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Abstract—An original graph-based model and algorithm for 

optimal industrial task scheduling is proposed in this paper. The 

innovative algorithm designed, dubbed “Dijkstra Optimal 

Tasking” (DOT), is suitable for fully distributed task scheduling 

of autonomous industrial agents for optimal resource allocation, 

including energy use. The algorithm was designed starting from 

graph theory fundamentals, from the ground up, to guarantee a 

generic nature, making it applicable on a plethora of tasking 

problems and not  case-specific. For any industrial setting in which 

mobile agents are responsible for accomplishing tasks across a site, 

the objective is to determine the optimal task schedule for each 

agent, which maximizes the speed of task achievement while 

minimizing the movement, thereby minimizing energy 

consumption cost. The DOT algorithm is presented in detail in this 

manuscript, starting from the conceptualization to the 

mathematical formulation based on graph theory, having a 

thorough computational implementation and a detailed algorithm 

benchmarking analysis. The choice of Dijkstra as opposed to other 

shortest path methods (namely, A* Search and Bellman-Ford) in 

the proposed graph-based model and algorithm was investigated 

and justified. An example of a real-world application based on a 

refinery site is modeled and simulated and the proposed 

algorithm’s effectiveness and computational efficiency is duly 

evaluated. A dynamic obstacle course was incorporated to 

effectively demonstrate the proposed algorithm’s applicability to 

real-world applications. 

Index Terms—Graph theory, algorithms, task scheduling, 

energy management, Dijkstra, industrial applications. 

I. INTRODUCTION 

n an exceedingly dynamic and digital world, the old saying 
of “time is money” presents itself in all modern problems. 
Energy systems witnessed momentous change during the past 

few decades [1], which in turn affected all sectors that are 
heavily energy-dependent, including industrial and transport 
sectors [2].  

 

 

 

 

 

 

 

 

 
 

Despite the advancement of technologies leading to overall 
abundance or resources, increased socio-technical complexities 
associated with the availability of resources make the optimal 

management thereof of paramount importance [3].  

In addition to the added complexity of the energy supply 
infrastructure, process automation levels are at an all-time high, 
making it necessary to develop and deploy new algorithms for 
optimized task management in order to guarantee cost-

efficiency and reliability of these automated processes [4], [5]. 

A. Literature Review 

A rundown of recent scientific studies is performed and 
subsequently presented to establish the state-of-the-art of 
scientific literature addressing optimal task scheduling and 
management in modern automated systems. As previously 
mentioned, two of the most affected sectors are the industrial 
and transport sectors [2], with maximizing cost-efficiency 

already of pivotal importance for the two. 

For the transport sector, there has been a lot of recent focus on 
developing optimal management algorithms for consumer-
owned electric vehicle (EV) fleets [6], with an emphasis on 
cost-optimal energy management in the presence of hybrid 
technologies [7] and considering smart homes [8] and other 
modern solutions for optimal utilization of distributed energy 

resources (DERs) [9].  

This is especially important with dynamic electricity pricing 
schemes adopted through demand response (DR) 
implementation [1], [2]. Recent research on this matter was not 
only confined to consumer-owned EVs, with a lot of research 
also investigating smart public transport systems with increased 
proliferation of electric buses (EBs) and smart charging 
infrastructures [10]. The priority is ensuring cost-efficiency of 

the systems [11] through optimal scheduling [12]. 

In industrial applications, optimal management of time and 
resources is even more critical due to the profit-centered 
character of industry, throughout the wide-ranging spectrum of 
industrial specializations. In the context of smart factories, 
multi-agents systems are proposed as a model for coordination 
between autonomous systems working on performing preset 
tasks in factories with high levels of automation and a smart 

communication infrastructure [13].  

The adoption of intelligent algorithms for optimal task 
scheduling in industry has been shown to result in significant 
cost savings, whether performed by automated mobile agents or 
human labor. Such saving are crucial for industries and 

economic growth [14]. 
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B. Novel Contributions 

Algorithms for optimal task-handling are being investigated for 
a wide array of applications, ranging from coordinating 
autonomous self-driving EVs [15], to cooperative robotics [16], 
industrial site inspection [17], and the management of modern 
warehouses [18]. As such, the development of these algorithms 
for optimal cost-efficiency of task handling, regardless of the 

type of task, becomes imperative for modern industries. 

With increased intertwining of modern systems and cross-
industry designs it becomes even more important to design 
algorithms for generic systems [19], which are not application-
specific, and could be employed regardless of the target sector, 
be it smart factories, modern warehouses, EV fleet 

management, etc. 

In this study, a novel algorithm for optimal task scheduling, 
dubbed “Dijkstra Optimal Tasking” (DOT), is proposed, 
implemented and validated. This algorithm was initially 
conceptualized by the authors of this work in a preliminary 
phase in [20]. The proposed algorithm is generic in nature, 
meaning that it can be adapted to different problems in which a 
limited number of mobile agents are required to perform several 
tasks, with minimal energy. The novel contributions of this 

work can thus be summarized as: 

• Model a generic tasking problem using graph theory to 
guarantee applicability to a wide range of modern problems 
(particularly in the industrial and transportation sectors). 

• Design and implement an original graph-based model and 
algorithm for task scheduling by a limited number of 
autonomous mobile agents. 

• Perform several benchmarking analyses to determine the 
computational complexity of the proposed algorithm, optimal 
setting of tunable parameters, and assessing the performance 
of the proposed algorithm incorporating different shortest path 
methods (Dijkstra, A* Search and Bellman-Ford). 

• Ensure the computational efficiency of the algorithm to 
enable application in real-time. 

• Demonstrate the proposed algorithm considering a case 
study based on a real-world industrial site, including the effect 
of dynamic (moving) obstacles. 

C. Paper Organization 

This paper is organized as follows: In Section I, the motivation 

behind this work, literature review, and novel contributions are 

presented. In Section II, the proposed algorithm is documented 

in detail, including: the conceptual model, mathematical 

formulation, algorithm design, and computational 

implementation.  

