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Abstract—This article proposes a risk constrained decision-
making problem for wind power producers (WPPs) in a competitive
environment. In this problem, the WPP opts to maximize its likely
profit whereas aggregators want to minimize their payments. So,
this bilevel problem is converted to a single level one. Then, the
WPP offers proper prices to the aggregators to attract them to
supply their demand. Also, these aggregators can procure reserve
for the WPP to compensate its uncertainties. Therefore, through
a peer-to-peer (P2P) trading mechanism, the WPP requests the
aggregators to allocate reserve to cover the uncertainties of the
wind generation. Also, due to the presence of uncertain resources
of the problem, a risk measurement tool is applied to the problem to
control the uncertainties. The effectiveness of the model is assessed
on realistic data from the Nordpool market and the results show
that as the loads become responsive, more loads are allowed to
choose their WPP to supply their load. Also, the reserve that is
provided by these responsive loads to the WPP increases.

Index Terms—Demand response, peer to peer, reserve,
scheduling, wind power producer.

NOMENCLATURE

Sets and indices

(·)t,ω(ϕ) Time t and scenario ω(ϕ).
t(T ) Time periods.
ϕ(Φ) Scenarios of rivals’ offering prices.
ω(Ω) Market prices and loads.
Wpp,Wpp′ Wind power producer (WPP).
NWpp Set of WPPs.
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Parameters

ED
t,ω Total demand of aggregators (MWh).

�

E
D

t Expected demand of aggregators (MWh).
ENRL

t,ω Total demand of nonresponsive loads (MWh)
Ewind

t,ω Wind power (MWh).
QInit

Wpp,t,ϕ Initial % of responsive loads supplied by the
WPPs.

P
B+/B−
t,ω Price of Positive (negative) balancing market

(€/MWh).
P

Cup

t /PCdn
t Price of up and down reserve capacity allocated

by aggregators (€/MWh).
P

D,S/B
t,ω Prices of selling (buying) energy to (from) DA

market (€/MWh).
PWpp
t,ϕ Offering price by rival WPPs (€/MWh).

PF
Wpp,Wpp′ The fictitious cost modeling the hesitation of

aggregators to shift between WPP and WPP’
(€/MWh).

P
Rup

t /PRdn
t Price of up and down reserve deployed by ag-

gregators (€/MWh).
λR Reserve capacity level (%).
λdel
t,ω Probability of reserve deployed by aggregators.

λFOR
t,ω Probability of being unable to deploy reserve by

aggregators.
πϕ/πω Probability of scenarioϕ(ω).

Variables

E
B+/B−
t,ω Prices of positive (negative) balancing market

(€/MWh).
EW

t,ω Energy supplied by the WPP (MWh).

E
D,S/B
t,ω Selling (buying) energy to (from) DA market

(MWh).
R

up/dn
t,ω Up (down) reserve provided by aggregators

(MWh).
QWpp0

t,ϕ Responsive loads supplied by the WPP (%).

QWpp
t,ϕ Responsive loads supplied by rival WPPs (%).

ZWpp,Wpp′
t,ϕ Responsive loads transferred among the WPPs

(%).
PWpp0
t Offering price by the WPP (€/MWh).

ηω/ξ Auxiliary variables for CVaR measurement.
β Risk aversion factor.
α Confidence level for CVaR calculation.
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I. INTRODUCTION

THE stochastic nature of wind generation makes substantial
challenges to network operation and electricity market

management. Wind power needs significant flexibility such as
reserve service from other conventional generating units [1].
To this end, in [2], a joint day-ahead (DA) energy and reserve
scheduling is investigated in which the producers offer their
power strategically. Moreover, optimal bidding strategies have
been proposed in [3].

The profit sharing problem for a group of WPPs is studied
in [4]. In [5], the opportunities available for WPPs to pur-
chase/schedule reserves are addressed. A stochastic decision-
making model for WPPs participation is proposed in [6] in
which three trading floors including DA, intraday, and balancing
markets are incorporated.

