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Abstract: 

This paper represents a model for finding the strategic bidding equilibrium of a virtual power plant in a joint 

energy and regulation market in the presence of rivals. A bi-level mathematical program with equilibrium 

constraints (MPEC) is represented for modeling the behavior of each producer. The upper level deals with profit 

maximization of each strategic unit and the lower level encompasses social welfare maximization. This is the 

first objective of the presented model. Power transfer distribution factors (PTDFs) are employed to model 

transmission constraints. The proposed bi-level problem is converted to a traceable mixed integer linear 

programming problem using duality theory and Karush-Kahn-Tucker (KKT) optimization conditions. 

Simultaneous solution of all MPECs forms an equilibrium problem with equilibrium constraints (EPEC). 

Solving the resulting EPEC using diagonalization algorithm and game theory, a market Nash equilibrium is 

obtained. Another goal is to solve the bi-level problem in a bi-objective way using the augmented epsilon 

constraint method, which maximizes the profit and minimizes the emissions of virtual power plant units. The 

proposed model is tested on a standard IEEE-24 bus system and the results indicate that, at the equilibrium 

point, the profit of a virtual power plant and GenCo will be less than in the initial state.  
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Nomenclature 

 Indices 

Index for time period ݐ 

index for demand/generation block ܾ 

Index for generation units of VPP ݃ 

Index for wind scenario ݓ 

Index for rivals' scenarios ߬ 

Index for buses ݉ and ݊ 

Index for interruptible load ݈݅ 
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Index for rival ݎ 

Index for line ݇ 

Index for demand ݀ 

Index for slack bus ݋ 

Index for players ݍ,  ᇱݍ

 Constants 

Marginal cost of ܾth block of unit g in VPP in period ߣ ݐ௚,௕,௧
௏௉௉  

Balancing market price in bus ݊ in period ݐ ߬௧,௡
஻௔௟ 

Ramp up rate for unit g in VPP  ܴ௚
௏௉௉,௨௣ 

Ramp down rate for unit g in VPP ܴ௚
௏௉௉,ௗ௢௪௡ 

Marginal cost of ܾth block of strategic conventional unit ݎ in period ߣ ݐ௥,௕,௧
஼  

Marginal cost of ܾth block of ݀th demand in period ߣ ݐௗ,௕,௧
஽  

Marginal cost of ܾth block of ݎth rival in period ߣ ݐ௥,௕,௧
ோ  

Price of ݈݅th interruptible load in period ߣ ݐ௜௟,௧ூ௅  

Wind power generation in scenario ݓ of period ݐ ௧ܲ ,௪
௪௜௡ௗ 

Probability of scenario w in period ߨ ݐ௧,௪  

Probability of scenario ߬ in period ߠ ݐఛ,௧  

Average wind speed in scenario ݒ ݓ௔௪ 

Rated power of wind unit ோܲ௔௧௘ௗ  

Cut-in wind speed ݒ௖௜ 

Rated wind speed ݒ௥ 

Cut-out wind speed ݒ௖௢ 

Maximum iteration number ܰݕ 

Up regulation market price ݃݁ݎ݌ݑ 

Down regulation market price ݀݊݃݁ݎ 

Minimum up time of unit g in VPP ܷܯ ௚ܲ
௏௉௉ 

Minimum down time of unit g in VPP ܦܯ ௚ܰ
௏௉௉ 

Start-up cost of unit g in VPP ܷܵܥ௚௏௉௉ 

 Variables 

Power cleared for VPP in day-ahead market in period ݐ ௧ܲ
௏௉௉஽஺ 

Power produced by ܾth block of unit g in VPP in period ݐ ௚ܲ,௕,௧
௏௉௉ 

Market clearing price of bus ݊ in period ߣ ݐ௡,௧ 

Power purchased in up regulation market in period ݐ ௧ܲ
௨௣ 

Power sold in down regulation market in period ݐ ௧ܲ
ௗ௡ 

Interruptible load amount in period ݐ ௜ܲ௟,௧
ூ௅  

Offered price of VPP in period ߪ ݐ௧௏௉௉ 

Power produced by ܾth block of strategic conventional unit ݎ in period ݐ  ௥ܲ ,௕,௧
஼  

Power consumed by ܾth block of ݀th demand in period ݐ ௗܲ ,௕,௧
஽  



 
 

Power produced by ܾth block of ݎth rival in scenario ߬ of period ݐ ௥ܲ ,௕,௧,ఛ
ோ  

The aggregated value of the qth strategic unit in iteration ny ௤ܲ
௡௬ 

Binary variable, 1 if unit is on, 0 otherwise ߙ௚,௧
௏௉௉ 

Binary variable, 1 if unit starts up β௚,௧
௏௉௉ 

Binary variable, 1 if unit shuts down γ௚,௧
௏௉௉ 

Dual variable related to minimum production of VPP in period ߤ ݐ௧௏௉௉
೘೔೙  

Dual variable related to maximum production of VPP in period ߤ ݐ௧௏௉௉
೘ೌೣ 

Dual variable related to minimum production of ܾth block of ݎth rival in period ߤ ݐ௥,௕,௧
ோ೘೔೙  

Dual variable related to maximum production of ܾth block of ݎth rival in period ߤ ݐ௥,௕,௧
ோ೘ೌೣ 

Dual variable related to minimum production of ܾth block of ݀th demand in period ߤ ݐௗ,௕,௧
஽೘೔೙  

Dual variable related to maximum production of ܾth block of ݀th demand in period ߤ ݐௗ,௕,௧
஽೘ೌೣ 

 

1 Introduction 

Nowadays, increased use of fossil fuels and related environmental issues are among major concern in the world 