In Section III, a thorough benchmarking analysis is performed 

to determine optimal settings of tunable parameters and 

determine the time complexity. A case study is used to 

demonstrate a real-world application in Section IV. Finally, in 

Section V, conclusions of this paper are summarized and a 

discussion of anticipated applications of the proposed algorithm 

in different sectors is examined, deriving recommendations for 

future work. 

II. ALGORITHM DESIGN  

A. Conceptual Model 

A generic task scheduling problem in a modern industrial 
setting is illustrated in Fig. 1. The main elements thereof can be 

defined and listed as follows: 

Map: is a confined space where all the tasks and mobile agents 
are located. All events and scheduling are performed within this 

local environment.  

Mobile Agent: is an agent which can move around the map and 
perform tasks. The agent is electric, meaning it consumes 
electric energy on a local battery as a cost of movement. This 
agent could be autonomous or human-operated (e.g. Segway, 

electric pallet jack, or golf cart). 

Charging Station: is where the mobile agent is stationed to 
recharge onboard batteries. Although commonly found on the 
edges of most maps, they can be located anywhere across the 

traversable map. 

Tasks: must be reached by a mobile agent in order to be 
accomplished. This is generic, i.e., in inspection problems the 
task is merely for the agent to be there every period of time. In 

handling problems, the agent must stay until task completion. 

Obstacles: are non-traversable areas. The mobile agent must 

plan a path around them to reach tasks or charging stations. 

B. Mathematical Formulation: Graph Theory Model 

These are the defining elements of any generic industrial task 
scheduling problem, and an algorithm aiming to provide a  
non-case-specific solution must be capable of incorporating 
them in a versatile and flexible manner.  

 

Fig. 1. An illustration of a generic tasking problem: A mobile agent needs to 

perform specified tasks located at different locations in a confined map, in the 
presence of non-traversable obstacles. The movement is associated with energy 

consumption and recharging is performed at set locations.  
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Graph theory provides the tools to mathematically model such 
a problem and is therefore chosen to construct the basis of the 
proposed algorithm. The first step is to divide the map into a 
mesh of equidistant and isomorphic “cells”. The size of each 
cell should be based on the smallest element in the map. By 
doing so, the problem can be defined as a graph G whose 

elements are mathematically defined subsequently. 

  � � ��, ��  (1) 

1) Graph Vertices 

The graph defined in (1) consists of a set of vertices V (which 
correspond to the “cells”), and a set of edges E.  

  � ∈ �  ∀  � ∈ ℤ ∩ �0, |�| � 1�  (2) 

As defined in (2), V is a set of vertices i: {0, 1, … , |V|-1}. At 
this stage it is established that a zero-based numbering 
convention (initial element assigned index 0) is used throughout 
this paper, due to its compatibility with graph theory modeling 
and algorithm design. The vertices are numbered sequentially, 

row-by-row, as shown in Fig. 2. 

The equidistant and isomorphic division of the map results in a 
“lattice graph” (illustrated in Fig. 2), a unique type of graph 
whose properties can be exploited. First, the size of the graph is 
decided by the number of rows m and number of columns n. 
The total number of vertices is easily expressed as in (3).   

 |�| � � ⋅ �  (3) 

Afterwards, each vertex in the lattice graph can be uniquely 
mapped to a row and column value R(i) and C(i) in a set of rows 
R and columns C, respectively. Being a single-values unique 
mapping between the sets, no two different vertices (i,j) can 
have both the same row and column values as shown in (4), and 

the sets have the same size as shown in (5).  

The mapping functions of the row and column values for each 
vertex i is done using (6) and (7), respectively. In (6) the row 
number of node i is obtained by applying the modulo operator 
of i to n (remainder of division), while the column is calculated 
using integer (truncated) division in (7). This is a simple 
demonstration of the advantage of using zero-based numbering 
to obtain simple and computationally efficient operations 
within the graph.  

 ����� � �����  ∧  ����� � �����   ↔   � � � (4) 

 |�| � |�| � |�| (5) 

 ���� � �� mod ��  (6) 

 ���� � ��� ⋅ �� / |�|�  (7) 

The x and y coordinates of each vertex on the original (physical) 

map can be retrieved using (8) and (9), where $% and $& 

correspond to the horizontal and vertical spacing between cells, 
respectively.  

 '��� � ���� ⋅ $%  (8) 

 (��� � ���� ⋅ $& (9) 

For equidistant and isomorphic spacing, this is simplified by 

setting $% � $& � Δ*. Furthermore, the relationship between 

row and column values of adjacent vertices the graph is defined 

using (10)-(13). 

 ���� � ��� � 1� ↔ +,-��� . 0 (10) 

 ���� � 1 / ��� � 1� ↔ ���� . 0  (11) 

 ���� � ��� � �� ↔ ���� . 0  (12) 

  ���� � 1 / ��� � �� ↔ ���� . 0  (13) 

Finally, vertices are identified as boundary vertices (set B) or 
interior domain (set D) nodes according to (14) and (15). 

 

� ∈ 0 ↔  � ∈ � ∧ 1����� ⋅ ���� � 0�
∨ ������ � � / 1�
⋅ ����� � � / 1� � 0�3  

(14) 

 � ∈ 4 ↔  � ∈ � ∧  � ∉ 0 ⇒ 4 � � � 0  (15) 

2) Graph Edges 

The other main element of the graph is the set of edges, E. An 
edge is a set of two vertices {i,j} that are connected in the graph. 
The set of all possible edges E can be defined using the 
condition in (16).  

While loops (an edge connecting a node to itself, or 
subsequently a path which starts and ends at the same node) are 
mathematically possible in a generic graph, they do not exist in 
this mode, as it would correspond to indefinite circling in a 
closed “loop” within the map. Thus, the condition � 7 �  is 
imposed in (16). Moreover, the modeled graph is an undirected 
one, hence the condition in (17). 

 � ⊆ 9 9�, �: | ��, �� ∈ � ∧ � 7 � :  (16) 

 9�, �: � 9�, �: ∀ ��, �� ∈ �  (17) 

Based on this property, all edges of the lattice graph can be 
constructed by defining an edge between all interior domain 
vertices and their adjacent neighbors. This is mathematically 
expressed using the interjection in (18).  

