A Heuristic Methodology to Economic Dispatch Problem Incorporating Renewable Power Forecasting Error and System Reliability

J.M. Lujano-Rojas^{a,b,c}, G. J. Osório^a, J.C.O. Matias^a, J.P.S. Catalão^{a,b,c*}

^a University of Beira Interior, R. Fonte do Lameiro, Covilha, Portugal INESC-ID, R. Alves Redol, Lisbon, Portugal ^c IST, University of Lisbon, Av. Rovisco Pais, Lisbon, Portugal

Abstract

1

2

3

4

56 7

8 9

1012345678901223 With the constant increment of wind power generation driven by economic and environmental factors, the optimal utilization of generation resources has become a critical problem discussed by many authors. Within this topic, determination of optimal spinning reserve (SR) requirements is a key and complex issue due to the variable and unpredictable nature of renewable generation besides of generation unit reliability. Cost/benefit relationship has been suggested as a way to determine the optimal amount of power generation to be committed by taking into account renewable power forecasting error and system reliability. In this paper, a technique that combines an analytical convolution process with Monte Carlo Simulation (MCS) approach is proposed to efficiently build cost/benefit relationship. The proposed method uses discrete probability theory and identifies those cases at which convolution analysis can be used by recognizing those situations at which SR does not have any effect; while in the other cases MCS is applied. This approach allows improving significantly the computational efficiency. The proposed technique is illustrated by means of two case studies of 10 and 140 units, demonstrating the capabilities and flexibility of the proposed methodology.

© 2015 Elsevier Ltd. All rights reserved.

24 Keywords: Insular power systems, power system reliability, probabilistic economic dispatch, wind power forecasting error.

25 26 27

Nomenclature

S	Index for discretization levels of normal standard PDF $s \in [1, S]$
q	Index for discretization levels of wind power PDF $q\epsilon[1, Q]$
p	Index for discretization levels of thermal power PDF $p \in [1, P]$
n	Index for generation units $n \in [1, N]$
m	Number of failure events of a determined unit $m \in [1, M]$
а	Index for discretization levels of FCC PDF $a \in [1, A]$
h	Index for discretization levels of initial power generation
t	Index for time step
М	Number of MCS trials
f_W	Discretized Weibull PDF
f_R	Discretized Wind power PDF
f_{G}	Discretized PDF of power generation loss (Convolution)
f_M	Discretized PDF of power generation loss (MCS)
$f_{IPG,n}$	Discretized PDF of initial power generation of unit n
f_c	Discretized PDF of FCC

^{*}Corresponding author at: University of Beira Interior, R. Fonte do Lameiro, 6201-001

Covilha, Portugal. Tel.: +351 275 329914; fax: +351 275 329972. E-mail address:

catalao@ubi.pt (J.P.S. Catalão)

F_N	Standard normal CDF					
F_W	Weibull CDF					
F_{G}	Discretized CDF of power generation loss (Convolution)					
$F_{IPG,n}$	Discretized CDF of initial power generation of unit n					
ΔWP	Discretization step of wind power PDF					
ΔTPG	Discretization step of thermal power PDF					
∆FCC	Discretization step FCC PDF					
WS _s	Value of discretization levels of Weibull PDF					
TPG_p	Value of discretization levels of thermal power PDF					
FCCa	Value of discretization levels of FCC PDF					
WP_a	Value of discretization levels of wind power PDF					
TPG ^{max}	Maximum thermal power production					
TPG^{min}	Minimum thermal power production					
<i>FCC^{max}</i>	Maximum value of FCC					
FCC ^{min}	Minimum value of FCC					
$WPG(\cdot)$	Function to estimate the power production of wind farm					
v	Value of a determined wind speed velocity					
R _n	Rated power of a single wind turbine of the wind farm					
<i>p</i>	Number of wind turbines of the wind farm					
α.β.σ	Parameters of the function $WPG(\cdot)$					
<i>v</i> ;	Cut-in wind speed of wind turbine					
V _r	Rated wind speed of wind turbine					
v _o	Cut-off wind speed of wind turbine					
FOR	Failure outage rate of unit n					
$E\{\cdot\}$	Function to estimate expect value of a determined variable					
λ	Intermediate discretization parameter					
μ_{s}	Intermediate distribution of the transformation process					
Ø _S	Value of discretization levels of normal standard PDF					
ω_s	Central value of discretized level WS_s					
ξ_h	Discretization interval of CDF of initial power generation					
$IPG_{n,h}$	Initial power generation of unit <i>n</i> and interval ξ_h					
In	Intermediate variable for $E\{ENS_t\}$ and $E\{FCC_t\}$ calculation					
Φ_h	Weight associated with the values $IPG_{n,h}$; $n \in [1, N]$					
L _t	Load demand at time t					
$G_{t.q.n.h}$	Thermal power of unit <i>n</i> at time <i>t</i> considering WP_a and $IPG_{n,h}$					
$G_{min n}$	Minimum generation of unit <i>n</i>					
Gmarn	Maximum generation of unit <i>n</i>					
UR_n	Ramp-up limit of unit n					
DR_n	Ramp-down limit of unit n					
WPD _{tab}	Wind power dispatched at time t considering WP_a and IPG_{nh}					
NL _{t a h}	Net load at time t considering WP_a and $IPG_{n,h}$					
lt a h	Maximum power of thermal units at time t considering WP_a and $IPG_{m,b}$					
$ENS_{t,q,h}$	ENS at time t considering WP_{r} and IPG_{r}					
n n	Weighted values of ENS according to wind generation					
	Weighted values of ENS according to initial power generation					
l_h	Weighted values of ECC according to initial power generation					
$\frac{v_h}{ENS}$	FNS at time t					
FCC	FCC at time t					
VOU	Value of loss load					
TGC	Total generation cost					
FCC	Fuel consumption cost					
ENS	Energy not supplied					
2.10						

34 Besides of their remote and isolated location, insular systems have high operating costs due to their 35 fuel consumption and the costs related to its transportation. In most of cases, power generation is based on 36 steam turbines (STs), combined cycle gas turbines (CCGTs), diesel engines (DEs), open cycle gas 37 turbines (OCGTs), and renewable sources (REN); a representative example is the case of Canary Islands, 38 at which STs represent 22.4%, CCGTs represent 28.8%, DEs represent 17.7%, OCGTs represent 20%, 39 REN represent 10%, while cogeneration and other power sources represent 1% of the total installed 40 capacity [1]. However, most of these systems have good potential for exploitation of renewable energy 41 sources like solar and wind energy; a representative situation is the case of Cyprus, where grid parity for 42 installation of photovoltaic (PV) generation has been reached due to the high selling prices of energy and 43 the considerable reduction in the prices of PV panels [2]. Under these circumstances, it is expected a 44 strong growth of renewable generation in the next years; however, the variability and uncertainty related 45 to renewable generation is an important factor, which limits the integration of these sources to the grid. 46 Variability of renewable generation impacts spinning reserve (SR) requirements and the utilization of 47 renewable generation. In the case of mainland power grids; by one hand, primary reserves could increase 48 between 0.3% and 0.8%, while all other reserves could increase between 6% and 10% of the 49 corresponding installed wind power generation. On the other hand, conventional generators could reduce 50 their efficiency up to 9% [3]. A way for solving this problem consists on improving the flexibility of the 51 system by adding an energy storage system (ESS); however, its successful integration since an economic 52 point of view strongly depends on capacity tariffs, wind power potential and investments costs [4]. 53 Another option consists on implementing a demand response (DR) program; a reference case is the 54 Canary Islands, where cost savings related to the implementation of DR program are estimated up to 30% 55 [5]. However, the success of any DR program depends on awareness and knowledge of the consumers as 56 well as the automation of household appliances. Other inexpensive option consists on improving the 57 quality of renewable power forecasting in order to reduce total generation costs, reduce renewable power 58 curtailment, and reduce the commitment of OCGTs [6]. Nevertheless, it is not possible predicting 59 renewable power generation perfectively; besides of this, improvements on forecasting tools has a limited 60 enhancement on power system performance [7]; so that, incorporation of mathematical models for

61 renewable power generation to solve economic dispatch (ED) and unit commitment (UC) problems to62 estimate the amount of SR required is a critical necessity.