Until recently, the required reserve services have been almost
provided by the generation side. However, several types of
demand side resources are technically capable of procuring
such ancillary services. A joint energy and reserve DA market
structure is presented in [7] in which demand side resources
participate in the provision of load following reserves. In this
regard, a procedure to form the interface between a parking lot
and the distribution system operator is provided in [8] and a
stochastic framework for a WPP and for a virtual power plant
are addressed in [9] and [10]. A decision-making tool based on
bilevel complementarity model is investigated in [11], in which
the trading floor is considered as joint energy and reserve markets
and balancing settlements.

Utilizing different technologies and facilities as supplemental
resources to cover the uncertainties of WPPs has been addressed
in different works. For example, application of storage devices
together with wind power plants has been recommended to
decrease imbalance costs [12]. The utilization of demand side
resources to provide flexibility reserves alleviates the uncertain
nature of wind power generation in [13]. In that study, the
WPP purchases reserve from demand response (DR) resources
to compensate the uncertainties of wind power. Therefore, the
reserve service is supplied from DR resources through peer-to-
peer (P2P) trading. The P2P concept is usually implemented
within a local distribution system [14]. An integrated demand
side management system coordinated with P2P energy trading
among the households in the smart grid is provided in [15]
and [16] without considering the reaction of customers to the
selling prices. A stochastic bilevel decision-making model for
an electric vehicle (EV) aggregator in a competitive environment
is proposed in [17]. Although the reaction of consumers to the
offered selling prices by the aggregators in a competitive envi-
ronment has been studied via a bilevel problem, the participation
of customers in providing reserve is neglected. In a competitive
environment, various indices are defined to evaluate different
aspects of competition such as level of demand [18]. To this end,
a comprehensive analysis for the supply share of the understudy
WPP is made here to assess the contribution of the WPP to attract
the loads in the competitive environment. Table I is provided
to give the contributions relatively to the existing state of the
art.

In this article, a risk-constrained stochastic decision-making
framework for a WPP is addressed. In this model, the WPP
competes against the rivals to attract aggregators. Also, the
aggregators tend to supply their loads by minimizing their
payments. Therefore, a bilevel model is proposed to manage
both energy and reserve via a P2P trading floor to cope with the
communication among WPPs and aggregators.

Also, the supply share index (SSI) is defined to evaluate the
competition among the WPPs to attract loads. To cope with the
uncertainties of the problem, conditional-value-at-risk (CVaR)
measure is also used. The main contributions of this article are
listed as below.

1) Modeling risk-constrained decision-making conflict be-
tween WPP and aggregators through a bilevel framework
by replacing the lower-level problem by its Karush–Kuhn–
Tucker (KKT) optimality conditions.

2) Investigating the competition among the WPPs to attract
aggregators’ energy supplement and reserve provision
through P2P trading floor.

3) Introducing the SSI to evaluate the competitive situation
among the WPPs and to provide sensitivity analysis to
investigate the effect of reserve capacity level on the
energy trading, profit, and SSI index.

The rest of the article is arranged as follows: Section II pro-
vides the proposed decision-making framework. The stochas-
tic risk-averse bilevel problem is formulated in Section III.
The case studies together with simulation results are given in
Section IV. Finally, Section V concludes the article.

II. FRAMEWORK OF DECISION-MAKING PROBLEM

In this article, the price taker WPP participates in wholesale
market to bid in such a market and supply the loads. Also, in
retailing layer, the WPP competes against other WPPs to attract
the customers. In such a competitive market, the WPP should
decide to offer proper prices to the customers to attract them.
Due to the uncertainties related to wind power, the WPP asks
the aggregators to provide reserve for it.

Therefore, through a P2P trading mechanism, the respon-
sive loads can adjust their consumption, such that to make
reserve. The interaction among the WPPs and the aggregators
is possible due to the presence of bidirectional communication
mechanisms.

