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Abstract—Penetration of renewable energy sources (RESs) 

and electrical energy storage (EES) systems in distribution 
systems is increasing, and it is crucial to investigate their impact 
on systems’ operation scheme, reliability and security. In this 
paper, expected energy not supplied (EENS) and voltage stability 
index (VSI) of distribution networks are investigated in dynamic 
balanced and unbalanced distribution network reconfiguration, 
including RESs and EES systems. Furthermore, due to the high 
investment cost of the EES systems, the number of charge and 
discharge is limited, and the state-of-health constraint is included 
in the underlying problem to prolong the lifetime of these 
facilities. The optimal charging/discharging scheme for EES 
systems and optimal distribution network topology are presented 
in order to optimize the operational costs, and reliability and 
security indices simultaneously. The proposed strategy is applied 
to a large-scale 119-bus distribution test network in order to 
show the economic justification of the proposed approach. 
 

Index Terms—Energy Management, Distribution Network 
Reconfiguration, Energy Storage, PV Panels, Reliability. 

I.  INTRODUCTION 

PERATIONAL strategies of distribution networks have 
significantly changed over the past decade due to the 
high penetration of renewable energy sources (RESs) and 

energy storages alongside automation systems [1]. The 
stochastic nature of RES poses a serious challenge to supply 
the demand in a reliable way. Accordingly, a lot of studies 
have been carried out to optimally manage charging and 
discharging schedules of energy storage units, which play a 
decisive role in the management of renewable energy sources 
within distribution networks [2-4]. In addition, as one of the 
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prevalent techniques (due to the integration of automation 
system in distribution networks), distribution feeder 
reconfiguration (DFR) is implemented on distribution systems 
in the presence of RES and energy storages. The DFR process 
is to apply changes to the topology of distribution networks in 
order to optimize certain objective functions subject to all 
operational constraints [5]. The DFR is carried out by 
managing the on/off states of tie-switches and sectionalizing-
switches in a distribution feeder without islanding any buses.  

The DFR problem can be formulated as a mixed-integer, 
non-linear and non-convex optimization problem. Therefore, 
traditional gradient based optimization algorithms are not 
suitable to solve DFR [6]. Accordingly, many researchers 
adopted intelligent evolutionary optimization methods to solve 
the distribution network reconfiguration problem. For 
example, in [7], an enhanced gravitational search algorithm is 
implemented to solve the DFR in order to improve transient 
stability and reduce operational cost and power losses. In [8], 
a hybrid evolutionary algorithm based on particle swarm 
optimization algorithm and Nelder–Mead simplex search 
algorithm is developed to minimize the active power loss. 
Furthermore, a modified genetic algorithm is proposed for 
DFR in [9] where the variable population size is taken into 
account. In [10], the optimal sizing, location, and network 
topology are obtained simultaneously by using optimal power 
flow to minimize operational cost and power losses.  

Additionally, the deployment of RESs and electrical energy 
storages requires studies on the optimal management of these 
facilities. Many studies are carried out in order to obtain an 
optimal management scheme for electrical energy storages in 
the fixed-topology distribution networks. For instance, the 
optimal charging and discharging pattern for energy storage in 
the distribution network is obtained using a modified 
evolutionary algorithm to improve reliability and reduce 
operational cost [11]. In [12], technical and financial benefits 
of electrical energy storage systems in distribution networks 
are investigated. A dynamic model for the energy management 
of dispatchable distributed generation sources of micro-grids 
in the presence of wind farms and PV farms is formulated in 
[13] to balance the generation and demand. In [14], the energy 
storage units are allocated in optimal places in a distribution 
system integrated with  wind power and PV sources in order to 
prolong the lifetime of energy storage units. Moreover, 
optimal investment cost of batteries is obtained in order to 
maximize the benefit [15].  

It is noteworthy that the above-mentioned literature 
regarding DFR has ignored the daily load variation and solved 
the DFR during a predetermined time interval. The DFR 
model for non-variable loads cannot demonstrate the real 
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scenarios and cannot achieve the optimal solution for 24-hour 
time scheduling for variable load distribution networks. To fill 
this gap, the DFR is determined in [16] for different time 
horizons (year, season, month and day) in order to find the 
most optimal switching cost. In [17], the DFR is applied to an 
unbalanced distribution network over a 24-hour time horizon. 
In addition, genetic algorithm is implemented as an 
optimization tool for minimizing network energy losses. 
Though the presented robust strategy in [17] considers the 
uncertain price, load consumption and RES power generation 
are treated deterministically based on a fixed prediction. In a 
distribution system with high penetration of RESs, applying 
stochastic programming in order to model intermittent 
behavior of these uncertainty sources is a prevalent and 
practical solution for distribution operations. In addition, the 
solution for dynamic DFR in the presence of RESs integrated 
with energy storages is not evaluated markedly in the 
aforementioned literature.   

Accordingly, an improved optimization model is expected 
to include these three aspects: dynamic distribution feeder 
reconfiguration, optimal management scheme for energy 
storages integrated with RESs, and meeting demand in a 
reliable and stable way considering uncertainties in RESs 
power generation, energy price and load consumption. The 
mentioned model should give operators a decision-making 
strategy in which the most suitable DFR is achieved by proper 
DG unit dispatching pattern, optimal energy storage 
charging/discharging control, and appropriate reliability and 
stability levels. Eventually, the problem can be completed 
when the constraints related to the technical and operational 
aspects are considered through DFR and energy management 
problem. To address the above-mentioned problem, this paper 
presents reliability and stability oriented management scheme. 
The main contributions of this paper are summarized as 
follows. 

• The dynamic distribution networks and energy 
management are modeled simultaneously. The 
obtained results include optimal switching plan, 
optimal batteries charging/discharging schedule and 
optimal daily diesel generators dispatching. 

• The energy not supplied is considered as a separate 
objective function based on graph theory. Similarly, 
the voltage stability based on the distribution network 
loadability is formulated.  

• Scenario reduction strategy and shuffled frog leaping 
algorithm (SFLA) are utilized in order to obtain the 
optimal solutions for both balanced and unbalanced 
distribution networks. Also, the intermittent nature of 
electricity price, load consumption and PV 
generations are considered as uncertainty sources. 

The remainder of this paper is organized as follows. 
Section II presents the underlying problem formulation and 
framework. It consists of decision variables, objective 
functions, problem constraints and optimization methodology. 
Section III presents case studies and numerical results, and 
finally, Section IV concludes the paper. 