63 SR requirements could be determined by using a traditional approach based on the solution of 64 deterministic UC problem, solving stochastic UC problem taking into account failures and contingencies 65 of generating units; as well as, wind power forecasting error, incorporating a probabilistic constraint on 66 UC problem based on estimating the probability of load curtailment as a consequence of any contingency, 67 and analysing the cost/benefit relationship [8]. In the traditional approach, SR requirements are adjusted 68 so that the system be able to face the failure of the generation unit with highest capacity among the 69 committed generators plus a determined margin based on the amount of wind power forecasted [9]. Then, 70 deterministic UC problem constrained to the SR requirements aforementioned is solved typically using 71 mixed-integer linear programming (MILP) optimization approach, some formulations widely suggested in 72 the literature can be found in references [10-12]. Another way consists on represent the uncertain nature 73 of any contingency and wind power generation by means of a representative set of scenarios relaxing the 74 constraint related to the SR requirements in the mathematical formulation. As any potential contingency 75 and wind power generation condition is represented explicitly by means of the scenario set, the 76 corresponding amount of SR could be implicitly determined by solving stochastic UC problem. 77 Generation of the required scenario set could be carried out by using Monte Carlo Simulation (MCS) 78 approach in combination with a scenario reduction technique [13]. Several approaches have been 79 proposed in the literature for solving stochastic UC problem. In [14], an optimization framework based on 80 stochastic programming (SP) approach was proposed. Such a framework is composed of two stages: at 81 the first stage the commitment decisions are taken (before the uncertain parameters are realized), while at 82 second stage dispatch decisions are taken (once uncertain parameters are known); the goal of the method 83 consists on find the optimal commitment decisions common to all scenarios considered in order to 84 minimize the total operating cost; it is carried out by solving the equivalent deterministic optimization 85 problem of the stochastic model. According to the reported results, stochastic approach suggests an 86 adequate estimation of the SR requirements; however, the computational time required is high for a 87 limited amount of scenarios; so that, decomposition techniques, addition of SR requirements for each 88 scenario; as well as, an appropriate modelling of optimization problem (regarding the relaxation of the 89 integrality constraints and modelling unit failures as load increments [15]) are suggested. In [16] has been 90 proposed a long-term security constrained unit commitment (SCUC) using Lagrangian relaxation and

91 including mixed integer programming (MIP) to face coupling constraints over the analysed period. The 92 model was structured under dual relaxation where the large-scale system was decomposed into many 93 short-term SCUC sub-problems without constraints. A hybrid subgradient and Dantzig-Wolfe 94 decomposition approach was proposed for managing the Lagrangian multipliers in the large-scale dual 95 optimization. In [17] has been proposed an SCUC model where outages of generation units, transmission 96 lines, and load forecasting inaccuracies were modelled using MCS approach. For dual optimization, 97 coupling constraints among scenarios are relaxed and decomposed into deterministic long-term SCUC 98 sub-problems using Lagrangian relaxation combined with MIP model without resource constraints. In 99 proposed work it was referred that the computational efforts for solving scenario-based optimization 100 models is influenced by the number of scenarios to be considered to minimize the average generation 101 cost. In [18] has been proposed a fast SCUC where were included some components such as single-hour 102 UC with network, security, single-hour UC adjustment, UC, ED, and hourly network security checking, 103 including a MIP approach. It was referred that under increment of power systems, SCUC models face 104 serious problems such as modelling accuracy and computational burden. The proposed model was 105 performed and analysed considering some different power systems, namely, an 1168-bus system with 169 106 conventional units, a 4672-bus system with 676 conventional units, and two other large systems with 107 1352 and 2704 conventional units, considering or not fuel and emissions constraints and among others. In 108 [19] has been proposed a SCUC model considering the well-known features of wind power generation, 109 i.e. forecasted wind power generation. In the first step, wind power volatility is represented by scenarios. 110 Then, it is considered the initial dispatch in the sub-problem and generation re-dispatch in order to satisfy 111 the hourly volatility of wind power from the computed scenarios. In case of failure, Benders model cuts 112 are introduced in the main problem to revise the commitment solution. The aforementioned procedures 113 and interactions between the commitment problem and its feasibility continued till the forecasted wind 114 power generation be accommodated by re-dispatch procedure. In [20] has been solved a contingency-115 constrained single-bus UC problem which incorporates a security criterion. The method was based on 116 robust optimization using umbrella contingency definition as a counterpart of the original problem, 117 resulting in a bi-level programming problem solved by its transformation to an equivalent single-level 118 MIP problem. In [21] has been carried out a comparison between scenario-based and interval 119 optimization approaches to stochastic SCUC, where the wind power generation and other uncertainties 120 were addressed for comparison of both models. Furthermore, MCS was included in scenario-based model 121 to compute the wind power generation uncertainty, while lower and upper bounds of the aforementioned 122 uncertainty were adopted in the interval optimization model. Meanwhile, the stochastic SCUC problem 123 was formulated as MIP problem and solved using the two aforementioned models. In [22] has been 124 proposed a probabilistic model of SCUC to minimize the energy cost, SR and possible loss of load. It was 125 also presented a new formulation for the expected energy not served considering the probability 126 distribution of forecast errors of wind and load, as well as outage replacement rates of generators; 127 furthermore the proposed model was solved using MILP. In [23] has been proposed a two-stage adaptive 128 robust optimization model for SCUC problem, where the first-stage UC decision and the second-stage 129 dispatch decision were robust against all uncertain nodal net injection realizations and the second-stage 130 fulfilled the adaptability uncertainty. The proposed model incorporated network, ramp-rate and 131 transmission security critical-constraints. In [24] has been proposed a model to solve SCUC based on the 132 concept of loadability set. It consists on projecting those feasible solutions onto the demand space in order 133 to refine SCUC. The main advantage of this approach is the reduction on the computational effort while 134 the accuracy of the obtained solution is preserved under light and heavy transmission congestions. In [25] 135 has been presented an optimization model based on chance-constrained programming using an estimation 136 of the confidence level of stochastic variables in order to supply demand taking into account several 137 simultaneous contingencies, while the mathematical structure of the optimization problem is formulated 138 as a MILP problem. In a similar way; in [26] effectiveness of chance-constrained programming to solve 139 SCUC was verified. In [27] has been proposed a methodology based on constrained ordinal optimization, 140 at which a sample of UC solutions are analysed in order to determine a reasonable solution considering a 141 set with large number of scenarios. The feasibility of each UC solution sampled is verified by using 142 analytical conditions.

143 Estimation of SR requirements based on probabilistic analysis consists on the application of a criterion 144 derived from the full capacity outage probability distribution on the UC solution. The computational 145 effort of this approach is low while the accuracy of the obtained solution is reasonable [28]. The analysis 146 of cost/benefit relationship consists of an auxiliary process carried out for each period of time (without 147 considering inter-temporal characteristics of UC problem) prior to the solution of UC problem. During the 148 auxiliary process, SR requirements are optimized taking into account the benefit related to SR margins 149 and the corresponding cost of provide it. Then, UC problem incorporating SR constraints is evaluated by 150 considering the inter-temporal characteristics of unit scheduling problem [29]. In [30], optimization of SR requirements by the analysis of cost/benefit relationship was improved by adding a checking processbased on MCS approach.

153 In this paper, a special attention on the estimation of the cost/benefit relationship [29,30] is paid and a 154 hybrid approach has been developed and described. The proposed approach estimates the cost/benefit 155 relationship used to determine SR requirements by a hybrid technique that combines a convolution-based 156 approach and MCS method, in order to determine the optimal amount of power to be committed taking 157 into account wind power forecasting error and generation unit reliability. Forecasting error of wind speed 158 is represented by a discretized Weibull probability distribution function (PDF), which is evaluated on the 159 corresponding power curve of the wind farm in order to consider the non-linear characteristics of wind 160 generation, which is frequently modelled by a Gaussian PDF of net load, avoiding the estimation of some 161 possible curtailment of renewable generation.

The paper is organized as follow: section 2 briefly describes the cost/benefit relationship and how to use it for determining the optimal capacity to be committed; section 3 describes the proposed methodology including the model of wind power forecasting error and system reliability which is modelled by a convolution process and MCS approach; in section 4 proposed methodology is illustrated by the analysis of two case studies of 10 and 140 units; finally, conclusions are presented in section 5.