The structure of the proposed problem is depicted in Fig. 1.
As seen, the WPP should compete against other WPPs to at-
tract loads. In such competitive environment, the WPP should
estimate the scenarios of offering prices by rivals. Moreover,
the WPP should forecast the required demand of aggregated
loads. Here, to model the forecast inaccuracies, rivals’ offering
prices and the requested demand of loads, normal probability
distribution functions (PDF) is considered. Then the PDFs are
divided into five discrete intervals as shown in Fig. 2.

The forecasted errors of these mentioned uncertain resources
are given by intervals equal to the standard deviation. The
generated scenarios are combined to obtain a two-stage scenario
tree as a vector of independent random variables. Due to the
large size of this tree, an effective scenario reduction algorithm
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TABLE I
CONTRIBUTION OF LITERATURE IN VIEW OF EXISTING STATE OF THE ART

Fig. 1. Structure of the problem.

proposed in [19] is used to reduce the size of the scenarios. The
generated scenarios for each variable are reduced by roulette
wheel mechanism. To this end, at first, a random number be-
tween [0, 1] is generated. According the value of the generated
random number, it falls in one of the segments of the roulette
wheel, which corresponds to a specific load forecast error. The
selected forecast error is chosen as the error of the prediction

Fig. 2. Five segment approximation of normal distribution.

for the specified parameter in this scenario. Each segment of
the roulette wheel belongs to each forecast error level based
on its corresponding probability. For this purpose, at first, the
probabilities of different forecast levels are normalized, such
that their summation becomes equal to unity. Then the range
of [0, 1] is occupied by the normalized probabilities of each
forecast error level. After that, random numbers are generated
between 0 and 1. Each random number falls in the normalized
probability range of a forecast level in the roulette wheel. That
forecast level is selected by the roulette wheel mechanism for
the respective scenario. The same procedure is utilized by the
roulette wheel mechanism to generate all of the scenarios.

The proposed model consists of two levels: One where the
WPP is maximizing its likely profit and another one where the
aggregators aim to minimize costs. This profit maximization
problem considers that aggregators optimally react to the WPPs’
prices. This reaction entails the computation of the demand por-
tion provided by each WPP (the considered WPP and the rivals).
Therefore, via a bilevel model, the WPP tends to maximize its
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expected profit, while, it should also solve the problem from
the viewpoint of the aggregators. So, the understudy WPP as
a decision maker should minimize the costs of the aggregated
loads. Also, to compensate the uncertainties of the problem
including wind generation unit and the requested demand and the
market prices, the WPP requests the aggregated loads to provide
reserve for it. In a P2P market, the energy and reserve trading
with the aggregated loads occurs. Also, a risk measurement tool
such as CVaR is used to control the volatilities of the problem.

Finally, this problem is transformed to a single level one by us-
ing KKT optimality conditions. The presented stochastic model
is finally formulated as a bilevel problem that the upper level
problem represents the maximization of the expected profit of
the WPP while the lower level problem states the minimization
of energy procurement costs of aggregators. In order to solve
the obtained bilevel programming problem by a commercially
available optimization solver, it should be converted to an equiv-
alent mixed-integer linear programming (MILP) problem with
the following steps.

1) Lagrange function of the lower level for a vector of the
variable of the upper level is obtained.

2) The KKT optimality conditions of the lower level prob-
lem are obtained by partial derivatives of the Lagrange
function.

3) The nonlinear complementary slackness conditions are
equivalently expressed as a set of linear constraints based
on the approach explained in [20].

4) The bilinear products are replaced by the related equiva-
lent linear expressions using duality theory [24].

A. Description of Peer-to-Peer Trading Floor

Under P2P electricity trading mechanism, the responsive
loads can schedule their consumption to adjust it. Then, in the
competition environment, the WPP competes against other rival
WPPs to attract the customers. Then, the group of aggregated
loads submit their energy requirement to the understudy WPP.
The WPP supplies the required demand through its wind gener-
ation or it may participate in DA market. These aggregated loads
with demand side management system can also provide reserve
to the system. Therefore, through a P2P trading mechanism, the
WPP requests the aggregators to allocate reserve to cover the
uncertainties of the wind generation unit. In this case, the loads
under the jurisdiction of the load aggregators can reduce their
consumption to provide upward reserve while they can increase
their consumption to procure downward reserve.

