
0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

1

A Dijkstra-Inspired Graph Algorithm for Fully

Autonomous Tasking in Industrial Applications

Mohamed Lotfi, Member, IEEE, Gerardo J. Osório, Mohammad S. Javadi, Senior Member, IEEE, Abdelrahman

Ashraf, Mustafa Zahran, Georges Samih, and João P. S. Catalão, Senior Member, IEEE

Abstract—An original graph-based model and algorithm for

optimal industrial task scheduling is proposed in this paper. The

innovative algorithm designed, dubbed “Dijkstra Optimal

Tasking” (DOT), is suitable for fully distributed task scheduling

of autonomous industrial agents for optimal resource allocation,

including energy use. The algorithm was designed starting from

graph theory fundamentals, from the ground up, to guarantee a

generic nature, making it applicable on a plethora of tasking

problems and not case-specific. For any industrial setting in which

mobile agents are responsible for accomplishing tasks across a site,

the objective is to determine the optimal task schedule for each

agent, which maximizes the speed of task achievement while

minimizing the movement, thereby minimizing energy

consumption cost. The DOT algorithm is presented in detail in this

manuscript, starting from the conceptualization to the

mathematical formulation based on graph theory, having a

thorough computational implementation and a detailed algorithm

benchmarking analysis. The choice of Dijkstra as opposed to other

shortest path methods (namely, A* Search and Bellman-Ford) in

the proposed graph-based model and algorithm was investigated

and justified. An example of a real-world application based on a

refinery site is modeled and simulated and the proposed

algorithm’s effectiveness and computational efficiency is duly

evaluated. A dynamic obstacle course was incorporated to

effectively demonstrate the proposed algorithm’s applicability to

real-world applications.

Index Terms—Graph theory, algorithms, task scheduling,

energy management, Dijkstra, industrial applications.

I. INTRODUCTION

n an exceedingly dynamic and digital world, the old saying
of “time is money” presents itself in all modern problems.
Energy systems witnessed momentous change during the past

few decades [1], which in turn affected all sectors that are
heavily energy-dependent, including industrial and transport
sectors [2].

Despite the advancement of technologies leading to overall
abundance or resources, increased socio-technical complexities
associated with the availability of resources make the optimal

management thereof of paramount importance [3].

In addition to the added complexity of the energy supply
infrastructure, process automation levels are at an all-time high,
making it necessary to develop and deploy new algorithms for
optimized task management in order to guarantee cost-

efficiency and reliability of these automated processes [4], [5].

A. Literature Review

A rundown of recent scientific studies is performed and
subsequently presented to establish the state-of-the-art of
scientific literature addressing optimal task scheduling and
management in modern automated systems. As previously
mentioned, two of the most affected sectors are the industrial
and transport sectors [2], with maximizing cost-efficiency

already of pivotal importance for the two.

For the transport sector, there has been a lot of recent focus on
developing optimal management algorithms for consumer-
owned electric vehicle (EV) fleets [6], with an emphasis on
cost-optimal energy management in the presence of hybrid
technologies [7] and considering smart homes [8] and other
modern solutions for optimal utilization of distributed energy

resources (DERs) [9].

This is especially important with dynamic electricity pricing
schemes adopted through demand response (DR)
implementation [1], [2]. Recent research on this matter was not
only confined to consumer-owned EVs, with a lot of research
also investigating smart public transport systems with increased
proliferation of electric buses (EBs) and smart charging
infrastructures [10]. The priority is ensuring cost-efficiency of

the systems [11] through optimal scheduling [12].

In industrial applications, optimal management of time and
resources is even more critical due to the profit-centered
character of industry, throughout the wide-ranging spectrum of
industrial specializations. In the context of smart factories,
multi-agents systems are proposed as a model for coordination
between autonomous systems working on performing preset
tasks in factories with high levels of automation and a smart

communication infrastructure [13].

The adoption of intelligent algorithms for optimal task
scheduling in industry has been shown to result in significant
cost savings, whether performed by automated mobile agents or
human labor. Such saving are crucial for industries and

economic growth [14].

I

The work of Mohamed Lotfi was supported by the MIT Portugal
Program (in Sustainable Energy Systems) by Portuguese and EU funds
through FCT, under Grant PD/BD/142810/2018. The work of J.P.S.
Catalão was supported in part by FEDER funds through COMPETE 2020
and in part by the Portuguese funds through FCT under POCI-010145-
FEDER029803 (02/SAICT/2017).

M. Lotfi and J.P.S. Catalão are with the Faculty of Engineering of the
University of Porto (FEUP) and the Institute for Systems and Computer
Engineering, Technology and Science INESC TEC, 4200-465 Porto,
Portugal (e-mails: mohd.f.lotfi@gmail.com, catalao@fe.up.pt).

G.J. Osório is with Portucalense University Infante D. Henrique (UPT),
4200-072 Porto, Portugal. (e-mail: gerardo@upt.pt).

M. Javadi is with the Institute for Systems and Computer Engineering,
Technology and Science INESC TEC, 4200-465 Porto, Portugal. (e-mail:
msjavadi@gmail.com).

A. Ashraf, M. Zahran, and G. Samih are with the German University in
Cairo (GUC), New Cairo, Egypt. (emails: mubbyashraf@gmail.com,
mustafazahran1996@gmail.com, georgessami7@gmail.com).

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

2

B. Novel Contributions

Algorithms for optimal task-handling are being investigated for
a wide array of applications, ranging from coordinating
autonomous self-driving EVs [15], to cooperative robotics [16],
industrial site inspection [17], and the management of modern
warehouses [18]. As such, the development of these algorithms
for optimal cost-efficiency of task handling, regardless of the

type of task, becomes imperative for modern industries.

With increased intertwining of modern systems and cross-
industry designs it becomes even more important to design
algorithms for generic systems [19], which are not application-
specific, and could be employed regardless of the target sector,
be it smart factories, modern warehouses, EV fleet

management, etc.

In this study, a novel algorithm for optimal task scheduling,
dubbed “Dijkstra Optimal Tasking” (DOT), is proposed,
implemented and validated. This algorithm was initially
conceptualized by the authors of this work in a preliminary
phase in [20]. The proposed algorithm is generic in nature,
meaning that it can be adapted to different problems in which a
limited number of mobile agents are required to perform several
tasks, with minimal energy. The novel contributions of this

work can thus be summarized as:

• Model a generic tasking problem using graph theory to
guarantee applicability to a wide range of modern problems
(particularly in the industrial and transportation sectors).

• Design and implement an original graph-based model and
algorithm for task scheduling by a limited number of
autonomous mobile agents.

• Perform several benchmarking analyses to determine the
computational complexity of the proposed algorithm, optimal
setting of tunable parameters, and assessing the performance
of the proposed algorithm incorporating different shortest path
methods (Dijkstra, A* Search and Bellman-Ford).