167

168 2. Cost/benefit relationship for SR requirements determination

169

Extensively analysed by Ortega-Vazquez and Kirschen, cost/benefit relationship optimizes the SR requirements by balancing the cost related to SR and the economic benefit obtained from this reserve margin, optimal SR is determined by finding the amount of power to be committed in order to minimize generation cost according to (1),

- 174
- 175
- 176

$$\min E\{TGC\} = E\{FCC\} + VOLL \times E\{ENS\}.$$
(1)

Fig. 1 illustrates the behaviour of cost/benefit relationship, it is possible observing how as the committed capacity increases (or in other words SR increases), the fuel consumption cost (FCC) increases while the cost related to energy not supplied (ENS) decreases. Then, when the addition of both costs is carried out, a local minimum on the generation cost can be identified and consequently the optimal SR required. In

181	[29], the analysis of cost/benefit relationship only considering generation unit reliability was carried out;
182	expected value of ENS was obtained by means of the capacity outage probability table [31] in order to
183	consider forced outage rate (FOR) of each unit. In [30], the methodology aforementioned was extended in
184	order to consider the influence of wind power generation, where forecasting error of net load is
185	represented as a Gaussian PDF under the assumption of large amount of wind turbines which are
186	geographically dispersed. In more detail, net load forecasting error is modelled by means of a discretized
187	Gaussian PDF of seven segments; then, the optimal SR is obtained for each interval analysing the
188	cost/benefit relationship according to [29]; finally, optimal SR required is determined as the summation of
189	the optimal SR of each interval weighted according to the probability of occurrence of the corresponding
190	interval.
191	
192	"See Fig. 1"
193	
194	Optimal SR requirements are determined for each time interval without taking into account the inter-
195	temporal characteristics of the optimization problem (ramp constraints of UC problem). Once the optimal
196	SR for each period of the scheduling horizon has been obtained, a traditional reserve constrained UC
197	problem is solved (incorporating ramp constraints of UC problem) in order to determine the optimal
198	scheduling and power dispatch [29].
199	
200	3. Proposed methodology
201	
202	As was stated before, this paper focus on the efficient evaluation of cost/benefit relationship in order to
203	determine the optimal SR requirement taking into account wind power forecasting error and generation
204	unit reliability. Building cost/benefit relationship requires solving ED problem under uncertain conditions
205	at which wind power generation and any failure event of generation system are the main sources of
206	uncertainty. In our previous work presented in [32], ED problem was extensively analysed and according
207	to the obtained results, the estimation of expected ENS by convolution could give overestimated results
208	since the effects of SR on ENS were not taken into account. However, when the load to be supplied is
209	higher than the total capacity committed there is no SR and expected ENS can be accurately determined
210	by a convolution process. This condition is particularly useful to build cost/benefit relationship.

211	In this paper, we have divided cost/benefit relationship in two different regions according to Fig. 2. In
212	Region I, the committed capacity is lower than the minimum net load to supplied; so that, SR does not
213	have any impact on system operation; while in Region II the committed capacity is high enough and SR
214	has a relevant influence of the operation of the system. Under this circumstance, those points of Region I
215	can be analysed by means of the convolution process; while those points of Region II can be analysed by
216	means of MCS method. This hybrid approach allows us carrying out an efficient analysis of cost/benefit
217	relationship due to the fact that the computational effort is concentrated in those points of high relevance
218	(Region II), while the others are analysed by analytical methods (Region I) in an efficiency and fast way.
219	Moreover, the methodology proposed in this paper uses a discretized Weibull PDF combined with the
220	power curve of the wind farm to model wind power uncertainty, which allows incorporating the non-
221	linear characteristics of wind generation on the cost/benefit relationship. On the other hand, power
222	production of thermal units at previous instant is modelled by using discretized PDF and incorporated on
223	the solution of ED problem, so that the inter-temporal characteristics are taken into account.
224	
225	"See Fig. 2"
226	
-	
227	Next sub-sections describe the mathematical models of wind speed and wind power generation,
227 228	Next sub-sections describe the mathematical models of wind speed and wind power generation, generation unit reliability, and their incorporation on ED problem in order to estimate generation costs.
227 228 229	Next sub-sections describe the mathematical models of wind speed and wind power generation, generation unit reliability, and their incorporation on ED problem in order to estimate generation costs.
227 228 229 230	Next sub-sections describe the mathematical models of wind speed and wind power generation, generation unit reliability, and their incorporation on ED problem in order to estimate generation costs. 3.1 Probabilistic modelling of wind power forecasting error
227 228 229 230 231	Next sub-sections describe the mathematical models of wind speed and wind power generation, generation unit reliability, and their incorporation on ED problem in order to estimate generation costs. 3.1 Probabilistic modelling of wind power forecasting error
227 228 229 230 231 232	Next sub-sections describe the mathematical models of wind speed and wind power generation, generation unit reliability, and their incorporation on ED problem in order to estimate generation costs. 3.1 Probabilistic modelling of wind power forecasting error Wind speed has been probabilistically modelled by using a Weibull PDF since many years ago; Weibull
227 228 229 230 231 232 233	Next sub-sections describe the mathematical models of wind speed and wind power generation, generation unit reliability, and their incorporation on ED problem in order to estimate generation costs. 3.1 Probabilistic modelling of wind power forecasting error Wind speed has been probabilistically modelled by using a Weibull PDF since many years ago; Weibull distribution only depends on two parameters which give it high flexibility, and these parameters could be
227 228 229 230 231 232 233 233	Next sub-sections describe the mathematical models of wind speed and wind power generation, generation unit reliability, and their incorporation on ED problem in order to estimate generation costs. 3.1 Probabilistic modelling of wind power forecasting error Wind speed has been probabilistically modelled by using a Weibull PDF since many years ago; Weibull distribution only depends on two parameters which give it high flexibility, and these parameters could be estimated in a simple way with high accuracy [33]. As power generation of conventional generators
227 228 229 230 231 232 233 234 235	Next sub-sections describe the mathematical models of wind speed and wind power generation, generation unit reliability, and their incorporation on ED problem in order to estimate generation costs. 3.1 Probabilistic modelling of wind power forecasting error Wind speed has been probabilistically modelled by using a Weibull PDF since many years ago; Weibull distribution only depends on two parameters which give it high flexibility, and these parameters could be estimated in a simple way with high accuracy [33]. As power generation of conventional generators depends on the behaviour of wind power production, the PDF of wind generation should be included on
227 228 229 230 231 232 233 234 235 236	Next sub-sections describe the mathematical models of wind speed and wind power generation, generation unit reliability, and their incorporation on ED problem in order to estimate generation costs. 3.1 Probabilistic modelling of wind power forecasting error Wind speed has been probabilistically modelled by using a Weibull PDF since many years ago; Weibull distribution only depends on two parameters which give it high flexibility, and these parameters could be estimated in a simple way with high accuracy [33]. As power generation of conventional generators depends on the behaviour of wind power production, the PDF of wind generation should be included on ED optimization problem through a discretization process. In this sense, Barbiero [34] has developed a
227 228 229 230 231 232 233 234 235 236 237	Next sub-sections describe the mathematical models of wind speed and wind power generation, generation unit reliability, and their incorporation on ED problem in order to estimate generation costs. 3.1 Probabilistic modelling of wind power forecasting error Wind speed has been probabilistically modelled by using a Weibull PDF since many years ago; Weibull distribution only depends on two parameters which give it high flexibility, and these parameters could be estimated in a simple way with high accuracy [33]. As power generation of conventional generators depends on the behaviour of wind power production, the PDF of wind generation should be included on ED optimization problem through a discretization process. In this sense, Barbiero [34] has developed a general-purposes discretization method and it has been used here to represent Weibull PDF. In the
227 228 229 230 231 232 233 234 235 236 237 238	Next sub-sections describe the mathematical models of wind speed and wind power generation, generation unit reliability, and their incorporation on ED problem in order to estimate generation costs. 3.1 Probabilistic modelling of wind power forecasting error Wind speed has been probabilistically modelled by using a Weibull PDF since many years ago; Weibull distribution only depends on two parameters which give it high flexibility, and these parameters could be estimated in a simple way with high accuracy [33]. As power generation of conventional generators depends on the behaviour of wind power production, the PDF of wind generation should be included on ED optimization problem through a discretization process. In this sense, Barbiero [34] has developed a general-purposes discretization method and it has been used here to represent Weibull PDF. In the discretization process a support represented by \emptyset_s with S elements is built according to (2), the parameter
227 228 229 230 231 232 233 234 235 236 237 238 239	Next sub-sections describe the mathematical models of wind speed and wind power generation, generation unit reliability, and their incorporation on ED problem in order to estimate generation costs. 3.1 Probabilistic modelling of wind power forecasting error Wind speed has been probabilistically modelled by using a Weibull PDF since many years ago; Weibull distribution only depends on two parameters which give it high flexibility, and these parameters could be estimated in a simple way with high accuracy [33]. As power generation of conventional generators depends on the behaviour of wind power production, the PDF of wind generation should be included on ED optimization problem through a discretization process. In this sense, Barbiero [34] has developed a general-purposes discretization method and it has been used here to represent Weibull PDF. In the discretization process a support represented by ϕ_s with S elements is built according to (2), the parameter λ is set according to the preferences of the user ($\lambda = 3$ is suggested in [34]). Then, each value of the

- (Equation (3)) and the obtained values are evaluated on the inverse CDF of a Weibull distribution with
 the required parameters (Equation (4)); after that, the centres of each interval are determined (Equation
 (5)), and the corresponding discretized PDF is determined (Equations (6)-(8)),

245
$$\phi_s = -\lambda - \frac{2\lambda}{S-1} + \left(\frac{2\lambda}{S-1}\right)s; s = 1, 2, \dots, S$$
(2)

247
$$\mu_s = F_N(\phi_s); s = 1, 2, ..., S$$
(3)

249
$$WS_s = F_W^{-1}(\mu_s); \ s = 1, 2, \dots, S$$
(4)