II.  PROBLEM DEFINITION AND FRAMEWORK 

In some cases, DISCO is the owner of some parts of 
distribution network [18]. Here, it is assumed that only one 
DISCO is the owner of all facilities and operates the 
distribution network. It solves the stochastic optimization 

problem by considering uncertainty in PV generation and 
electricity price. The problem formulation is explained in the 
following six parts; decision variables, objective functions 
(operational cost, reliability index and security index), 
operational limitations and constraints, and uncertainty 
modeling and optimization tool. 

A.  Decision Variables 

The decision variables of underlying problem include graph 
topology of the network, diesel generators active power and 
batteries charge and discharge scheme as follows: 
ࢄ  = ሾࢄௌ௪ ீࢄ ௧௧ࢄ ௌ௪ࢄሿ (1)்ࢄ = ൣ തܺௌ௪భ തܺௌ௪మ … തܺௌ௪ಿೞೢ൧ (2) ࢄீ = ൣ തܺீభ തܺீమ … തܺீಿವಸ൧ (3) ࢄ௧௧ = ൣ തܺ௧௧భ തܺ௧௧మ … തܺ௧௧ಿಳೌ൧ (4) ்ࢄ = ൣ തܺ௧భ ത்ܺమ … ത்ܺಿೌ൧ (5)തܺௌ௪ೖ = ൣ ௌܺ௪ೖଵ ௌܺ௪ೖଶ … ௌܺ௪ೖଶସ ൧, ݇߳ሼ1,2,… ,  ሽݓݏܰ

(6)തܺீೖ = ൣܺீೖଵ ܺீೖଶ … ܺீೖଶସ ൧, ݇߳ሼ1,2, … ,  ሽܩܦܰ
(7)തܺ௧௧ೖ = ൣܺ௧௧ೖଵ ܺ௧௧ೖଶ … ܺ௧௧ೖଶସ ൧,			݇߳ሼ1,2,… ,  ሽݐݐܽܤܰ
(8)ത்ܺೖ = ൣ்ܺೖଵ ்ܺೖଶ … ்ܺೖଶସ ൧,			݇߳ሼ1,2, …  ሽܽܶܰ,
(9)

where, ࢄ is the decision variable vector of the proposed 
problem which consists of four sub-decision variables: open 
switches (ࢄௌ௪), diesel generators output (ࢄீ), batteries 
active power charge/discharge (ࢄ௧௧) and tap position of the 
tap-changer (்ࢄ). Notations തܺௌ௪ೖ , തܺீೖ, തܺ௧௧ೖ and ത்ܺೖ  

are the ݇௧ set of open switch numbers, active power output of ݇௧ diesel generator, active power of charge/discharge of the ݇௧ battery, and tap position of the ݇௧ tap-changer, at a 24-
hour time horizon, respectively. 

B.  Operational Cost   

The operational cost includes the cost of energy purchasing 
from substation, the fuel cost of diesel generators and 
switching which can be formulated as:  

ݐݏܥ =ߩ௦ ቌ ,௧,௦௦௦ேೄೠ್ܥ
ୀଵ × ܲ,௧,௦௦௦ +ܥ,௧,௦ீேವಸ

ୀଵ × ܲ,௧,௦ீ ቍேೞ
௦ୀଵ

ଶସ
௧ୀଵ +ܥௌ௪ேೄೢ

ୀଵ × หܵ௧ − ܵ,௧ หଶସ
௧ୀଵ  

(10)

where, ܥ,௧,௦௦௦ ,௧,௦ீܥ ,  and ܥௌ௪ are the price of energy from ݊௧ 
substation at ݐ௧ time interval for ݏ௧ scenario, the price of 
fuel of ݆௧ diesel generator at ݐ௧ time interval for ݏ௧ scenario 
and switching cost, respectively;	ߩ௦ is the probability of ݏ௧ 
scenario; ௌܰ௨ ( ܰீ) and ௌܰ௪ are the number of substations 
(diesel generators) and the number of switches, respectively;  

 

 
Fig. 1. Thevenin equivalent system of bus i at ݐ௧ hour for ݏ௧ scenario 
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௦ܰ is the number of scenarios; ܲ,௧,௦௦௦  and ܲ,௧,௦ீ  are the active 
power from ݊௧ substation and active power from ݆௧ diesel 
generator at ݐ௧ time interval for ݏ௧ scenario, respectively; 
and ܵ௧  and ܵ,௧  are the new and initial status of ݇௧ switch at ݐ௧ time interval.  

C.  Desire Reliability Index 

Almost all power outages and blackouts are caused by 
faults in the transmission and distribution networks [19, 20]. 
Accordingly, the operational problems should be carried out to 
optimize a reliability index such as minimization of EENS as 
follows: ܵܰܧܧ = ∑ ∑ ,௧ே್ೠೞୀଶଶସ௧ୀଵܵܰܧܧ , (11)
where, ܰܧܧ ܵ௧ is the expected energy not supplied of ݅௧ bus 
at ݐ௧ time interval; and ܰ௨௦ is the number of buses. Notation ܵܰܧܧ,௧ is defined as follows: ܵܰܧܧ,௧ = ∑ ௦ߩ ܲ,௧,௦ × ቀ∑ ܷ∈ு + ∑ ܷᇱ∈ுᇲ ቁேೞ௦ୀଵ , (12) 
where, ܲ,௧,௦ is the total generation and consumption of active 
power of ݅௧ bus at ݐ௧ time interval for ݏ௧ scenario; ܪ  and ܪᇱ are the set of downstream and upstream branches of ݅௧ 
bus, respectively; ܷ and ܷᇱ  are the service unavailability 
related to the reparation time of  ݈௧ downward branch of the ݅௧ bus and the service unavailability associated to the 
restoration time of  ݇௧ upward branch of the ݅௧ bus, 
respectively. Notations ܷ and ܷᇱ  are defined as follows: ܷ = ߚ ×  ܷᇱ	ݐ = ߚ × ᇱݐ  (13)
where, ߚ and ߚ are the failure rate (fail/year) of ݈௧ and ݇௧ 
branch, respectively; and ݐ and ݐᇱ  are the average reparation 
of ݈௧ branch and restoration time of ݇௧ branch, respectively. 

D.   Voltage Stability Index 

Voltage collapse is one of the negative consequences of 
increasing load in distribution systems. In order to improve the 
network loadability, the voltage stability index is included in 
the underlying problem and defined based on “Thevenin-
equivalent” [21]. The advantage of this strategy in comparison 
with the previous methods in [22] is that it can be 
implemented on both mesh and radial networks. More details 
of this method are explained as follows. 