• Ensure the computational efficiency of the algorithm to
enable application in real-time.

• Demonstrate the proposed algorithm considering a case
study based on a real-world industrial site, including the effect
of dynamic (moving) obstacles.

C. Paper Organization

This paper is organized as follows: In Section I, the motivation

behind this work, literature review, and novel contributions are

presented. In Section II, the proposed algorithm is documented

in detail, including: the conceptual model, mathematical

formulation, algorithm design, and computational

implementation.

In Section III, a thorough benchmarking analysis is performed

to determine optimal settings of tunable parameters and

determine the time complexity. A case study is used to

demonstrate a real-world application in Section IV. Finally, in

Section V, conclusions of this paper are summarized and a

discussion of anticipated applications of the proposed algorithm

in different sectors is examined, deriving recommendations for

future work.

II. ALGORITHM DESIGN

A. Conceptual Model

A generic task scheduling problem in a modern industrial
setting is illustrated in Fig. 1. The main elements thereof can be

defined and listed as follows:

Map: is a confined space where all the tasks and mobile agents
are located. All events and scheduling are performed within this

local environment.

Mobile Agent: is an agent which can move around the map and
perform tasks. The agent is electric, meaning it consumes
electric energy on a local battery as a cost of movement. This
agent could be autonomous or human-operated (e.g. Segway,

electric pallet jack, or golf cart).

Charging Station: is where the mobile agent is stationed to
recharge onboard batteries. Although commonly found on the
edges of most maps, they can be located anywhere across the

traversable map.

Tasks: must be reached by a mobile agent in order to be
accomplished. This is generic, i.e., in inspection problems the
task is merely for the agent to be there every period of time. In

handling problems, the agent must stay until task completion.

Obstacles: are non-traversable areas. The mobile agent must

plan a path around them to reach tasks or charging stations.

B. Mathematical Formulation: Graph Theory Model

These are the defining elements of any generic industrial task
scheduling problem, and an algorithm aiming to provide a
non-case-specific solution must be capable of incorporating
them in a versatile and flexible manner.

Fig. 1. An illustration of a generic tasking problem: A mobile agent needs to

perform specified tasks located at different locations in a confined map, in the
presence of non-traversable obstacles. The movement is associated with energy

consumption and recharging is performed at set locations.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

3

Graph theory provides the tools to mathematically model such
a problem and is therefore chosen to construct the basis of the
proposed algorithm. The first step is to divide the map into a
mesh of equidistant and isomorphic “cells”. The size of each
cell should be based on the smallest element in the map. By
doing so, the problem can be defined as a graph G whose

elements are mathematically defined subsequently.

 � � ��, �� (1)

1) Graph Vertices

The graph defined in (1) consists of a set of vertices V (which
correspond to the “cells”), and a set of edges E.

 � ∈ � ∀ � ∈ ℤ ∩ �0, |�| � 1� (2)

As defined in (2), V is a set of vertices i: {0, 1, … , |V|-1}. At
this stage it is established that a zero-based numbering
convention (initial element assigned index 0) is used throughout
this paper, due to its compatibility with graph theory modeling
and algorithm design. The vertices are numbered sequentially,

row-by-row, as shown in Fig. 2.

The equidistant and isomorphic division of the map results in a
“lattice graph” (illustrated in Fig. 2), a unique type of graph
whose properties can be exploited. First, the size of the graph is
decided by the number of rows m and number of columns n.
The total number of vertices is easily expressed as in (3).

 |�| � � ⋅ � (3)

Afterwards, each vertex in the lattice graph can be uniquely
mapped to a row and column value R(i) and C(i) in a set of rows
R and columns C, respectively. Being a single-values unique
mapping between the sets, no two different vertices (i,j) can
have both the same row and column values as shown in (4), and

the sets have the same size as shown in (5).

The mapping functions of the row and column values for each
vertex i is done using (6) and (7), respectively. In (6) the row
number of node i is obtained by applying the modulo operator
of i to n (remainder of division), while the column is calculated
using integer (truncated) division in (7). This is a simple
demonstration of the advantage of using zero-based numbering
to obtain simple and computationally efficient operations
within the graph.

 ����� � ����� ∧ ����� � ����� ↔ � � � (4)

 |�| � |�| � |�| (5)

 ���� � �� mod �� (6)

 ���� � ��� ⋅ �� / |�|� (7)

The x and y coordinates of each vertex on the original (physical)

map can be retrieved using (8) and (9), where $% and $&

correspond to the horizontal and vertical spacing between cells,
respectively.

 '��� � ���� ⋅ $% (8)

 (��� � ���� ⋅ $& (9)

For equidistant and isomorphic spacing, this is simplified by

setting $% � $& � Δ*. Furthermore, the relationship between

row and column values of adjacent vertices the graph is defined

using (10)-(13).

 ���� � ��� � 1� ↔ +,-��� . 0 (10)

 ���� � 1 / ��� � 1� ↔ ���� . 0 (11)

 ���� � ��� � �� ↔ ���� . 0 (12)

 ���� � 1 / ��� � �� ↔ ���� . 0 (13)

Finally, vertices are identified as boundary vertices (set B) or
interior domain (set D) nodes according to (14) and (15).

� ∈ 0 ↔ � ∈ � ∧ 1����� ⋅ ���� � 0�
∨ ������ � � / 1�
⋅ ����� � � / 1� � 0�3

(14)

 � ∈ 4 ↔ � ∈ � ∧ � ∉ 0 ⇒ 4 � � � 0 (15)

2) Graph Edges

The other main element of the graph is the set of edges, E. An
edge is a set of two vertices {i,j} that are connected in the graph.
The set of all possible edges E can be defined using the
condition in (16).

While loops (an edge connecting a node to itself, or
subsequently a path which starts and ends at the same node) are
mathematically possible in a generic graph, they do not exist in
this mode, as it would correspond to indefinite circling in a
closed “loop” within the map. Thus, the condition � 7 � is
imposed in (16). Moreover, the modeled graph is an undirected
one, hence the condition in (17).

 � ⊆ 9 9�, �: | ��, �� ∈ � ∧ � 7 � : (16)

 9�, �: � 9�, �: ∀ ��, �� ∈ � (17)

Based on this property, all edges of the lattice graph can be
constructed by defining an edge between all interior domain
vertices and their adjacent neighbors. This is mathematically
expressed using the interjection in (18).