251
$$\omega_s = \frac{WS_s + WS_{s+1}}{2}; s = 1, 2, \dots, S - 1$$
(5)

253
$$f_W(WS_1) = F_W(\omega_1); s = 1$$
 (6)

255
$$f_W(WS_s) = F_W(\omega_s) - F_W(\omega_{s-1}); s = 2, ..., S - 1$$
(7)

257
$$f_W(WS_S) = 1 - F_W(\omega_{S-1}); s = S.$$
 (8)

259 Once discretized PDF of wind speed has been created (f_W) , this is evaluated on the power curve of wind 260 farm connected to the power system. In this paper, we have used the general-purposes power curve shown 261 in Fig. 3, and mathematically described in (9)-(12) [35,36],

265
$$WPG(v) = \begin{cases} 0 & ; 0 \le v \le v_i, v > v_o \\ \alpha + \beta v + \sigma v^2 & ; v_i \le v \le v_r \\ N_t R_p & ; v_r \le v \le v_o \end{cases}$$
(9)

267
$$\alpha = \frac{1}{(v_i - v_r)^2} \left[v_i (v_i + v_r) - 4v_i v_r \left(\frac{v_i + v_r}{2v_r}\right)^3 \right]$$
(10)

269
$$\beta = \frac{1}{(v_i - v_r)^2} \left[4(v_i + v_r) \left(\frac{v_i + v_r}{2v_r} \right)^3 - (3v_i + v_r) \right]$$
(11)

270

271
$$\sigma = \frac{1}{(v_i - v_r)^2} \left[2 - 4 \left(\frac{v_i + v_r}{2v_r} \right)^3 \right].$$
(12)

272

Wind power PDF is discretized in several intervals or states (*Q*) between 0 and the maximum capacity of the wind farm $(N_t R_p)$ with a step (ΔWP) defined according to (13),

275

$$\Delta WP = \frac{N_t R_p}{Q - 1}.$$
(13)

277

Then, wind power generation PDF (f_R) can be obtained by applying the algorithm presented in Fig. 4. In this algorithm, for a determined interval (s) of wind speed (WS_s) the corresponding wind power generation $(WPG(WS_s))$ is determined; after that, the interval of wind generation (q) that corresponds to the results obtained from the evaluation of the power curve is determined and the probability of occurrence of the wind speed interval $(f_W(WS_s))$ is assigned to this value of power. This process is repeated for all the intervals of discretized wind speed PDF; so that, wind power generation PDF is obtained.

"See Fig. 4"

285

286

287

288 3.2 Probabilistic modelling of generation unit reliability

289

As stated in section 3, expected value of ENS of those points of Region I are determined by convolution. In order to build PDF of ENS, several states (*P*) are established between *TPG*^{*min*} and *TPG*^{*max*} with a step (ΔTPG) defined according to (14),

293

$$\Delta TPG = \frac{TPG^{max} - TPG^{min}}{P - 1},$$
(14)

296 ENS CDF can be obtained by applying (15) in a recursive way [31], starting from the CDF F_G shown in 297 Fig. 5 (left side) and ending with the CDF presented in Fig. 5 (right side). Finally, ENS PDF can be 298 obtained from Fig. 5 by subtraction of probability values, resulting in the PDF shown in Fig. 6. The term 299 $G_{t,q,n,h}$ in (15) is the power generation of unit n when the interval of power generation q, and the interval 300 of initial power generation h are considered; it is obtained from the solution of ED dispatch problem 301 solved as previous step before the application of (15) (see Fig. 8), 302 $F_{G}(TPG_{p}) = (1 - FOR_{n})F_{G}(TPG_{p}) + FOR_{n}F_{G}(TPG_{p} - G_{t.a.n.h}).$ 303 (15)304 305 "See Fig. 5" 306 307 "See Fig. 6" 308 309 Now, the required expected value of ENS is estimated by means of (16), 310 $E\{ENS\} = \sum_{m=1}^{P} f_G(TPG_p)TPG_p.$ 311 (16)312 313 Expected value of ENS of those points of Region II is obtained by using MCS method at which, failure 314 events are modelled by using a Binomial PDF presented in (17) [37], 315 $f_M = \binom{M}{m} (1 - FOR_n)^m (FOR_n)^{M-m}.$ 316 (17)317 318 3.3 Incorporation of forecasting error and system reliability in the estimation of total generation 319 cost 320 321 In order to build cost/benefit relationship, estimation of expected value of ENS and FCC taking into 322

322 account system reliability and forecasting error is required. In this sense, a discretized PDF of FCC is

- 323 built by considering values between FCC^{min} and FCC^{max} with step ΔFCC defined by (18),
- 324

$$\Delta FCC = \frac{FCC^{max} - FCC^{min}}{A - 1}.$$
(18)

327 In this paper, power generation at previous time step (t-1) is incorporated by considering some selected 328 scenarios chosen by using quintile concept from the analysis of discretized PDF of power generation. Fig 329 7 presents CDF of power generation of unit n ($F_{IPG,n}$) at time step t - 1. Dividing the interval [0,1] in 330 several points (H) each of these points (ξ_h) can be evaluated in the CDF $F_{IPG,n}$ in an inverse way; so that, 331 a correlated power production is estimated among all generation units. This approach allows us reducing 332 the number of possible starting points of ED optimization problem. All chosen scenarios are finally saved 333 in the matrix of initial power generation $(IPG_{n,h})$ to be used for determining the optimal power dispatch 334 [32].

- 335
- 337

336

As the number of possible scenarios of initial power production has been reduced, the corresponding
weight to represent the probability of occurrence of each scenario is estimated according (19) [32],
340

"See Fig. 7"

341
$$\Phi_{h} = \frac{\prod_{n=1}^{N} \left(f_{IPG,n} (IPG_{n,h}) \right)}{\sum_{h=1}^{H} \prod_{n=1}^{N} \left(f_{IPG,n} (IPG_{n,h}) \right)}; h = 1, 2, ..., H.$$
(19)

342

For the actual time step t, expected value of ENS and FCC is estimated according to the algorithm shown in Fig. 8. In this algorithm each interval of wind power discretization (q) and initial power generation (h) is considered; so that, for each combination of discrete states, ED problem is solved and discretized PDF of FCC is built; then, the region of the cost/benefit relationship is determined by considering the value of the net load ($NL_{t,q,h}$). Note that each value of ENS and FCC is weighted according to the probability of occurrence of wind power generation (f_R) and initial power production (Φ_h). Finally, the required expected values are obtained by summation of all weighted values.

- 350
- 351 "See Fig. 8"
- 352

353 4. Case studies

354

355 The methodology described in previous sections to build cost/benefit relationship is illustrated by 356 analysing two power systems of 10 units and 140 units provided with wind power generation. As the 357 proposed methodology models initial power generation of thermal units as a discretized PDF, all of them 358 have been obtained by MCS method. To carry out this task, three time steps have been considered, at t -359 2 the value of initial power generation has been assumed as a constant value for all the units; while for 360 t-1 and t, discretized PDF of initial power generation is obtained by solving ED problem. Then, 361 discretized PDF at time t - 1 is used as an input in our proposed approach and the results obtained at 362 time t are used to carry out a comparative analysis between the proposed methodology and MCS 363 approach. At time t, wind speed is modeled as a Weibull PDF with the same characteristics for all case 364 studies, changing the parameters of the wind farm according to the respective case under analysis. 365 Fig. 9 shows discretized PDF of wind speed at time t with shape factor equal to 2 and scale factor equal 366 to 7, discretization was carried out by applying the procedure previously described in sub-section 3.1 367 using equations (2)-(8) and λ =5. Regarding the wind farm model, in all cases a single wind turbine was 368 assumed to have $v_i=3$ m/s, $v_r=12$ m/s, $v_o=25$ m/s, and $R_p=2$ MW. The value of N_t was defined by the 369 particular case study under analysis. 370 371 "See Fig. 9" 372 373 4.1 10-units power system 374 375 In this sub-section results obtained from the analysis of a small capacity system are presented. Table 1 376 shows the characteristics of thermal generators under analysis [38]. 377 378 "See Table 1" 379 380 First, a comparison between the results obtained from convolution process and MCS method is carried 381 out in order to evaluate their quality and efficiency. For this purpose only the commitment of the units 1-6

382 was considered. As was stated before, three different time steps are considered, at time t - 2 thermal

