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Abstract 

In this paper, a methodology for solving the economic dispatch (ED) problem considering the uncertainty of wind 
power generation and generators reliability is presented. The corresponding probability distribution function (PDF) of 
available wind power generation is discretized and introduced in the optimization problem in order to 
probabilistically describe the power generation of each thermal unit, wind power curtailment, energy not supplied 
(ENS), excess of power generation, and total generation cost. The reliability of each unit is incorporated by 
estimating the joint PDF of power generation and failure events, while the PDF of ENS is incorporated by 
convoluting the PDF of ENS due to the forecasting error and any failure event. The performance of the proposed 
approach is analyzed by studying two power systems of 5 and 10 units. The proposed method is compared to Monte 
Carlo Simulation (MCS) approach, being able to reproduce the PDF in a reasonable manner, specifically when 
system reliability is not taken into account. 
Keywords: Economic dispatch problem; greenhouse gas emissions; power system reliability; wind power forecasting error; 
probability distribution function. 

Nomenclature 
 
 .௞ Discrete PDF of available wind power generationܹܲܣ
,௠ܣ ,௠ܤ  .݉ ௠ Parameters of cost curve of unitܥ
 .݅ ௜௞ Value of the power consumed by the dump load at time ݇ that corresponds to the sampling pointܮܦ
 .݇ ௞ Dump load at timeܮܦ
 .݉ ௠ Ramp down limit of unitܴܦ
 .݇ ௞ Load demand at timeܦ
 .Discrete PDF of power production when generators reliability is considered (௟,௠)ܧ
 .݅ ௜௞ Value of energy not supplied at time ݇ that corresponds to the sampling pointܵܰܧ
 .௛௠ Discrete PDF of lack of power of unit ݉ as a consequence of a failure eventܨ
 .݉ ௠ Forced outage rate of unitܴܱܨ
 .௕௘ CDF of power loss as a consequence of a failure in the generator systemܨ
 .݉ ௠ CO2 emissions of unitܩܪܩ
ܰ ௥ܲ{·} Normalized probability of occurrence of a determined event. 
௛ܲ Power value that corresponds to the discrete state ℎ. 
௕ܲ Power value that corresponds to the discrete state ܾ. 
௠ܲ,௜
௞ିଵ Power production of unit ݉ at time ݇ − 1 that corresponds to the sampling point ݅. 

ܲ௠௔௫ Maximum power value to be considered. 
ܲ௠௜௡ Minimum power value to be considered (assumed to be zero). 
௠ܲ
௞ Discrete PDF of power production of unit ݉ at time ݇. 
௠ܲ
௠௔௫ Maximum output power of unit ݉. 
௠ܲ
௠௜௡ Minimum output power of unit ݉. 
௥ܲ{·} Probability of occurrence of a determined event. 
ܷܴ௠ Ramp up limit of unit ݉. 
ܷ௠, ௠ܸ Parameters of the CO2 emission curve of unit ݉. 
ܹ௞ Discrete PDF of wind power generation. 
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௠ܹ௔௫
௞  Maximum value of available wind power generation at time ݇. 
௠ܹ௜௡
௞  Minimum value of available wind power generation at time ݇. 

ܺ௠ Parameter of the CO2 emission curve of unit ݉. 
ܽ଴ to ܽଷ Auxiliary variables. 
 .݇ ௝௞ Value of available wind power generation of discrete state ݆ at time݌ݓܽ
ܾ௠ Discrete state that corresponds to the rated capacity of unit ݉. 
 .ݎ ௥ Value that corresponds to the discrete stateݏ
 .݇ ௝௞ Value of wind power generation of discrete state ݆ at timeݓ

 ௜,௝ݖ
Total generation cost that corresponds to the sampling point ݅ and the discrete state of available wind power 
generation ݆. 

,ߛ] of the interval ܫ ௜ Sampling pointߠ 1 −  .[ߛ
ℎ Discrete state of power production (ℎ ߳ [0,  .([ܪ
 .Total number of bins of discrete PDF of power production ܤ
ܪ) Last state of ℎ ܪ = ܤ − 1). 
,ߛ] Total number of sampling points of interval ܫ 1 −  .[ߛ
 .Total number of bins of the discrete PDF of wind power generation ܬ
ܮ) ݈ Last state of ܮ = ܪ) + 1)ଶ =  .(ଶܤ
 .Total number of thermal units ܯ
ܴ Last discrete state of beta PDF. 
 .Value of lost load ܮܮܱܸ
 .Value of wasted energy ܧܹܱܸ
ܾ Discrete state of power production ܾ ߳ [1,  .[ܤ
݅ Index of sampling point ߠ௜, ݅ ߳ [1,  .[ܫ
݆ Discrete state of available wind power generation. 
݈ Discrete state of power production when generators reliability is considered. 
݉ Index for each generation unit. 
,0] ߳ ݎ ,Discrete state of beta PDF in the interval [0,1] ݎ ܴ]. 
 .Discretization step of the power values ௕ܲ ܲ߂
,ߛ] Sampling increment of interval ߠ߂ 1 −  .[ߛ
,ߙ  .Parameters of continuous beta PDF ߚ
 .Significance level ߛ
 .Parameter of the discretization process ߪ
 
 

Table of abbreviations  
 
ESS    Energy Storage System 

DRP   Demand Response Program 

ARMA  Auto-Regressive Moving Average 

UC   Unit Commitment 

ED    Economic Dispatch 

PDF   Probability Distribution Function 

PSO   Particle Swarm Optimization 

ENS   Energy Not Supplied 

MCS   Monte Carlo Simulation 

 

1. Introduction 

Energy obtained from renewable energy sources has a key role to the sustainable development in the 

near future. Wind and solar energies have been continuously growing motivated by governmental 

incentives, the reduction in the operating and capital costs, and the increment in the revenue streams. 