III. MATHEMATICAL MODEL OF THE PROPOSED

BILEVEL PROBLEM

A. Bilevel Formulation of the Problem

Here, the bilevel problem from the viewpoint of the WPP is
formulated. In this bilevel problem, the WPP decides from the

upper level and aims to maximize its expected profit as

Max
∑
ω∈Ω

πω

∑
t∈T

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ED,S
t,ω PD,S

t,ω − ED,B
t,ω PD,B

t,ω

+EB+

t,ω PB+

t,ω − EB−
t,ωP

B−
t,ω

+EW
t,ωP

Wpp0
t

−(Rup
t,ωP

Cup

t +Rdn
t,ωP

Cdn
t )

+(−Rup
t,ωP

Rup

t,ω +Rdn
t,ωP

Rdn
t,ω )λdel

t,ω

+(Rup
t,ωP

Rup

t,ω +Rdn
t,ωP

Rdn
t,ω )λdel

t,ωλFOR
t,ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ β(ξ − 1
1−α

Ω∑
ω=1

πωηω)

(1)
where the line term of the objective function stands costs from
trading energy with the DA market, and the second line explains
the penalty of participating in balancing market. The third line
represents the revenue from selling energy to the aggregators.
The fourth line expresses the costs supplying reserve capacity
allocated by aggregators. The costs related to the real deploy-
ment of reserves are specified in the fifth line, while the sixth
line represents income earned from those aggregators that could
not provide reserve.

The risk measurement cost is given in the last line to hedge
against volatilities. In the lower-level problem, the aggregators
tend to minimize their payments through supplying the loads
under their jurisdiction with the following objective:

Min

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�

E
D

t [PWpp0
t QWpp0

t,ϕ ]

+
�

E
D

t [
∑

Wpp∈NWpp

Wpp �=Wpp0

PWpp
t,ϕ QWpp

t,ϕ ]

+
∑

Wpp∈NWpp

∑
Wpp′∈NWpp

Wpp�=Wpp′

�

E
D

t PF
Wpp,Wpp′Z

Wpp,Wpp′
t,ϕ

−(Rup
t,ωP

Cup

t +Rdn
t,ωP

Cdn
t )

+(−Rup
t,ωP

Rup

t,ω +Rdn
t,ωP

Rdn
t,ω )λdel

t,ω

+(Rup
t,ωP

Rup

t,ω +Rdn
t,ωP

Rdn
t,ω )λdel

t,ωλFOR
t,ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2)
The problem is restricted with the following constraints. The

balancing constraint is given as

Ewind
t,ω − ED,S

t,ω + ED,B
t,ω − EB+

t,ω + EB−
t,ω +Rup

t,ω −Rdn
t,ω

= EW
t,ω + ENRL

t,ω /NWpp. (3)

The constraints related to CVaR are described as [21]

∑
ω∈Ω

πω

∑
t∈T

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ED,S
t,ω PD,S

t,ω − ED,B
t,ω PD,B

t,ω

+EB+

t,ω PB+

t,ω − EB−
t,ωP

B−
t,ω

+EW
t,ωP

Wpp0
t

−(Rup
t,ωP

Cup

t +Rdn
t,ωP

Cdn
t )

+(−Rup
t,ωP

Rup

t +Rdn
t,ωP

Rdn
t )λdel

t,ω

+(Rup
t,ωP

Rup

t +Rdn
t,ωP

Rdn
t )λdel

t,ωλFOR
t,ω

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ηω − ξ ≥ 0

(4)

ηω ≥ 0. (5)
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The WPP forecasts its share to supply the demand in the
competitive market as [22]

EW
t,ω = ED

t,ω

∑
ϕ∈Φ

πϕX
Wpp0
t,ϕ . (6)