First, the Thevenin-equivalent will be obtained for all bases 
of networks as shown in Fig. 1. 

According to the load flow technique, (14) and (15) can be 
obtained; and from these equations, (16) can be obtained [22]. ܫ,௧,௦ = ܸ,௧,௦௧ − ܸ,௧,௦ܴ,௧,௦௧ + ݆ ܺ,௧,௦௧  

(14)ܲ,௧,௦ − ݆ܳ,௧,௦ = ܸ,௧,௦∗ × ,௧,௦ (15)ܫ

ܲ,௧,௦ − ݆ܳ,௧,௦ = ܸ,௧,௦∗ × ܸ,௧,௦௧ − ܸ,௧,௦ܴ,௧,௦௧ + ݆ ܺ,௧,௦௧  
(16)

Eq. (17) can be calculated from (16). Coefficients ܤ,௧,௦ and ܥ,௧,௦ are defined by (18) and (19), respectively. ห ܸ,௧,௦หସ − .,௧,௦ܤ ห ܸ,௧,௦หଶ + ,௧,௦ܥ = ,௧,௦ܤ(17) 0 = ห ܸ,௧,௦௧ หଶ − 2 ܲ,௧,௦ܴ,௧,௦௧ − 2ܳ,௧,௦ ܺ,௧,௦௧ ,௧,௦ܥ(18)  = ൫ ܲ,௧,௦ଶ + ܳ,௧,௦ଶ ൯. ቀ൫ܴ,௧,௦௧ ൯ଶ + ൫ ܺ,௧,௦௧ ൯ଶቁ (19)
In order to have a stable condition, constraint (20) is 

required. Therefore, the VSI will be defined as in (21). ܤ,௧,௦ଶ − ,௧,௦ܥ4 ≥ 0	 (20)

,௧,௦݅ݏݒ = ቀห ܸ,௧,௦௧ หଶ − 2 ܲ,௧,௦ܴ,௧,௦௧ − 2ܳ,௧,௦ ܺ,௧,௦௧ ቁଶ −4. ൫ ܲ,௧,௦ଶ + ܳ,௧,௦ଶ ൯. ቀ൫ܴ,௧,௦௧ ൯ଶ + ൫ ܺ,௧,௦௧ ൯ଶቁ		݅ = 2, 3, … , ܰ௨௦ (21)
All parameters in (14)-(21) are depicted in Fig. 1. In order 

to reach a stable operation condition, VSI for all buses must be 
greater than zero. In this regard, the third objective function is 
defined as follow; ࢙࢜௧,௦ = ,ଶ,௧,௦݅ݏݒൣ ,ଷ,௧,௦݅ݏݒ … , 	ே್ೠೞ,௧,௦൧݅ݏݒ ,௧,௦݅ݏݒܾ(22) = ൜0 ,௧,௦݅ݏݒ > 01 ,௧,௦݅ݏݒ ≤ 0 ௧,௦࢙࢜(23) = ,ଶ,௧,௦݅ݏݒܾൣ ,ଷ,௧,௦݅ݏݒܾ … , 	ே್ೠೞ,௧,௦൧݅ݏݒܾ ݕݐ݈ܽ݊݁(24) ݎݐ݂ܿܽ = ℳ × 	௧,௦൯࢙࢜൫݉ݑݏ ௧,௦ܫܸܵ(25) = (௧,௦࢙࢜)1݉݅݊ + 	ݎݐ݂ܿܽ	ݕݐ݈ܽ݊݁

ܫܸܵ(26) = 124ߩ௦ேೞ
௦ୀଵ

ଶସ
௧ୀଵ  ௧,௦ܫܸܵ

 is the third objective function. The parameter ℳ is a ܫܸܵ(27)
large number (for instance, 10ଵ) which is used as a penalty 
factor. The penalty factor is implemented to eliminate the 
unstable decision variables during the optimization process. 

E.  Technical and Operational Constraints 

In this section, all the relevant technical and operational 
constraints are explained as below. 

• Distribution network radial structure 

Almost all distribution networks are operated in radial 
topology in order to simplify the protection systems. In order 
to satisfy the radial structure constraint, the bus branch 
incidence matrix is implemented. More details regarding the 
proposed matrix can be found in [23]. 

• Diesel generator limitation 

As mentioned, the proposed problem is solved 
dynamically. In this regard, the ramp rate constraints should 
be considered besides the maximum and minimum output 
limitations. 

ܲீ, ≤ ܲ,௧,௦ீ ≤ ܲீ,௫ ∀݆, ,ݐ ௪ܴ݉ܽ(28) 				,ݏ ≤ ܲ,௧,௦ீ − ܲ,௧ିଵ,௦ீ ≤ ,݆∀					ܴ݉ܽ ,	ݐ ,ݏ  (29)
where, ܲீ, and ܲீ,௫  are the minimum and maximum 
limitations of ݆௧ diesel generator, respectively; and ܴܽ݉௪ and ܴܽ݉ are down and up ramp rates of ݆௧ 
diesel generator, respectively. 

• Current and voltage limitations 

The bus voltages and branch currents should be within their 
maximum and minimum boundaries.  ܵܮ,௧,௦ ≤ ௫ (30)ܸܮܵ ≤ ܸ,௧,௦ ≤ ܸ௫ 

(31)
where ܵܮ,௧,௦ and ܵܮ௫ are the power flow magnitude of ݆௧ 
branch at ݐ௧ hour for ݏ௧ scenario and its corresponding 
maximum power flow limitation, respectively; and ܸ and ܸ௫ are the minimum and maximum voltage of ݇௧ bus. 

