-bus networks 410 
at the VOLL of 70 and 80 $/MWh, respectively. But, it is seen that increasing the resiliency is based on the 411 
increasing of planning cost, where this statement implies that the system needs the high number of backup DGs and 412 
hardening and tie lines to obtain the higher resiliency. Finally, increasing the uncertainty level causes that the value 413 
of the resiliency indices and planning cost are increased due to increasing the load and energy price in this condition. 414 

Therefore, it is seen that based on these explanations, the proposed RA scheme can obtain high resiliency (zero load 415 
shedding and repair costs) in the distribution network considering suitable value for the VOLL, i.e., 60 / 80 $/MWh 416 
for 33-bus / 119-bus networks. Also, this approach is able to improve the network operation indices (EL and MVD) 417 
based on the management and coordination of the local DGs in distribution systems by optimal planning of back-up 418 
DGs, hardening and tie lines according to the proposed RA model in (1)-(16), where these objectives demonstrate 419 
the benefits of the first contribution in section 1.3. In addition, the HSRO model in the proposed approach is able to 420 
consider the variation of load, energy price, and availability of the network equipment in the extreme weather 421 
condition based on the results of sub-sections 4.2.2 and 4.2.3. Hence, the proposed HSR-RA can attain the robust 422 
and guaranteed planning for the back-up DGs, hardening and tie lines in the distribution network as the profits of the 423 
third contribution in section 1.3. 424 

         425 

Table 4: Network operation indices in the proposed HSR-RA on the different distribution test networks 426 
Case  Network  Index Uncertain level  

0 0.05 0.1 

I 33-bus MVD (p.u) 0.087 0.092 0.098 

EL (MWh) 3.077 3.231 3.385 

119-bus MVD (p.u) 0.092 0.098 0.105 

EL (MWh) 25.64 26.92 28.20 

II 33-bus MVD (p.u) 0.053 0.055 0.0575 

EL (MWh) 2.111 2.216 2.322 

119-bus MVD (p.u) 0.065 0.0667 0.069 

EL (MWh) 17.12 17.97 18.83 

 427 



23 
 

(a) (b) 

 
(c) (d) 

Fig. 8 Economic and resiliency indices curve versus VOLL in the 33-bus distribution test network  428 
 429 

(a) 
 

(b) 

(c) (d) 

Fig. 9 Economic and resiliency indices curve versus VOLL in the 119-bus distribution test network 430 

 431 

5. Conclusions  432 

In this paper, backup DG and hardening and tie lines planning model has been presented in the distribution 433 

networks using the RA strategy against the extreme weather events, such as earthquakes and floods. In the proposed 434 

EE
N

S 
(M

W
h)

Lo
ad

 sh
ed

di
ng

 c
os

t (
$)



24 
 

deterministic model, the objective function is to minimize the daily investment, operation, repair and load shedding 435 

costs subject to the constraints of the network operation model, DGs and line planning, as well as network 436 

reconfiguration formulation. The linear formulation has been developed based on the BD approach.  To deal with 437 

the uncertainty sources of the problem, the HSRO based on BURO and scenario-based stochastic optimization have 438 

been developed to cope with the uncertainty of load, energy price and availability of network equipment under the 439 

earthquake and flood conditions. According to the simulation results, the proposed BD method-based MILP HSR-440 

RA problem is able to achieve the optimal solution at the lowest calculation time and calculation error with respect 441 

to the original proposed problem. Accordingly, this approach obtains the feasible solution in the 119-bus test 442 

network at 31 seconds while the original MINLP model of the RA solves at 2106 seconds. In addition, the proposed 443 

strategy could obtain the higher resiliency level with zero value for EENS, repair and load shedding cost based on 444 

the optimal value of VOLL of 60 / 80 $/MWh in the 33-bus / 119-bus radial test distribution networks, while it 445 

achieved the optimal location of backup DGs and hardening and tie lines in the distribution network under the 446 

earthquake and flood conditions. Moreover, it was able to improve the operational and economic indices in the 447 

distribution system for different uncertainty levels of load and energy price, consequently it can reduce the network 448 

energy loss and maximum voltage deviation about 30% with respect to the case without the RA strategy.     449 

In addition, this paper has not considered the impacts of the truck-mounted mobile emergency generator, power 450 

electronics devices, energy storage, power distribution architecture, and lifeline dependencies on the resilient 451 

response against natural disasters, hence, this case will be considered in the future works. Moreover, the HSR-RA 452 

model for the low voltage distribution network can be developed to the unbalanced distribution networks as a new 453 

research work. 454 
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