 ∃ 9i, j: ∈ � ↔ �� ∈ 4�
∧ ��|� � �| � 1�
∨ �|� � �| � ���

(18)

The total number of edges in the graph can be obtained using
the expression in (19).

 |�| � �� � 1� ⋅ � / �� � 1� ⋅ �

� 2 ⋅ � ⋅ � � � � �
(19)

Fig. 2. An illustration of five-by-five map modeled as a lattice graph. Cells are

assigned as vertices in the graph, and connections between adjacent vertices
correspond to edges of the graph.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

4

3) Shortest Paths

The constructed lattice graph is a connected graph, meaning
that any two set of vertices {i,j} can connected using a number
of edges. The simplest connection is a walk, in which a
sequence of edges joins two vertices. A walk can either be finite
or infinite, in which the edges contained in the sequence need
not to be unique.

A path is defined as a walk in which all the elements are unique,
i.e., every vertex in the path is only visited once. Some path
P(i,j) connecting i and j is therefore defined in (20), with K
being the number of elements in the path.

P�i, j� � �@A, @B, … @DEB� | 9@A, @B, … @DEB:

∈ � ∧ �@A, @DEB� � ��, ��
(20)

For every set of vertices i and j, there exists a finite number of
paths between them, where FG,H is a set containing all possible

paths P(i,j). In a weighted graph every edge E is associated with
a weight value I(E) such that � ↦ K, with the latter being the
set of edge weights. Accordingly, the weighted length l(P) of a
path can be calculated as shown in (21).

 L�@� � M I�9@N , @NOB:�
DEB

NPA
 (21)

This function can be used to map FG,H ↦ QG,H (set of

corresponding path weighted lengths). The graph distance
between two vertices is defined in (22) as the weighted length
of the shortest path between them:

 $��, �� � minSQG,HT (22)

Finding the shortest path between any two vertices is a
fundamental problem in graph theory for which solution
algorithms have been well established. Shortest path first (SPF)
algorithms are vital algorithms for graph analysis.

Dijkstra’s algorithm is [21] one of the most popular and well-
established fundamental SPF algorithms in graph theory. The
algorithm is a highly computationally efficient algorithm
finding the shortest path between two nodes in a graph as
expressed in (23).

 U@V ∶ ��, �� → @��, �� ∋ L�@��, ��� � $��, �� (23)

It is duly noted that the proposed model accommodates the use
of any shortest path method, and not necessarily Dijkstra’s SPF.
The choice of Dijkstra as opposed to other alternatives is
discussed and analyzed in detail in Section III.C.

With the mathematical formulation being specified, the
designed algorithm can now be expressed in terms of the graph
elements and defined relations.

C. Designed Algorithm and Computational Implementation

Recalling the original motive, the objective of the proposed
algorithm is to be generic in nature, easily adaptable to different
problems with elements defined in II.A. To do this, the designed
algorithm was implemented in an object-oriented programming
environment. The pseudocode is shown in Algorithm I,
followed by a detailed description of the implementation.

1) Map (Class): The industrial site map model is implemented
as a class. A map object contains all information about the graph
(edges and vertices) and the class methods to update them.

ALGORITHM I. PSEUDOCODE OF THE DESIGNED DOT ALGORITHM.

1 Input Map, TaskList, MobileAgents

2 while isRunning do

3 tau += 1

4 for each A in MobileAgents

5 if A.isCharging then

6 A.chargeStep()

7 if A.fullyCharged then

8 A.isCharging := false

9 tau += 1

10 end if

11 else if A.atStation then

12 A.path ← DijkstraSPF(A.orSta,A.deSta)

13 A.atStation := false

14 else

15 A.loc[t] ← A.move(path,loc[t-1])

16 if map[A.loc[t]].isStation then

17 A.atStation := true

18 tau += tau

19 else

20 Map.vertexHeat[loc[t]] += inc

21 end if

22 for each N in Map.vertexHeats

23 N-=Map.CDF()

24 end for

25 end if

26 end for

27 Map.refresh()

28 TaskList.refresh()

29 MobileAgents.refresh()

30 end while

2) Agent (Class): Each agent is modeled as a class. The class
contains information about the agent, e.g. its current location,
battery state-of-charge (SoC), current path and the class

methods to update all the aforementioned values.

3) Checkpoints (Class Property of Map, Agent): Checkpoints

are locations in the map where the agents stop between map

traversals. Checkpoints don’t necessarily have to also contain a

charging stations, whilst all charging stations are checkpoints,

since the agent can stop at a station and not charge depending

on its current path or schedule.

4) Timer (Global Variable): The time t is constantly
incremented as a global counter in the implemented program
with any update in the map. Given a lattice graph, the
movement time from one node to the other can be used as the
unit of time if all agents are the same model (i.e., same speed),
which is common in most industrial facilities. MAXTIME can
be used as a termination criterion for the program.

 Z ∈ [� �0,1, … \]^_`\�� (24)

5) Traversal Timer (Class Property of Map, Agent): A second
time variable is incorporated to increase the versatility of the
algorithm. Since the algorithm relies on the agents traversing
between checkpoints, the flow of time can be alternatively
tracked as a counter of the number of traversals the agent
makes. This traversal time a is the one used to keep track of the
vertex properties and update the heat values in the map.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

5

A good feature of this implementation, which provides the
versatility, is that a can always be set simply as a � Z in the
code, switching back to real time in the dependent functions
according to the type of tasking problem at hand. Like
MAXTIME, TMAX can also be used as a termination criterion.

 a ∈ b � �0,1, … , c\]^� (25)

A mapping τ�Z� can give the current increment time at any t.

6) Heat Values (Class Property of Map): Each vertex has a
time-varying “heat” value H(i,t) assigned to it in the Map class.
The movement cost through an edge is defined as the mean of

the heat values of the two connected vertices as in (26).

 I�9�, �:, Z� � 1
2 �e��, Z� / e��, Z�� ∀ 9�, �: ∈ �, Z ∈ [(26)

This heat property is the main premise of the designed
algorithm and is used to establish all other relations to model a
given problem and calculate the task scheduling. Heat values of
the vertices are continuously updated to “guide” each agent
through the shortest path in the graph such that all tasks are
achieved while traversing between its checkpoints (Fig. 3).

7) Obstacles are directly incorporated by setting a very large
number as heat value in that vertex. In this manner, obstacles
can be modeled in a very computationally efficient way (as
opposed to the use of exceptions or conditional statements),
since the movement to/from that vertex is never chosen over
any other alternative. This number is imposed as the largest
float value of the machine where the algorithm is running,
which for most modern processors is 1.7976308.

8) Tasks, on the contrary, are by setting a low value, depending
on the type and/or urgency of each task. This acts as an
“attractor” for the mobile agent since the Dijkstra SPF
algorithm will be attracted to pass through that vertex when
constructing the path instead of other alternatives.

Once an agent has reached a vertex with a task, the heat value
of this vertex is incremented. In this way, the movement cost
to/from this location is increased, removing the “attractor” as
the task is accomplished. A “cooldown” effect is applied by
decrementing heat values of all vertices with each increment of
t, such that for an idle map with no activity, heats are eventually
reset to their initial values.