 ∃ 9i, j: ∈ � ↔ �� ∈ 4�
∧ ��|� � �| � 1�
∨ �|� � �| � ��� 

(18) 

The total number of edges in the graph can be obtained using 
the expression in (19). 

 |�| � �� � 1� ⋅ � / �� � 1� ⋅ � 

� 2 ⋅ � ⋅ � � � � �  
(19) 

 
Fig. 2. An illustration of five-by-five map modeled as a lattice graph. Cells are 

assigned as vertices in the graph, and connections between adjacent vertices 
correspond to edges of the graph. 
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3) Shortest Paths 

The constructed lattice graph is a connected graph, meaning 
that any two set of vertices {i,j} can connected using a number 
of edges. The simplest connection is a walk, in which a 
sequence of edges joins two vertices. A walk can either be finite 
or infinite, in which the edges contained in the sequence need 
not to be unique.  

A path is defined as a walk in which all the elements are unique, 
i.e., every vertex in the path is only visited once. Some path 
P(i,j) connecting i and j is therefore defined in (20), with K 
being the number of elements in the path. 

 
P�i, j� � �@A, @B, … @DEB� | 9@A, @B, … @DEB:

∈ � ∧ �@A, @DEB� � ��, �� 
(20) 

For every set of vertices i and j, there exists a finite number of 
paths between them, where FG,H is a set containing all possible 

paths P(i,j). In a weighted graph every edge E is associated with 
a weight value I(E) such that � ↦ K, with the latter being the 
set of edge weights. Accordingly, the weighted length l(P) of a 
path can be calculated as shown in (21). 

 L�@� � M I�9@N , @NOB:�
DEB

NPA
 (21) 

This function can be used to map FG,H ↦ QG,H (set of 

corresponding path weighted lengths). The graph distance 
between two vertices is defined in (22) as the weighted length 
of the shortest path between them: 

 $��, �� � minSQG,HT (22) 

Finding the shortest path between any two vertices is a 
fundamental problem in graph theory for which solution 
algorithms have been well established. Shortest path first (SPF) 
algorithms are vital algorithms for graph analysis.  

Dijkstra’s algorithm is [21] one of the most popular and well-
established fundamental SPF algorithms in graph theory. The 
algorithm is a highly computationally efficient algorithm 
finding the shortest path between two nodes in a graph as 
expressed in (23). 

 U@V ∶ ��, �� → @��, �� ∋ L�@��, ��� �  $��, �� (23) 

It is duly noted that the proposed model accommodates the use 
of any shortest path method, and not necessarily Dijkstra’s SPF. 
The choice of Dijkstra as opposed to other alternatives is 
discussed and analyzed in detail in Section III.C. 

With the mathematical formulation being specified, the 
designed algorithm can now be expressed in terms of the graph 
elements and defined relations. 

C. Designed Algorithm and Computational Implementation 

Recalling the original motive, the objective of the proposed 
algorithm is to be generic in nature, easily adaptable to different 
problems with elements defined in II.A. To do this, the designed 
algorithm was implemented in an object-oriented programming 
environment. The pseudocode is shown in Algorithm I, 
followed by a detailed description of the implementation.  

1) Map (Class): The industrial site map model is implemented 
as a class. A map object contains all information about the graph 
(edges and vertices) and the class methods to update them. 
 

ALGORITHM I. PSEUDOCODE OF THE DESIGNED DOT ALGORITHM. 

1 Input Map, TaskList, MobileAgents 

2 while isRunning do 

3   tau += 1 

4     for each A in MobileAgents  

5       if A.isCharging then 

6           A.chargeStep() 

7           if A.fullyCharged then 

8               A.isCharging := false 

9               tau += 1 

10           end if 

11       else if A.atStation then 

12         A.path ← DijkstraSPF(A.orSta,A.deSta) 

13         A.atStation := false 

14       else 

15         A.loc[t] ← A.move(path,loc[t-1]) 

16         if map[A.loc[t]].isStation then 

17           A.atStation := true 

18           tau += tau 

19         else 

20           Map.vertexHeat[loc[t]] += inc 

21         end if 

22         for each N in Map.vertexHeats 

23           N-=Map.CDF() 

24         end for 

25       end if 

26     end for 

27     Map.refresh() 

28     TaskList.refresh() 

29     MobileAgents.refresh() 

30 end while 

2) Agent (Class): Each agent is modeled as a class. The class 
contains information about the agent, e.g. its current location, 
battery state-of-charge (SoC), current path and the class 

methods to update all the aforementioned values. 

3) Checkpoints (Class Property of Map, Agent): Checkpoints 

are locations in the map where the agents stop between map 

traversals. Checkpoints don’t necessarily have to also contain a 

charging stations, whilst all charging stations are checkpoints, 

since the agent can stop at a station and not charge depending 

on its current path or schedule. 

4) Timer (Global Variable): The time t is constantly 
incremented as a global counter in the implemented program 
with any update in the map. Given a lattice graph, the 
movement time from one node to the other can be used as the 
unit of time if all agents are the same model (i.e., same speed), 
which is common in most industrial facilities. MAXTIME can 
be used as a termination criterion for the program. 

 Z ∈ [ � �0,1, … \]^_`\�� (24) 

5) Traversal Timer (Class Property of Map, Agent): A second 
time variable is incorporated to increase the versatility of the 
algorithm. Since the algorithm relies on the agents traversing 
between checkpoints, the flow of time can be alternatively 
tracked as a counter of the number of traversals the agent 
makes. This traversal time a is the one used to keep track of the 
vertex properties and update the heat values in the map.  
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A good feature of this implementation, which provides the 
versatility, is that a can always be set simply as a � Z in the 
code, switching back to real time in the dependent functions 
according to the type of tasking problem at hand. Like 
MAXTIME, TMAX can also be used as a termination criterion.  

 a ∈ b � �0,1, … , c\]^� (25) 

A mapping τ�Z� can give the current increment time at any t. 