Because of these conditions, the energetic policy is based on the increment of renewable power 

penetration. As a result, it is expected that in the year 2040, renewable generation is going to represent 

about 16% of total generation capacity in the United States.  



Natural gas is going to be another important resource for power generation due to the expected 

reduction in market prices. In fact, it is likely that natural gas will become the main source of power 

generation in the United States in 2040, substituting the power capacity provided by coal-fired and 

nuclear power plants, sharing about 43% of the total generation capacity. This generation mix mainly 

composed by natural gas and renewable energies as the main power sources is going to lead to an 

important reduction in CO2 emissions, reaching a decrease of about 11% from the emission levels of the 

year 2012 [1].  

However, the variability related to the renewable energy sources and the difficulties related to storing 

energy represent important limitations in massive deployments of renewable sources to fully supply peak-

load and base-load. To deal with the problems related to the stochastic nature of renewable energy 

sources, many approaches have been proposed, such as the analysis of geographic properties of 

aggregated wind power generation [2], the optimal management of energy storage systems (ESSs), 

implementation of demand response programs (DRPs) [3, 4], and improvements in scheduling techniques 

in order to incorporate the wind power uncertainty by means of their corresponding forecasting error.  

Analyzing the geographic characteristics of the place to locate a determined wind farm in order to 

connect it with other ones and smooth the aggregated power production could require an additional 

investment that affects the profitability of the project [5]. Moreover, economic viability of a determined 

technology of ESS depends on the renewable penetration level and its variability, the regulatory 

environment, and the revenues in yearly bases [6]. The main barrier for the implementation of DRPs is 

related to the uncertainty in people’s behavior when the electricity prices are dynamically changed. This 

uncertainty is reflected in the estimation of price elasticity, which is frequently used to decide the optimal 

use of demand response resources [7].  

As a result, several approaches have been presented in the technical literature, such as stochastic 

programming, chance constrained programming, stochastic dynamic programming, robust optimization, 

and probabilistic approaches.  

Stochastic programming approaches consist on carrying out the optimal management taking into 

account some possible situations or scenarios randomly generated. In our case, these scenarios represent 

the stochastic behavior of load demand, wind power generation and failure events.  

 



In this regard, Tuohy et al. [8] introduced a methodology that employs scenarios randomly generated 

of load demand and wind power generation using an autoregressive moving average (ARMA) model 

combined with a reduction algorithm in order to select those representative scenarios. Then, power 

system management is carried out by solving a mixed integer programming optimization problem 

obtaining a feasible solution for the scenarios previously selected. However, in this approach a limited 

number of scenarios is analyzed, which represents an important source of error.  

To overcome the aforementioned problem, Ruiz et al. [9] proposed the incorporation of spinning 

reserve requirements for each scenario, as well as the incorporation of extreme scenarios of failure events, 

such as single outage of the largest generation unit in order to provide a robust solution.  

In other research work, Constantinescu et al. [10] paid special attention to the quality of scenarios used 

in stochastic programming optimization models. The authors have developed a model that joins a weather 

research and forecast model with a unit commitment (UC)/economic dispatch (ED) model in order to 

analyze the effects of wind power uncertainty on the scheduling problem. Among the most important 

findings, authors concluded that their proposed framework allows considering several aspects that cannot 

be analyzed by means of synthetically generated data; in special, the benefits obtained from the updating 

wind power forecasts during intra-day operations.  

Bahmani-Firouzi et al. [11] have proposed a methodology at which scenarios are randomly generated 

by using a roulette wheel technique that uses the corresponding probability distribution function (PDF) of 

load demand and wind power generation. The stochastic optimization problem is solved by means of an 

improved multi-objective particle swarm optimization (PSO) algorithm.  

Another optimization theory widely used is the chance constrained programming, at which the 

stochastic variables of the optimization problem are represented by using equivalent deterministic 

constraints. In this sense, Ding et al. [12] developed a model at which stochastic variables such as load 

demand, forced outage rates, energy prices, and wind power generation have been modeled, while the 

optimization problem is solved by implementing a standard branch and bound algorithm.  

Hybrid techniques that combine stochastic programming with other optimization techniques have been 

recently developed. Zhao and Guan [13] have developed a methodology that takes advantage of stochastic 

programming in order to face the computational effort related to the analysis of a large amount of 

scenarios preserving the conservativeness of the solution obtained from the robust optimization technique.  



Wang et al. [14] introduced a combined sample average approximation algorithm that combines a 

stochastic programming approach with chance-constrained programming approach in order to ensure 

using the wind power production at each time step.  

Probabilistic approaches based on modeling stochastic variables as a Markov process have been 

recently introduced, as well. Hargreaves and Hobbs [15] introduced the stochastic dynamic approach, 

where the optimization problem has been formulated as a Bellman equation, while load demand and wind 

power generation have been modeled by using a Markov transition matrix. The optimization problem has 

been solved by employing a dynamic programming approach with unit aggregation in order to analyse 

systems with large number of units in a reasonable computational time. 

Luh et al. [16] have developed a model where UC problem is based on states instead of scenarios. The 

corresponding states are determined after modeling the wind power generation as a Markov process 

through the transition matrix. Besides of this, the transition matrix is improved to take into account rare 

events in wind power production. The optimization problem is solved by using branch and cut algorithm. 

Other probabilistic models based on the analytical representation of wind power production have been 

presented and analyzed. In this sense, Hetzer et al. [17] developed a general purposes ED model at which 

stochastic wind speed is represented as a Weibull PDF. Additionally, a factor to represent the 

overestimation and underestimation of the available wind power generation is incorporated in the 

objective function of the classical ED problem. On the one hand, the factor related to the overestimation 

represents the purchasing of power generation from a determined source (spinning reserve) to supply the 

required capacity. On the other hand, the factor related to the underestimation represents the cost of 

consuming the excess of power generation.  