The constraints related to model the competition is given in

QWpp
t,ϕ = QInit

Wpp,t,ϕ

+
∑

Wpp∈NWpp

Wpp�=Wpp′

ZWpp,Wpp′
t,ϕ −

∑
Wpp′∈NWpp

Wpp′ �=Wpp

ZWpp′,Wpp
t,ϕ (7)

QWpp0
t,ϕ +

∑
Wpp∈NWpp

Wpp�=Wpp0

QWpp
t,ϕ = 100%. (8)

Equation (7) shows the demand shifting among the rival WPPs
and the understudy WPP. Based on this relation, it is seen that
the loads may come to a WPP (positive sign) or they might leave
it and go to the other rivals (minus sign), so the initial percentage
of loads changes. Relation (8) denotes that all of the load should
be supplied by all of the WPPs. Therefore, total 100 percent of
loads are connected to the WPPs to be supplied. Also, each load
can be connected to only one WPP.

The two-level problems are replaced with their equivalent
using KKT optimality conditions. Also, by using duality theory,
bilinear products are converted to linear expressions [23].

B. Supply Share Index

In order to measure the value of competition among the WPPs,
the SSI is defined. Based on the definition of this index, the
competition power of the understudy WPP equals the ratio of
total supply capacity of rival WPPs to the total demand of loads.
As a competition measurement, the SSI can be calculated for
any agent of the market as

SSI =
Total Supply Capacity of rival WPPs

Total Demand
. (9)

Based on (9), SSI for the WPP measures the percentage of
the supply capacity that is supplied by the rivals. Then, the
understudy WPP can supply the rest of load. The maximum
amount of SSI is 1, meaning that the total load is supplied by the
rival WPPs. If the SSI is lower than 1, it is concluded that the
rival WPPs could not attract the loads and the role of the WPP
is prominent to meet the loads.

IV. CASE STUDY AND NUMERICAL RESULTS

Realistic data are extracted from the Nordic market [25] to
assess the efficiency of the proposed bilevel model. In this
regard, three WPPs are considered that the understudy one and
its rivals are identified as WPP0 and WPP1, WPP2, and WPP3,
respectively. The average price of DA market and the forecasted
energy of wind energy is shown in Figs. 3 and 4, respectively.
Also, the required energy of total load is depicted in Fig. 4. The
negative and positive balancing prices are 1.1 and 0.9 of DA
price, respectively. The results are given for the main case with
DR = 40%. Simulations are run using CPLEX 12.6.0.0 under

Fig. 3. Mean DA market price.

Fig. 4. Total required demand of loads, EVs, and predicted wind energy.

Fig. 5. Buying/selling energy from/to the DA market.

GAMS 24.2.2 on a laptop with i7 @ 2.6 GHz processor and
16 GB RAM [26].

The energy bought/sold from/to the DA market is illustrated
in Fig. 5. Comparing this figure with Fig. 4, it is seen that when
the load is low and the wind generation is high, the WPP sells
the produced energy (i.e., hours 12:00–16:00).

While, when the load is high and the wind generation is low,
the WPP should purchase energy to supply its demand. For
example, at hour 18:00, although the electricity price is high,
the WPP purchases energy from DA market to supply its load.
Fig. 6 shows the surplus and deficit energy that is compensated
in the balancing market. Since the WPP has wind power units, it
usually sells its excess energy. Also, when the wind generation
is low, the WPP buys its energy deficit to supply its load. It
is seen that since the balancing market is an expensive trading
floor, the WPP decides to participate in such a market less than
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Fig. 6. Surplus and deficit energy compensated in balancing market.

Fig. 7. Up reserve in β = 0.01 and DR = 20%.

Fig. 8. Down reserve in β = 0.01 and DR = 20%.

the other markets. It is seen that during peak hours, the WPP
participates in negative balancing market to purchase energy to
supply its load. But, during off-peak hours, the WPP takes part
in positive balancing market to sell its excess energy (i.e., hours
12:00–16:00).