6) Heat Values (Class Property of Map): Each vertex has a 
time-varying “heat” value H(i,t) assigned to it in the Map class. 
The movement cost through an edge is defined as the mean of 

the heat values of the two connected vertices as in (26).  

 I�9�, �:, Z� � 1
2 �e��, Z� / e��, Z�� ∀ 9�, �: ∈ �, Z ∈ [ (26) 

This heat property is the main premise of the designed 
algorithm and is used to establish all other relations to model a 
given problem and calculate the task scheduling. Heat values of 
the vertices are continuously updated to “guide” each agent 
through the shortest path in the graph such that all tasks are 
achieved while traversing between its checkpoints (Fig. 3). 

7) Obstacles are directly incorporated by setting a very large 
number as heat value in that vertex. In this manner, obstacles 
can be modeled in a very computationally efficient way (as 
opposed to the use of exceptions or conditional statements), 
since the movement to/from that vertex is never chosen over 
any other alternative. This number is imposed as the largest 
float value of the machine where the algorithm is running, 
which for most modern processors is 1.7976308. 

8) Tasks, on the contrary, are by setting a low value, depending 
on the type and/or urgency of each task. This acts as an 
“attractor” for the mobile agent since the Dijkstra SPF 
algorithm will be attracted to pass through that vertex when 
constructing the path instead of other alternatives.  

Once an agent has reached a vertex with a task, the heat value 
of this vertex is incremented. In this way, the movement cost 
to/from this location is increased, removing the “attractor” as 
the task is accomplished. A “cooldown” effect is applied by 
decrementing heat values of all vertices with each increment of 
t, such that for an idle map with no activity, heats are eventually 
reset to their initial values.  

To sum up the flow of the algorithm: 

• The industrial site or facility is modeled as a lattice graph.  

• Each vertex has a heat property that is updated with every 
increment of time t based on the mobile agents’ movement 
through the map, the flow of time, and nature of the tasks to 
be performed (as visualized in Fig. 3). The heat value update 
is done by incrementation and cooldown. 

• Tasks and obstacles are modeled by setting the heat value 
accordingly to guide the agents. 

• The heat values set the edge weights for the graph. 

• The pathing of each mobile agent between its checkpoints 
is determined using Dijkstra’s SPF (or an alternative shortest 
path method) every increment of traversal time a. 

The algorithm was implemented using Python 3.6.7. All 
subsequent tests were run on a standard laptop computer with 
an Intel Core i7-8550U CPU @ 1.80 GHz, 16.0 GB RAM, and 
Windows 10 64-bit operating system.  

III. PARAMETER TUNING AND BENCHMARK TESTING 

In this section, tuning parameters of the algorithm are 
identified, and a benchmark analysis is performed to test the 
proposed algorithm on a benchmark case, assess the appropriate 
values for the parameters, and analyze the computational 
performance and time complexity of the algorithm.  

Finally, the choice of the most adequate shortest path method 
(Dijkstra is justified by discussing other commonly employed 
shortest path methods is graph theory (A* Search and Bellman-
Ford) and performing a comparative analysis between feasible 

candidates. 

A. Identifying Tunable Parameters 

From the algorithm description it can be seen that there are two 
main parameters which can be used to tune the algorithm: 

1) Increment Value: The first tuning parameter is the 
incremental heat value of a vertex once an agent completes a 
task there. This is defined as INC in (27). Note that this function 
is only invoked once an agent reaches a vertex marked with a 

task. 

 e��, Z� � e��, Z� / INC, if task completed (27) 

2) Cooldown Function: This second tuning parameter is how 
the vertex heat values of the whole graph are updated every time 

increment t. This is defined as a function CDF in (28). 

 e��, Z� � �rV��, e��, Z�, Z� (28) 

In this study, four different types of functions are considered. A 
Fixed Cooldown (FCD) decrements the H(i,t) by a constant 
value CD every time increment, while a Zero Cooldown sets �r � 0 as in (29) and (30).  

In (31) and (32), exponential functions are used instead for a 
scaled cooldown (SCD), making the cooldown value increase 
exponentially with every traversal time. In SCD1 and SCD2, 
the initial decrement values are 1 and 0, respectively.  stuH  scales the function, increasing the exponential growth as 

stuH → 0, as shown in (33). 

  �rVvwx��, e��, Z�, Z� �  e��, Z� � CD (29) 

 �rVzwx��, e��, Z�, Z� �  e��, Z� � CD, CD � 0 (30) 

 �rV{|}B��, e��, Z�, Z� � e��, a�Z� � 1� � ~���⋅���� / 1 (31) 

 �rV{|}���, e��, Z�, Z� � e��, a�Z� � 1� � ~���⋅���� (32) 

 SCD � |�| ⋅ log � ΤtuHTMAX� (33) 

 
Fig. 3. Vertex properties being updated as the mobile agent moves and follows 

a path through the map. 
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B. Benchmark Analysis and Limit Testing 

The objective of benchmark analysis is limit-testing the 
proposed algorithm by conducting a parametric study to assess 
the performance and stability of the solution A generic case 
study is used based on the facility inspection problem [17]. 

In this problem, a mobile agent travels between the charging 
stations, at the top-left and bottom-right corners of the map. The 
mobile agent must inspect the site, making sure all areas are 
frequently visited and no areas are ignored. The inspection 
problem makes is an ideal benchmark case study for limit 
testing, since it is an extreme case of the task scheduling 
problem: every vertex of the map is itself a task since the goal 
is to patrol the full map continuously.  

The ideal solution in this case is for the agent to be pathed 
across the map to avoid any areas of the map being neglected 
on the long term (i.e., avoid some areas being visiting more than 
others as much as possible). Three benchmark studies and limit 
tests were performed. 

1. Benchmark Test 1: Time Complexity Analysis 

When proposing a new computational algorithm, one of the 
most important features to establish is its time complexity. The 
time complexity of the Dijkstra SPF (computing only one 
traversal of the map) is Θ(|V|·log|V|). Using analytical analysis 
of the implemented code, the time complexity of the proposed 
algorithm was determined to be Θ(|V|·(log|V|)3). 