To sum up the flow of the algorithm:

• The industrial site or facility is modeled as a lattice graph.

• Each vertex has a heat property that is updated with every
increment of time t based on the mobile agents’ movement
through the map, the flow of time, and nature of the tasks to
be performed (as visualized in Fig. 3). The heat value update
is done by incrementation and cooldown.

• Tasks and obstacles are modeled by setting the heat value
accordingly to guide the agents.

• The heat values set the edge weights for the graph.

• The pathing of each mobile agent between its checkpoints
is determined using Dijkstra’s SPF (or an alternative shortest
path method) every increment of traversal time a.

The algorithm was implemented using Python 3.6.7. All
subsequent tests were run on a standard laptop computer with
an Intel Core i7-8550U CPU @ 1.80 GHz, 16.0 GB RAM, and
Windows 10 64-bit operating system.

III. PARAMETER TUNING AND BENCHMARK TESTING

In this section, tuning parameters of the algorithm are
identified, and a benchmark analysis is performed to test the
proposed algorithm on a benchmark case, assess the appropriate
values for the parameters, and analyze the computational
performance and time complexity of the algorithm.

Finally, the choice of the most adequate shortest path method
(Dijkstra is justified by discussing other commonly employed
shortest path methods is graph theory (A* Search and Bellman-
Ford) and performing a comparative analysis between feasible

candidates.

A. Identifying Tunable Parameters

From the algorithm description it can be seen that there are two
main parameters which can be used to tune the algorithm:

1) Increment Value: The first tuning parameter is the
incremental heat value of a vertex once an agent completes a
task there. This is defined as INC in (27). Note that this function
is only invoked once an agent reaches a vertex marked with a

task.

 e��, Z� � e��, Z� / INC, if task completed (27)

2) Cooldown Function: This second tuning parameter is how
the vertex heat values of the whole graph are updated every time

increment t. This is defined as a function CDF in (28).

 e��, Z� � �rV��, e��, Z�, Z� (28)

In this study, four different types of functions are considered. A
Fixed Cooldown (FCD) decrements the H(i,t) by a constant
value CD every time increment, while a Zero Cooldown sets �r � 0 as in (29) and (30).

In (31) and (32), exponential functions are used instead for a
scaled cooldown (SCD), making the cooldown value increase
exponentially with every traversal time. In SCD1 and SCD2,
the initial decrement values are 1 and 0, respectively. stuH scales the function, increasing the exponential growth as

stuH → 0, as shown in (33).

 �rVvwx��, e��, Z�, Z� � e��, Z� � CD (29)

 �rVzwx��, e��, Z�, Z� � e��, Z� � CD, CD � 0 (30)

 �rV{|}B��, e��, Z�, Z� � e��, a�Z� � 1� � ~���⋅���� / 1 (31)

 �rV{|}���, e��, Z�, Z� � e��, a�Z� � 1� � ~���⋅���� (32)

 SCD � |�| ⋅ log � ΤtuHTMAX� (33)

Fig. 3. Vertex properties being updated as the mobile agent moves and follows

a path through the map.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

6

B. Benchmark Analysis and Limit Testing

The objective of benchmark analysis is limit-testing the
proposed algorithm by conducting a parametric study to assess
the performance and stability of the solution A generic case
study is used based on the facility inspection problem [17].

In this problem, a mobile agent travels between the charging
stations, at the top-left and bottom-right corners of the map. The
mobile agent must inspect the site, making sure all areas are
frequently visited and no areas are ignored. The inspection
problem makes is an ideal benchmark case study for limit
testing, since it is an extreme case of the task scheduling
problem: every vertex of the map is itself a task since the goal
is to patrol the full map continuously.

The ideal solution in this case is for the agent to be pathed
across the map to avoid any areas of the map being neglected
on the long term (i.e., avoid some areas being visiting more than
others as much as possible). Three benchmark studies and limit
tests were performed.

1. Benchmark Test 1: Time Complexity Analysis

When proposing a new computational algorithm, one of the
most important features to establish is its time complexity. The
time complexity of the Dijkstra SPF (computing only one
traversal of the map) is Θ(|V|·log|V|). Using analytical analysis
of the implemented code, the time complexity of the proposed
algorithm was determined to be Θ(|V|·(log|V|)3).

The benchmark problem is run for a grid size of 10x10, 25x25,
50x50, 75x75, and 100x100. The ZCD function was used
(chosen for simplicity, since the choice is irrelevant and doesn’t
affect the time complexity results since all the CDF functions
are Θ(1)). The termination criterion was set as TMAX=100
(100 traversals). For each map size the code is run 10 times, and

the average run time is recorded.

The results are plotted in Fig. 4 in comparison to other common
time complexities of graph algorithms, expressed in big-Θ
notation. From the results, it is indeed confirmed to be

Θ(|V|·(log|V|)3).

The small offset for larger values is attributed to approaching
physical limits of memory allocation on a laptop PC. Thus, the
proposed algorithm is deemed computationally efficient, being
marginally slower than Dijkstra’s SPF for a single shortest path
solution, yet faster than any Θ(N2) algorithm, i.e.,
Θ(|V|·log|V|) < Θ(|V|·(log|V|)3) < Θ(N2).

2. Benchmark Test 2: INC and CDF Selection

The second benchmark test aims to test the effect of varying the
value of INC and the choice of the CDF. To perform a full
parametric analysis which considers the grid size as well, the
testing is performed and comparatively evaluated on small

(10x10), medium (25x25), and large (50x50) maps.

Four each map size, ten different INC values are tested, varying
from 0.5·|V| to 5·|V| with increments of 0.5·|V|. For each value
of INC, the problem is run using each of the four proposed CDF
functions (i.e., a total of 3 maps x 10 INC values x 4 CDF runs).
For each run, the termination criterion was set as TMAX=100
(100 traversals). As a performance metric the number of times
each vertex was visited/inspected by the agent is counted,
recalling that the anticipated solution is to have no uninspected

parts of the grid.

Fig. 4. Results for the first benchmark test: time complexity analysis showing

the recorded run time vs. other time complexities in big-Θ notation. The

designed algorithm is confirmed to be Θ(|V|·(log|V|)3)

In Fig. 5, the number of uninspected nodes at the end of each
run (at a � ���� � 100) is plotted for all cases. Another
performance metric is associated with the frequencies of vertex
inspections. The ideal solution is for the number of visits for the
maps vertices to be as close to the median value as possible (i.e.,
no parts are neglected compared to others).

To analyze this, a box plot with summary statistics for each run
of the medium map is shown in Fig. 6. In this sense what is
desired is to have: 1) no zero values; and 2) minimum inter-
quartile range. From the results in Fig.5 and Fig. 6, the
following points can be made by observing both performance
metrics:

• ZCD is the only CDF that provides a stable operation,
being independent of the grid size.