• Battery constraints 

Because of the high investment cost of energy storages, 
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they should be operated in a secure environment to prolong 
their lifetime. In this regard, the maximum permitted number 
of switching back and forth between charging and discharging 
status must be considered besides the state of charge and other 
constraints. ܧ,௧ = ,௧ିଵܧ + ,ߩ × ܲ,,௧ × ݐ∆ − ௗ௦,ߩ1 ௗܲ௦,,௧ × ݅,ݐ∆ = 1,2,… , ݐ,ݐݐܽܤܰ = 1,… ݐ∆			,24, = 1ℎ 

ܧ(32) ≤ ,௧ܧ ≤ ;௫ܧ 		݅ = 1,2, … , ݐ		ݐݐܽܤܰ = 1,… ,24	 (33)ܲ,,௧ ≤ ܲ,௫, ݅ = 1,2,… , ,ݐݐܽܤܰ ݐ = 1,… ,24 (34)ௗܲ௦,,௧ ≤ ௗܲ௦,௫, ݅ = 1,2, … ,ݐݐܽܤܰ, ݐ = 1,… ,24 (35)|ܵ௧ାଵ − ܵ௧| 2ൗଶଷ
௧ୀଵ ≤ ܰு/ு 

(36)
where ܧ,௧ is the amount of energy storage in the ݅௧ battery at ݐ௧ hour. ܲ,,௧ ( ௗܲ௦,,௧) is the permitted rate of charge 
(discharge) of ݅௧	 battery during a determinate period of time 
 is the charge (discharge) efficiency (ௗ௦,ߩ) ,ߩ .(1h = ݐ∆)
percentage of the ݅௧ battery. ܧ௫ (ܧ) is the maximum 
(minimum) amount of permitted energy storage in ݅௧ battery. 
Constraints (34) and (35) impose the maximum charge rate ܲ,௫, and maximum discharge rate, ௗܲ௦,௫, of the ݅௧ battery 
during a determinate period of time (∆1 = ݐh). In constraint 
(36), ܰு/ு is the maximum permitted number of switching 
back and forth between charging and discharging status and S୲ 
represents the charging and discharging status which is equal 
to 1 and -1 for charging and discharging status, respectively. 

F.  Uncertainty Characterization 

In this study, two sources of uncertainty are considered. 
• Electricity price of power supplied by substation  
• Output power of PV plants. 

1) PV power uncertainty modeling: For each time period, 
historical data of solar irradiance are used to produce a beta 
[24] distribution function as follows; 

݂(ݏ) = ۔ۖەۖ
ۓ Г(ߙ + .(ߙ)Г(ߚ Г(ߚ) ∙ (ఈିଵ)ݏ ∙ (1 − ,(ఉିଵ)(ݏ 0 ≤ ݏ ≤ ,ߙ1 ߚ ≥ 0							0,																																																	 ݁ݏ݅ݓݎℎ݁ݐܱ  

(37)
where ݂(ݏ) is the beta distribution function. ߙ and ߚ are the 
parameters of the beta distribution function and can be 
obtained using historical data. 

The continuous hourly beta PDFs are split into several 
intervals with equal width. Each interval has a mean value and 
a probability of occurrence which can be calculated as 
follows.  

௦ߩ = න ݂(ݏ)݀ݏ௦శభ
௦  

(38)
where ݏ and ݏାଵ indicate the starting and ending points of the 
interval i, respectively. 

The output power of a PV plant corresponding to specific 
solar irradiation can be calculated as follows. 

௬ܲ,௧ௌ ൫ݏ௬,௧൯ = ܰ × ܨܨ × ௬ܸ,௧ ×  ௬,௧ܫ
ܨܨ(39) = ெܸ × ெܸܫ × ௦ܫ  
(40)

௬ܸ,௧ = ܸ − ௩ܭ × ௬ܶ,௧ ௬,௧ܫ(41) = ௦ܫ௬,௧ൣݏ − ூܭ × ൫ ௬ܶ,௧ − 25൯൧ 
(42)

௬ܶ,௧ = ܶ + ௬,௧ݏ ൬ ை்ܰ − 200.8 ൰ 
(43) 

where ௬ܶ,௧  is cell temperature (℃); ܶ is ambient temperature (℃); ܭ௩ and ܭ are voltage and current temperature coefficient 
(ܸ ℃⁄  and A ℃⁄ ), respectively; ܰ௧ denotes nominal operating 
temperature of cell (℃); ܨܨ is fill factor; ܫ௦  and ܸ  indicates 
short circuit current and open circuit voltage (A and V), 
respectively; ܫெ and ெܸ are, respectively current and 
voltage at maximum power point (A and V); ௬ܲ,௧ௌ  is output 
power of the PV module; ݏ௬,௧ solar irradiance; and ݐ and ݕ are 
the indices of time periods and scenarios. 
 

2) Market prices uncertainty modeling: In this paper, log-
normal distribution function [25] is considered to characterize 
the market price of each hour. Accordingly, the market prices 
can be expressed as follows; 

,ݎܧ൫݂ ,ߤ ൯ߪ = ݎܧቌ−൫݈݊ݔ݁ߨ2√ߪݎܧ1 − 2ߪ൯22ߤ ቍ 
(44)

where ߤ and ߪ represent mean value and standard deviation, 
respectively, and ܧ is the distribution function parameter 
(i.e., electricity market price). In a similar way, the log-normal 
PDFs are sliced into several intervals. Each interval yields a 
mean value and probability of occurrence. Different 
realization of PV power production and market prices can be 
modeled using a scenario generation process according to 
roulette wheel mechanism [26]. 

In this method, a large number of scenarios is generated. 
Higher numbers of scenarios result in a more precise modeling 
of the system. However, the higher number of scenarios 
causes higher computational burden. To this end, the number 
of scenarios should be selected in a way that not only 
diminishes the computational burden of the problem but also 
maintains a good approximation of the uncertain parameters. 
In order to reduce the number of scenarios and consequently 
reduce the computational time; the backward method is 
implemented to eliminate the duplicate scenarios or the 
scenarios with minimum distance [27].  

G.  Multi-objective Strategy and Optimization Tool 

In this section, the multi-objective technique and the 
shuffled frog leaping algorithm (SFLA) are introduced. The 
ALGORITHM and Fig. 2 describe the proposed multi-
objective technique. According to this method, all populations 
are sorted in ascending order of the first objective function, 
then an eliminating zone is defined for each individual (i.e. 
Fig. 2), and based on that, some populations are eliminated. 
This process is applied to reach a set of non-dominated 
solutions.  

The ranges of objective function values are different in the 
multi-objective programming. Therefore, the fuzzy decision-
making technique (i.e. based on trapezoidal fuzzy membership 
functions) is employed in order to have the same range for all 
of them. 