In a similar way, in references [18,19] authors have modeled wind speed variability by means of a 

Weibull PDF; however, some concepts frequently applied in stochastic programming frameworks such as 

those variables of first and second stages (here-and-now variables and wait-and-see variables) are 

incorporated. In reference [20], the probabilistic modeling presented in [18, 19] is improved by the 

incorporation of emissions due to oxides of nitrogen (NOx), using an incomplete gamma function to 

represent the effects of wind power generation. 

As can be noted from the analysis of the literature review previously described, the optimal scheduling 

considering uncertainty introduced by wind generation and failure events is a challenging task.  



Many of the methodologies presented in the technical literature are based only in taking into account a 

limited number of scenarios, assuming the same probability of occurrence for all of them, which could be 

an important source of error. As a consequence, the obtained scheduling depends on the methodology 

used for scenario generation (ARMA, Markov process, etc.).  

Regarding the probabilistic approaches previously explained, many of such approaches represent the 

effects of ramp constraints (limitation of power generation capacity) indirectly by means of penalty 

factors (cost of spinning reserve used to compensate wind power forecasting error). For these reasons, the 

development of a probabilistic model capable of considering all possible changes in wind power 

generation, as well as the effects of ramp constraints in the stochastic optimization problem, is required.  

In this paper, wind power forecasting error is modeled as a beta PDF and incorporated in the ED 

problem in order to obtain PDF of power generation, energy not supplied (ENS), and generation cost, 

among others. Besides of this, the effects of ramp constraints on power production are modeled only 

considering some representative values of power production at previous time step, selected from the 

corresponding PDF. This simplification is carried out to make the optimization problem tractable. These 

are the main differences between the methodology presented in this paper and those previously proposed 

in references [17-20], as new contributions to earlier studies. 

The rest of the paper is organized as follow: in section 2 the probabilistic ED problem is described and 

the proposed approach is carefully explained, i.e., the process required to obtain the discretized PDF of 

wind power forecasting error, the proposed approach to represent the power generation of each unit at 

time ݇ − 1, the methodology to solve the probabilistic ED problem under uncertainty, and the 

incorporation of generators reliability are fully described. In section 3, the performance of the proposed 

approach is illustrated by analyzing two case studies of 5 and 10 units. Finally, main conclusions are 

presented in section 4. 

 
2 Probabilistic ED problem and proposed approach 

The probabilistic ED problem consists on finding the optimal power generation of each unit 

committed, taking into account the uncertainty related with wind power forecasting error.  

 

 



The system under analysis is shown in Fig. 1, where the aggregated wind power generation has been 

represented by only one wind farm. The power system is supposed to have a dump load, which is used to 

dissipate the energy surplus produced during those periods of low load. ENS is represented by a big unit 

capable of supplying any amount of power that cannot be provided by thermal units. 

“See Figure 1” 

The proposed approach consists of four main steps: 

 Step 1: Discretization of the PDF of forecasted wind power generation. 

 Step 2: Simplification of PDF of initial power production. 

 Step 3: Incorporation of wind power forecasting error. 

 Step 4: Incorporation of generators reliability.  

In the first step, discretization of the PDF that represents the wind power forecasting error is carried 

out, assuming a beta PDF. In the second step, in order to make the optimization problem tractable, the 

PDF of power production at time instant ݇ − 1 is simplified, so that only some specific power production 

situations are taken into account. In the third step, the discretized PDF obtained in the first step is 

incorporated in the optimization problem by considering the simplification carried out in the second step. 

In the fourth step, generators reliability is incorporated by estimating the joint PDF of power production 

and failure events for each unit; while a convolution process is carried out between the PDF of ENS 

obtained in the third step from the incorporation of wind power forecasting error and from the reliability 

analysis of each unit.  

 

2.1 Discretization of the PDF of forecasted wind power generation 

The probabilistic representation of wind power forecasting error has been extensively analyzed in the 

literature, proposing many PDFs to its representation. The results obtained by De Giorgi et al. [21] from 

the implementation of forecasting tools based on ARMA models, artificial neural networks and adaptive 

neuro-fuzzy inference systems suggest a Gaussian PDF. Bludszuweit et al. [22], from the analysis of a 

measured time series of one year, have suggested using beta PDF in order to model those PDFs similar to 

a Gaussian PDF, and those particular PDFs with a tail. To accurately represent those situations at which 

power production and consequently forecasting error are zero due to wind speed is too low or too high to 

produce power from the wind farm. Hence, Tewari et al. [23] have proposed a mixed PDF.  



Alternatively, Zhang et al. [24] have suggested employing the versatile PDF due to its analytical 

properties that facilitates the incorporation of wind power forecasting error in the ED problem. Recently, 

other methodologies based on copula theory [25] and Lévy alpha-stable PDF [26] have been suggested. 

Hodge and Milligan [27] demonstrated the effectiveness of Cauchy PDF to represent the forecasting 

error over multiple timescales, analysing data from Electric Reliability Council of Texas (ERCOT).  

In order to illustrate the methodology proposed in this paper to solve the probabilistic ED problem, 

beta PDF has been adopted. Assuming that the corresponding parameters are known, the discretization of 

this PDF is carried out by applying the methodology proposed by Punzo and Zini [28]. Fig. 2 shows the 

main characteristics of discretized beta PDF in interval [0,1], where the corresponding discretized PDF 

could be mathematically expressed in terms of discrete state ݎ according to (1): 

ܵ = ௥ݏ} , ௥ܲ{ݏ௥}, ݎ = 0,1,2, … , ܴ}                                                                 (1) 

The value (ݏ௥) that corresponds to each discrete state ݎ is estimated by means of (2) in the interval [0,1].  