383	units generate 1,412 MW, at time $t - 1$ load demand is 1,600 MW, and at time t load demand is 1,750
384	MW. Regarding wind speed forecasting error, at time $t - 1$ it was modeled as a Weibull PDF with shape
385	factor equal to 10 and scale factor equal to 3. The number of wind turbines of wind farm was assumed to
386	be 50 (N_t =50). Fig. 10 shows discretized PDF of wind power generation at time t obtained by evaluating
387	equations (9)-(13) and the algorithm shown in Fig. 4, assuming $Q=24$.
388	
389	"See Fig. 10"
390	
391	4.1.1 Analysis of the Region I points
392	
393	In order to analyse the quality of the results obtained from the convolution process, the first 6 generators
394	are committed. It is important to note that, as the committed capacity cannot supply the load demand, SR
395	does not have any influence on the analysis; so that, convolution process could be directly applied.
396	Discretization of conventional power production was carried out by assuming TPG ^{min} =0 MW,
397	TPG^{max} =1,500 MW, and P=150. Discretization of wind generation was carried out by assuming Q=24.
398	Regarding the initial power production, the number of scenarios considered was 5 ($H=5$); MCS approach
399	was adopted as a reference considering 10,000 trials ($M=10,000$). Table 2 shows the results from the
400	comparative analysis between convolution method and MCS approach; as can be observed, an error of
401	7.39% in the estimation of FCC and 0.73% in the estimation of ENS was found in a reduced
402	computational time.
403	
404	"See Table 2"
405	
406	4.1.2 Analysis of the Regions I/II points
407	
408	As the analysis of cost/benefit relationship progress, some points could belong to Region I or II
409	depending on the discretized value of wind power generation. In order to analyse this condition, number
410	of wind turbines has been increased to 250 (N_t =250), load demand at $t - 1$ was changed to 1,400 MW
411	and 1,500 MW in t. Discretized PDF was built by considering TPG ^{min} =0 MW, TPG ^{max} =1,700 MW, and
412	P=100. As in the sub-section 4.1.1, the number of MCS trials was adjusted to 10,000 ($M=10,000$) for the

413	reference analysis; however, the number of MCS trials considered for our proposed approach was
414	adjusted to 500 (M =500) and the number of discrete levels of wind power generation to 3 (Q =3) in order
415	to reduce the computational efforts. The number of scenarios considered to represent the initial power
416	generation was 5 ($H=5$). According to the results reported in Table 3, an error of 4.65% in the estimation
417	of FCC and 3.07% in the estimation of ENS was found, reducing the computational effort.
418	
419	"See Table 3"
420	
421	4.1.3 Building cost/benefit relationship (10-Units system)
422	
423	In this sub-section, cost/benefit relationship is analysed by taking into account all the units of the system
424	under the operating conditions described in sub-section 4.1.2 and VOLL=1,000 \$/MWh. Fig. 11 shows the
425	most relevant part of cost/benefit relationship, the black line is the relationship obtained by evaluating
426	5,000 trials in 2,384.8 s (expected cost 60,114.91 \$); while, those grey ones were obtained by evaluating
427	different sets between 10 and 1,000 trials, obtaining computational times between 9.3 s and 477.8 s. The
428	optimal amount of power to be committed depends on the amount of MCS considered; in this case,
429	optimal capacity is around 1,607 MW ($E{TGC}$ equal to 32,149.236 \$) for low number of MCS
430	$(M \rightarrow 10)$; however, this value increases to 1,662 MW ($E\{TGC\}$ equal to 58,307.81 \$) as the number of
431	MCS trials increases ($M \rightarrow 1,000$).
432	
433	"See Fig. 11"
434	
435	Table 4 presents the frequency at which the analysis is in Region I or II and the corresponding
436	computational time. As can be observed, when the committed capacity gets its minimum value, the
437	analysis is carried out by convolution in a reduced computational time; then, as the committed capacity
438	increases, the relevance of SR increases and at some intervals MCS approach is applied, incrementing the
439	calculation effort; finally, as the total capacity of the system is reached, the mathematical efforts are
440	incremented due to in each MCS trial an optimization problem (ED) committing all units has to be
441	solved. In general sense, proposed methodology only applies MCS approach in those cases at which SR

442	has an important influence on the results; while in the rest of cases convolution process is used in order to
443	improve the computational efficiency.
444	
445	"See Table 4"
446	
447	4.2 140-units power system
448	
449	The behaviour of the proposed methodology analysing large scale systems is investigated by means of the
450	systems described in Table 5 [39]. Wind power generation has been modelled by means of a wind farm
451	with 9,000 turbines (N_t =9,000). Load demand at $t - 2$ was assumed to be 60,000 MW, at time $t - 1$ was
452	assumed to be 49,342 MW, and at t was assumed to be 51,000 MW. Discretized PDF was built by
453	considering TPG ^{min} =0 MW, TPG ^{max} =65,000 MW, and P=100. The number of MCS trials was adjusted
454	to 1,000 ($M=1,000$) for the reference analysis; however, the number of MCS trials considered for our
455	proposed approach was adjusted to 100 ($M=100$) and the number of discrete levels of wind power
456	considered was 3 ($Q=3$); while, the number of scenarios considered to represent the initial power
457	generation was 3 ($H=3$).
458	
459	"See Table 5"
460	
461	This large amount of MCS trails for our proposed methodology was considered in order to have a good
462	reference of comparison; the cost/benefit relationship obtained is shown in Fig. 12, where the optimal
463	capacity to be committed is 56,360 MW; this curve was built in a computational time of 22,638.097 s.
464	
465	"See Fig. 12"
466	
467	Fig. 13 presents the region analysis for this case study, where it is possible observing a similar behaviour
468	for the 10-units case study; when low capacity is committed most of the calculations are carried out by
469	convolution; however, as the committed capacity is increased, application of MCS is required in order to
470	consider the effects of SR.
471	

473

"See Fig. 13"

474 Fig. 14 presents the computational time as a function of the committed capacity (expressed in percent of
475 the total computational time 22,638.097 s), where the increment in the calculation effort as a consequence
476 of MCS approach is observed.

477

478 479

"See Fig. 14"

480 The computational time could be reduced by using MCS approach with a lower set of trials, a lower 481 amount of discretized levels to represent wind power generation and initial power production. For 482 example, if the number of MCS is reduced to 10 (M=10), the number of discrete states of wind generation 483 is adjusted to 2 (Q=2), and only one state of initial power generation (H=1) is considered by adjusting 484 $\xi_{h=1}=0.5$; the computational time could be reduced to 564.998 s, obtaining a similar result regarding to 485 optimal committed capacity; although, the estimation of total generation cost could be highly distorted; in 486 our case this is estimated as 1,607,668.225 \$; while for our reference solution it was estimated as 487 1,444,166.681\$. Generally speaking, the amount of MCS trials should be selected according to the 488 computational resources and calculation time available; however, low amount of MCS trails directly 489 impacts on the estimation of $E\{TGC\}$. The proposed approach was implemented in MATLAB 490 programming language using a computer provided of i7-3630QM CPU at 2.40 GHz with 8 GB of 491 memory and 64 bit operating system.

492

494

In this paper, the cost/benefit relationship has been exhaustively analysed and a methodology to build this curve based on discrete probability theory and MCS approach was developed and tested. The proposed method aims to significantly improve the efficiency of the calculation required to build the cost/benefit relationship used for optimal SR requirements determination by identifying those cases at which a convolution analysis can be used; while in the rest of the cases, those at which calculation of expected ENS is influenced by SR, are estimated by means of MCS. Accordingly, the computational efficiency is considerably improved, while a reasonable result is reached. Two case studies of 10 and 140 units were

^{493 5.} Conclusions

502	analysed under wind power penetration, demonstrating the flexibility of the proposed technique reached
503	by adjusting the number of discrete states and MCS trials.
504	
505	Acknowledgements
506	
507	This work was supported by FEDER funds through COMPETE and by Portuguese funds through FCT,
508	under FCOMP-01-0124-FEDER-020282 (PTDC/EEA-EEL/118519/2010), UID/CEC/50021/2013 and
509	SFRH/BPD/103079/2014. Also, the research leading to these results has received funding from the EU
510	Seventh Framework Programme FP7/2007-2013 under grant agreement no. 309048.
511	
512	References
513	
514	[1] Boletín mensual diciembre 2013, Red Eléctrica de España, 2014.
515	[2] Fokaides PA, Kylili A. Towards grid parity in insular energy systems: The case of photovoltaics (PV)
516	in Cyprus. Energy Policy 2014;65:223-28.
517	[3] Brouwer AS, Van den Broek M, Seebregts A, Faaij A. Impacts of large-scale intermittent renewable
518	energy sources on electricity systems, and how these can be modelled. Renew Sustainable Energy Rev
519	2014;33:443-66.
520	[4] Papaefthymiou SV, Papathanassiou SA. Optimum sizing of wind-pumped-storage hybrid power
521	stations in island systems. Renew Energy 2014;64:187-96.
522	[5] Dietrich K, Latorre JM, Olmos L, Ramos A. Demand response in an isolated system with high wind
523	integration. IEEE Trans Power Syst 2012;27:20-29.
524	[6] Mc Garrigle EV, Leahy PG. Quantifying the value of improved wind energy forecasts in a pool-based
525	electricity market. Renew Energy 2015;80:517-24.
526	[7] Martínez-Anido CB, Florita A, Hodge B-M. The impact of improved solar forecasts on bulk power
527	system operations in ISO-NE. Golden, Colorado: National Renewable Energy Laboratory; 2014.
528	[8] Ortega-Vazquez MA, Kirschen DS. Should the spinning reserve procurement in systems with wind
529	power generation be deterministic or probabilistic? In: Proceedings IEEE-SUPERGEN conference on
530	Sustainable Power Generation and Supply. Nanjing, China; 2009.
531	