[1]. In recent years, renewable energy resources have been used to address this issue. However, these resources 

have in turn some problems due to their intermittent energy output that would be a great challenge for power 

system operation and corresponding owners. In order to address the above concerns virtual power plants (VPPs) 

are introduced. The concept of virtual power plant as multidimensional heterogeneous entity is based on 

integration of a number of dispersed units and making use of their aggregated capacities. According to FENIX 

project, a VPP aggregates the capacities of several distribution energy resources (DERs), which can provide 

distinct performance characteristics associated with each DER. The virtual power plant can also make contracts 

in the wholesale market and provide services to the system operator. An important feature of the virtual power 

plant is its ability to participate in the energy market. Thus VPP owners can move toward maximizing their 

profits by determining optimal bidding strategies. The VPP in this paper includes traditional units, renewable 

units, interruptible loads and consumers, which acts as a single entity in the wholesale electricity market, and its 

aim is making all components visible and achieving the most profit. In this point of view, the concept of VPP is 

similar to the local electricity market (LEM) because the LEM can serve as an ancillary services provider, 

reducing the burden on balancing market required for meeting power demand. It opens doors for the interactive 

grid and customer participation. In the LEM concept, the benefits of local power generation, storage and 

demand response all cooperate together and the peer-to-peer model enables the participation of all participants 

of the market [2, 3]. 

1.1 Literature review 

Technical literature can be categorized into four categories. The first category, refers to the papers that have 

implemented the optimal bidding strategy of either conventional or renewable units as price maker and price 

taker in the form of single-level models. The second category includes the papers that have presented optimal 

bidding strategy in the bi-level models, some of them incorporate virtual power plants in the model. The third 



 
 

category is dedicated to those papers that use the game theory to execute their bidding and obtain the 

equilibrium point. Finally, multi-objective papers are provided as the forth category in this literature review. 

In the first category, the optimal bidding strategy is presented in the form of a single level model, In this regard 

there are many studies for bidding strategy of generation units in terms of conventional power plants [4-6] and 

renewable resources . In [7] definite and random offering strategies of a price taker wind producer in a pool 

market are evaluated. A bidding framework is provided in [8] for a wind generation that strategically 

participates in a day ahead energy market and offers its intermittent output via the regulation market. The 

uncertainties related to wind generation and regulation market prices are modeled as a set of scenarios. A 

bidding strategy for a price maker wind producer is presented in [9] in which just bids in the regulation market 

to achieve the maximum profit. None of the above papers has carried out the optimal bidding problem in the 

form of a virtual power plant in the presence of rivals. Furthermore, multi-objective optimization is not used. 

In the second category bi-level modeling is employed for decision making. A bi-level modeling for optimal 

bidding strategy of a strategic wind turbine is represented in [10] in which upper level is to maximize unit profit 

while the lower level deals with social welfare maximization that can be replaced by Karush-Kahn-Tucker 

(KKT) optimization conditions. A number of studies have been implemented to investigate VPP optimal 

bidding strategy problem. A two-stage mixed integer linear programming model for a bidding strategy of a VPP 

in both day ahead and real-time markets is presented in [11]. The VPP consists of dispatchable units and storage 

devices as well. Reference [12] presents a bi-level stochastic decision making framework for VPP in a joint day 

ahead and regulation market considering a novel demand response scheme. A three-stage bi-level optimization 

model is provided in [13] to determine the bidding strategy of a commercial VPP in a day ahead market in the 

presence of stochastic behaviors of rivals. The VPP consists of wind farms, storage devices and residential/ 

commercial consumers. The above-mentioned papers have not studied the equilibrium point in the presence of 

rivals and multi-objective models. 

In the third category game theory is used for optimal bidding strategy of producers. The equilibrium problem 

with equilibrium constraints (EPEC) [14] is used to model the interaction of the generation units in electricity 

markets. Market Nash equilibrium among large-scale generation companies in oligopolistic power markets is 

investigated in [15, 16]. In [17], the impact of wind power integration on market equilibrium is proposed. An 

oligopoly market including day ahead and real-time markets is considered for this purpose. A three-stage 

Stackelberg game for coordinated management of renewable and conventional energy resources is provided in 

[18]. A combination of game theory and big data is employed to address this coordination. Reference [19] 

presents a Cournot game model to investigate the impact of wind power volatility on energy market prices and 

bidding of big generation companies. A Stochastic programming model to obtain generation optimal bidding 

strategy in both energy and reserve markets is represented in [20] in which game theory is applied to obtain 

reserve price between wind and conventional producers. Strategic behaviors of wind power plants with supply 

function game in both short-term and midterm electricity markets are studied in [21] and results are compared 

with price taker wind producers. An optimization framework for the strategic offering of wind power producers 

in presence of demand response resources are presented in [22, 23] in which incomplete information game 

theory is used to obtain market equilibria among wind producers. Ref [24] proposes a bi-level framework to 

study the impact of wind units in energy and reserve markets. Game theory is used to obtain market Nash 



 
 

equilibrium among wind units. The proposed model is based on deterministic wind forecasts and does not 

consider the regulation market. In none of the above papers the equilibrium point of the virtual power plant has 

been studied in the presence of strategic rivals, and none of them has used multi-level or multi-objective 

optimization. 