௥ݏ = ൞
max ൬ቄ

ݎ
ܴ
−
ߪ
ܴ

, 0ቅ ,
ݎ
ܴ
−
ߪ
ܴ

+
1
ܴ

 ൰ , ݎ = 0, 1, 2, … , ܴ − 1 

൤
ݎ
ܬ
−
ߪ
ܬ

, 1൨ , ݎ = ܴ
                          (2) 

“See Figure 2” 

The corresponding probability value ( ௥ܲ{ݏ௥}) that corresponds to the discrete state ݎ is calculated by 

using (3): 

௥ܲ{ݏ௥} =
(1 + ܴ)ఈିଵ(ݎ + 1 − ఉିଵ(ݎ

∑ (1 + ܽ଴)ఈିଵ(ܴ + 1 − ܽ଴)ఉିଵோ
௔బୀ଴

; ݎ = 0,1,2, … , ܴ                              (3) 

In order to allocate the discretized PDF obtained from equations (1)-(3) in the range of interest of wind 

power generation [ ௠ܹ௜௡
௞ , ௠ܹ௔௫

௞ ], a new discrete state (݆) is introduced in terms of state ݎ, which are related 

through the expression ݆ = ݎ + 1. The PDF of available wind power generation is estimated from 

discretized PDF in the interval [0,1] using (4): 

௞ܹܲܣ = ൛ܽ݌ݓ௝௞ = ൫ ௠ܹ௔௫
௞ − ௠ܹ௜௡

௞ ൯ݏ௝ିଵ + ௠ܹ௜௡
௞ , ݆ = 1,2, … ,  ൟ                        (4)ܬ

The notation to discretized PDF of wind power generation is presented in (5). Note that (4) represents 

the available wind power generation which is obtained from the forecasting process, while (5) represents 

the wind power produced, which is obtained from the solution of ED problem. This formulation allows 

considering the wind power curtailment from a probabilistic point of view. 

ܹ௞ = ൛ݓ௝௞ , ௥ܲ൛ݓ௝௞ൟ, ݆ = 1,2, … ,  ൟ                                                         (5)ܬ



2.2 Simplification of PDF of initial power production 

The discretized PDF of power production at time ݇ − 1 is considered as input data available to solve 

the probabilistic ED problem. The incorporation of all possible combinations of power generation 

between the different units of the system lead to an infinity number of cases that should be evaluated, 

which make the optimization problem not tractable. In other words, if the discretized PDF of unit ݉ = 1 

at time ݇ − 1 is divided into ܤ bins, the number of combinations that results from considering the power 

generation of this unit and the possible power production of other units of the system (݉ = 2, …  (ܯ,

could lead to a large amount of cases that should be evaluated. To deal with this problem, a simplification 

is introduced. Considering a determined significance level (ߛ), the interval [ߛ, 1 −  is swept with a [ߛ

determined step (sampling increment) ߠ߂, obtaining ܫ values. This is formulated in (6): 

ߠ = ௜ߠ} ,ߛ] ߳  1 − ,[ߛ ݅ = 1,2,⋯ ,  (6)                                                        {ܫ

Using the values defined in the set of equation (6), the discretized PDF of power generation at time 

݇ − 1 and its corresponding CDF presented in Fig. 3, some selected power production values ( ௠ܲ,௜
௞ିଵ) can 

be selected by evaluating the inverse CDF of each element of set ߠ. Note that when ߠ௜=0.5, the power 

production at ݇ − 1 is the mean value of power production, which corresponds to the result obtained from 

the evaluation of the ED problem in the mean value of forecasted power generation. This methodology 

uses the concept of quantile to select and consider the power production values at time ݇ − 1. Another 

characteristic to take into account is when ߠ௜ → ݇ the low load conditions at ߛ − 1 are considered; on the 

contrary, when ߠ௜ → 1 −  the high conditions of load are considered. This allows considering the ߛ

extreme conditions from low and high load conditions. 

From the application of the methodology previously described, a similar table shown in Fig. 4 is 

obtained, where the power production at time ݇ − 1 according to sampling point ݅ could be easily 

recognized. Something important to note is that the probabilities of occurrence of each column in Fig. 4 

do not sum 1, due to that not all possible combinations are considered. To solve this problem, the 

corresponding probability ( ௥ܲ{·}) is substituted by the normalized probability (ܰ ௥ܲ{·}) of (7), whose sum 

is 1 for any amount of sampling points ܫ. 

ܰ ௥ܲ൛ ௠ܲ
௞ିଵ = ௠ܲ,௜

௞ିଵൟ =
∏ ൫ ௥ܲ൛ ௠ܲ

௞ିଵ = ௠ܲ,௜
௞ିଵൟ൯ெ

௠ୀଵ

∑ ∏ ൫ ௥ܲ൛ ௠ܲ
௞ିଵ = ௠ܲ,௜

௞ିଵൟ൯ெ
௠ୀଵ

ூ
௜ୀଵ

                                       (7) 

“See Figure 3” 

 “See Figure 4” 



2.3 Incorporation of wind power forecasting error 

Once the discretized PDF of available wind power generation and discretized PDF of power 

production at time ݇ − 1 are obtained, wind power forecasting error is incorporated in the probabilistic 

ED problem by following the algorithm described next: 

 Step 1: Select the number of bins (ܤ) to be considered in the discrete PDF of all variables of interest 

(power production of thermal units, wind power generation, energy not supplied and energy surplus). 

The maximum value of power (ܲ௠௔௫) to be considered is chosen as well in this step, while the 

minimum value (ܲ௠௜௡) is assumed to be zero. The corresponding bin is identified by the index 

ܾ ߳ [1,   .[ܤ

 Step 2: Using the parameters selected in step 1, the increment of the discrete representation of power 

values (ܲ߂) is calculated by using (8): 

ܲ߂ =
ܲ௠௔௫ − ܲ௠௜௡

ܤ − 1
                                                                   (8) 

After this, the power value ( ௕ܲ) that corresponds to discrete state ܾ is obtained. This is implemented as 

a vector ௕ܲ = ଵܲ, ଶܲ, … , ௕ܲ , … , ஻ܲ, where ଵܲ = ܲ௠௜௡ = 0 and ஻ܲ = ܲ௠௔௫. Then, any continuous power 

value obtained from the optimization process can be represented in a discrete manner, selecting the 

corresponding discrete state. 