- 532 [9] Tuohy A, Meibom P, Denny E, O'Malley M. Unit commitment for systems with significant wind
 533 penetration. IEEE Trans Power Syst 2009;24:592-601.
- 534 [10] Carrión M, Arroyo JM. A computationally efficient mixed-integer linear formulation for the thermal
 535 unit commitment problem. IEEE Trans Power Syst 2006;21:1371-78.
- 536 [11] Frangioni A, Gentile C, Lacalandra F. Tighter approximated MILP formulations for unit
- **537** commitment problems. IEEE Trans Power Syst 2009;24:105-13.
- 538 [12] Morales España G, Latorre JM, Ramos A. Tight and compact MILP formulation of strat-up and shut-
- down ramping in unit commitment. IEEE Trans Power Syst 2013;28:1288-96.
- 540 [13] Wu L, Shahidehpour M, Li T. Stochastic security-constrained unit commitment. IEEE Trans Power
 541 Syst 2007;22:800-11.
- 542 [14] Ruiz PA, Philbrick CR, Zak E, Cheung KW, Sauer PW. Uncertainty management in the unit543 commitment problem. IEEE Trans Power Syst 2009;24:642-51.
- 544 [15] Ruiz PA, Philbrick CR, Sauer PW. Modeling approaches for computational cost reduction in
 545 stochastic unit commitment formulations. IEEE Trans Power Syst 2010;25:588-89.
- 546 [16] Fu Y, Shahidehpour M, Li Z. Long-term security-constrained unit commitment: hybrid Dantzig-
- 547 Wolfe decomposition and subgradient approach. IEEE Trans Power Syst 2005;20:2093-106.
- 548 [17] Wu L, Shahidehpour M, Li T. Stochastic security-constrained unit commitment. IEEE Trans Power
 549 Syst 2007;22:800-11.
- 550 [18] Fu Y, Shahidehpour M. Fast SCUC for large-scale power systems. IEEE Trans Power Syst
 551 2007;22:2144-51.
- 552 [19] Wang J, Shahidehpour M, Li Z. Security-constrained unit commitment with volatile wind power553 generation. IEEE Trans Power Syst 2008;23:1319-27.
- 554 [20] Street A, Oliveira F, Arroyo J. Contingency-constrained unit commitment with n K security
 555 criterion: A robust optimization approach. IEEE Trans Power Syst 2011;26:1581-90.
- 556 [21] Wu L, Shahidehpour M, Li Z. Comparison of scenario-based and interval optimization approaches to
- 557 stochastic SCUC. IEEE Trans Power Syst 2012;27:913-21.
- 558 [22] Liu G, Tomsovic K. Quantifying spinning reserve in systems with significant wind power
- penetration. IEEE Trans Power Syst 2012;27:2385-93.
- 560

- 561 [23] Bertsimas D, Litvinov E, Sun XA, Zhao J, Zheng T. Adaptive robust optimization for the security
- 562 constrained unit commitment problem. IEEE Trans Power Syst 2013;28:52-63.
- 563 [24] Kalantari A, Restrepo JF, Galiana FD. Security-constrained unit commitment with uncertain wind
 564 generation: The loadability set approach. IEEE Trans Power Syst 2013;28:1787-96.
- 565 [25] Pozo D, Contreras J. A chance-constrained unit commitment with an n K security criterion and
- significant wind generation. IEEE Trans Power Syst 2013;28:2842-51.
- 567 [26] Ding X, Lee W-J, Jianxue W, Liu L. Studies on stochastic unit commitment formulation with
- flexible generating units. Electr Pow Syst Res 2010;80:130-41.
- 569 [27] Wu H, Shahidehpour M. Stochastic SCUC solution with variable wind energy using constrained
- ordinal optimization. IEEE Trans Sust Energy 2014;5:379-88.
- 571 [28] Chattopadhyay D, Baldick R. Unit commitment with probabilistic reserve. In: Proceedings IEEE
- 572 conference on Power Engineering Society Winter Meeting. New York, USA; 2002.
- 573 [29] Ortega-Vazquez MA, Kirschen DS. Optimizing the spinning reserve requirements using a
 574 cost/benefit analysis. IEEE Trans Power Syst 2007;22:24-33.
- 575 [30] Ortega-Vazquez MA, Kirschen DS. Estimating the spinning reserve requirements in systems with
- 576 significant wind power generation penetration. IEEE Trans Power Syst 2009;24:114-24.
- 577 [31] Billinton A, Allan RN. Reliability evaluation of power systems. 2th ed. New York and London:578 Plenum Press; 1996.
- 579 [32] Osório GJ, Lujano-Rojas JM, Matias JCO, Catalão JPS. A probabilistic approach to solve the
- 580 economic dispatch problem with intermittent renewable energy sources. Energy 2015;82:949-59.
- 581 [33] Carta JA, Ramírez P, Velázquez S. A review of wind speed probability distributions used in wind
- energy analysis Case studies in the Canary Islands. Renew Sustainable Energy Rev 2009;13:933-55.
- 583 [34] Barbiero A. A general discretization procedure for reliability computation in complex stress-strength
- 584 models. Math Comput Simulat 2012;82:1667-76.
- 585 [35] Dialynas EN, Machias AV. Reliability modelling interactive techniques of power systems including
- 586 wind generating units. Archiv für Elektrotechnik 1989;72:33-41.
- 587 [36] Giorsetto P, Utsurogi KF. Development of a new procedure for reliability modelling of wind turbine
- 588 generators. IEEE Trans Power App Syst 1983;PAS-102:134-143.
- 589

- 590 [37] Karaki SH, Chedid RB, Ramadan R. Probabilistic performance assessment of wind energy
 591 conversion systems. IEEE Trans Energy Convers 1999;14:217-224.
- 592 [38] Senjyu T, Miyagi T, Yousuf SA, Urasaki N, Funabashi T. A technique for unit commitment with
- energy storage system. Int J Elec Power 2007;29:91-98.
- 594 [39] Coelho LDS, Bora TC, Mariani VC. Differential evolution based on truncated Lévy-type flights and
- 595 population diversity measure to solve economic load dispatch problems. Int J Elec Power 2014;57:178-
- 188.

643 Figures

Fig. 2: Regions of analysis of cost/benefit relationship for a determined time step.

$$\begin{aligned} f_R(WP_q) &= 0; q = 1, 2, ..., Q \\ WP_q &= 0, \Delta WP, ..., N_t R_p - \Delta WP, N_t R_p \\ \hline \text{for } s &= 1, 2, ..., S \\ \hline \text{if } (WPG(WS_s) &\leq WP_1 - \Delta WP/2) \\ f_R(WP_1) &= f_R(WP_1) + f_W(WS_s) \\ \text{elseif } (WPG(WS_s) &\geq WP_q + \Delta WP/2) \\ f_R(WP_q) &= f_R(WP_q) + f_W(WS_s) \\ \text{else} \\ \hline \text{for } q &= 1, 2, ..., Q \\ \text{if } (WPG(WS_s) &\geq WP_q - \Delta WP/2) \text{ and } (WPG(WS_s) < WP_q + \Delta WP/2) \\ f_R(WP_q) &= f_R(WP_q) + f_W(WS_s) \\ \text{end} \\ \text{end} \\ \text{end} \\ \text{end} \end{aligned}$$

Fig. 4: Algorithm for discretization of wind power generation.