The up and down reserve that is allocated by the loads for the
WPP is illustrated in Figs. 7 and 8, respectively. As shown, up
reserve occurs most of the time because, the WPP may be con-
fronted with under production, so the loads can participate in up
reserve and decrease their consumption. On the other hand, the
WPP may have overproduction that the loads consume it. Also,
it can be seen that the overproduction occurs simultaneously at
the time of peak hours. So, the WPP obtains revenue from the
customers. The average price offered by all WPPs is illustrated
in Fig. 9.

Moreover, the percentage of loads that is supplied by the
WPPs is given in Fig. 10. From Fig. 9, it is interpreted that

Fig. 9. Prices offered by rival WPPs.

Fig. 10. Percentage of loads supplied by all WPPs.

TABLE II
EXPECTED PROFIT VERSUS CVAR IN DIFFERENT DR VALUES AND RISK

AVERSION PARAMETER

the prices are often near each other at each hour; because, the
WPPs tend to offer competitive prices to attract the aggregators
to supply their demand from them. Also, the aggregators supply
their loads from the cheapest WPP to save money.

Table II shows the expected profit versus CVaR in three β
and in all DR values. As expected, with increasing risk aversion
parameter, the expected profit decreases while CVaR value in-
creases. The reason is that when the WPP becomes more risk
averse, it purchases more energy from stable resources which are
usually expensive. When the WPP behaves more risk aversely,
it should purchase more energy from other resources such as
negative balancing market as an expensive market in which
the most expensive resources are “flexible” resources such as
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TABLE III
DIFFERENT POINTS AND VALUES IN ALL DR PERCENTAGE AND RISK AVERSION PARAMETER

batteries. It must be noted that this observed shift of demand to
the balancing market is partly due to the assumption of perfect
foresight in the second stage of the model. Since wind resource
is generally an expensive resource and on the other hand an
uncertain resource, choosing an appropriate risk level is crucial
for the WPP, to have a tradeoff between the risk and the income.
In this regard, the profit scenarios that are far from the mean
value would be omitted from both sides. So, the WPP should
pay more to supply its load and as the result, its profit decreases.
It shows that with increasing DR, the expected profit increases.
Because, when more loads become responsive, they are allowed
to choose their WPP to supply their load. So, the understudy
WPP can offer more appropriate prices to attract customers.

For example, at 8:00, the understudy WPP suggests the lowest
price. So, it has the highest supplying percentage of loads.
Moreover, at 14:00, WPP1 offers the lowest price, so most of
the loads are supplied by this WPP.

Table III provides the energy trading of the WPP with the
network and the reserve provided by the loads. It is seen that as
the loads become more responsive and with increasing demand
response percentage, the loads can make more reserve for the
WPP. Therefore, the WPP can sell more energy to the DA market.
Since the loads may require more energy at some hours such as
off-peak hours, the WPP purchases the required energy from the
DA market. Also, to compensate the energy deviation of wind
generation, the WPP enters the balancing market. By increasing
the DR participants, the energy compensation from the balancing
market remains approximately constant. In other words, by
including more loads in DR programs, the uncertainties that
result in revenue losses to the WPP due to the penalties in