Some references have used heuristic and metaheuristic methods to solve the problem of equilibrium and game 

theory. Reference [25] proposes a new method that uses the combination of particle swarm optimization (PSO) 

and simulated annealing (SA) to predict the bidding strategy of Generating Companies (GenCos) in an 

electricity market where they have incomplete information about their rivals. In this paper a computational 

intelligence technique is introduced that can be used to solve the Nash optimization problem. This procedure, is 

based on the PSO algorithm, which uses SA method to avoid being trapped in local minima or maxima and 

improve the velocity function of particles. Reference [26] presents a new strategic bidding optimization 

technique which applies bi-level programming and swarm intelligence. In this paper, a general multileader-one-

follower nonlinear bi-level (MLNB) optimization concept and related definitions are proposed based on the 

generalized Nash equilibrium, then a particle-swarm-optimization-based algorithm is developed to solve the 

MLNB model. A game problem may have only one Nash equilibrium, multiple Nash equilibria, or none at all. 

lack of the Nash equilibrium is contributed to system constraints that cause the discontinuity in a strategic 

producer’s optimal behavior to other strategic producer’s bids [27, 28]. Meanwhile, binding constraints in a 

power system could also be responsible for the existence of multiple Nash equilibria. One of the most common 

strategies in the literature for attempting to find an equilibrium is diagonalization. This is a variant of the Gauss-

Seidel method for numerical solution of simultaneous equations. 

Reference [29] presents an equilibrium problem with equilibrium constraints (EPEC) that models interactions 

between the merchant DR aggregator and the merchant ES investor in a competitive electricity market. The 

proposed EPEC is solved using the diagonalization method on an ISO New England testbed with a prospective 

renewable generation portfolio and different techno-economic parameters of prospective DR and ES 

technologies. Reference [30] proposes a model to find the equilibria in the short-term electricity market with 

large scale wind power penetration. The Nash equilibria of the electricity market are obtained by solving the 

EPEC using the diagonalization algorithm. 

Reference [31] has shown that this algorithm can have a pure solution in some cases, but it's not guaranteed to 

respond to all cases. The reference [32] has also shown that prices in a competitive solution reach the single 

equilibrium point via the diagonalization algorithm. In reference [33], first, the combined energy and reserve 

markets are considered, and the Nash equilibrium points are determined. Then, the bidding strategies for each 

GenCo at these points will be presented. The bids for the energy and 10 min spinning reserve (TMSR) markets 

are separated in the second stage, and again, the bidding strategies for each GenCo for the two separated 

markets will be demonstrated. 

In recent years, reducing greenhouse gaseous emission and increasing investors' profits have become more 

highlighted. Therefore, a solution that solely minimizes the total scheduling costs or maximizes the overall 

profit may not be appropriate for real power systems. Therefore, the multi-objective framework is used in many 

papers such as [34] and [35] to minimize emissions and costs simultaneously, that is the forth category of our 



 
 

literature review. None of the papers devoted to solving multi-objective problems has incorporated multi-level 

models and has not studied game theory to reach the market equilibrium point. 

 

1.2 Motivations and contributions 

Considering existing research, it can be seen that no comprehensive study has been carried out for obtaining 

market equilibrium in the presence of virtual power plants. This paper represents a model for finding strategic 

bidding equilibria for a VPP containing conventional units, wind power and interruptible loads in a joint energy 

and regulation market in the presence of conventional generation companies as rival producers. A day-ahead 

energy market is assumed that positive and negative unbalances due to wind generation are settled in the 

regulation market. Subsequently, a bi-level mathematical framework is represented for modeling behavior of 

each strategic producer in which the upper level deals with profit maximization of each strategic producer and 

the lower level encompasses social welfare maximization considering transmission constraints. Power transfer 

distribution factors (PTDFs) are employed to model transmission constraints. The proposed bi-level problem is 

converted to a traceable mixed integer linear programming problem using duality theory and Karush-Kahn-

Tucker (KKT) optimization conditions. Simultaneous solution of all MPECs forms an equilibrium problem with 

equilibrium constraints (EPEC). Solving resulting EPEC using diagonalization algorithm and game theory, 

market Nash equilibrium is obtained. Finally, the augmented epsilon constraint method has been used to solve 

the two-objective problem in the above model. This method has been used to maximize the profit of linearized 

model and minimize the emission of the virtual power plant units.  

In the EPEC model, it is expected that the profit of each strategic producer (VPP and GenCo) will be reduced at 

the point of market equilibrium due to the imposition of game conditions. In the market structure, it is expected 

that by increasing the production of wind units in virtual power plant, the amount of its cleared power is lower 

than the generated power that causes down regulation power. 

The main contributions of this study are briefly as below:  

1) Application of EPEC and diagonalization algorithm to obtain strategic bidding equilibrium of a virtual 

power plant in the presence of other strategic rivals. 

2) A Bi-level multi-objective model is presented to maximize profit and minimize the emission in virtual 

power plants based on the augmented epsilon constraint method. 

3) Power transfer distribution factor formulation is also used for modeling transmission network which is 

more efficient than DC power flow, especially in large power systems.  

The organization of the paper is as follows. The problem formulation is presented in section 2. The case studies 

and simulation results are discussed in section 3 and section 4 provides the conclusion. 

2. Problem Formulation 

A bi-level mathematical framework is proposed for optimal bidding strategy of a VPP in which upper level (UL) 

deals with VPP profit maximization in the day ahead and regulation markets, as shown in Equation (1). In this 

Equation the first term is VPP revenue from selling energy to the day-ahead energy market, multiplying VPP 



 
 

aggregated output and day-ahead market clearing price as shown in Equation (2). The second term is the 

cost/revenue of VPP due to energy purchased/sold in up/down regulation markets, due to the intermittency of 

wind power output. The costs associated with interruptible loads are represented in the third term and finally the 

fourth term indicates VPP operation and start-up costs as provided in Equation (3). Energy balance equation is 

represented in Equation (4) that states aggregated energy produced by VPP conventional units, wind power and 

traded in up/down regulation market should be equal to VPP clearing energy in day-ahead market. Equations (5) 

and (6) enforce unit ramping limits and Equations (7), (8) show minimum up and minimum down unit 

constraints, respectively. 