 Step 3: Create a table of ܤ rows and ܯ columns ( (ܶ௕,௠)). This table is the discrete PDF of power 

generation of thermal units. All elements in this table are initialized as zero. 

 Step 4: In this step, the first case of power generation at time ݇ − 1 (see Fig. 4) is selected. This is 

carried out by setting the index ݅ equal to 1 (݅ ← 1).  

 Step 5: The first discrete state of available wind power generation is selected. This is carried out by 

setting ݆ equal to 1 (݆ ← 1). 

 Step 6: Solve the classical ED problem for the corresponding combination (݅, ݆). This is carried out by 

solving the optimization problem of (9)-(14) [29]: 

௜,௝ݖ = ෍ ቀܣ௠ + ௠൫ܤ ௠ܲ,௜
௞ ൯ + ௠൫ܥ ௠ܲ,௜

௞ ൯ଶቁ
ெ

௠ୀଵ

+ ௜௞൯ܮܦ൫ܧܹܱܸ + ܰܧ൫ܮܮܱܸ ௜ܵ
௞൯                  (9) 

෍ ௠ܲ,௜
௞

ெ

௠ୀଵ

+ ௝௞ݓ = ௞ܦ                                                               (10) 

௠ܲ,௜
௞ − ௠ܲ,௜

௞ିଵ ≤ ܷܴ௠                                                              (11) 



௠ܲ,௜
௞ିଵ − ௠ܲ,௜

௞ ≤  ௠                                                              (12)ܴܦ

௠ܲ
௠௜௡ ≤ ௠ܲ

௞ ≤ ௠ܲ
௠௔௫                                                                (13) 

0 ≤ ௝௞ݓ ≤ ௝௞݌ݓܽ .                                                                 (14) 

 Step 7: From the solution of the optimization problem in step 6, variables ݓ௝௞ and ௠ܲ,௜
௞  are determined. 

Then, the corresponding probability values are calculated and allocated in the discrete PDF using the 

algorithm presented in Fig. 5. In similar manner, discretized PDF of ENS and generation cost are built. 

 Step 8: If ݆ < ݆ set ,ܬ ← ݆ + 1 and go back to step 6; else go to step 9. 

 Step 9: If ݅ < ݅ set ,ܫ ← ݅ + 1 and go back to step 5; else end. 

“See Figure 5” 

2.4 Incorporation of generators reliability 

For a determined unit ݉, the estimation of power production considering the failure events could be 

estimated by using the algorithm presented next. This algorithm has been adapted from the methodology 

proposed in [30] to the estimation of the joint PDF of power production and failure modes. 

 Step 1: Using the discrete representation of any power value ( ௕ܲ  ߳ [ܲ௠௜௡ , ܲ௠௔௫]), find the bin (ܾ௠) that 

corresponds to the rated power of unit ݉ ( ௠ܲ
௠௔௫). It can be carried out by adapting the algorithm 

presented in Fig. 5.  

 Step 2: Create the state ℎ (ℎ = 0,1,2, … , using the state ܾ by means of expression ℎ (ܪ + 1 = ܾ to 

represent a determined state of power production and failure events. The value of power production of 

state ℎ can be estimated as ௛ܲ = ௕ܲିଵ. This change in states name is required to the estimation of joint 

PDF of power production and failure events. 

 Step 3: In this step, the discrete PDF of failure events (ܨ௛௠) of a determined unit m is represented by 

using (15): 

௛௠ܨ = ൝
௠ ,              ℎܴܱܨ = 1

1 − , ௠ܴܱܨ ℎ = ܾ௠
݁ݏ݅ݓݎℎ݁ݐ݋                 , 0              

                                             (15) 

 Step 4: Once the discrete PDF of power production ( ௛ܲ) and discrete PDF of failure events (ܨ௛௠) have 

been estimated, the discrete joint PDF of power production and failure events can be built. Power 

production and failure events are considered as two independent variables, so that the joint PDF can be 

obtained by multiplication of the probability occurrence of each event ( ௥ܲ{ ௠ܲ
௞ = ௛ܲ} ௥ܲ{ܨ௛௠ = ௛ܲ}). 

Joint PDF is represented by a table similar to that presented in Fig. 6. 

“See Figure 6” 



 Step 5: Create the discrete state ݈ of power production when generators reliability is considered, ݈ =

0, 1, 2, … , ܮ where ,ܮ = ܪ) + 1)ଶ = ) ݈ ଶ. The corresponding power value associated with stateܤ ௟ܲ) is 

defined according to the (16): 

௟ܲ = ݈ ൬
ܲ߂

ܾ௠ − 1
൰                                                              (16) 

 Step 6: In this step, the probability of state ݈ = 0 ( ௟ܲୀ଴) is estimated. This probability is calculated 

summing the elements (1, 1), the elements of row 1 from 2 until ܤ, and the elements of column 1 from 

2 until ܤ of the table presented in Fig. 6. 

 Step 7: The estimation of probabilities that corresponds to states ݈ = 1,2, … ,  is carried out by using ܮ

the algorithm presented as follows: 

o Step 7.1: Create the table ܧ(௟,௠) of ܤଶ rows and ܯ columns. Initialize all its elements to zero. 

o Step 7.2: Set ܽଵ ← 0. 

o Step 7.3: Set aଶ ← 0.  

o Step 7.4: Calculate ܽଷ = ܽଵܽଶ. 

o Step 7.5: If ܽଷ > (௔య,௠)ܧ ,0 ← (௔య,௠)ܧ + ௥ܲ{ ௠ܲ
௞ = ௛ܲ} ௥ܲ{ܨ௛௠ = ௛ܲ}, else go to step 7.6. 

o Step 7.6: If ܽଶ < set ܽଶ ,ܮ ← ܽଶ + 1 go to step 7.4, else go to 7.7. 

o Step 7.7: If ܽଵ < set ܽଵ ,ܮ ← ܽଵ + 1 go to step 7.3, else end. 