imbalance settlements did not increase. Therefore, the WPP has
the opportunities to purchase or schedule some reserves in a P2P
trading floor to offset part of its deviation rather than being fully
penalized in the real-time market. Moreover, this table shows
that the WPP decides to trade energy and reserve in different
risk aversion factors. When the WPP decides to behave less risk
aversely, the WPP purchases more energy from the DA market
in lower DR percentages. But, when the WPP becomes more
risk averse, in higher DR participants, the WPP purchases less
energy from DA market. Because, when the loads become more
responsive, they can adjust their demand and even curtail or
shift their consumption. Therefore, the WPP buys less energy
from the DA market as it becomes more risk averse. Also, with
increasing β, the WPP sells less energy to DA market. That is
because, as the WPP decides to behave more conservatively, it
trades less energy with volatile sources. With increasing β, in
lower DR participants, the WPP participates the same in all β
values. But, with increasing DR, as the WPP behaves more risk
aversely, it participates in positive balancing market as a more
stable trading floor, although it is more expensive. While, with
increasing β, the WPP trades more energy in negative balancing
market, because, it might require energy to purchase to support
its loads. Also, from Table III, it can be seen that when the WPP
behaves less risky, it trades less up reserve, because, as the WPP
becomes more risk averse, it tries to trade less reserve via a P2P
floor; because, the WPP tends to trade with a more stable source.
However, it trades more down reserve in such P2P trading floor
with the customers. The reason is that the loads may consume
more energy. Therefore, they may participate in providing down
reserve to procure energy for their consumption. Then, although
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Fig. 11. Energy trading in (a) positive and (b) negative balancing market in
DR = 40% and DR = 80%.

the WPP becomes more risk averse, it allows the aggregated
loads to provide down reserve due to their consumption.

Fig. 11 illustrates the expected energy trading in both positive
and negative balancing market in DR= 40% and DR= 80%. It is
seen that as more loads participate in DR programs, the WPP has
the opportunity to attract more customers. As the result, the WPP
should participate in balancing market to cover more energy
deviation compared with the case with lower DR participants.

Although, in some hours such as 7:00, the opposite occurs,
the WPP’s participation in balancing market often increases
with increasing DR participants. Moreover, it is seen that during
off-peak hours (11:00–17:00), usually the WPP tends to cover
the energy deviations. That is because, during this period, the
demand is low, while the wind generation is high. So, the WPP
should sell the extra energy in positive balancing market. Also, in
some scenarios, the WPP may confront with opposite conditions
to purchase the energy deficit. So, it participates during this
period in negative balancing market.

In the competitive environment, due to the presence of EVs,
the owners may participate in discharge process. The WPPs offer
discharge prices to the EV owners in order to attract them not
only for charge but also to purchase the stored energy in the
batteries of their EVs. In order to evaluate the contribution of the
understudy WPP to supply required demand of loads and charge
of EVs, SSI is illustrated in Fig. 12 in the conditions with and
without considering discharge process. In such competitive en-
vironment, the WPP offers discharging prices to the EV owners
to attract them. In this regard, when SSI tends to 100%, it means
that the rivals are capable to supply demand. While SSI is low, it
means that the share of rivals to supply loads is low. Therefore,

Fig. 12. Supply share index.

TABLE IV
PROFIT DEVIATION AND SSI VERSUS DR LEVELS AND RISK

AVERSION FACTORS

TABLE V
DIFFERENT POINTS IN VARIOUS RESERVE CAPACITY LEVELS λR

the WPP contributes highly to meet loads. Based on this index,
when EVs participate in discharge process, the share of rivals
reduces and consequently, the WPP has more opportunity to
supply loads.

Table IV provides the values of expected profit variation and
the SSI in different DR participants and risk aversion factor.
As seen, with increasing DR participants, the percentage of
expected profit increases as it is expected. While, as the WPP
behaves more risk aversely, it loses more profit. In order to
quantitatively characterize the extent share exercised by the
understudy WPP, SSI is employed. In this table, the SSI index
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Fig. 13. Up spinning reserve in different reserve capacities.

Fig. 14. Down spinning reserve in different reserve capacities.

for different DR flexibility values is given. As seen from the
table, with increasing DR participants, the share of rival WPPs
increases, althoughΔEP augments which yields the increment
of the expected profit of the WPP.

In fact, with increasing DR level, the loads drive flexibility due
to load shifting and shedding, although their daily consumption
remains the same. Also, by developing communication mecha-
nism between responsive loads and WPPs, more loads will be
more free to choose their WPP to supply their required demand.
So, with increasing DR level, the WPPs may lose the loads,
however, their expected profit augments. From this table, as the
WPP behaves more risk aversely, the SSI reduces significantly.
In fact, the conservative WPP mitigates its profit volatility by
decreasing the amount of supplied client demand.