)1(  

 ܮܷ ݁ݖ݅݉݅ݔܽܯ

෍ܸܴܲܲ(ݐ)
௧

−෍߬௧,௡
஻௔௟(݃݁ݎ݌ݑ × ௧ܲ

௨௣ − ݃݁ݎ݊݀ × ௧ܲ
ௗ௡)

௧,௡

−෍ ௜ܲ௟,௧
ூ௅ ௜௟,௧ூ௅ߣ

௜௟,௧

−෍ܸܲܲ(ݐ)ܥ
௧

 

(ݐ)ܴܸܲܲ  )2( = ௡,௧ߣ × ௧ܲ
௏௉௉஽஺ 

(ݐ)ܥܸܲܲ  )3( = ෍ߣ௚,௕,௧
௏௉௉

௚ܲ,௕,௧
௏௉௉

௚,௕

+ ෍ܷܵܥ௚௏௉௉β௚,௧
௏௉௉

௚
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௚,௕

+ ෍ߨ௧,௪
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ூ௅

௜௟,௧

+ ௧ܲ
௨௣ − ௧ܲ

ௗ௡ 

)5(  ෍ ௚ܲ,௕,௧ାଵ
௏௉௉

௕

−෍ ௚ܲ,௕,௧
௏௉௉

௕

≤ ܴ௚
௏௉௉,௨௣, ݐ∀ < ܶ, ∀݃ 

)6(  ෍ ௚ܲ,௕,௧
௏௉௉

௕

−෍ ௚ܲ,௕,௧ାଵ
௏௉௉

௕

≤ ܴ௚
௏௉௉,ௗ௢௪௡, ݐ∀ < ܶ,∀݃ 

)7(  ෍ ௚,௧ାଵߙ
௏௉௉ − 1

ெ௎௉

௧ୀଵ

≥ ܷܯ ௚ܲ
௏௉௉, ∀β௚,௧

௏௉௉ = 1 

)8( ෍ 1 ௚,௧ାଵߙ−
௏௉௉

ெ஽ே

௧ୀଵ

≥ ܦܯ ௚ܰ
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The optimization variables of the UL problem are the variables in the set ܷܮ =

,(ݐ)ܴܸܲܲ} ௧ܲ
௨௣, ௧ܲ

ௗ௡ , ௜ܲ௟,௧
ூ௅ , ,(ݐ)ܥܸܲܲ ௡,௧ߣ , ௧ܲ

௏௉௉஽஺, β௚,௧
௏௉௉ , ௚,௧ߙ

௏௉௉ , γ௚,௧
௏௉௉}. The Weibull probability distribution 

function [22] is used to model wind speed as shown in Equation (9). In this Equation, ݇ is the shape parameter, 

 is wind speed. The information about related parameters and wind speed are ݒ is scale of the shape and ܥ

provided in [36]. 

)9(  
௪݂௜௡ௗ(ݒ) =

݇
ܿ (
ݒ
ܿ)௞ିଵ exp ൬ቀ−

ݒ
ܿ
ቁ
௞
൰ ,     0 < ݒ < ∞ 

Based on Weibull function 10 scenarios are produced for hourly wind speeds and accordingly, hourly wind 

outputs are determined based on Equation (10). 

)10(  ௩ܲೌೢ
௪௜௡ௗ =

⎩
⎪
⎨

⎪
⎧
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௖௢ݒ                                                     0 ≤ ௔௪ݒ

 

 



 
 

2.1 MPEC model for a single producer bidding strategy 

As shown in Equation (11), lower level (LL) problem represents a market clearing mechanism by maximizing 

revenue from supplying demand minus total cost of energy offered by VPP and all other power producers, 

entitled social welfare. It is assumed that there is an incomplete information game in which rivals' behaviors are 

modeled via the normal probability distribution function as shown in Fig. 1. Subsequently, Equation (12) 

provides system load balance at each bus. The boundaries of the blocks offered by power producers and 

demands as well as corresponding dual variables are described in Equations (13) -(15). Equation (16) imposes 

capacity constraints on power transmission lines by means of PTDF model. 

)11(  
 ܮܮ ݁ݖ݅݉݅ݔܽܯ

෍ߣௗ,௕,௧
஽

ௗܲ,௕,௧
஽

ௗ,௕,௧
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ோ
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ோ೘೔೙ , ௥,௕,௧ߤ
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Figure 1: Normal probability distribution function of rivals' behaviors 

The dual variables related to upper and lower limits are also indicated. Accordingly, locational marginal prices 

are obtained by duality variables of the second order problem, i.e., ߣ௢,௧،ߤ௞,௧
௠௔௫and ߤ௞,௧

௠௜௡  as shown in Equation 

(17). The statement ܵ௠௢௞  shows PTDF matrix of the network. 
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௠௔௫ − ௞,௧ߤ

௠௜௡ൟ
௞∈௄

, ,ݐ∀ ∀݉ 

The optimization variables of the LL problem are the variables in the set ܮܮ =

{ ௗܲ ,௕,௧
஽ , ௥ܲ ,௕,௧,ఛ

ோ , ௧௏௉௉ߤ
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೘ೌೣ , ௥,௕,௧ߤ
ோ೘೔೙ , ௥,௕,௧ߤ
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௠௔௫ , ௧௠௜௡ݑ , ௥,௕,௧ݑ
௠௜௡ , ௗ,௕,௧ݑ

௠௜௡  



 
 

, ௗ,௕,௧ݑ
௠௔௫ , ௧௠௔௫ݑ , ௥,௕,௧ݑ

௠௔௫ , ௗ,௕,௧ݑ
௠௜௡ , ௞,௧ݑ

௠௔௫ , ௞,௧ݑ
௠௜௡}. Alongside the VPP, other strategic conventional units, entitled GenCos 

are assumed to be able to bid to the market as strategic producers. In this case the upper level of the problem 

will be converted to Equation (18), while the lower level is unchanged. 