Fig. 7: Analysis of CDF of power generation of unit n.

$$\begin{bmatrix} \text{for } h = 1, 2, \dots, H \\ I_n = IPG_{n,h}; n = 1, 2, \dots, N \\ f_C(FCC_a) = 0; a = 1, 2, \dots, A \\ \hline \text{for } q = 1, 2, \dots, Q \\ K_{t,q,h} = \min \sum_{n=1}^{N} \{\gamma_n + \delta_n(G_{t,q,n,h}) + \varepsilon_n(G_{t,q,n,h})^2\} \\ G_{t-1,q,n,h} = I_n; n = 1, 2, \dots, N \\ \sum_{n=1}^{N} \{G_{t,q,n,h}\} + WPD_{t,q,h} = L_t \\ G_{t,q,n,h} - G_{t-1,q,n,h} \leq UR_n; n = 1, 2, \dots, N \\ G_{t-1,q,n,h} - G_{t,q,n,h} \leq DR_n; n = 1, 2, \dots, N \\ G_{t,t,q,h} \leq G_{t,q,n,h} \leq G_{max,n}; n = 1, 2, \dots, N \\ G_{min,n} \leq G_{t,q,n,h} \leq G_{max,n}; n = 1, 2, \dots, N \\ 0 \leq WPD_{t,q,h} \leq WP_q \\ FCC_a = FCC^{min}, FCC^{min} + \Delta FCC, \dots, FCC^{max} - \Delta FCC, FCC^{max} \\ \hline \text{if } (K_{t,q,h} \leq FCC_1 - \Delta FCC/2) \\ f_C(FCC_1) = f_C(FCC_1) + f_R(WP_q) \\ \text{elseif } (K_{t,q,h} \geq FCC_4 - \Delta FCC/2) \\ f_C(FCC_a) = f_C(FCC_a) + f_R(WP_q) \\ \text{else} \\ \hline \text{for } a = 1, 2, \dots, A \\ \text{if } (K_{t,q,h} \geq FCC_a - \Delta FCC/2) and (K_{t,q,h} < FCC_a + \Delta FCC/2) \\ f_C(FCC_a) = f_C(FCC_a) + f_R(WP_q) \\ \text{else} \\ \hline \text{for } a = 1, 2, \dots, A \\ \text{if } (K_{t,q,h} \geq FCC_a - \Delta FCC/2) and (K_{t,q,h} < FCC_a + \Delta FCC/2) \\ f_C(FCC_a) = f_C(FCC_a) + f_R(WP_q) \\ \text{else} \\ \hline \text{for } a = 1, 2, \dots, A \\ \text{if } (K_{t,q,h} \geq FCC_a - \Delta FCC/2) and (K_{t,q,h} < FCC_a + \Delta FCC/2) \\ f_C(FCC_a) = f_C(FCC_a) + f_R(WP_q) \\ \text{else} \\ \hline \text{for } a = 1, 2, \dots, A \\ \text{if } (K_{t,q,h} \geq FCC_a - \Delta FCC/2) and (K_{t,q,h} < FCC_a + \Delta FCC/2) \\ f_C(FCC_a) = f_C(FCC_a) + f_R(WP_q) \\ \text{else} \\ \hline \text{out } \text{end} \\ \text{end} \\ \text{end} \\ \text{lt}_{t,q,h} = \sum_{n=1}^{N} [min(G_{t-1,q,n,h} + UR_n, G_{n,max})] \\ \text{if } (NL_{t,q,h} > l_{t,q,h}) \\ \cdot \text{Determine } E\{ENS_{t,q,h}\} \text{ by convolution} \\ \text{else} \\ \cdot \text{Determine } E\{ENS_{t,q,h}\} \text{ by MCS approach} \\ \text{end} \\ \eta_q = E\{ENS_{t,q,h}\} \times f_R(WP_q) \\ \text{end} \\ \tau_n = (\sum_{q=1}^{Q} \eta_q) \times \Phi_h \\ \theta_h = (\sum_{q=1}^{Q} \eta_q) \times \Phi_h \\ \theta_h = (\sum_{q=1}^{Q} \eta_q) \times \Phi_h \\ \theta_h = (\sum_{q=1}^{Q} \eta_h) \\ \end{bmatrix}$$

Fig. 8: Algorithm for incorporation of forecasting error and system reliability.

Tables

Table	1: Data d	of 10-units	nower	system.

	Table 1: Data of 10-units power system.							
n	G _{min,n} (MW)	G _{max,n} (MW)	γ_n (\$/h)	δ _n (\$/MW)	$rac{arepsilon_n}{(\$/\mathrm{MW}^2)}$	DR _n (MW/h)	UR _n (MW/h)	FOR _n
1	150	455	1000	16.19	0.00048	130	130	0.05
2	150	455	970	17.26	0.00031	130	130	0.05
3	25	162	450	19.7	0.00398	90	90	0.1
4	20	130	680	16.5	0.00211	60	60	0.1
5	20	130	700	16.6	0.002	60	60	0.1
6	20	80	370	22.26	0.00712	40	40	0.1
7	25	85	480	27.74	0.00079	40	40	0.1
8	10	55	660	25.92	0.00413	40	40	0.0001
9	10	55	665	27.27	0.00222	40	40	0.0001
10	10	55	670	27.79	0.00173	40	40	0.0001

709 710

Table 2:	Comparison between MCS	and convolution methods (Region I).
Variable	MCS	Convolution	Time (s)

variable	MCS	Convolution	Time (s)
$E\{FCC_t\}$	27,048.784	29,048.000	142.726
$E\{ENS_t\}$	409.991	412.999	12.875

711 712

713 714

Table 3: Comparison between MCS and convolution/MCS methods (Regions I/II).

Variable	MCS	Convolution	Time (s)
$E\{FCC_t\}$	26,136.951	27,352.252	144.633
$E\{ENS_t\}$	117.155	120.749	25.173

Table 4: Region analysis and computational time (10-Units).

0	1		
Unit (MW)	Region I	Region II	Time (s)
455 (1)	15	0	0.219
910 (1-2)	10	5	5.875
1072 (1-3)	10	5	8.344
1202 (1-4)	6	9	16.236
1332 (1-5)	5	10	20.923
1412 (1-6)	5	10	23.938
1497 (1-7)	5	10	26.674
1552 (1-8)	1	14	39.111
1607 (1-9)	1	14	44.127
1662 (1-10)	0	15	51.878

715 716

Table 5: Data of 140-units power system.

ID	$G_{min,n}$ (MW)	G _{max,n} (MW)	γ_n (\$/h)	δ _n (\$/MW)	$rac{arepsilon_n}{(\$/\mathrm{MW}^2)}$	DR _n (MW/h)	UR _n (MW/h)	FOR _n
NUCLEAR#01	360	580	226.799	2.842	0.000064	18	18	0.04
NUCLEAR#02	415	645	382.932	2.946	0.000252	18	18	0.04
NUCLEAR#03	795	984	156.987	3.096	0.000022	36	36	0.04
NUCLEAR#04	795	978	154.484	3.04	0.000022	36	36	0.04
NUCLEAR#05	578	682	332.834	1.709	0.000203	204	138	0.04
NUCLEAR#06	615	720	326.599	1.668	0.000198	216	144	0.04
NUCLEAR#07	612	718	345.306	1.789	0.000215	216	144	0.04
NUCLEAR#08	612	720	350.372	1.815	0.000218	216	144	0.04
NUCLEAR#09	758	964	370.377	2.726	0.000193	48	48	0.04
NUCLEAR#10	755	958	367.067	2.732	0.000197	48	48	0.04
NUCLEAR#11	750	1007	124.875	2.651	0.000324	54	36	0.04
NUCLEAR#12	750	1006	130.785	2.798	0.000344	54	36	0.04
NUCLEAR#13	713	1013	878.746	1.595	0.00069	30	30	0.04
NUCLEAR#14	718	1020	827.959	1.503	0.00065	30	30	0.04
NUCLEAR#15	791	954	432.007	2.425	0.000233	30	30	0.04
NUCLEAR#16	786	952	445.606	2.499	0.000239	30	30	0.04
NUCLEAR#17	795	1006	467.223	2.674	0.000261	36	36	0.04
NUCLEAR#18	795	1013	475.94	2.692	0.000259	36	36	0.04
NUCLEAR#19	795	1021	899.462	1.633	0.000707	36	36	0.04
NUCLEAR#20	795	1015	1000.367	1.816	0.000786	36	36	0.04