The daily up and down reserve provision by the responsive
loads are shown in Figs. 13 and 14, respectively. It is seen that,
different portions of total load capacity including 25%, 50%,
75%, and 100% make contract with the WPPs. At each portion,
the trend of up and down reserve allocating by the loads is
illustrated in both figures. It is seen that up reserve provision
is performed during most hours of the operating day. In fact,
the loads favor up reserve because it allows them to obtain both
capacity and allocating revenues. Therefore, by increasing the
portions of total load capacity, more up reserve is allocated by
the loads. In contrast, down reserve provision is high specifically
during peak hours. That is because the customers turn ON their
loads especially during night time hours that can provide down
reserve services. The major reason for lower values of down
reserve is that the loads only receive the capacity revenue while
they should pay for the reserve allocating. While in up reserve,
loads receive revenue due to both contracting and allocating.

Table V provides different points in various reserve capacity
levels. As seen, with increasing reserve capacity level (λR), the
expected profit of the WPP increases in both cases without and
with discharge process. With increasing the portion of capacity
of load level participating in reserve markets, the expected profit
of the WPP augments. Also, when the WPP makes contract
with the loads, the SSI reduces that leads to more participation
of the understudy WPP to attract the responsive loads in the
competitive market to provide more reserve. Therefore, the more
the participation of loads in the reserve, the higher the profit of
the WPP. On the other hand, by increasing the participation of
loads to provide reserve services, the WPP sells less energy
to the DA market that may be instead offered to the reserve
market. While the WPP purchases more volume of energy from
the DA to supply the loads. Such a tradeoff materializes because
the potential revenue obtained with this trend is satisfying to
the WPP. With increasing capacity reserve level, the purchases
from the positive balancing market augments marginally that is
because the customers may fail to deploy their contract. In con-
trast, the supplement from negative balancing market reduces
that denotes the WPP could fulfill the energy requirements from
the customers who participate in reserve services.

When the customers participate in discharge process, the WPP
obtains more profit. Also, based on the SSI, it can be observed
that the WPP receives more opportunity in the competitive
market to attract the customers. The DA selling augments while
the DA buying reduces that both may be due to the discharge of
the aggregated EVs.

When EVs participate in discharge process, the WPP may
sell the extra energy to the positive balancing market, however,
it may confront with lower lack of energy to be supplied from
the negative balancing market. Moreover, with comparing the
cases without and with discharge process, it is seen that the up
and down reserve services change marginally.

V. CONCLUSION

In this article, a risk constraint joint energy and reserve
problem has been proposed. In this problem, the understudy
WPP competes against other WPPs to attract customers. Also,
the customers can allocate reserve for the WPP, such that the
uncertainties of wind generation are compensated. To this end,
due to the competitive environment, a bilevel problem has been
proposed. Then, this problem is converted to a single level prob-
lem. Moreover, to hedge against the uncertainties of stochastic
resources, the WPP applies a CVaR approach. The results show
that, when the WPP becomes more risk averse, it should pay
more to trade energy with more stable resources. Also, the profits
far from the mean profit would be eliminated. The WPP sells its
overgeneration in the balancing market and purchases its energy
deficit to compensate the volatilities. Also, by participating with
more loads in DR programs, the uncertainties that result in
revenue losses to the WPP due to the penalties in the balancing
market did not increase. So, the WPP has the opportunity to
purchase or schedule some reserves via a P2P trading floor to
offset part of its deviation rather than being fully penalized in
the real-time market.
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In addition, SSI index is defined based on which the com-
petition among the WPPs is analyzed under the conditions of
participating EV owners in discharging process. From this index,
it can be concluded that when EV owners participate in discharge
process, the share of rivals reduces and consequently, the WPP
has more opportunity to meet loads. Moreover, results show that
the WPP benefits from the provided reserve by the loads due to
the additional revenue. Also, with increasing the reserve load
capacity, lower SSI obtains which yields that the understudy
WPP stays in the game.
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