μை(ܺ)= ۔ۖەۖ
ۓ 1 																		ܱܾ݆≤ܱܾ݆ܱܾ݆௫-ܱܾ݆ܱܾ݆௫-ܱܾ݆ 			ܱܾ݆≤ܱܾ݆≤ܱܾ݆௫0 																		ܱܾ݆≥ܱܾ݆௫  

(45)
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Fig. 2. Eliminating zone for each solution 

ALGORITHM 
1. Input:  = ሾpopulation	&	objective	functionsሿ. 
2. Sort the population in ascending order of the first objective function.
 .݊݅ݐ݈ܽݑ	݂	ݎܾ݁݉ݑ݊=ܰ ,1=ݖ .3
4. While ݖ ≤ ܰ 
5.  Constitute the eliminating zone (ܼܧ௭) for ݖ௧ population (red 

shadow in Fig. 2). 
6.  Eliminate the populations that are in the eliminating zone of ݖ௧ 

population. ࢠࢋ ⊆ ࢠࢋ 	&		 =ሼݐ݁ݏ	݂	ݏ݊݅ݐ݈ܽݑ	݊݅	ݐℎ݁	ܼܧ௭	ܽܽ݁ݎሽ  =  ∖ ሼࢠࢋ ሽ 
7.  Update 1+ݖ=ݖ, ܰ=݊ݎܾ݁݉ݑ	݂	݊݅ݐ݈ܽݑ. 

8. end 
9. Output: ݐ݁ݏ	݂	݊݊	݀݁ݐܽ݊݅݉݀	ݏ݊݅ݐݑ݈ݏ =  .

 

 
Fig. 3. The optimization framework of energy management and distribution 

network reconfiguration 
 

where ܱܾ݆ and ܱܾ݆௫  (ܱܾ݆) are the ݉௧ objective 
function and its corresponding upper (lower) bound, 
respectively, and μை is the fuzzy set for ݉୲୦ objective 
function. 
The fitness function is determined for each individual as 
follows: ߮ = ∑ ߱ × μܱܾ݆݉(ࢄ)ேೀ್ೕୀଵ∑ ∑ ߱ × μܱܾ݆݉(ࢄ)ேೀ್ೕୀଵேୀଵ  

(46)
where ܰௗ is the number of non-dominated solution; ߮ and ߱ are the fitness function of ݅௧ non-dominated solution and 
the weighting factor (i.e. the priority grade from the decision 
makers point of view) of ݉௧ objective function, respectively. 
In this study, ߱ଵ = ߱ଶ = ߱ଷ = 0.33 is chosen.  

SFLA is implemented to solve the above optimization 
problem. This algorithm models the social life of group of 
frogs when they are searching food. The details of this method 
are available in [28]. 

The frogs are divided equally into several memeplexes. In 
this algorithm, the worst frog (ࢄ௪௦௧) in each memeplex is 
updated according to two strategies based on the best frog in 
the memeplex (ࢄ௦௧) and the best frog in all population 
ݓ݁݊ݐݏݎݓࢄ ;as follows (௦௧ீࢄ) = ݐݏݎݓࢄ + ݀݊ܽݎ × ݐݏܾ݁ࢄ) − worstnew܆ (47) (ݐݏݎݓࢄ = worst܆ + rand × Gbest܆) −  worst) (48)܆

where ݀݊ܽݎ is random number between 0 and 1. In the 
optimization process, the worst frog is updated by the best 
frog in the memeplex as in (47). If the fitness function for ࢄ௪௦௧௪  is better than of ࢄ௪௦௧ , then ࢄ௪௦௧  will be replaced 
by ࢄ௪௦௧௪ ; otherwise ࢄ௪௦௧  will be updated by the best frog 
in all population as in (48). Similarly, if the fitness function 
for ࢄ௪௦௧௪  is better than ࢄ௪௦௧ ௪௦௧ࢄ ,  will be replaced by ࢄ௪௦௧௪ , and if not, ࢄ௪௦௧  will be replaced by a new randomly 
generated frog. This process will be applied for all 
memeplexes and for a predetermined number of iterations. 
The framework of the proposed strategy is depicted in Fig. 3. 

III.  SYSTEM MODEL AND SIMULATION RESULTS 

In order to assess the performance of the proposed method, 
a case study based on the 119-bus distribution network is 
provided in this section. 

A.  Case Study 

The 119-bus distribution network under study is shown in Fig. 
4(a), consisting of three feeders, 15 tie-switches and 11 kV 
substation [29]. The average hourly forecasted active and 
reactive load profile is shown in Fig. 4(b). Four 500 kW PV 
panels and their relevant batteries are installed at bus#31, 
bus#42, bus#96 and bus#109. Five 500 kW diesel generators 
with unit power factor and 50 kW/h up and down ramp rate 
are located at bus#20, bus#28, bus#71, bus#74 and bus#111. 
30 scenarios are implemented in order to simulate the 
uncertainty parameters. The simulation is done in MATLAB 
R2011b environment using a core-i5 processor laptop with 2.4 
GHz clock frequency and 4.0 GB of RAM. 

B.  Simulation and Results  

The three objective functions (Eqs. 10, 12 and 27) are 
important for the reliable and cost-effective operation of the 
distribution system; however, it is usually impossible to 
achieve the optimal results for all of them simultaneously. 
Also, the operation of diesel generators, batteries, and network 
switches are different in each case. Hence, various analyses 
are performed to explore the best compromise solution as will 
be described in the following. 

1) Single objective case study: SFLA is compared with 
three different heuristic methods such as genetic algorithm 
(GA), particle swarm optimization (PSO) and differential 
evolution (DE), each is run 10 times to solve the DFR 
optimization problem, and the comparison results are detailed 
in Table 1.  

TABLE I  
RESULTS OF DIFFERENT METHOD FOR MINIMIZING THE OPERATIONAL COST 

Method 
Operational Cost ($)

Best Mean Worst STD C.T.
GA 13068.06 13206.7 13355.0 109.81 201
PSO 12835.64 12985.2 13355.0 212.32 164
DE 12835.64 12903.5 13161.1 99.79 178

SFLA 12820.85 12841.2 12897.1 25.32 167
C.T.: Computational Time (Second) 



1949-3029 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2019.2901429, IEEE
Transactions on Sustainable Energy

 6

 
a) Single line 119-bus distribution network 

 
b) Active and reactive load profiles 

Fig. 4. Data for 119-bus standard distribution system 

TABLE II shows the results of the optimization results for 
individual objectives and the initial condition (distribution 
network without DG units, PV panels and energy storages). 
Firstly, it is worth mentioning that the objective values of all 
objective functions are improved due to the positive impact of 
these facilities. In addition, the targeted objective (for 
example, operational cost) is minimized, and subsequently, the 
values of the other two objectives are calculated in each case. 
According to this table, the amount of optimal operational 
cost, optimal EENS, and optimal VSI are $12820.85, 340.73 
kWh/year and 2.53 p.u., respectively. Also, it can be seen that 
the operational cost is sharply in conflict with two other 
objective functions. In other words, by minimizing operational 
cost, the amount of ENS and VSI are increased (368.646 
kWh/year and 3.397 p.u.). And similarly, by minimizing the 
ENS and VSI, the amount of operational cost is increased to 
$13413.68 and $12939.96, respectively. Similarly, the 
operational cost conflicts with VSI. The optimal VSI amount 
is 2.1, and in this condition, the amount of operational cost is 
$13278.1. 