• If a FCD is to be chosen, its value should be set as a
function of INC to guarantee improved performance.

• In comparison, SCD1 and SCD2 do not perform as well
and are less stable. SCD1 shows more stability than SCD2, but
better tuning of the function is necessary.

The results of this third benchmark test strengthen the points
made previously. ZCD and FCD both provide stable
performance, with the number of traversals required converging
to a finite value as the grid size is increased. However, FCD is
dependent on the INC value, thus being proportional to the grid
size for a stable operation. SCD1 and SCD2 are shown to have

stability problems in their current form for large maps.

It can be argued that the SCD function may provide better
performance depending on the type of tasking problem
involved. While this may be true, the objective of this test is to
determine the choice of parameters that guarantee a reliable and
stable operation for any type of tasking problem, thus
establishing a “benchmark” for the designed algorithm.
Nevertheless, the implementation makes it flexible for users to

freely tune these parameters to best fit the specific problem.

Therefore, from the benchmark analysis it is possible to show
that: 1) the proposed algorithm is Θ(|V|·(log|V|)3) and 2) ZCD
is recommended as the “default” option for the CDF, being the

most reliable and least dependent on other parameters.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

7

Fig. 5. Results for the second benchmark test: number of uninspected vertices at τ=TMAX=100. Results are shown for the total of number of runs corresponding

to: 3 maps x 10 INC values x 4 CDF choices.

Fig. 6. Results for the second benchmark test: box plot to show summary statistics of the number of vertex inspections at τ=TMAX=100. A box plot for each of
the 10 INC values x 4 CDF choices is plotted for the medium 25x25 map. The blue boxes correspond to the 25th to 75th percentile range. The red line is the median

value, and the whiskers show the maximum and minimum values. Outliers (>1.5 times inter-quartile range) are shows as red crosses.

3. Benchmark Test 3: Stability and Termination Criteria

By using TMAX as the termination criterion in the previous
study, it was observed that the number of required traversals to
fully span the map is dependent both on the tunable parameters
and the grid size. It is very critical to verify that the number of
traversals required to fully span the map does not diverge with
the grid size, i.e., it is critical to establish the stability of the

algorithm and the CDF functions and INC values.

Therefore, another limit test is performed by letting the
simulation run for a very large number of traversals
(TMAX = 500) and recording the number of traversals required
to inspect the full grid once all nodes have been inspected at

least once. The results are listed in Table I and plotted in Fig. 7.

C. Choice of the Shortest Path Method

In the designed and implemented algorithm, for each traversal
of a mobile agent through the modeled map, Dijkstra’s SPF
method is used to determine the path taken of the mobile agent.
Since the shortest path is guided by the node values set
iteratively according to the designed algorithm (as the map
dynamically changes), the obtained path would maximize the
tasks being achieved while minimizing the movement cost (and
hence, electricity consumption).

Indeed, numerous other shortest path methods exist in graph
theory applications, with common well-known alternatives to
Dijkstra’s SPF being A* Search and Bellman-Ford [22].

All the aforementioned methods achieve the same objective:
find the shortest path between two nodes in a weighted graph.

Fig. 7. Results for the third benchmark test: number of traversals required to

inspect the full map relative to the map size, for each CDF selection. Dotted,
dashed, and solid lines correspond to INC=1|V|, 3|V|, and 5|V|, respectively.

TABLE I RESULTS FOR THE THIRD BENCHMARK TEST: NUMBER OF

TRAVERSALS REQUIRED TO INSPECT THE FULL MAP.

CDF
Map Size

(|V|)

INC

1|V| 3|V| 5|V|

F
C

D
 100 36 16 14

625 >500 96 74

2500 >500 289 113

Z
C

D
 100 14 14 14

625 58 58 58

2500 108 108 108

S
C

D
1

 100 170 16 15

625 381 393 438

2500 >500 >500 >500

S
C

D
2

 100 14 14 14

625 349 426 422

2500 >500 >500 >500

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

8

The designed graph-based model and algorithm are versatile
such that any shortest path method can be used, and the same
results would be achieved, since the shortest path for a given
state of the map (node values and corresponding edge weights)
would be the same regardless of the method used to find it.

In this case, the choice of the most suitable shortest path method
to incorporate in the proposed algorithm depends on the
computational burden. To justify the choice of Dijkstra as
opposed to other alternatives, a discussion thereof and a
comparative analysis is performed in this section.

By reperforming the benchmark analysis considering all three
candidates (Dijkstra, A* Search, and Bellman-Ford), Dijkstra
was shown to guarantee the best performance in terms of
computational complexity (and thereby scalability) for the
proposed algorithm. In Fig. 8, A* Search and Bellman-Ford are
seen to have a similar performance, being significantly slower
than Dijkstra, especially for larger maps.

Another critical point to note is that with the proposed model
and algorithm, Bellman-Ford is unable to converge to a solution
when all the edge weights are equal (e.g., in the first iteration),
and an alternative method must be employed whenever this
occurs.

This issue does not occur neither with Dijkstra nor with A*
Search, which both robustly find the shortest path in all
iterations for all map conditions. Therefore, the use of Bellman-
Ford is not recommended, and the two feasible candidates are
Dijkstra and A* Search.

Both methods provide the same results for the designed model
and algorithm, with Dijkstra being superior in terms of
computational time, especially for larger maps (i.e., better
scalability). Therefore, Dijkstra’s method is shown to guarantee
a reliable performance while providing the fastest
computational time (which is critical as the proposed algorithm
is intended for real-time application).

Nevertheless, the implementation of the proposed model and
algorithm makes it flexible for users to use any shortest path
method at their convenience. A comparison between the choice
of Dijkstra and A* Search in the proposed model and algorithm
is revisited in the next section considering a real-world
application.

Fig. 8. Comparing the performance of the proposed algorithm while using

Dijkstra, A* Search, and Bellman-Ford for different map sizes.

IV. REAL-WORLD APPLICATION

In this section, a real-world case study is used to demonstrate
the applicability of the proposed algorithm to real-life
problems. An oil refinery located at coordinates (53.090,
14.254) is considered. Due to their nature, oil refineries require
constant safety inspection, particularly with the hazardous
nature involving the oil tanks and pipelines on the site. These
refineries span very large areas, and so automating the safety
inspection process is highly desired.

A. Validation Case Study with Stationary Obstacles

In this case study, one autonomous mobile agent is allocated to
perform the security inspection and patrolling the refinery, as
shown in Fig. 9 (left). The SMP S5.2 series security robot 2020
model [22] is considered as a commercially available option for
an autonomous mobile agent, with its specifications listed in
Table II. Thus, the objective is to test the performance of the
proposed DOT algorithm in effectively scheduling its fully
autonomous operation in the sites’ safety inspection. In this first
case study, only stationary obstacles are considered.