)18(  

 ܮܷ ݁ݖ݅݉݅ݔܽܯ

෍ߣ௡,௧ ௥ܲ,௕,௧
஼

௥,௕,௧
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஼
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In which the first and second terms represent the revenue and incurred cost of the GenCo, respectively. Note 

that these units are considered as VPP rivals as indicated in this Equation.  

The represented bi-level model is nonlinear for the product of two variables ߣ௡,௧ and ௧ܲ
௏௉௉஽஺ in the upper level 

that is linearized by strong duality theory and KKT optimally condition [8]. On the other hand, the nonlinear 

constraints in complementary conditions must be rewritten with an equivalent linear form using Fortuny-Amat 

transformation method [37]. Employing strong duality theory and KKT conditions the nonlinear optimization 

model is converted to a mathematical programming with equilibrium constraints as indicated in Equations (19) – 

(53). 
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The emission of the virtual power plant units is modeled according to the linear equation (54). The total 

production of all steps of the virtual power plant units is multiplied by a constant multiplier to obtain the 

emission coefficients of the units are shown in Table 1 [38]. 
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Similarly, the resulting MPEC model for other strategic rivals, except VPP is obtained as Equation (55). 
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As shown in Equation (53), the indicated values are binary variables. The big ܯ method is used to linearize the 

models in which ܯண
௠௔௫ ஦ܯ,

௠௔௫ ஗ܯ,
௠௔௫ ୩ܯ,

௠௔௫ are large enough values [8]. 

Table 1: Data for the VPP and rival units  

R7 R6 R5 R4 R3 R2 R1 VPP(g3) VPP(g2)  VPP(g1)   

 (ࢃࡹ)࢞ࢇ࢓૚ࡼ 25 15.2 25 54.25 140 68.95 68.95 140 54.25 140

 (ࢃࡹ)࢞ࢇ࢓૛ࡼ  25 22.8 25  38.75  97.5  49.25  49.25  97.5  38.75  97.5

 (ࢃࡹ)࢞ࢇ࢓૜ࡼ  20 22.8  20  31  52.5  39.4  39.4  52.5  31  52.5

 (ࢃࡹ)࢞ࢇ࢓૝ࡼ 20  15.2  20  31  70  39.4  39.4  70  31  70

 (ࢎࢃࡹ/$)૚ࣅ  18.60  11.46  18.60  9.92  19.2  10.08  10.08 19.2  9.92  19.2

 (ࢎࢃࡹ/$)૛ࣅ  20.03  11.96  20.03  10.25  20.32  10.66  10.66  20.32  10.25  20.32

 (ࢎࢃࡹ/$)૜ࣅ  67.21  13.89  67.21  10.68  21.22  11.09  11.09  21.22  10.68  21.22

 (ࢎࢃࡹ/$)૝ࣅ  22.72  15.97  22.72  11.26  22.13  11.72  11.72  22.13  11.26  22.13

 (ࢃࡹ)࢖࢛ࡾ  210  60  210  90  120  90  90 120  90 120

 (ࢃࡹ)࢔࢝࢕ࡰࡾ  210 60  210  90  120  90  90 120  90 120

 ($)࡯ࢁࡿ  715.2 218.5 715.2 156 1149 862.5 862.5 1149 156 1149

 (ࢎ)ࢀࢁࡹ 2 2 2 2 2 2 2 2 2 2

 (ࢎ)ࢀࡰࡹ 2 2 2 2 2 2 2 2 2 2

 (lb/MWh) .࢔࢕ࢉ࢔࢕࢏࢙࢙࢏࢓ࢋ 1.2 1.1342 1.2  

 

2.2 EPEC model for multi producers bidding equilibria 

As seen the formulation of bi-level model is converted to an MPEC model using linearization and KKT 

optimally constraints. In order to obtain market equilibria among the whole strategic producers, all MPEC 

models should be solved simultaneously. The EPEC model is derived from combination of the MPECs as 

shown in Fig. 2. This is a multi-leader-single-follower problem, in which the VPP and GenCo are different 

leaders and a market clearing process is a common follower [30, 39]. 

EPEC

MPEC 1  

Maximize
VPP Profit (UL)

Subject to:
VPP Constraints

Lower Level KKT 
Optimally Conditions

MPEC  2

Maximize
GenCo Profit (UL)
Subject to:

GenCo Constraints

Lower Level KKT 
Optimally Conditions

 

Figure 2: EPEC model 



 
 

 The diagonalization algorithm is used to solve EPEC problem. Fig. 3 represents the proposed flowchart for this 

purpose. As shown, the MPEC problem is solved for all strategic producers, assuming other rival behaviors are 

estimated based on mathematical expectation. For this purpose, it is assumed that each rival behaves based on a 

normal probability distribution function with specific mean and standard variation amounts. For example, in the 

first iteration MPEC is solved for the virtual power plant, assuming that the generated quantities of the GenCos 

are constant and some values will be obtained for the virtual power plant productions. Then the MPEC problem 

is solved for GenCo, assuming predetermined productions of the virtual power plant. This process continues 

until the maximum number of iterations are reaches or a convergence is obtained. This process continues while 

all strategic biddings reach a convergence point called market Nash equilibria. 

ny = 1
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Figure 3: Diagonalization algorithm flowchart 

 



 
 

2.3 Multi-objective optimization of profit and emission 

The multi-objective optimization format of a problem with the epsilon constraint method is as follows.  