The list of open-switches for minimizing operational cost is 
shown in 0. it is worth mentioning that the radiality constraint 
is satisfied in each hour. furthermore, Fig. 5 and Fig. 6 show 
the diesel generators active power output and batteries active 

power charge/discharge. as can be seen, almost all the diesel 
generators are operated at their minimum level in order to 
minimize the operational cost. also, from Fig. 6 it can be seen 
that the maximum permitted number of switching back and 
forth between the charging and discharging status and the 
charging and discharging status constraint are satisfied for all 
batteries.  

The list of open-switches for minimizing operational cost is 
shown in 0. It is worth mentioning that the radiality constraint 
is satisfied in each hour. Furthermore, Fig. 5 and Fig. 6 show 
the diesel generators active power output and batteries active 
power charge/discharge. As can be seen, almost all the diesel 
generators are operated at their minimum level in order to 
minimize the operational cost. Also, from Fig. 6 it can be seen 
that the maximum permitted number of switching back and 
forth between the charging and discharging status and the 
charging and discharging status constraint are satisfied for all 
batteries. 

2) Multi-objective case study: As mentioned, all three 
objective functions are in conflict, and it is impossible to find 
a solution to have optimal operational cost, ENS and VSI 
simultaneously. Therefore, the best strategy is to find a 
compromise among the three conflicted objective functions. In 
this regard, “Pareto optimal strategy” is applied in order to 
obtain a set of non-dominated solutions, and then decision 
makers would be able to have a tradeoff among the objective 
functions according to their considered priority. 

TABLE II  
RESULTS OF MINIMIZING THE OBJECTIVE FUNCTIONS SEPARATELY 

Method Cost ($) ENS (kWh/year) VSI (p.u.)
Initial Condition 15633.87 544.7785 4.0509

Cost Minimization 12820.85 368.646 3.3974
ENS Minimization 13413.68 340.7324 3.3831
VSI Minimization 12939.96 367.9338 2.5336

TABLE III  
LIST OF OPEN SWITCHES FOR MINIMIZING OPERATIONAL COST 

Hour Open Switches 

1 43-11- 23- 51- 47- 61- 38- 56- 72- 73- 98- 82- 85- 131- 32

2 45- 12- 17- 53- 122- 36- 39- 57- 66- 73- 128- 105- 101- 115- 33

3 43- 24- 20- 53- 46- 36- 27- 54- 71- 127- 98- 105- 102- 116- 33

4 43- 12- 120- 52- 48- 123- 27- 56- 126- 127- 96- 81- 102- 115- 33

5 118- 16- 7- 50- 48- 61- 124- 55- 70- 127- 76- 106- 101- 131- 34

6 42- 25- 120- 51- 48- 123- 38- 55- 71- 87- 128- 105- 103- 113- 34

7 118- 14- 23- 49- 46- 36- 37- 57- 89- 127- 128- 105- 103- 115- 32

8 44- 12- 120- 121- 48- 61- 37- 56- 66- 127- 76- 82- 85- 108- 132

9 118- 14- 23- 53- 122- 61- 39- 57- 68- 73- 75- 105- 103- 109- 33

10 44- 24- 21- 53- 47- 58- 37- 56- 72- 74- 96- 129- 130- 131- 31

11 41- 13- 23- 53- 122- 59- 38- 125- 70- 87- 96- 82- 102- 113- 30

12 45- 15- 19- 52- 48- 58- 124- 57- 89- 87- 97- 129- 85- 108- 34

13 41- 12- 23- 50- 47- 36- 124- 57- 70- 87- 76- 105- 85- 115- 31

14 41- 16- 17- 121- 48- 58- 39- 57- 126- 87- 128- 81- 85- 116- 34

15 118- 14- 120- 50- 46- 58- 38- 56- 88- 74- 128- 105- 102- 116- 34

16 42- 14- 20- 52- 122- 123- 124- 55- 72- 127- 97- 105- 103- 117- 33

17 42- 12- 23- 49- 48- 61- 39- 56- 71- 74- 76- 80- 100- 116- 34

18 45- 15- 18- 121- 48- 58- 124- 57- 71- 73- 128- 81- 102- 116- 34

19 45- 15- 20- 51- 48- 36- 124- 57- 72- 87- 128- 105- 85- 109- 30

20 45- 16- 7- 50- 122- 58- 27- 54- 71- 86- 97- 82- 103- 109- 30

21 41- 10- 18- 121- 122- 58- 38- 57- 90- 127- 96- 106- 101- 108- 33

22 43- 14- 21- 51- 46- 60- 38- 57- 72- 127- 97- 81- 85- 115- 34

23 43- 25- 22- 121- 47- 58- 39- 54- 69- 86- 75- 82- 100- 114- 34

24 118- 14- 120- 53- 48- 58- 124- 54- 68- 87- 76- 106- 103- 109- 33
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Fig. 5. Diesel generator power scheduling for the optimal operational cost. 

 
Fig. 6. Active power of batteries during charge and discharge for the 

optimal operational cost. 

Fig. 7, Fig. 8 and Fig. 9 show the two-dimension Pareto 
optimal solutions for operational cost-ENS, operational cost-
VSI and ENS-VSI, respectively. The percentages in these 
figures show the amount of conflict between the objective 
functions. The most conflict is observed in the operational 
cost-VSI case with 70.69%, while the minimum conflict is 
between ENS-VSI with 5.3%. The conflict between 
operational cost-ENS is 9.69%. In order to have a reliable and 
secure operational cost, it is better than to find a set of three-
dimension non-dominated solutions.  

Three-dimension Pareto front is shown in Fig. 10. The best 
compromise solution with the equal priority weight (ݓଵ ଶݓ= = ଷݓ = 0.33) is highlighted with a red star.  