The physical limitations of the agent’s motion must be
considered to determine the correct discretization of the lattice
graph. The dimension of each grid element Δ* must be larger
than both the minimum width of the patrol path (S3) and the
minimum turning radius (S4). Meanwhile, the grid elements
must also be smaller than the minimum object recognition range
of the onboard cameras and detection systems (S5). This is
expressed in (34).

 max�U3, U4� � Δ* � U5 (34)

With the real site area being 350x350 (m2), a spacing �* � 7m
would satisfy (38), thus resulting in a 50x50 grid as shown in
Fig. 8 (right). The graph can then be constructed as formulated
in Section II. As mentioned, obstacles (in this case being the
tanks) are modeled by setting the vertex heat values to
1.7976308. Each time step would correspond to the average
traveling time between two vertices at the agent’s average
autonomous traveling speed (S2), as shown in (35).

 ΔZ � Δ* ⋅ U2 � 0.035 ℎ (35)

The agent’s onboard battery SoC is updated according with
each timestep to (36). The charging and discharging values (per
timestep) are calculated according to (37) and (38). The
minimum allowed SoC is 0.1. Accordingly, the maximum range
of a fully charged agent is be obtained in (40).

U,��Z�
� �U,��Z � 1� � U,�}G{��� ¡ , �¢ �,*��£

U,��Z � 1� / U,�|��� ¡ , �¢ ¤ℎ¥+£��£
(36)

 U,�}G{|��� ¡ � 100 ⋅ Δ*
U1 % � 0.029% (37)

 U,�|��� ¡ � 100 ⋅ ΔZ ⋅ U9
U8 % � 0.7% (38)

 �¥' +¥�£~ � �1 � U,�©Gª� ⋅ U1 � 19.2 «� (39)

The algorithm is run for this problem with ZCD and ¬­� � 1.
In order to simulate the real-life case, the termination criteria is
set according to the maximum range at full charge, by setting ����¬�® � 3085. In this sense, the case study aims to assess
the effectiveness of the algorithm in scheduling the agent’s
inspection paths through the map, making the best use of one
full battery charge.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

9

TABLE II SPECIFICATIONS OF THE MOBILE AGENT USED FOR THE CASE STUDY

(SMP S5.2 SERIES 2020 MODEL) [22].

S1 - Cruising Range 24 km

S2 - Autonomous Traveling Speed (average) 5 km/h

S3 - Width of patrol route path (minimum) 0.9 m

S4 - Turning radius (minimum) 5 m

S5 - Object Recognition Range (minimum) 50 m

S6 - Operating Time (average) 12 h

S7 - Charging Time (average) 5 h

S8 - On-Board Battery Capacity 3 kWh

S9 - Charger Power 600 W

It has been mentioned that the proposed algorithm is the first of
its kind in generically model the industrial task scheduling
problem for autonomous agents. While this is a novel
contribution, it does add a difficulty since there were no similar
existing algorithms to use for comparison at the time of this
work, especially in terms of the problem modeling.

Obtaining a deterministic solution is not possible, as it would
require a full graph search to be performed being Θ(|V|!),
corresponding to more than 1.67411·path determinations, which

is infeasible even on high-performance computers.

However, there are multiple graph theory algorithms for path
spanning and sampling that can be modified for this purpose.
Accordingly, the directed random walk (DRW) algorithm [23],
[24] was used with two variations: normal (DRW1), and brute-

force (DRW2). Those algorithms are detailed in Appendix 1.

In addition, the case study is used to reaffirm the choice of
Dijkstra’s SPF as opposed to the other feasible alternative
(A* Search) in the proposed model and algorithm. While it is
anticipated that both Dijkstra and A* Search would yield the
same results and the main advantage of choosing Dijkstra
would be in the computational efficiency, this is revalidated by
comparing the results of the proposed algorithms using both
shortest path methods.

The objective now is to evaluate a) how effectively is the site
being inspected by the assigned agent and b) how efficiently is
this being done by limiting the operation to one full battery

charge. Four evaluation criteria are used:

• Percentage of Site Area Inspected [%].

• Mean number of vertex visits.

• Mean Area per Charge Consumed [m2/kWh]

• Ratio of Algorithm Running Time to Real Operating Time.

Snapshots of the resulting paths through the site by the DOT
algorithm are visualized in Fig. 10, and the performance metrics
are compared with those of DRW1 and DRW2 in Fig. 11. The
latter are also listed in Table III. The proposed algorithm

outperforms the others in all performance metrics.

It is noted that the algorithm run time is calculated per map
traversal as a normalized figure. As anticipated, the choice of
Dijkstra or A* has no effect on the performance metrics except
the computational time, where the choice of Dijkstra

outperforms A* Search (by 12.5%).

Note that the DRW algorithms have a random element and the
results shown are for optimized runs (best cases). Therefore, the
actual real-life performance of DRW is worse than shown here,
as opposed to the deterministic solution of the proposed DOT.

The results shown are for an operation limited to one full battery
charge to simulate a real-life restriction. Removing this
constraint (with recharging or a substitute agent) results in even
better performance by DOT compared to DRW. Finally, it is
worth noting that the ratio of scheduled real time to the
algorithm running time is ~1000, confirming that DOT is

deployable for real time scheduling of autonomous agents.

It can be seen in Fig. 10 how the obstacles were provided
directly in the map data input file without the need for any
conditional statement modifications to the code. Applying a
heat value of 1.7976308 guaranteed that the obstacle vertices are
never selected in computed paths. This provides great
versatility, since new obstacles can be introduced or moved in
real-time, a feature which is not possible by other graph
methods that construct random paths such as DRW. To
demonstrate this, a second case study with dynamic (mobile)

obstacles is performed.

B. Case Study with Stationary and Mobile Obstacles

In this case study, two dynamic (mobile) obstacles are
introduced into the map. In the real-world setting, this would
correspond to construction work along the pipelines in the oil
refinery, which would in untraversable by the mobile agent
during its inspection patrols. This is illustrated in Fig. 12, with
dynamic obstacles 1 and 2 set on a path that is eastbound and
westbound, respectively. The speed of the obstacles is set to
3m/h, corresponding to a realistic relocation of maintenance

workers along the pipelines.

Snapshots of the resulting paths through the site by the DOT
algorithm is visualized in Fig. 13, and the performance metrics

are shown in Table IV.

Fig. 9. Satellite image of the oil refinery located at coordinates (53.090, 14.254) used as for the case study (left), and modeling as a lattice graph (right) with the
obstacles/non-traversable vertices highlighted in yellow. The real-life area of the site is 350x350m2.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

10

Fig. 10. Snapshots visualizing the resulting paths through the site by the DOT algorithm at a � �0,3,6,9,12,18,21,24,27,28� on a single onboard battery charge.
Dark and light colored nodes correspond to inspected vs. uninspected vertices, respectively.