)56(  
 (ݔ)ଵ݂ ݊݅ܯ

(ݔ)ଶ݂ ݋ݐ ݐ݆ܾܿ݁ݑݏ ≤ ݁ଶ 

For the two-objective problem of profit and emission of strategic units, ଵ݂(ݔ) serves as the main objective 

function and other goal (here ଶ݂(ݔ)) as a constraint in the problem. Furthermore, ݔ is an array of decision 

variables, which in this problem is generation power of units. 

2.3.1 Augmented epsilon constraint method 

 In the epsilon constraint method, the first objective function is considered as the main objective function, and 

the second to n-th objectives are limited to a maximum of ݁௜. By changing the value, there are various answers 

that may not be efficient. To avoid weak solutions and accelerate the whole process by avoiding excessive 

repetitions, we use the augmented epsilon constraint method as follows. In the augmented epsilon constraint 

method, there are two steps to obtain the optimal solution. In the first step, efficient solutions are produced. In 

the second step, decision making process chooses an appropriate solution between the efficient solutions 

produced in the previous step. The formulation of the multi-objective problem for solving the multi-objective 

problem of profit and emission is as follows. 

)57(  ݉݅݊ ൥(1)݆ܾ݋ + (1)ݎ݅݀ × ଵ෍ݎ
௜ܵ

௜ݎ

ଷ

௜ୀଶ

൩ 

(݅)݆ܾ݋  )58( + (݅)ݎ݅݀ × ௜ܵ = ݁௜ 

 is equal to 1, the goal is to maximize the objective (1)ݎ݅݀ shows the main objective function. If (1)݆ܾ݋ 

function, and if ݀݅(1)ݎ is -1, then the objective function must be minimized. ௜ܵ and ݎ௜ are the auxiliary non-

negative variables and the objective function range, respectively. By changing e௜, efficient solutions to the 

problem are generated. When applying the augmented epsilon constraint method, the scope of each objective 

function must first be determined. Then using the values of the range of each objective function, 10 Pareto 

solutions are obtained.  

2.3.2 Decision making method 

After solving the problem and obtaining all of the Pareto solutions, the decision maker should choose one of 

Pareto's answers as the final solution to the problem, taking into account the priorities and the different uses of 

Pareto's answers. For this purpose, the proposed method for choosing the best answer is to use a fuzzy approach 

with a linear membership function for the decision maker. The membership function of the proposed fuzzy 

method is defined as equations (59) and (60), which are used respectively for maximization and minimization. 

The best and worst amounts of each objective function are arranged in the order of the ideal point ௡݂
௨  and nadir 

point ௡݂ௌே. In these equations, ௡݂௥  shows value of the objective function ௡݂ in the r-th Pareto solution number and 

௡௥ߤ  is the membership function ௡݂ in the r-th Pareto solution number. ߤ௡௥  actually represents the optimality of the 

objective function in the r-th Pareto solution number. The general membership function of the r-th Pareto 

solution is called ߤ௥, which is calculated according to (61), where ߱௡  is the importance factor of the n-th 



 
 

objective functions. The values of the importance coefficients are determined by the decision maker. For 

example, if economic issues are the top priority for the decision maker, higher value is assigned to ଵ݂  and if 

emission is more important, a lower value is assigned to ݂1 [34, 35]. These coefficients for the profit and 

emission functions are 2 and 1, respectively. 

Maximization: 
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3. Case Study 

3.1 Single-objective case 

The proposed framework is applied to a 24-bus IEEE test system as shown in Fig. 4 [38]. The 24 bus test system 

used in this paper is the largest network among existing VPP decision making studies [40-46]. 
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Figure 4: 24-bus test system 

It is assumed that buses 1, 2 and 7 are owned by the VPP. The VPP also owns a wind turbine in bus 7 and 

interruptible loads in buses 1, 2 and 7 with maximum 40% curtailments and interruption cost of 15, 10 and 15 

$/MWh respectively. Values of cut in, rated and cut out wind speeds are 5, 15 and 45 m/s, respectively. Other 

producers entitled R1-R7 are considered as rivals that are located in buses 11, 15, 16, 18, 22, 21 and 23 among 

which R6 and R7 are from a GenCo that is considered as a strategic rival for the VPP. All production units are 

assumed to bid with normal distribution probability. For each rival, 7 scenarios with mean and standard 

deviations are produced. The mean values of producers' bidding blocks are represented in Table 1 with standard 

deviation of 3.5 [38]. The information of loads' bidding blocks is provided in reference [38].  

Fig. 5 shows the relationship between the virtual power plant as well as other producers and loads in the market. 

Thick arrows indicate the flows of power, while the dashed line arrows indicate blocks of offers and bids. The 

flow of power for VPP is bidirectional, because it can be either a producer or a consumer. 
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Figure 5: VPP and other players' framework, DAM: Day-Ahead Market, RM: Regulation Market 

 

Using the proposed diagonalization algorithm, the market equilibrium point among strategic producers (VPP 

and the GenCo (R6, R7)) is obtained. Fig. 6 shows the market clearing price at Nash equilibrium point. The 

regulation market prices are set 30% higher/lower than market clearing price for up/down regulation markets, 

respectively. Here it is assumed that no congestion occurs in transmission lines, thus the market clearing prices 

are uniform for all period of times.  

 

 

Figure 6: Market clearing price and up/down regulation price 

Fig. 7 shows the profit values of VPP and GenCo while reaching the equilibrium point. For both players the 

profits are descending, indicating that they are forced to react in response to their rival strategies, while reaching 

the equilibrium point that is profitable for all strategic producers. As previously stated in the EPEC case in each 

iteration of the MPEC problem, the values of the previous strategic producer are considered constant. As shown 



 
 

the final profits of the strategic producers are less than their initial amounts. This is due to the imposition of 

other rivals that leads to the divergence from their optimal point. 