For this solution, the amounts of operational cost, ENS and 
VSI are $13933.064, 373.96 kWh/year and 3.213 p.u., 
respectively. 

The list of open switches for best compromise solution is 
listed in TABLE IV. According to these results, the crucial 
constraint for the radial structure is satisfied for each topology. 
Furthermore, Fig. 11 and Fig. 12 depict the active power 
output of diesel generators and active power of 
charging/discharging of batteries, respectively. From Fig. 11, 
it can be observed that the diesel generators are operated close 
to their middle levels in order to have a secure and reliable 
operation plan.  

According to the energy not supplied formulation, it is 
better to feed the load consumption locally instead of feeding 
them through the transmission system. Then with respect to 
ENS improvement, the diesel generators tend to operate at 
their maximum level to feed the load consumption locally.  
The same analysis can be done for VSI. In order to increase 
the distribution load-ability, it is better to feed the load 
consumption locally.  In the other way, diesel generators tend 
to operate at their minimum level in order to minimize the 
operational cost, and then the best compromise makes a 
tradeoff between these two different tendencies. 

 
Fig. 7. Two-dimension Pareto front for operational cost-EENS 

 
Fig. 8. Two-dimension Pareto front for operational cost-VSI 

 
Fig. 9. Two-dimension Pareto front for EENS-VSI 

 
Fig. 10. Three-dimension Pareto front for operational cost-ENS-VSI 

3) Unbalanced case study: In this subsection, the proposed 
approach is tested on an unbalanced version of the 119-bus 
distribution network. Compared to the original balanced test 
case, the total loads are 22654 kW and 16980 kVar at phase A, 
21568 kW and 16038 kVar at phase B, and 21646 kW and 
16106 kVar at phase C. Furthermore, three voltage regulators 
are encompassed on the three main feeders. In this case, the 
tap positions are considered in the decision variables and 
optimized with the other variables simultaneously. 

TABLE V shows the extracted results for individual 
objective as well as the multi-objective case. According to 
these results, the amount of operational cost and ENS are 
almost tripled in comparison with the single-line case study. 
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TABLE IV  
LIST OF OPEN SWITCHES FOR BEST COMPROMISE 

 

Hour Open Switches 

1 40- 14- 22- 49- 47- 60- 27- 56- 65- 73- 128- 129- 104- 114- 30
2 118- 24- 7- 52- 122- 58- 39- 125- 66- 87- 76- 106- 104- 113- 30
3 45- 25- 6- 121- 122- 36- 27- 57- 70- 73- 98- 105- 85- 113- 33
4 44- 25- 7- 52- 47- 36- 37- 56- 71- 87- 128- 129- 103- 131- 31
5 44- 12- 21- 50- 48- 59- 38- 57- 69- 127- 76- 105- 130- 108- 32
6 45- 119- 23- 49- 122- 36- 124- 125- 70- 73- 98- 106- 103- 117- 32
7 118- 13- 21- 121- 122- 35- 124- 55- 90- 86- 128- 129- 103- 114- 33
8 40- 10- 18- 121- 46- 36- 38- 57- 70- 74- 97- 129- 101- 114- 33
9 44- 24- 4- 53- 48- 59- 38- 125- 70- 73- 96- 129- 104- 114- 34

10 41- 13- 7- 49- 122- 58- 38- 56- 69- 86- 75- 129- 130- 116- 132
11 41- 16- 20- 53- 122- 60- 124- 54- 89- 74- 97- 129- 101- 115- 31
12 43- 25- 3- 51- 48- 61- 37- 57- 90- 74- 96- 106- 101- 117- 34
13 118- 11- 21- 49- 46- 60- 38- 54- 65- 74- 98- 80- 100- 117- 30
14 42- 15- 19- 53- 48- 36- 37- 54- 69- 74- 128- 81- 85- 115- 132
15 42- 14- 23- 51- 46- 59- 37- 57- 66- 127- 98- 81- 101- 116- 30
16 44- 25- 18- 51- 47- 61- 27- 56- 88- 74- 96- 82- 101- 108- 33
17 43- 26- 21- 49- 47- 123- 37- 125- 126- 87- 76- 82- 130- 115- 33
18 42- 14- 20- 53- 48- 36- 39- 55- 69- 87- 76- 129- 130- 116- 32
19 118- 13- 23- 52- 47- 36- 37- 57- 68- 74- 128- 106- 100- 109- 132
20 44- 11- 19- 53- 47- 58- 124- 55- 69- 127- 76- 82- 85- 117- 34
21 118- 119- 7- 49- 48- 123- 39- 57- 69- 87- 98- 106- 104- 117- 32
22 118- 26- 18- 52- 47- 59- 38- 54- 70- 127- 96- 82- 103- 108- 32
23 41- 24- 6- 53- 122- 35- 27- 54- 65- 73- 128- 106- 103- 109- 30
24 42- 119- 120- 53- 48- 59- 124- 56- 65- 127- 98- 107- 101- 131- 132

 

 
Fig. 11. The diesel generator power scheduling for the best compromise 

While, the amount of VSI represents the amount of desire 
voltage stability index for the bus with the lowest stability 
margin. Furthermore, the conflict between the objective 
functions is obvious in the unbalanced case as well as the 
single-line case, and the best compromised solution provides 
the trade-off between the objective functions. 

The list of open-switches and the tap-changer positions are 
tabulated in TABLE VI. In accordance with these results, it is 
worthwhile to note that the crucial radial constraint is satisfied 
at all time intervals. Moreover, it is evident that the load 
profile is followed by the tap-positions. In other words, during 
the peak load period, the tap-positions tend to increase the 
voltage magnitude for two reasons; the first reason is to avoid 
voltage drop, and the second one is to decrease power losses. 
In the off-peak period, the tap changers will reduce the voltage 
magnitude in order to avoid the over-voltage issue. The total 
energy transaction of batteries during their charge and 
discharge and the average active and reactive power of DGs 
are listed in 0. The results indicate that the batteries at buses 
31 and 109 have more penetration in comparison with the 
batteries located at buses 42 and 96.  

Also, the results depict that the DGs at buses 20 and 74 
have the most and the least commitment in the distribution 
network, respectively. The DGs at buses 28, 71 and 111 have 
approximately the same commitment with a value less than the 
DG at bus 28. 

Aiming to have a better understanding of the improvement 
in terms of VSI based on distribution network loadability, 
some analysis is performed as follows. 

Fig. 13 (upper) shows the network voltage stability profile 
during the 24-hour time horizon. According to this figure, the 
worst voltage stability happens at hour #19. 