The benchmark problem is run for a grid size of 10x10, 25x25, 
50x50, 75x75, and 100x100. The ZCD function was used 
(chosen for simplicity, since the choice is irrelevant and doesn’t 
affect the time complexity results since all the CDF functions 
are Θ(1)). The termination criterion was set as TMAX=100 
(100 traversals). For each map size the code is run 10 times, and 

the average run time is recorded. 

The results are plotted in Fig. 4 in comparison to other common 
time complexities of graph algorithms, expressed in big-Θ 
notation. From the results, it is indeed confirmed to be 

Θ(|V|·(log|V|)3).  

The small offset for larger values is attributed to approaching 
physical limits of memory allocation on a laptop PC. Thus, the 
proposed algorithm is deemed computationally efficient, being 
marginally slower than Dijkstra’s SPF for a single shortest path 
solution, yet faster than any Θ(N2) algorithm, i.e.,  
Θ(|V|·log|V|) < Θ(|V|·(log|V|)3) < Θ(N2). 

2. Benchmark Test 2: INC and CDF Selection  

The second benchmark test aims to test the effect of varying the 
value of INC and the choice of the CDF. To perform a full 
parametric analysis which considers the grid size as well, the 
testing is performed and comparatively evaluated on small 

(10x10), medium (25x25), and large (50x50) maps. 

Four each map size, ten different INC values are tested, varying 
from 0.5·|V| to 5·|V| with increments of 0.5·|V|. For each value 
of INC, the problem is run using each of the four proposed CDF 
functions (i.e., a total of 3 maps x 10 INC values x 4 CDF runs). 
For each run, the termination criterion was set as TMAX=100 
(100 traversals). As a performance metric the number of times 
each vertex was visited/inspected by the agent is counted, 
recalling that the anticipated solution is to have no uninspected 

parts of the grid.  

 
Fig. 4. Results for the first benchmark test: time complexity analysis showing 

the recorded run time vs. other time complexities in big-Θ notation. The 

designed algorithm is confirmed to be Θ(|V|·(log|V|)3) 

In Fig. 5, the number of uninspected nodes at the end of each 
run (at a � ���� � 100) is plotted for all cases. Another 
performance metric is associated with the frequencies of vertex 
inspections. The ideal solution is for the number of visits for the 
maps vertices to be as close to the median value as possible (i.e., 
no parts are neglected compared to others).  

To analyze this, a box plot with summary statistics for each run 
of the medium map is shown in Fig. 6. In this sense what is 
desired is to have: 1) no zero values; and 2) minimum inter-
quartile range. From the results in Fig.5 and Fig. 6, the 
following points can be made by observing both performance 
metrics: 

• ZCD is the only CDF that provides a stable operation, 
being independent of the grid size. 

• If a FCD is to be chosen, its value should be set as a 
function of INC to guarantee improved performance. 

• In comparison, SCD1 and SCD2 do not perform as well 
and are less stable. SCD1 shows more stability than SCD2, but 
better tuning of the function is necessary.  

The results of this third benchmark test strengthen the points 
made previously. ZCD and FCD both provide stable 
performance, with the number of traversals required converging 
to a finite value as the grid size is increased. However, FCD is 
dependent on the INC value, thus being proportional to the grid 
size for a stable operation. SCD1 and SCD2 are shown to have 

stability problems in their current form for large maps. 

It can be argued that the SCD function may provide better 
performance depending on the type of tasking problem 
involved. While this may be true, the objective of this test is to 
determine the choice of parameters that guarantee a reliable and 
stable operation for any type of tasking problem, thus 
establishing a “benchmark” for the designed algorithm. 
Nevertheless, the implementation makes it flexible for users to 

freely tune these parameters to best fit the specific problem.  

Therefore, from the benchmark analysis it is possible to show 
that: 1) the proposed algorithm is Θ(|V|·(log|V|)3) and 2) ZCD 
is recommended as the “default” option for the CDF, being the 

most reliable and least dependent on other parameters.  
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Fig. 5. Results for the second benchmark test: number of uninspected vertices at τ=TMAX=100. Results are shown for the total of number of runs corresponding 

to: 3 maps x 10 INC values x 4 CDF choices.  

 
Fig. 6. Results for the second benchmark test: box plot to show summary statistics of the number of vertex inspections at τ=TMAX=100. A box plot for each of 
the 10 INC values x 4 CDF choices is plotted for the medium 25x25 map. The blue boxes correspond to the 25th to 75th percentile range. The red line is the median 

value, and the whiskers show the maximum and minimum values. Outliers (>1.5 times inter-quartile range) are shows as red crosses. 

3. Benchmark Test 3: Stability and Termination Criteria 

By using TMAX as the termination criterion in the previous 
study, it was observed that the number of required traversals to 
fully span the map is dependent both on the tunable parameters 
and the grid size. It is very critical to verify that the number of 
traversals required to fully span the map does not diverge with 
the grid size, i.e., it is critical to establish the stability of the 

algorithm and the CDF functions and INC values.  

Therefore, another limit test is performed by letting the 
simulation run for a very large number of traversals  
(TMAX = 500) and recording the number of traversals required 
to inspect the full grid once all nodes have been inspected at 

least once. The results are listed in Table I and plotted in Fig. 7. 

C. Choice of the Shortest Path Method 

In the designed and implemented algorithm, for each traversal 
of a mobile agent through the modeled map, Dijkstra’s SPF 
method is used to determine the path taken of the mobile agent. 
Since the shortest path is guided by the node values set 
iteratively according to the designed algorithm (as the map 
dynamically changes), the obtained path would maximize the 
tasks being achieved while minimizing the movement cost (and 
hence, electricity consumption).  

Indeed, numerous other shortest path methods exist in graph 
theory applications, with common well-known alternatives to 
Dijkstra’s SPF being A* Search and Bellman-Ford [22].  

All the aforementioned methods achieve the same objective: 
find the shortest path between two nodes in a weighted graph. 

