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Abstract—Distribution networks are more active due to de-
mand response programs which causes flexible behavior of end-
users. This paper proposes an iterative algorithm to transact
electricity based on interplay between aggregators and the
Distribution Company (DisCo) considering the amount which
the bottom-layer of a distribution system can provide from the
aggregated end-users. The performance of the proposed trading
algorithm was tested on a 33-bus test system for a distribution
network. Similations for different scenarios were made to analyze
the impact of different flexibility constraints on sustainability of
the system and expected cost on distribution grid’s player.

Index Terms—Decentralized energy management, energy flex-
ibility, local energy trading.

NOMENCLATURE

A. Indices

t Time periods
j End-users
k Aggregators

B. Variables

OF ag
k Objective function of aggregator k [e].

OF d Objective function of the DisCo [e].
Ljt Real-time load at time t of end-user j [kWh].
Lf
jt Energy flexibility at time t for an end-user j

[kWh].
PL2A
jkt Energy traded at time t between an end-user j

and an aggregator k [kWh].
P rt
t Real-time energy exchanged at time t between

the DisCo and the Real-Time Electricity Mar-
ket (RTEM) [kWh].

PA2D
kt Energy traded at time t between aggregator k

and the DisCo [kWh].
PD2L
jt Energy purchased at time t by end-user j from

the DisCo [kWh].
PPkt An auxiliary variable to reperesent cost of

energy trading at time t with the DisCo for
aggregator k [e].

PP dn
kt An auxiliary variable to reperesent profit of

selling energy at time t to the DisCo for
aggregator k [e].

PPup
kt An auxiliary variable to reperesent cost of

purchasing energy at time t from the DisCo
for aggregator k [e].

zkt A binary variable which is determined by the
DisCo to represent states of electricity price at
time t of aggregator k.

λA2D
kt Electricity price at time t for the aggregator k

and the DisCo exchanges [e/kWh].

C. Parameters

Lc
jt Scheduled load at time t for end-user j [kWh].

M Large number.
ε Small number as the stopping criteria for the

iterative loop.
λD2L Price for energy exchanged between the DisCo

and end-users [e/kWh].
λL2A
kt Price for electricity exchanged at time t be-

tween the aggregator k and the aggregated end-
users [e/kWh].

λrtt Price for electricity exchanged at time t be-
tween the DisCo and the RTEM [e/kWh].

δkt Profit guarantee factor at time t for aggregator
k (δkt > 1).

γj Flexibility factor for end-user j (0 ≤ γj ≤ 1).

I. INTRODUCTION

Smart grids consist of power systems based on a variety of
connected IoT and embedded devices that are able to commu-
nicate with each other over the network. As the technology is
growing, so does the interest in using the internet to preform
daily tasks. Thus, improving the functionality of smart grids,
smart homes and their IoT devices, such as energy manage-
ment and security improvement, have become a major concern
of companies throughout the world [1]. In scientific literature,
there are many studies on energy management and scheduling
of applications in IoT and embedded systems in smart grids at
various levels of optimization from the computer and processor
level [2] to the network level. According to infrastructure
which is provided by smart grids, Demand Response (DR)
strategies make the power distribution system more active.
Thus, end-users wish to represent flexible behavior in the
distribution networks [3]. Therefore, there is a need to develop
new market structures to maximize energy flexibility based
on decentralized approaches. As such, energy management
frameworks for transacting energy in distribution networks are
being studied in different recent works.



Ref. [4] proposed the concept of energy transaction nodes,
which interface smart buildings with the Local Electricity
Market (LEM). Authors of Ref. [5] proposed a price-based
method for energy management. In [6], a multi-agent-based
market was designed to decentralize decisions for transacting
energy. Also, Multi Agent Systems (MAS) have been lever-
aged in [7] to create a multi-layer market environment based
on behavior of electricity market players. In [8], a multi-agent
transactive system has been presented where an energy system
managed by Micro-Grids (MGs) in a distribution system to
solve the complexity of aggregation. In [9], an agent-based
model was proposed in which individual agents compute the
energy management schedule (based on electricity prices)
along with the aggregator locally and afterwards the optimal
decision is communicated to a central controller in real-time.