 

Figure 7: Profit of strategic producers 

Fig. 8 illustrates interruptible load amounts imposed by VPP at buses 1, 2 and 7. In early and closing hours of 

scheduling period we can see the highest load curtailments. This can be interpreted by market price values in 

these periods. Since market clearing prices in mid hours are high, it would be beneficial for the VPP to produce 

and serve costumers' loads. On the other hand, in other periods, lower market prices lead to lower VPP 

contributions, while consumers have still their bidding blocks accepted that results in higher interruptible loads 

in these periods. Here, IL1, IL2 and IL3 are assigned to buses 1, 2, and 7, respectively.  

 

Figure 8: Interruptible loads power 

The generation output of VPP is illustrated in Fig. 9. As can be seen, in most hours, VPP participates in the day-

ahead market with its second unit (VPP (g2)), since VPP (g1) and VPP (g3) are relatively more expensive units. 

However, in mid-hours (9 to 19) due to high wind power productions and also contribution of R7, the quote of 

VPP (g2) is reduced in market equilibrium.  



 
 

Maximum wind contributions in mid-hours result in high energy clearing amounts for the VPP during these 

hours. This in turn leads to some mismatches between cleared and real production values for VPP. As illustrated 

in Fig. 9 the VPP’s cleared powers are less than its real production outputs within hours 10 to 18. Therefore, 

VPP has inevitably spent some of its power in downward regulation. In other words, it has sold its surplus 

power in the downward regulation market. 

 

Figure 9: Bidding equilibria of virtual power plant 

The bidding blocks of other rivals (strategic (GenCo) and non-strategic) are depicted in Fig. 10. As can be 

understood from Table 1, R1, R3 and R4 have relatively low marginal prices, such that their bidding prices are 

always lower than market clearing prices, thus they have produced their entire blocks. Their most expensive 

bidding block is lower than the market's lowest clearing price. For example, the most expensive bidding blocks 

are 11.26 and 11.72, respectively, while the lowest clearing price is at hours 5 and 6, which is 16.886. On the 

contrary R2, R5 are identical and more expensive rivals such that their bidding prices always exceed market 

clearing prices, thus they have no contributions at all. The cheapest bidding block is 19.2, which is larger or 

equal to the highest market clearing price. Unit 6 of GenCo bids inexpensive blocks, so as Fig. 10 shows, it has 

the most production for almost all hours. However, since unit 7 has expensive blocks it only produces in mid-

hours when the market clearing price is high (19.2) and does not produce in the early and the late hours. 

 

Figure 10: Bidding equilibria of rivals 



 
 

Three scenarios have been investigated and compared to understand the effect of flexible wind unit and 

interruptible loads on the model. 

Scenario 1: The wind unit and the interruptible loads are in the VPP. 

Scenario 2: The wind unit is in the VPP, but the interruptible loads are not in the VPP. 

Scenario 3: Wind and interruptible loads are not in the VPP. 

 In the first scenario, the wind and interruptible loads are in the virtual power plant, the output of the virtual 

power plant units is obtained according to Fig. 11. In the second scenario, as shown in the figure, the production 

of the first and third units of the virtual power plant have been affected and their production has increased. In the 

third scenario, the amount of virtual power plant generation has changed a lot. The lack of wind unit power has 

caused a very high production of all three units of the virtual power plant to compensate for the lack of wind 

unit. 

The profit values in these three scenarios are 41662.7 $, 39790.73 $ and 9511.96 $, respectively. It is clear that 

eliminating interruptible loads leads to slight changes (decreases) in VPP profit. It is due to low capacities of 

these loads in the VPP. However, eliminating wind unit results in significant reduction in VPP profit.  

 

 
Figure 11: Impact of Wind Unit and interruptible Loads on the Production of Virtual Power Plant units 

 

Finally, to understand the impact of market equilibrium mechanism on players bidding strategies and market 

characteristics, a study has been implemented in case that the VPP is a single strategic producer acting as a 

monopole price maker participant. In this case all other producers including GenCo (R6, R7) are considered as 

nonstrategic rivals. Unlike, previous EPEC modeling, here an MPEC framework is solved. Fig. 12 illustrates the 

VPP optimal bidding strategy and other nonstrategic contributions. In comparison to Fig. 9 it is shown that VPP 

has participated with its more expensive units, VPP (g1) and VPP (g3) that in turn diminishes the social welfare. 

Although VPP (g1) and VPP (g3) are identical; however due to the existence of wind power in bus 7, the 

contribution of VPP (g3) is lower than VPP (g1). In this case VPP participates in the downward regulation 

market as well in hours 15, 16 and 17. It is noticeable that the amount of VPP profit in this case is 46486.5$ that 

is much higher than its market equilibrium profit (41662.7 $) (See Figure 7).  



 
 

Figure 12: Virtual power plant optimal bidding strategy in MPEC modeling 

The productions of other producers are shown in Fig. 13, as shown in this figure, amounts of power generated 

by R7 are widely different. More precisely, one can say that in EPEC model, R7 produces with its first block in 

some hours, since GenCo (R6, R7) is a strategic player. However, R7 has no contribution in MPEC modeling. 

In fact, VPP as a single strategic producer compensates the shortages by means of all its power units and wind 

power. Similarly, the production of other producers is dependent on corresponding bidding prices. 