 
Fig. 7. Results for the third benchmark test: number of traversals required to 

inspect the full map relative to the map size, for each CDF selection. Dotted, 
dashed, and solid lines correspond to INC=1|V|, 3|V|, and 5|V|, respectively. 

TABLE I RESULTS FOR THE THIRD BENCHMARK TEST: NUMBER OF 

TRAVERSALS REQUIRED TO INSPECT THE FULL MAP. 

CDF 
Map Size 

(|V|) 

INC 

1|V| 3|V| 5|V| 

F
C

D
 100 36 16 14 

625 >500 96 74 

2500 >500 289 113 

Z
C

D
 100 14 14 14 

625 58 58 58 

2500 108 108 108 

S
C

D
1

 100 170 16 15 

625 381 393 438 

2500 >500 >500 >500 

S
C

D
2

 100 14 14 14 

625 349 426 422 

2500 >500 >500 >500 
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The designed graph-based model and algorithm are versatile 
such that any shortest path method can be used, and the same 
results would be achieved, since the shortest path for a given 
state of the map (node values and corresponding edge weights) 
would be the same regardless of the method used to find it.  

In this case, the choice of the most suitable shortest path method 
to incorporate in the proposed algorithm depends on the 
computational burden. To justify the choice of Dijkstra as 
opposed to other alternatives, a discussion thereof and a 
comparative analysis is performed in this section. 

By reperforming the benchmark analysis considering all three 
candidates (Dijkstra, A* Search, and Bellman-Ford), Dijkstra 
was shown to guarantee the best performance in terms of 
computational complexity (and thereby scalability) for the 
proposed algorithm. In Fig. 8, A* Search and Bellman-Ford are 
seen to have a similar performance, being significantly slower 
than Dijkstra, especially for larger maps. 

Another critical point to note is that with the proposed model 
and algorithm, Bellman-Ford is unable to converge to a solution 
when all the edge weights are equal (e.g., in the first iteration), 
and an alternative method must be employed whenever this 
occurs.  

This issue does not occur neither with Dijkstra nor with A* 
Search, which both robustly find the shortest path in all 
iterations for all map conditions. Therefore, the use of Bellman-
Ford is not recommended, and the two feasible candidates are 
Dijkstra and A* Search.  

Both methods provide the same results for the designed model 
and algorithm, with Dijkstra being superior in terms of 
computational time, especially for larger maps (i.e., better 
scalability). Therefore, Dijkstra’s method is shown to guarantee 
a reliable performance while providing the fastest 
computational time (which is critical as the proposed algorithm 
is intended for real-time application).  

Nevertheless, the implementation of the proposed model and 
algorithm makes it flexible for users to use any shortest path 
method at their convenience. A comparison between the choice 
of Dijkstra and A* Search in the proposed model and algorithm 
is revisited in the next section considering a real-world 
application. 

 

Fig. 8. Comparing the performance of the proposed algorithm while using 

Dijkstra, A* Search, and Bellman-Ford for different map sizes. 

IV. REAL-WORLD APPLICATION 

In this section, a real-world case study is used to demonstrate 
the applicability of the proposed algorithm to real-life 
problems. An oil refinery located at coordinates (53.090, 
14.254) is considered. Due to their nature, oil refineries require 
constant safety inspection, particularly with the hazardous 
nature involving the oil tanks and pipelines on the site. These 
refineries span very large areas, and so automating the safety 
inspection process is highly desired. 

A. Validation Case Study with Stationary Obstacles  

In this case study, one autonomous mobile agent is allocated to 
perform the security inspection and patrolling the refinery, as 
shown in Fig. 9 (left). The SMP S5.2 series security robot 2020 
model [22] is considered as a commercially available option for 
an autonomous mobile agent, with its specifications listed in 
Table II. Thus, the objective is to test the performance of the 
proposed DOT algorithm in effectively scheduling its fully 
autonomous operation in the sites’ safety inspection. In this first 
case study, only stationary obstacles are considered. 

The physical limitations of the agent’s motion must be 
considered to determine the correct discretization of the lattice 
graph. The dimension of each grid element Δ* must be larger 
than both the minimum width of the patrol path (S3) and the 
minimum turning radius (S4). Meanwhile, the grid elements 
must also be smaller than the minimum object recognition range 
of the onboard cameras and detection systems (S5). This is 
expressed in (34). 

 max�U3, U4� � Δ* � U5 (34) 

With the real site area being 350x350 (m2), a spacing �* � 7m 
would satisfy (38), thus resulting in a 50x50 grid as shown in 
Fig. 8 (right). The graph can then be constructed as formulated 
in Section II. As mentioned, obstacles (in this case being the 
tanks) are modeled by setting the vertex heat values to 
1.7976308. Each time step would correspond to the average 
traveling time between two vertices at the agent’s average 
autonomous traveling speed (S2), as shown in (35). 

 ΔZ � Δ* ⋅ U2 � 0.035 ℎ (35) 

The agent’s onboard battery SoC is updated according with 
each timestep to (36). The charging and discharging values (per 
timestep) are calculated according to (37) and (38). The 
minimum allowed SoC is 0.1. Accordingly, the maximum range 
of a fully charged agent is be obtained in (40). 

 
U,��Z�
� �U,��Z � 1� � U,�}G{��� ¡ , �¢ �,*��£

U,��Z � 1� / U,�|��� ¡ , �¢ ¤ℎ¥+£��£ 
(36) 

 U,�}G{|��� ¡ � 100 ⋅ Δ*
U1 % � 0.029% (37) 

 U,�|��� ¡ � 100 ⋅ ΔZ ⋅ U9
U8 % � 0.7% (38) 

 �¥' +¥�£~ � �1 �  U,�©Gª� ⋅ U1 � 19.2 «� (39) 

The algorithm is run for this problem with ZCD and ¬­� � 1. 
In order to simulate the real-life case, the termination criteria is 
set according to the maximum range at full charge, by setting ����¬�® � 3085. In this sense, the case study aims to assess 
the effectiveness of the algorithm in scheduling the agent’s 
inspection paths through the map, making the best use of one 
full battery charge.  
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TABLE II SPECIFICATIONS OF THE MOBILE AGENT USED FOR THE CASE STUDY 

(SMP S5.2 SERIES 2020 MODEL) [22]. 