The discrete PDF of power production incorporating the forecasting error of wind power generation 

and the generators reliability is represented by discrete states ݈, the power associated with corresponding 

state ( ௟ܲ) and the probabilities of table ܧ(௟,௠). 

Regarding the ENS, the discrete PDF of this variable could be estimated by using the methodology 

explained in sub-section 2.3, representing ENS as a generation unit. The component of ENS due to 

generators reliability could be estimated by using the recursive expression of (17) [31]: 

)௕௘ܨ ௕ܲ) = (1 − )௕௘ܨ(௠ܴܱܨ ௕ܲ) + )௕௘ܨ௠ܴܱܨ ௕ܲ − ௠ܲ
௠௔௫).                          (17) 

where ܨ௕௘ is the CDF of ENS due to any failure event in the generation system. From this result the 

required PDF could be easily estimated. Both of them are shown in Fig. 7. 

Finally, discrete PDF of ENS taking into account wind power forecasting error and generators 

reliability is estimated as the convolution between the discrete PDF obtained from the procedure 

explained in sub-section 2.3 and that obtained from (17) and Fig. 7. 

“See Figure 7” 



3. Case studies 

The proposed approach in this paper is illustrated by analyzing two case studies of 5 and 10 units 

provided of wind power generation. In order to evaluate the performance of the proposed methodology, 

the results obtained from the methodology explained in section 2 have been compared to those obtained 

from the application of Monte Carlo Simulation (MCS) methodology. In both cases, the number of trials 

considered in MCS was 50000. The test system based on MCS was built by considering three time 

instants. The first time instant corresponds to the actual conditions so that initial power generation was 

considered as a real value. In the second and third time instants, the conditions of available wind power 

generation were randomly generated, while the power generation of each unit and wind farm was 

obtained from the solution of the corresponding optimization problem by quadratic programming 

approach [29]. Then, using the results obtained from the second time instant, the PDF of initial power 

generation of each unit required by the proposed approach has been obtained. The results obtained from 

the third time instant are used to build the PDF of power generation of each unit, which is employed as a 

reference of comparison between the proposed methodology and the MCS methodology.  

The number of bins considered to build the required PDFs was 1500 (1500 = ܤ), the significance level 

considered was 0.05, the sampling increment used was 0.15, thus obtaining 7 sampling points (7= ܫ).  

The discretization of PDF of available wind power generation was carried out by considering ߪ = 0.01 

and ܴ = 3500. The results obtained from the analysis of each case study are presented next in sub-

sections 3.1 and 3.2. The proposed methodology has been implemented in MATLAB using a computer 

provided of i7-3630QM CPU at 2.40 GHz with 8 GB of memory and 64 bit operating system. 

3.1 Analysis of 5-unit power system 

The power system under analysis corresponds to a typical diesel-powered system of an island. The 

main characteristics such as rated capacity and generation costs are presented in Table 1. The minimum 

output power of each unit was assumed to be 50% of the corresponding rated power. This data was 

obtained from the analysis of the information provided by manufacturers. 

“See Table 1” 

The available wind power generation was modeled as a beta PDF with parameters ߙ = ߚ ,1.4 = 3.1, 

௠ܹ௜௡
௞ = 0 kW, and ௠ܹ௔௫

௞ = 600 kW. The maximum power value considered was ܲ௠௔௫=1000 kW. 

Finally, load demand was assumed to be a 892 kW at time ݇.  



Fig. 8 shows the PDF of the wind farm (ܹ௞) obtained from the solution of the optimization problem. It 

is observed how wind power generation is curtailed to about 424 kW due to the minimum output power 

of thermal units. This is an important problem in the integration of renewable energy sources to the grid 

that could be probabilistically analyzed by means of the approach proposed in this paper. 

“See Figure 8” 

Fig. 9 shows the PDF of power production of unit 1. Since this unit is one of the cheapest units in the 

system, it responds to the fluctuations of wind power generation. It is possible to observe how the 

probability of high wind power generation leads this unit to reduce its output power at its minimum value, 

while the probability of power production at high values is influenced by the PDF of available wind 

power generation. Similar results were obtained for the other units. 

“See Figure 9” 

Fig. 10 shows the PDF of total generation cost. As can be observed, this is highly influenced by the 

behavior of the available wind power generation and its forecasting error. The reader can note that this 

PDF has an inverse shape compared to the PDF of wind power generation, including the effects of wind 

power curtailment on the total generation cost. 

“See Figure 10” 

Through the analysis of Figs. 8-10, it is possible to observe the good performance of the proposed 

methodology compared to MCS. It could be quantized by means of a comparison between the expected 

values obtained from the application of each methodology, such as the comparison shown in Table 2. 

“See Table 2” 

The proposed methodology could be used to evaluate the greenhouse gas emissions of each thermal 

unit. To illustrate this application, the CO2 emissions of each unit have been modeled by using the 

quadratic expression of (18): 

௠ܩܪܩ = ܷ௠ + ܺ௠൫ ௠ܲ,௜
௞ ൯ + ௠ܸ൫ ௠ܲ,௜

௞ ൯ଶ                                         (18) 

The corresponding parameters of (18) were obtained by fitting the experimental measurements presented 

in [32] related to the CO2 emissions to (18). The obtained results are presented in Table 3. 

“See Table 3” 

Fig. 11 presents the PDF of CO2 emissions of unit 1, which was obtained by evaluating the PDF power 

production of Fig. 9 in (18). Table 4 presents the expected value of CO2 emissions for each unit.  