Fig. 11. Comparison between the proposed DOT algorithm vs. DRW1 and DRW2 in terms of the performance metrics: a) Percentage of Site Area Inspected [%],

b) Mean number of vertex visits, c) Mean Area per Charge Consumed [m2/kWh], and d) Ratio of Algorithm Running Time to Real Operating Time.

TABLE III PERFORMANCE METRICS FOR DOT WITH STATIONARY OBSTACLES ONLY.

Performance Metric

Method Used for Task Scheduling

Proposed Graph Model and Algorithm
DRW1 DRW2

With Dijkstra SPF With A* Search

Algorithm Running Time (s) 3.99 4.5 36.6 17.2

Mean number of vertex visits 1.20 1.20 0.43 0.83

Total area inspected (m2) 57526 57526 13083 26313

Percentage site area inspected (%) 60% 60% 14% 27%

Area per Charge Consumed (m2/kWh) 22103 22103 13874 14569

Fig. 12. Satellite image of the oil refinery located at coordinates (53.090, 14.254), including mobile obstacles used as for the second case study (left), and modeling
as a lattice graph (right) with the obstacles/non-traversable vertices highlighted in yellow (stationary and mobile). The real-life area of the site is 350x350m2.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

11

Fig. 13. Snapshots visualizing the resulting paths through the site by the DOT algorithm at a � �0,3,6,9,12,18,21,24,27,28� on a single onboard battery charge.
Dark- and light-colored nodes correspond to inspected vs. uninspected vertices, respectively. Blue and red squares correspond to stationary and mobile obstacles,

respectively. The dotted path corresponds to the agent’s current path at the given time.

The presence of dynamic obstacles slightly increases the
computational burden (due to the necessity of updating the node
heat values every time the obstacle moves). Moreover, the
presence of the moving obstacles seems to (very slightly)
facilitate the inspection problem, since it forces the mobile
agent to cover a wider area to avoid the additional obstacles

present.

It is verified that the resulting paths for the agent never intersect
with neither the stationary nor the dynamic (moving) obstacles,
while successfully maximizing the inspected area for an
operation limited to one full battery charge to simulate a real-
life restriction.

To reaffirm the statements made in Section III.C regarding the
choice of Dijkstra as opposed to other shortest path, the case
study with dynamic obstacles is re-simulated using the
proposed method, incorporating A* Search instead of Dijkstra.

As anticipated and previously stated (also as the results of the

first case study showed), the choice of the shortest path method

does not affect the results. Dijkstra is demonstrated again to

guarantee the best computational efficiency and algorithm

stability.

The objective of this paper was to clearly describe the proposed
model and algorithm present the mathematical formulation. A
thorough limit testing was performed to recommend the set of
parameter settings (i.e., INC and CDF) and the choice of the
shortest path method (i.e., Dijkstra), that guarantees reliable and
stable execution of the algorithm, in addition to minimal

computational burden.

However, the algorithm was designed such that the building
blocks can be easily changed by the users (e.g., choice of the
shortest path method), without influencing the results). This is
in fact a compelling advantage of the proposed graph model and
algorithm, being that the obtained solution is independent on

the choice of the shortest path function.

In this way, the designed algorithm is versatile and can be easily
adapted or modified by users for different industrial tasking
problems cases while guaranteeing a reliable and robust
performance for real world applications.

TABLE IV PERFORMANCE METRICS FOR DOT (PROPOSED ALGORITHM WITH

DIJKSTRA) VS. PROPOSED ALGORITHM CONSIDERING DYNAMIC OBSTACLES.

Performance Metric

Proposed Graph Model and

Algorithm

With Dijkstra

(DOT)

With

A*Search

Algorithm Running Time (s) 4.25 4.85

Mean number of vertex visits 1.21 1.21

Percentage site area inspected (%) 61% 61%

Area per Charge Consumed (m2/kWh) 22235 22235

Fig. 14. Comparing the computational performance of the proposed algorithm

while using Dijkstra vs. A* Search in the presence of stationary obstacles only

(left) and stationary and dynamic obstacles (rights).

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

12

V. CONCLUSIONS

An innovative graph-based model and algorithm for optimal

task scheduling was proposed, implemented and tested. The

designed DOT algorithm was designed based on graph theory

to guarantee a generic nature, making it applicable on a plethora

of tasking problems and not being case-specific. For any

industrial setting where mobile agents are responsible for

accomplishing tasks across a site, an optimal task schedule for

each agent is obtained to maximize the speed of the task

achievement with high energy consumption efficiency. The

algorithm’s versatility in modeling different problems and high

computational efficiency make it perfectly suitable for a fully

distributed task scheduling of autonomous agents. A real-world

case study has demonstrated the effectiveness of the proposed

algorithm for an industrial site inspection problem, including

the presence of dynamic (moving obstacles). In future work, the

algorithm can be applied to other problems in smart industries

with dynamic environments where energy consumption

efficiency is required.

ACKNOWLEDGEMENTS

The Authors sincerely thank the Editor and Reviewers from the

IEEE-IAS Industrial Automation and Control Committee for

their detailed revision and comments which have greatly helped

improve the quality of the manuscript.

APPENDIX 1: DIRECTED RANDOM WALK ALGORITHM

In a random walk, the next vertex j in a path is chosen at random
from the neighbors of a vertex i. In this study a variation of this
is used for comparison with DOT, a directed random walk
(DRW) [24], [25]. In a DRW the next vertex is chosen
randomly, but the probability of a vertex being chosen is
inversely proportional to its distance from the destination. This
is illustrated in Fig. A1, where the current vertex i has four
neighbors 1, 2, 3, and 4, with the distances (Cartesian) to the
destination being d1, d2, d3, and d4, respectively. The next
vertex in the path is selected using a roulette wheel approach.
The aim is to have a random selection while assigning a higher
priority to vertices closer to the destination. Therefore, the
selection probability is proportional to d’, which is the inverse
(1/d) of the Cartesian distance. A random variable X is
generated such that X=U(0,sum(d1’,d2’d3’,d4’), based on an
uniform distribution. As illustrated in Fig A2, the probability of
each of the neighbors being selected is proportional to its
inverse distance from the destination. With the random element
performed, the results reported in this study are based on the
25th percentile (best case) of 1000 runs.

The DRW guarantees to provide a finite path; however, the
random element can result in excessively long ones. Therefore,
two variations of the DRW were used in this work: normal
(DRW1) and an improved brute force one (DRW2). At the
beginning of every traversal while stationed at a checkpoint, a
path is calculated. Once a path requires the agent to drop below
SoC minimum, the pathing is halted. With DRW2, ten trials are
attempted at finding a shorter path until the solution is halted,
in which case the agent must recharge before proceeding, since
no shorter path can be found that can be traversed with the

remaining SoC.