S1 - Cruising Range 24 km 

S2 - Autonomous Traveling Speed (average) 5 km/h 

S3 - Width of patrol route path (minimum) 0.9 m 

S4 - Turning radius (minimum) 5 m 

S5 - Object Recognition Range (minimum) 50 m 

S6 - Operating Time (average) 12 h 

S7 - Charging Time (average) 5 h 

S8 - On-Board Battery Capacity 3 kWh 

S9 - Charger Power 600 W 

It has been mentioned that the proposed algorithm is the first of 
its kind in generically model the industrial task scheduling 
problem for autonomous agents. While this is a novel 
contribution, it does add a difficulty since there were no similar 
existing algorithms to use for comparison at the time of this 
work, especially in terms of the problem modeling. 

Obtaining a deterministic solution is not possible, as it would 
require a full graph search to be performed being Θ(|V|!), 
corresponding to more than 1.67411·path determinations, which 

is infeasible even on high-performance computers.  

However, there are multiple graph theory algorithms for path 
spanning and sampling that can be modified for this purpose. 
Accordingly, the directed random walk (DRW) algorithm [23], 
[24] was used with two variations: normal (DRW1), and brute-

force (DRW2). Those algorithms are detailed in Appendix 1. 

In addition, the case study is used to reaffirm the choice of 
Dijkstra’s SPF as opposed to the other feasible alternative  
(A* Search) in the proposed model and algorithm. While it is 
anticipated that both Dijkstra and A* Search would yield the 
same results and the main advantage of choosing Dijkstra 
would be in the computational efficiency, this is revalidated by 
comparing the results of the proposed algorithms using both 
shortest path methods. 

The objective now is to evaluate a) how effectively is the site 
being inspected by the assigned agent and b) how efficiently is 
this being done by limiting the operation to one full battery 

charge. Four evaluation criteria are used: 

• Percentage of Site Area Inspected [%]. 

• Mean number of vertex visits.  

• Mean Area per Charge Consumed [m2/kWh] 

• Ratio of Algorithm Running Time to Real Operating Time. 

Snapshots of the resulting paths through the site by the DOT 
algorithm are visualized in Fig. 10, and the performance metrics 
are compared with those of DRW1 and DRW2 in Fig. 11. The 
latter are also listed in Table III. The proposed algorithm 

outperforms the others in all performance metrics.  

It is noted that the algorithm run time is calculated per map 
traversal as a normalized figure. As anticipated, the choice of 
Dijkstra or A* has no effect on the performance metrics except 
the computational time, where the choice of Dijkstra 

outperforms A* Search (by 12.5%).  

Note that the DRW algorithms have a random element and the 
results shown are for optimized runs (best cases). Therefore, the 
actual real-life performance of DRW is worse than shown here, 
as opposed to the deterministic solution of the proposed DOT. 

The results shown are for an operation limited to one full battery 
charge to simulate a real-life restriction. Removing this 
constraint (with recharging or a substitute agent) results in even 
better performance by DOT compared to DRW. Finally, it is 
worth noting that the ratio of scheduled real time to the 
algorithm running time is ~1000, confirming that DOT is 

deployable for real time scheduling of autonomous agents. 

It can be seen in Fig. 10 how the obstacles were provided 
directly in the map data input file without the need for any 
conditional statement modifications to the code. Applying a 
heat value of 1.7976308 guaranteed that the obstacle vertices are 
never selected in computed paths. This provides great 
versatility, since new obstacles can be introduced or moved in 
real-time, a feature which is not possible by other graph 
methods that construct random paths such as DRW. To 
demonstrate this, a second case study with dynamic (mobile) 

obstacles is performed.  

B. Case Study with Stationary and Mobile Obstacles  

In this case study, two dynamic (mobile) obstacles are 
introduced into the map. In the real-world setting, this would 
correspond to construction work along the pipelines in the oil 
refinery, which would in untraversable by the mobile agent 
during its inspection patrols. This is illustrated in Fig. 12, with 
dynamic obstacles 1 and 2 set on a path that is eastbound and 
westbound, respectively. The speed of the obstacles is set to 
3m/h, corresponding to a realistic relocation of maintenance 

workers along the pipelines. 

Snapshots of the resulting paths through the site by the DOT 
algorithm is visualized in Fig. 13, and the performance metrics 

are shown in Table IV.  
 

 
Fig. 9. Satellite image of the oil refinery located at coordinates (53.090, 14.254) used as for the case study (left), and modeling as a lattice graph (right) with the 
obstacles/non-traversable vertices highlighted in yellow. The real-life area of the site is 350x350m2. 
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Fig. 10. Snapshots visualizing the resulting paths through the site by the DOT algorithm at a � �0,3,6,9,12,18,21,24,27,28� on a single onboard battery charge. 
Dark and light colored nodes correspond to inspected vs. uninspected vertices, respectively.  

 

Fig. 11. Comparison between the proposed DOT algorithm vs. DRW1 and DRW2 in terms of the performance metrics: a) Percentage of Site Area Inspected [%], 

b) Mean number of vertex visits, c) Mean Area per Charge Consumed [m2/kWh], and d) Ratio of Algorithm Running Time to Real Operating Time. 

TABLE III PERFORMANCE METRICS FOR DOT WITH STATIONARY OBSTACLES ONLY. 