It is possible to observe how the forecasting error of available wind power generation highly influences 

the emission probability of a determined amount of CO2. 

“See Figure 11” 

“See Table 4” 

3.2 Analysis of 10-unit power system 

In this case study, the power system described in reference [33] has been adapted by adding the FOR 

values presented in Table 5, estimated according to the corresponding role of the unit (base-unit,  

cycling-unit, and peak-unit). Available wind power generation was modeled with the parameters ߙ = 1.6, 

ߚ = 6.3, ௠ܹ௜௡
௞ = 150 MW, and ௠ܹ௔௫

௞ = 500 MW. The maximum power value considered was 

ܲ௠௔௫=1700 MW. Finally, load demand was assumed to be a 1600 MW at time ݇. This system has been 

used to analyze the performance of the proposed approach when ramp constraints and failure events are 

considered. The obtained results are presented in sub-section 3.2.1 and 3.2.2. 

“See Table 5” 

3.2.1 Analysis of 10-unit system incorporating generators reliability 

The methodology explained in sub-sections 2.3 and 2.4 has been used to the analysis of the system 

taking into account the reliability of generation units. The corresponding comparison with MCS 

methodology was carried out in Fig. 12, showing the PDF of power generation of unit 4. Reader can note 

how this unit has high probability of being committed at its maximum output power (130 MW). Due to its 

generation cost and technical characteristics, this unit does not respond the fluctuations of wind power 

neither to failure events of other units. Otherwise, there is a probability of 0.1 of being de-committed as a 

consequence of a failure event. According to these results, the proposed methodology offers a good 

performance. 

“See Figure 12” 

Fig. 13 shows the PDF of power generation of unit 6. As can be observed, this unit responds to any 

failure event of other units by increasing its power production, which produces important differences 

between the PDF obtained from the proposed methodology and the MCS approach.  

Fig. 14 shows the PDF of generation cost related to the fuel consumption. As in the previous case 

study, this cost is strongly influenced by the PDF of available wind power forecasting error.  



Fig. 15 presents the PDF of ENS, where important differences can be observed. The results obtained 

from the proposed methodology suggest higher values of ENS due that the increment in power production 

of those units able to provide spinning reserve is not considered.  

“See Figure 13” 

“See Figure 14” 

“See Figure 15” 

Table 6 shows the expected value of power production, ENS, and fuel consumption cost. It is possible 

to observe how the proposed methodology can reasonable model those units used to provide base-load, 

which are continuously operated at their maximum output power (units 1-4). However, the proposed 

methodology has difficulties to model the behavior of those units that increase their power production 

under any failure of the other units (units 5-10) that are used as cycling and peak units. This reasoning 

justifies the important differences in the estimation of the ENS observed. 

“See Table 6” 

3.2.2 Analysis of 10-unit system without incorporating generators reliability 

In this sub-section, the results obtained from the analysis of the 10-unit system without considering the 

generators reliability are presented. Fig. 16 shows the PDF of wind power generation, which is totally 

accepted by the system without any curtailment. Fig. 17 shows the PDF of power production of unit 6.  

It is possible to observe how under these conditions (without considering unit reliability) the proposed 

approach can reproduce the PDF obtained from MCS. Fig. 18 shows the PDF of generation cost and the 

impact of forecasting error of wind power generation. The increment in generation cost is directly related 

to the decrement in wind power generation previously presented in Fig. 16. 

“See Figure 16” 

“See Figure 17” 

“See Figure 18” 

Table 7 summarizes the comparison between the expected value of power production and generation 

cost. As it can be observed, the proposed methodology presents good performance compared to those 

results obtained from the MCS approach. In the proposed methodology, the trade-off between the 

accuracy of obtained results and computational time is carried out by adjusting parameters ܫ and ܴ, which 

represents the total number of possible power production combinations at time ݇ − 1, and the amount of 

discretization levels of PDF of the available wind power generation.  



These factors can be adjusted according to the computational resources available and the size of the 

system under analysis. Fig. 19 presents the behavior of computational time as a function of the factor R 

for two different values of parameter I. According to these results, the computational time has a linear 

behavior that facilitates the selection of the factor ܴ taking into account the computational resources 

available.  

“See Table 7” 

“See Figure 19” 

4 Conclusions 

In this paper, a methodology for solving the classical ED problem incorporating the uncertainty of 

wind power generation and generators reliability was presented. In this approach, forecasting error of 

wind power generation was modeled as a discretized beta PDF, which allowed considering extreme 

conditions with its corresponding probability. Another important characteristic of the proposed 

methodology is that the power production of each unit at previous time instant was incorporated by means 

of simplified sampling of discretized PDF of power generation at this time step, which provided an 

efficient treatment of the problem. Finally, failure events of each unit were incorporated through the 

calculation of the joint PDF of power production and failure event, while ENS was probabilistically 

described through the convolution between the PDF of ENS related to wind power forecasting error and 

unit’s failure. The proposed methodology was illustrated through the analysis of two power systems of 5 

and 10 units, respectively, and the results were compared to those obtained from MCS. From this 

comparison it was possible to conclude that the proposed methodology could soundly describe the PDF of 

wind power generation, thermal power generation, ENS and generation cost when the failure events in 

any generation unit are not considered. As a future work, the methodology presented in this paper is going 

to be improved in order to consider the rise in the power production of those units used to provide 

spinning reserve when any failure occurs in the generation system, in order to avoid the overestimation in 

the expected value of ENS observed in the analysed cases. Other PDFs to model forecasting error, such as 

versatile PDF [24], Lévy alpha-stable PDF [26], and Cauchy PDF [27], will also be tested. 
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Figure Captions 

 

Figure 1 
Power system under study. 

 

Figure 2  
Characteristics of the discretized beta PDF. 