 

Figure 13: Other rivals optimal bidding strategy in MPEC modeling 

3.2 Multi-objective case 

In this case, the problem is solved in the two-objective method. For this purpose, two-objective functions are 

required. The first objective function is considered as the main objective function ( ଵ݂) and the gaseous emission 

is considered as a constraint or second objective function ( ଶ݂). Using equations (3) - (8), (12) - (17), (19) - (54) 

and (56) - (61), and with respect to the main objective function, the problem is solved in two-objective method. 

As shown in Fig. 14, the amount of emission is also increased by increasing the amount of profit, which one of 

the most important reasons of that is the increase in the production of virtual power plant units. To solve the 

problem using the augmented epsilon constraint method, the problem is first solved with a single-objective 

approach with consideration of profit. In this case the amounts of VPP profit and emission are 46486.5$ and 



 
 

2641.64lb, respectively. Then, the problem is solved in single-objective manner and only with respect to the 

emission objective function. In this case there is a significant decrease in the amount of emission, reaching 

264.16lb. However, the profit is also decreased to 38685.1$. Finally, the problem was solved by using the two-

objective augmented epsilon constraint method, which resulted in a number of 10 Pareto solutions. 

The fuzzy decision making method, as described above, is used to select the best solution from the Pareto 

solutions. As previously stated, in this paper, the importance of the profit objective function is considered to be 

twice of the emission objective function, so the fuzzy decision making method has chosen Pareto solutions 

number 2 as the best answer. In this case, the amount of VPP profit and emission would be 40,371.36$ and 

528.33lb, respectively. 

 
Figure 14: Pareto optimal solutions, the profit versus emission 

  
 Figure 15: Variation of total membership, profit and emission functions versus Pareto optimal solutions 

  

3.3 Test results on IEEE 57 bus test system 

The model presented in this paper, was also implemented on a 57-bus test system [47]. At first, the PTDF matrix 

of the network was extracted, which is an 80 × 56 matrix. In this network, the virtual power plant has 4 

conventional production units from PVPP(g1) to PVPP(g4), which are located in buses 1, 2, 3 and 6, 



 
 

respectively. Units PVPP(g2) and PVPP(g4) have inexpensive bidding blocks and PVPP(g1) and PVPP(g3) 

have expensive bidding blocks. Wind Unit is located in bus 3. The virtual power plant also has interruptible 

loads in buses 1, 2 and 3. There are 10 rivals for the virtual power plant in this structure, shown with R1 to R10. 

Among these rivals, R2, R5, R7 and R9 have more expensive bidding blocks than the rest. There are 42 loads as 

well. 

Fig. 16 shows the market clearing price. The transmission capacity of all the lines was within their permissible 

range, therefore no line congestion occurred, which is why the market price for all buses in the 24 hours was as 

shown in Fig. 16. 

  

Figure 16: Market clearing price in 57-bus case  

Fig. 17 illustrates the power production of the virtual power plant units, wind unit, clearing power of day ahead 

market and regulation power of virtual power plant. It is clear from Fig. 17 that similar to 24-bus test system, 

inexpensive units in the virtual power plant generate more power than expensive units. In mid-hours, due to 

large amount of wind generation, the amount of power generated by the virtual power plant is higher than its 

cleared power, so this excess power is presented in the regulation market. The PVPP(g3) produced less power 

than the PVPP(g1) unit. The main reason is that the wind unit is located in bus 3, so the power produced in this 

bus is very high and PVPP(g1) is less needed. 



 
 

  

Figure 17: Virtual power plant optimal bidding strategy  

The power production of rivals is shown in Fig. 18. In this figure, as in other figures in this paper, more 

expensive rivals (R2, R5, R7 and R9) produced only in mid-hours (9-23), which market clearing price is high, 

and does not have any production in other hours. Other rivals that are inexpensive, produce all time, since their 

most expensive bidding blocks are lower than the market price. This process is also visible on the 24-bus 

system. 

  

Figure 18: Rivals optimal bidding strategy  

Table 2 illustrates the size of the optimization model and the associated execution time. The proposed model is 

simulated using CPLEX 12.1 in GAMS software [48]. All simulations are implemented on a laptop with core i7, 

2.5 GHz CPU, and 6 GB of RAM.  

 

 



 
 

model the of size and time Execution :2 Table 

Time Execution  Variables Discrete Variables Single Equations of Number   

s 33.077 11376 30909 43566 Model MPEC 

s 245.124 18960 51515 72610 Model EPEC 

s 181.59 21528 58140 79619 (MPEC) Case Bus-57  

 

4. Conclusion 

This paper provided a method for the optimal strategic bidding of a virtual power plant, including conventional 

units, the wind unit and the interruptible loads along with other strategic rivals (GenCo) in the day-ahead and 

regulation markets. A bi-level mathematical program with equilibrium constraints (MPEC) is represented for 

modeling the behavior of each strategic producer (virtual power plant and GenCo) that is converted to a 

traceable mixed integer linear programming problem using duality theory and Karush-Kahn-Tucker (KKT) 

optimization conditions. Solving simultaneous MPEC problems, entitled EPEC, a Nash market equilibrium is 

obtained. The production of each wind unit is very effective on the bidding strategy of the virtual power plant, 

since the amount of virtual power plant production in the regulation market is directly related to its wind unit. 

The difference between the cleared power of the virtual power plant and its amount of produced power causes 

up and down regulation power. Reaching the equilibrium point is accompanied by reduction in the profit of all 

strategic producers (virtual power plant and GenCo), since in each iteration their production will be imposed by 

other rival reactions. Another contribution of this paper is solving the bi-level problem in a two-objective 

approach using the augmented epsilon constraint method, which aims to maximize the profit of the virtual 

power plant and minimize its emission. The results showed that in the two-objective case, the profit and 

emission values are more reasonable compared to the single-objective mode. 
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