 
TABLE V  

RESULTS OF OPTIMIZATION FOR THE UNBALANCED CASE 

Method Cost ($) ENS (kWh/year) VSI (p.u.) 

Cost Minimization 37118.89 1088.581 3.1539
ENS Minimization 38118.83 1073.687 6.0478
VSI Minimization 37578.26 1153.294 2.7322
Best Compromise 37175.70 1092.425 3.1532

TABLE VI  
OPEN SWITCHES AND TAP CHANGER POSITION FOR THE BEST COMPROMISE 
Hour Open Switches Tap Position

1 44, 24, 19, 51, 122, 58, 39, 55, 89, 74, 97, 107, 
100, 115, 30 (-13), (-15), (-12) 

2 40, 11, 6, 49, 122, 35, 124, 54, 67, 74, 75, 107, 
104, 115, 34 (-15), (-7), (-10) 

3 118, 14, 18, 53, 122, 58, 37, 57, 71, 74, 75, 
105, 100, 109, 132 (-12), (-12), (-16) 

4 43, 24, 22, 51, 122, 36, 27, 57, 66, 127, 96, 
105, 102, 117, 132 (-12), (-15), (-10) 

5 40, 14, 6, 52, 46, 123, 124, 57, 67, 127, 76, 82, 
104, 117, 31 (-9), (-15), (-14) 

6 44, 13, 17, 53, 46, 35, 39, 56, 90, 86, 97, 82, 
103, 109, 32 (3), (10), (11) 

7 42, 11, 20, 49, 46, 123, 37, 55, 68, 74, 76, 82, 
101, 113, 30 (15), (14), (14) 

8 43, 16, 19, 51, 48, 58, 37, 57, 67, 87, 128, 81, 
104, 116, 132 (-8), (-14), (-16) 

9 45, 15, 18, 53, 122, 59, 38, 125, 88, 127, 98, 
80, 104, 117, 33 (-7), (-8), (-15) 

10 42, 15, 20, 121, 122, 60, 37, 56, 70, 86, 98, 
106, 100, 131, 32 (-16), (-10), (-14) 

11 42, 11, 7, 52, 47, 35, 39, 125, 88, 87, 75, 82, 
104, 115, 30 (-8), (-11), (-10) 

12 40, 15, 23, 49, 122, 35, 39, 125, 69, 127, 76, 
82, 130, 116, 132 (10), (10), (9) 

13 118, 16, 21, 50, 47, 60, 39, 57, 71, 74, 96, 82, 
103, 109, 30 (10), (9), (8) 

14 43, 26, 23, 52, 122, 35, 38, 57, 68, 74, 98, 81, 
102, 109, 31 (10), (11), (9) 

15 45, 10, 19, 50, 46, 36, 124, 57, 72, 74, 97, 105, 
130, 116, 30 (14), (10), (8) 

16 41, 26, 120, 50, 122, 36, 38, 54, 66, 73, 98, 81, 
85, 131, 132 (14), (11), (10) 

17 44, 16, 18, 53, 122, 36, 39, 125, 69, 73, 97, 80, 
104, 114, 33 (15), (16), (13) 

18 118, 14, 19, 52, 48, 60, 124, 57, 89, 86, 128, 
80, 85, 116, 34 (15), (16), (14) 

19 40, 26, 17, 53, 47, 58, 124, 54, 90, 87, 75, 106, 
104, 114, 30 (15), (16), (14) 

20 40, 13, 18, 49, 46, 58, 38, 57, 88, 73, 97, 80, 
130, 109, 33 (-1), (3), (-2) 

21 41, 11, 23, 49, 122, 36, 37, 54, 88, 87, 98, 81, 
85, 113, 33 (-1), (-1), (-2) 

22 44, 15, 120, 53, 48, 35, 27, 56, 126, 74, 75, 
129, 130, 131, 33 (-3), (-2), (-2) 

23 43, 24, 21, 53, 46, 35, 39, 54, 70, 127, 98, 107, 
101, 114, 34 (-4), (-5), (-4) 

24 45, 13, 21, 53, 46, 59, 38, 57, 69, 73, 76, 106, 
101, 116, 33 (-5), (-7), (-9) 

TABLE VII  
THE PENETRATION OF BATTERIES AND DGS IN THE UNBALANCED 

Batteries Energy Transaction  
Battery No. Bus# 31 Bus# 42 Bus# 96 Bus# 109

E (kWh) 1002.3 751.3 399.6 1190.6
The Average DGs Power Transaction 

DG No. Bus# 20 Bus# 28 Bus# 71 Bus# 74 Bus# 111
P (kW) 468.92 413.93 432.425 248.16 418.98

Q (kVar) 167.12 135.55 181.84 92.54 136.05
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Fig. 12. Active power of batteries during charge and discharge for the best 

compromise 

 

Fig. 13. Distribution network VSI profile (upper), distribution network bus-
vsi profile at hour #19 (lower) 

 

Fig. 14. Daily voltage profile for bus 55  

 

Fig. 15. P-V and Q-V curves of bus 55 as the result of load variations 

Furthermore, the bus-vsi profile at hour #19 and the worst 
bus-vsi are shown in Fig. 13 (lower). The worst bus-vsi 
happens at the bus 55 with 0.31684 p.u., and the daily voltage 
profile of this bus is depicted in Fig. 14. The P-V and Q-V 
curves for presented strategies are plotted in Fig. 15. The 
continuous-power-flow method is used to plot these curves for 
the weakest bus at the critical hour (19 o’clock) in the case 
study. Obviously, by improving the VSI, the stability margin 
is increased. 

IV.  CONCLUSION 

This paper proposed a new energy management strategy in 
dynamic distribution network reconfiguration considering 
renewable energy resources and energy storage to improve the 
distribution network security and reliability besides 
minimizing operational cost. The simulation results showed 
that the proposed strategy obtained the reasonable and high-
quality schedules for switching, batteries charging and 
discharging, and the active power values of diesel generators 
in both single-objective and multi-objective frameworks. 
Furthermore, the exact energy not supplied index and voltage 
stability index as separate objective functions are considered 
to have an optimal operation in a reliable and secure 
environment. Numerical results for various cases were 
performed to demonstrate the ability of the proposed strategy 
in achieving the optimal solutions from the perspective of the 
DISCO. The proposed distribution network voltage stability 
assessment using PV and QV curves analysis distinguished the 
proposed study from other studies in this area. 
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