 

Figure 3 
PDF of ௠ܲ

௞ିଵ (left side) and CDF of ௠ܲ
௞ିଵ (right side).  
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Figure 4 
Selected cases of power production at time ݇ − 1. 

 

Figure 5  
Allocation of power generation ( ௠ܲ,௜

௞ ) in the PDF of ௠ܲ
௞. 

 

Figure 6 
Illustration of the joint PDF of failure events and power production. 
  



 

Figure 7  
CDF of power generation loss (left side) and PDF of power loss (right side) due to failure events. 

 

Figure 8 
PDF of wind power generation (5-unit system). 

 

Figure 9 
PDF of power generation of unit 1 (5-unit system). 
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Figure 10 
PDF of generation cost (5-unit system). 

 

Figure 11 
PDF of CO2 emissions of unit 1 (5-unit system). 

 

Figure 12 
PDF of power generation of unit 4 (10-unit system). 
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Figure 13 
PDF of power generation of unit 6 (10-unit system). 

 

Figure 14  
PDF of generation cost related to fuel consumption (10-unit system). 

 

Figure 15 
PDF of energy not supplied (10-unit system). 
  

0 10 20 30 40 50 60 70 80
0

0.1

0.2

0.3

0.4

0.5

0.6

Power (MW)

Pr
ob

ab
ili

ty

Power generation of unit 6

 

 

Proposed
Monte Carlo

1 1.5 2 2.5 3 3.5 4
x 10

4

0

0.005

0.01

0.015

0.02

0.025

0.03

Generation cost ($)

Pr
ob

ab
ili

ty

Total generation cost

 

 

Proposed
Monte Carlo

0 200 400 600 800 1000 1200 1400 1600
0

0.2

0.4

0.6

0.8

1

Energy not supplied (MWh)

Pr
ob

ab
ili

ty

Energy not supplied

 

 

Proposed
Monte Carlo



 

Figure 16 
PDF of wind power generation (10-unit system). 

 

Figure 17 
PDF of power generation of unit 6 (10-unit system). 

 

Figure 18 
PDF of generation cost (10-unit system). 
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Figure 19 
Behavior of the computational time. 
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Table Captions 

Table 1 
Description of 5-unit system. 

݉ ௠ܲ
௠௔௫ (kW) ܣ௠ ($/h) ܤ௠ ($/kWh) ܥ௠ ($/kW2h) 

1 350 10.3904 0.1472992 0.00012224 
2 300 8.6332 0.1534112 0.00012224 
3 125 3.5908 0.1842768 0.00009168 
4 100 3.2852 0.1815264 0.00012224 
5 60 2.2156 0.2270608 -0.0003056 

Table 2 
Expected value comparison between MCS and proposed method (5-unit system). 

Comparison MCS Proposed 
Wind farm (kW) 185.788939 184.988933 

Unit 1 (kW) 243.892262 244.178446 
Unit 2 (kW) 218.904510 219.191016 
Unit 3 (kW) 107.157612 107.361965 
Unit 4 (kW) 88.606244 88.752082 
Unit 5 (kW) 47.612342 47.486873 

Total cost ($) 159.023486 159.189200 
Time (s) 787.462000 149.976000 

Table 3 
CO2 emission model (5-unit system). 

݉ ௠ܲ
௠௔௫ (kW) ܷ௠ (kg/h) ܺ௠ (kg/kWh) ௠ܸ (kg/kW2h) 

1 350 28.062 0.5075 0.0004 
2 300 24.104 0.5626 0.0002 
3 125 16.244 0.4506 0.001 
4 100 11.148 0.5544 0.0006 
5 60 9.163 0.6201 -0.0014 

Table 4 
Expected value of CO2 emissions (5-unit system). 

݉ CO2 emissions (kg) 
1 176.313261 
2 157.271476 
3 76.610344 
4 65.232853 
5 35.148854 

  



Table 5 
Description of 10-unit system. 

݉ ௠ܲ
௠௔௫ (MW) ܴܱܨ௠ 

1 455 0.05 
2 455 0.05 
3 130 0.1 
4 130 0.1 
5 162 0.1 
6 80 0.1 
7 85 0.1 
8 55 0.01 
9 55 0.01 

10 55 0.01 

Table 6 
Expected value comparison between MCS and proposed method considering system reliability. 

Comparison MCS Proposed 
Unit 1 (MW) 432.286025 432.031354 
Unit 2 (MW) 432.248759 431.392345 
Unit 3 (MW) 117.740821 117.378252 
Unit 4 (MW) 117.866024 117.378252 
Unit 5 (MW) 125.958954 115.711446 
Unit 6 (MW) 39.962974 23.878370 
Unit 7 (MW) 31.075342 22.455013 
Unit 8 (MW) 22.839449 10.104748 
Unit 9 (MW) 20.058911 10.104736 

Unit 10 (MW) 15.733109 10.104736 
ENS (MWh) 24.049636 106.069599 
Fuel cost ($) 30736.441648 31313.845805 

Time (s) 1194.889000 228.262000 

Table 7 
Expected value comparison between MCS and proposed method without considering system reliability. 

Comparison MCS Proposed 
Wind (MW) 220.910611 220.877230 
Unit 1 (MW) 454.769847 454.769847 
Unit 2 (MW) 454.075239 454.097234 
Unit 3 (MW) 130.420280 130.420280 
Unit 4 (MW) 130.420280 130.420280 
Unit 5 (MW) 128.632910 128.303661 
Unit 6 (MW) 26.490740 26.665282 
Unit 7 (MW) 24.949967 24.949967 
Unit 8 (MW) 10.206805 10.206805 
Unit 9 (MW) 10.206805 10.206805 

Unit 10 (MW) 10.206805 10.206805 
Total cost ($) 31087.151684 31087.762562 

Time (s) 1222.937000 235.965000 
 