Fig. A1 Illustration of current node i , neighboring nodes, and their Cartesian

distance to the destination.

Fig. A2 Constructing the roulette wheel selection.

VI. REFERENCES

[1] M. Lotfi, C. Monteiro, M. Shafie-Khah, and J. P. S. Catalao, “Evolution
of Demand Response: A Historical Analysis of Legislation and Research

Trends,” in 2018 20th International Middle East Power Systems

Conference, MEPCON 2018 - Proceedings, 2018, pp. 968–973.
[2] J. A. P. Lopes et al., “The future of power systems: Challenges, trends,

and upcoming paradigms,” WIREs Energy Environ., Dec. 2019.

[3] R. K. Jain, J. Qin, and R. Rajagopal, “Data-driven planning of distributed
energy resources amidst socio-technical complexities,” Nat. Energy, vol.

2, no. 8, pp. 1–11, Aug. 2017.

[4] M. Chowdhury and M. Maier, “Local and nonlocal human-to-robot task
allocation in fiber-wireless multi-robot networks,” IEEE Syst. J., vol. 12,

no. 3, pp. 2250–2260, Sep. 2018.

[5] V. Ortenzi et al., “Robotic manipulation and the role of the task in the
metric of success,” Nat. Mach. Intell., vol. 1, no. 8, pp. 340–346, Aug.

2019.

[6] A. Ovalle, A. Hably, S. Bacha, G. Ramos, and J. M. Hossain, “Escort
Evolutionary Game Dynamics Approach for Integral Load Management

of Electric Vehicle Fleets,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp.

1358–1369, Feb. 2017.
[7] X. Hu, C. Zou, X. Tang, T. Liu, and L. Hu, “Cost-optimal energy

management of hybrid electric vehicles using fuel cell/battery health-

aware predictive control,” IEEE Trans. Power Electron., vol. 35, no. 1,
pp. 1–1, 2019.

[8] X. Hou, J. Wang, T. Huang, T. Wang, and P. Wang, “Smart Home Energy

Management Optimization Method Considering Energy Storage and
Electric Vehicle,” IEEE Access, vol. 7, pp. 144010–144020, 2019.

[9] H. M. D. Espassandim, M. Lotfi, G. J. Osorio, M. Shafie-Khah, O. M.

Shehata, and J. P. S. Catalao, “Optimal operation of electric vehicle
parking lots with rooftop photovoltaics,” in 2019 IEEE International

Conference on Vehicular Electronics and Safety, ICVES 2019, 2019.

[10] M. Bhaskar Naik, P. Kumar, and S. Majhi, “Smart public transportation
network expansion and its interaction with the grid,” Int. J. Electr. Power

Energy Syst., vol. 105, no. December 2017, pp. 365–380, 2019.

[11] M. Rogge, E. Van Der Hurk, A. Larsen, and D. U. Sauer, “Electric bus
fleet size and mix problem with optimization of charging infrastructure,”

Appl. Energy, vol. 211, pp. 282–295, 2018.
[12] E. Yao, T. Liu, T. Lu, and Y. Yang, “Optimization of electric vehicle

scheduling with multiple vehicle types in public transport,” Sustain. Cities

Soc., vol. 52, no. August 2019, p. 101862, 2020.
[13] S. Wang, J. Wan, D. Zhang, D. Li, and C. Zhang, “Towards smart factory

for industry 4.0: A self-organized multi-agent system with big data based

feedback and coordination,” Comput. Networks, vol. 101, pp. 158–168,
Jun. 2016.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

0093-9994 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIA.2021.3091418, IEEE
Transactions on Industry Applications

13

[14] X. Gong, Y. Liu, N. Lohse, T. De Pessemier, L. Martens, and W. Joseph,

“Energy- and Labor-Aware Production Scheduling for Industrial Demand
Response Using Adaptive Multiobjective Memetic Algorithm,” IEEE

Trans. Ind. Informatics, vol. 15, no. 2, pp. 942–953, Feb. 2019.

[15] B. Beirigo, F. Schulte, and R. Negenborn, “Dual-Mode Vehicle Routing
in Mixed Autonomous and Non-Autonomous Zone Networks,” in IEEE

Conference on Intelligent Transportation Systems, Proceedings, ITSC,

2018, vol. 2018-November, pp. 1325–1330.
[16] A. Khamis, A. Hussein, and A. Elmogy, “Multi-robot task allocation: A

review of the state-of-the-art,” Stud. Comput. Intell., vol. 604, pp. 31–51,

2015.
[17] C. Liu, Multi-Robot Task Allocation for Inspection Problems with

Cooperative Tasks Using Hybrid Genetic Algorithms. .

[18] C. Sarkar, H. S. Paul, and A. Pal, “A Scalable Multi-Robot Task
Allocation Algorithm,” in Proceedings - IEEE International Conference

on Robotics and Automation, 2018, pp. 5022–5027.

[19] M. Hermann, T. Pentek, and B. Otto, “Design principles for industrie 4.0
scenarios,” Proc. Annu. Hawaii Int. Conf. Syst. Sci., vol. 2016-March, pp.

3928–3937, 2016.

[20] M. Lotfi, A. Ashraf, M. Zahran, G. Samih, M. Javadi, G.J. Osório, J.P.S.

Catalão, “A Dijkstra-Inspired Algorithm for Optimized Real-Time
Tasking with Minimal Energy Consumption,” in Proceedings - 2020

IEEE International Conference on Environment and Electrical

Engineering and 2020 IEEE Industrial and Commercial Power Systems
Europe, EEEIC / I and CPS Europe 2020, 2020.

[21] E. W. Dijkstra, “A note on two problems in connexion with graphs,”

Numer. Math., vol. 1, no. 1, pp. 269–271, Dec. 1959.
[22] D.K. Smith, “Shortest Paths,” Networks and Graphs, pp. 27–45, 2003.

[23] SMP Robotics, “S5.2 series 2020 models datasheet,” 2020. [Online].

Available: https://smprobotics.com/wp-
content/uploads/2019/09/security_robot_s5.2_is_prompt_2020.pdf.

[24] S. Y. Huang, X. W. Zou, and Z. Z. Jin, “Directed random walks in

continuous space,” Phys. Rev. E - Stat. Physics, Plasmas, Fluids, Relat.
Interdiscip. Top., vol. 65, no. 5, p. 4, May 2002.

[25] B. Ribeiro, P. Wang, F. Murai, and D. Towsley, “Sampling directed

graphs with random walks,” in Proceedings - IEEE INFOCOM, 2012, pp.
1692–1700.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 23,2021 at 14:57:28 UTC from IEEE Xplore. Restrictions apply.