Performance Metric 

Method Used for Task Scheduling 

Proposed Graph Model and Algorithm 
DRW1 DRW2 

With Dijkstra SPF With A* Search 

Algorithm Running Time (s) 3.99 4.5 36.6 17.2 

Mean number of vertex visits 1.20 1.20 0.43 0.83 

Total area inspected (m2) 57526 57526 13083 26313 

Percentage site area inspected (%) 60% 60% 14% 27% 

Area per Charge Consumed (m2/kWh) 22103 22103 13874 14569 

 

Fig. 12. Satellite image of the oil refinery located at coordinates (53.090, 14.254), including mobile obstacles used as for the second case study (left), and modeling 
as a lattice graph (right) with the obstacles/non-traversable vertices highlighted in yellow (stationary and mobile). The real-life area of the site is 350x350m2. 
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Fig. 13. Snapshots visualizing the resulting paths through the site by the DOT algorithm at a � �0,3,6,9,12,18,21,24,27,28� on a single onboard battery charge. 
Dark- and light-colored nodes correspond to inspected vs. uninspected vertices, respectively. Blue and red squares correspond to stationary and mobile obstacles, 

respectively. The dotted path corresponds to the agent’s current path at the given time. 

 

The presence of dynamic obstacles slightly increases the 
computational burden (due to the necessity of updating the node 
heat values every time the obstacle moves). Moreover, the 
presence of the moving obstacles seems to (very slightly) 
facilitate the inspection problem, since it forces the mobile 
agent to cover a wider area to avoid the additional obstacles 

present.  

It is verified that the resulting paths for the agent never intersect 
with neither the stationary nor the dynamic (moving) obstacles, 
while successfully maximizing the inspected area for an 
operation limited to one full battery charge to simulate a real-
life restriction. 

To reaffirm the statements made in Section III.C regarding the 
choice of Dijkstra as opposed to other shortest path, the case 
study with dynamic obstacles is re-simulated using the 
proposed method, incorporating A* Search instead of Dijkstra.  

As anticipated and previously stated (also as the results of the 

first case study showed), the choice of the shortest path method 

does not affect the results. Dijkstra is demonstrated again to 

guarantee the best computational efficiency and algorithm 

stability.  

The objective of this paper was to clearly describe the proposed 
model and algorithm present the mathematical formulation. A 
thorough limit testing was performed to recommend the set of 
parameter settings (i.e., INC and CDF) and the choice of the 
shortest path method (i.e., Dijkstra), that guarantees reliable and 
stable execution of the algorithm, in addition to minimal 

computational burden.  

However, the algorithm was designed such that the building 
blocks can be easily changed by the users (e.g., choice of the 
shortest path method), without influencing the results). This is 
in fact a compelling advantage of the proposed graph model and 
algorithm, being that the obtained solution is independent on 

the choice of the shortest path function.  

In this way, the designed algorithm is versatile and can be easily 
adapted or modified by users for different industrial tasking 
problems cases while guaranteeing a reliable and robust 
performance for real world applications.  

TABLE IV PERFORMANCE METRICS FOR DOT (PROPOSED ALGORITHM WITH 

DIJKSTRA) VS. PROPOSED ALGORITHM CONSIDERING DYNAMIC OBSTACLES. 

Performance Metric 

Proposed Graph Model and 

Algorithm 

With Dijkstra 

(DOT) 

With 

A*Search 

Algorithm Running Time (s) 4.25 4.85 

Mean number of vertex visits 1.21 1.21 

Percentage site area inspected (%) 61% 61% 

Area per Charge Consumed (m2/kWh) 22235 22235 

 

Fig. 14. Comparing the computational performance of the proposed algorithm 

while using Dijkstra vs. A* Search in the presence of stationary obstacles only 

(left) and stationary and dynamic obstacles (rights). 
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V. CONCLUSIONS 

An innovative graph-based model and algorithm for optimal 

task scheduling was proposed, implemented and tested. The 

designed DOT algorithm was designed based on graph theory 

to guarantee a generic nature, making it applicable on a plethora 

of tasking problems and not being case-specific. For any 

industrial setting where mobile agents are responsible for 

accomplishing tasks across a site, an optimal task schedule for 

each agent is obtained to maximize the speed of the task 

achievement with high energy consumption efficiency. The 

algorithm’s versatility in modeling different problems and high 

computational efficiency make it perfectly suitable for a fully 

distributed task scheduling of autonomous agents. A real-world 

case study has demonstrated the effectiveness of the proposed 

algorithm for an industrial site inspection problem, including 

the presence of dynamic (moving obstacles). In future work, the 

algorithm can be applied to other problems in smart industries 

with dynamic environments where energy consumption 

efficiency is required.  
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APPENDIX 1: DIRECTED RANDOM WALK ALGORITHM 

In a random walk, the next vertex j in a path is chosen at random 
from the neighbors of a vertex i. In this study a variation of this 
is used for comparison with DOT, a directed random walk 
(DRW) [24], [25]. In a DRW the next vertex is chosen 
randomly, but the probability of a vertex being chosen is 
inversely proportional to its distance from the destination. This 
is illustrated in Fig. A1, where the current vertex i has four 
neighbors 1, 2, 3, and 4, with the distances (Cartesian) to the 
destination being d1, d2, d3, and d4, respectively. The next 
vertex in the path is selected using a roulette wheel approach. 
The aim is to have a random selection while assigning a higher 
priority to vertices closer to the destination. Therefore, the 
selection probability is proportional to d’, which is the inverse 
(1/d) of the Cartesian distance. A random variable X is 
generated such that X=U(0,sum(d1’,d2’d3’,d4’), based on an 
uniform distribution. As illustrated in Fig A2, the probability of 
each of the neighbors being selected is proportional to its 
inverse distance from the destination. With the random element 
performed, the results reported in this study are based on the 
25th percentile (best case) of 1000 runs.  

The DRW guarantees to provide a finite path; however, the 
random element can result in excessively long ones. Therefore, 
two variations of the DRW were used in this work: normal 
(DRW1) and an improved brute force one (DRW2). At the 
beginning of every traversal while stationed at a checkpoint, a 
path is calculated. Once a path requires the agent to drop below 
SoC minimum, the pathing is halted. With DRW2, ten trials are 
attempted at finding a shorter path until the solution is halted, 
in which case the agent must recharge before proceeding, since 
no shorter path can be found that can be traversed with the 

remaining SoC. 

 
Fig. A1 Illustration of current node i , neighboring nodes, and their Cartesian 

distance to the destination. 

 
Fig. A2 Constructing the roulette wheel selection. 
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