COAL#01	71	119	1220.645	61.242	0.032888	120	30	0.03
COAL#02	120	189	1315.118	41.095	0.00828	120	30	0.03
COAL#03	125	190	874.288	46.31	0.003849	60	60	0.03
COAL#04	125	190	874 288	46.31	0.003849	60	60	0.03
COAL#04	90	190	1076.460	54 242	0.003047	150	150	0.03
COAL#05	90	100	1228 087	61 215	0.042408	150	150	0.03
COAL#00	90	190	1919 200	11 701	0.014992	200	130	0.03
COAL#07	280	490	1818.299	11./91	0.007039	300	180	0.03
COAL#08	280	490	1133.978	15.055	0.0030/9	300	180	0.03
COAL#09	260	496	1320.636	13.226	0.005063	510	300	0.03
COAL#10	260	496	1320.636	13.226	0.005063	510	300	0.03
COAL#11	260	496	1320.636	13.226	0.005063	510	300	0.03
COAL#12	260	496	1106.539	14.498	0.003552	510	300	0.03
COAL#13	260	506	1176.504	14.651	0.003901	600	600	0.03
COAL#14	260	509	1176.504	14.651	0.003901	600	600	0.03
COAL#15	260	506	1176.504	14.651	0.003901	600	600	0.03
COAL#16	260	505	1176 504	14 651	0.003901	600	600	0.03
COAL#17	260	505	1017.406	15 660	0.002303	600	600	0.03
COAL#17	260	506	1017.400	15.660	0.002393	600	600	0.03
COAL#18	260	505	1017.400	13.009	0.002393	600	600	0.03
COAL#19	260	505	1229.131	14.656	0.003684	600	600	0.03
COAL#20	260	505	1229.131	14.656	0.003684	600	600	0.03
COAL#21	260	505	1229.131	14.656	0.003684	600	600	0.03
COAL#22	260	505	1229.131	14.656	0.003684	600	600	0.03
COAL#23	260	505	1267.894	14.378	0.004004	600	600	0.03
COAL#24	260	505	1229.131	14.656	0.003684	600	600	0.03
COAL#25	280	537	975.926	16.261	0.001619	300	300	0.03
COAL#26	280	537	1532.093	13.362	0.005093	300	300	0.03
COAL #27	280	549	641 989	17 203	0.000993	360	360	0.03
COAL#28	280	549	641.989	17 203	0.0000003	360	360	0.03
COAL#20	280	501	041.989	17.203	0.000993	180	180	0.03
COAL#29	260	501	911.535	15.274	0.0024/3	180	180	0.03
COAL#30	260	501	910.533	15.212	0.002547	180	180	0.03
COAL#31	260	506	1074.81	15.033	0.003542	600	600	0.03
COAL#32	260	506	1074.81	15.033	0.003542	600	600	0.03
COAL#33	260	506	1074.81	15.033	0.003542	600	600	0.03
COAL#34	260	506	1074.81	15.033	0.003542	600	600	0.03
COAL#35	260	500	1278.46	13.992	0.003132	660	660	0.03
COAL#36	260	500	861.742	15.679	0.001323	900	900	0.03
COAL#37	120	241	408.834	16.542	0.00295	180	180	0.03
COAL#38	120	241	408 834	16 542	0.00295	180	180	0.03
COAL #39	423	774	1288 815	16 518	0.000299	600	600	0.03
COAL#40	423	769	1/26 251	15.815	0.000000	600	600	0.03
LNC COUDI	423	709	1430.231	13.813	0.001381	700	700	0.03
LNG_CC#01	160	250	3427.912	56.613	0.024493	702	702	0.07
LNG_CC#02	160	250	3/51.//2	54.451	0.029156	702	702	0.07
LNG_CC#03	160	250	3918.78	54.736	0.024667	702	702	0.07
LNG_CC#04	160	250	3379.58	58.034	0.016517	702	702	0.07
LNG_CC#05	160	250	3345.296	55.981	0.026584	702	702	0.07
LNG_CC#06	160	250	3138.754	61.52	0.00754	702	702	0.07
LNG CC#07	160	250	3453.05	58.635	0.01643	702	702	0.07
LNG CC#08	160	250	5119.3	44.647	0.045934	702	702	0.07
LNG_CC#09	165	504	1898.415	71.584	0.000044	1350	1350	0.07
LNG_CC#10	165	504	1898 415	71 584	0.000044	1350	1350	0.07
LNG_CC#11	165	504	1898 415	71 584	0.000044	1350	1350	0.07
LNG_CC#12	165	504	1808 /15	71 594	0.000044	1350	1350	0.07
LNG_CC#12	100	A71	2472.20	85.10	0.000044	1350	1350	0.07
	100	4/1	24/3.39	03.12	0.002328	720	720	0.07
LING_CC#14	180	201	2/81./05	87.682	0.000131	/20	/20	0.07
LNG_CC#15	103	341	5515.508	69.532	0.010372	720	720	0.07
LNG_CC#16	198	617	3478.3	78.339	0.007627	2700	2700	0.07
LNG_CC#17	100	312	6240.909	58.172	0.012464	1500	1500	0.07
LNG_CC#18	153	471	9960.11	46.636	0.039441	1656	1656	0.07
LNG CC#19	163	500	3671.997	76.947	0.007278	2160	2160	0.07
LNG CC#20	95	302	1837.383	80.761	0.000044	900	900	0.07
LNG CC#21	160	511	3108.395	70.136	0.000044	1200	1200	0.07
LNG_CC#22	160	511	3108 395	70.136	0.000044	1200	1200	0.07
LING_CC#22	106	400	7095 484	40.84	0.018827	1014	1014	0.07
LNG_CC#23	190	490	3307 727	65 /0/	0.010027	1014	1014	0.07
	190	490	7005 494	40.94	0.010032	1014	1014	0.07
LNG_CC#25	196	490	/095.484	49.84	0.018827	1014	1014	0.07
LNG_CC#26	196	490	7095.484	49.84	0.018827	1014	1014	0.07
LNG_CC#27	130	432	4288.32	66.465	0.03456	1350	1350	0.07
LNG_CC#28	130	432	13,813.00	22.941	0.08154	1350	1350	0.07
LNG_CC#29	137	455	4435.493	64.314	0.023534	1350	1350	0.07
LNG_CC#30	137	455	9750.75	45.017	0.035475	1350	1350	0.07
LNG CC#31	195	541	1042.366	70.644	0.000915	780	780	0.07
LNG CC#32	175	536	1159.895	70.959	0.000044	1650	1650	0.07

LNG CC#33	175	540	1159.895	70.959	0.000044	1650	1650	0.07
LNG CC#34	175	538	1303.99	70.302	0.001307	1650	1650	0.07
LNG CC#35	175	540	1156.193	70.662	0.000392	1650	1650	0.07
LNG CC#36	330	574	2118.968	71.101	0.000087	1620	1620	0.07
LNG CC#37	160	531	779.519	37.854	0.000521	1482	1482	0.07
LNG CC#38	160	531	829.888	37.768	0.000498	1482	1482	0.07
LNG CC#39	200	542	2333.69	67.983	0.001046	1668	1668	0.07
LNG CC#40	56	132	2028.945	77.838	0.13205	120	120	0.07
LNG CC#41	115	245	4412.017	63.671	0.096968	180	180	0.07
LNG CC#42	115	245	2982.219	79.458	0.054868	180	120	0.07
LNG_CC#43	115	245	2982.219	79.458	0.054868	180	120	0.07
LNG_CC#44	207	307	3174.939	93.966	0.014382	180	120	0.07
LNG_CC#45	207	307	3218.359	94.723	0.013161	180	120	0.07
LNG_CC#46	175	345	3723.822	66.919	0.016033	318	318	0.07
LNG_CC#47	175	345	3551.405	68.185	0.013653	318	318	0.07
LNG_CC#48	175	345	4322.615	60.821	0.028148	318	318	0.07
LNG CC#49	175	345	3493.739	68.551	0.01347	318	318	0.07
LNG#01	3	19	669.988	75.464	0.90236	210	210	0.0002
LNG#02	3	28	134.544	129.544	0.110295	366	366	0.0002
OIL#01	94	203	1269.132	89.83	0.014355	120	120	0.0001
OIL#02	94	203	1269.132	89.83	0.014355	120	120	0.0001
OIL#03	94	203	1269.132	89.83	0.014355	120	120	0.0001
OIL#04	244	379	4965.124	64.125	0.030266	480	480	0.0001
OIL#05	244	379	4965.124	64.125	0.030266	480	480	0.0001
OIL#06	244	379	4965.124	64.125	0.030266	480	480	0.0001
OIL#07	95	190	2243.185	76.129	0.024027	240	240	0.0001
OIL#08	95	189	2290.381	81.805	0.00158	240	240	0.0001
OIL#09	116	194	1681.533	81.14	0.022095	120	120	0.0001
OIL#10	175	321	6743.302	46.665	0.07681	180	180	0.0001
OIL#11	2	19	394.398	78.412	0.953443	90	90	0.0001
OIL#12	4	59	1243.165	112.088	0.000044	90	90	0.0001
OIL#13	15	83	1454.74	90.871	0.072468	300	300	0.0001
OIL#14	9	53	1011.051	97.116	0.000448	162	162	0.0001
OIL#15	12	37	909.269	83.244	0.599112	114	114	0.0001
OIL#16	10	34	689.378	95.665	0.244706	120	120	0.0001
OIL#17	112	373	1443.792	91.202	0.000042	1080	1080	0.0001
OIL#18	4	20	535.553	104.501	0.085145	60	60	0.0001
OIL#19	5	38	617.734	83.015	0.524718	66	66	0.0001
OIL#20	5	19	90.966	127.795	0.176515	6	12	0.0001
OIL#21	50	98	974.447	77.929	0.063414	300	300	0.0001
OIL#22	5	10	263.81	92.779	2.740485	6	6	0.0001
OIL#23	42	74	1335.594	80.95	0.112438	60	60	0.0001
OIL#24	42	74	1033.871	89.073	0.041529	60	60	0.0001
OIL#25	41	105	1391.325	161.288	0.000911	528	528	0.0001
OIL#26	17	51	4477.11	161.829	0.005245	300	300	0.0001
OIL#27	7	19	57.794	84.972	0.234787	30	18	0.0001