In addition, multiple works have studied the interaction
between distributed suppliers and consumers by employing
DR strategies. In [10], several suppliers and consumers were
considered to develop an adequate DR strategy. Authors in
[11] presented a distributed real-time framework based on
dual decomposition technique by multi-suppliers to regulate
the demand of end-users. In [12], distributed model was
developed in order to determine the optimal power flow by
considering the regulation of demand in radial networks. In
[13], the authors presented centralized energy trading as a bi-
level model where the nonconvexity of the problem has been
covered by convex relaxation techniques. In [14], a decentral-
ized DR framework has been presented; it takes into account
the operational constraints of the system. In [15], a LEM
has been proposed in which market agents transact electricity
to each other autonomoously. In [16], a contribution-based
trading mechanism has been desgined among MGs where MGs
act as prosumers. In [17], a hierarchical, real-time, energy
trading approach for distribution networks was proposed in
which the transactions are between aggregators on one hand
and the consumers and DisCo on the other. In [18], energy
management among players in the distribution power system
was addressed, where an Ising-based model of energy flexbil-
ity provided by end-users. In [19], a decentralized approach
has been presented based on perspective of end-users taking
into account end-users energy flexibility along with the desired
reliability level in a distribution network.

Even though several previous works have modelled the
behavior of market participants in the lower layer of the power
system, none have proposed an interplay management model
for both energy and flexibility trading between end-users,
aggregators and the DisCo. In this study, an iterative algorithm
is developed to manage energy trading among aggregators and
the DisCo, considering energy flexibility which is provided by
end-users. Thus, energy is transacted on the basis of a hierar-
chical structure among the real-time electricity market and the
distribution network’s players (e.g. end-users, aggregators, and
the DisCo). Besides, flexible behavior of end-users is modeled
based on shiftable and self-consumption constraints. As such,
a list of the main contributions of this study is defined as
follows:

• Developing a management model for trading energy
based on Mixed Integer Linear Programming (MILP).

• Proposing an iterative algorithm for exchange energy
within a distribution network based on decisions made
by aggregators and the DisCo in real-time .

• The evaluation of shiftable and self-consumption flexibil-
ities to be taken into account in the proposed model for
energy trading.

This manuscript is organized as follows: Section I (current
Section) put forth the motivation for this work, established the
state-of-the-art, and outlined the contributions of this study;
Section II illustrates the proposed mathematical formulation of
the problem; Section III discusses our findings corresponding
to the obtained simulation results; Section IV highlights the
conclusions of this work.

II. PROBLEM FORMULATION

In this section, the proposed energy management problem
to transact energy flexibility locally is presented. First, the en-
ergy trading model is described to exchange real-time energy
between players (e.g. end-users, aggregators and the DisCo)
in the dsitrbution network. Besides, an iterative algorithm
is proposed to transact energy between aggregators and the
DisCo based on an MILP model of the energy trading problem.

A. Energy trading model

A real-time energy management framework is presented
for flexibility trading in a distribution network. Although
flexibility is defined as the power system’s ability to respond
to variations in consumption and generation [20], we focus on
energy flexibility [kWh] as a service provided by end-users in
this paper. The energy flexbility can be provided by energy
storage systems, shiftable and shavable loads of end-users.
In this structure, the RTEM can only trade with the DisCo,
PRT
t , as shown in Fig.1. In our proposed models, end-users are

able to trade energy bi-direcational with their corresponding
aggregators and only buy energy from the DisCo to prevent
monopolistic energy transaction in corresponding regions of
aggregators. End-users provide energy flexibility based on ex-
changing energy with corresponding aggregator (who bought
their scheduled energy), PL2A

jkt , and the DisCo, PD2L
jt , at prices

λL2A
kt and λD2L (whose amounts are assumed in this paper),

respectively. Then, aggregators transact energy, PA2D
kt , with

the DisCo. It is presumed in this work that the DisCo is both
a profitable and a proactive agent with tasks which are disctinct
from the Distributed System Operator (DSO) [21].

End-users flexibility is provided based on a real-time incre-
ment and decrement of their scheduled loads as represented
in (1). Eq. (2) sets a limit for the minimum and maximum
values of flexibility. Here, γj is defined as flexibility factor
which is set between 0 and 1. Also, Eq. (4) presents one-
way energy transaction from the DisCo to end-users. Eqs.
(5) and (6) represent self-consumption and shiftable limits,
respectively, to constrain flexibility.



Fig. 1. Energy transaction framework in real-time showing the market players
within the distribution network [17], [18].

Ljt = Lc
jt − L

f
jt, ∀j, t (1)

−γjLc
jt ≤ L

f
jt ≤ γjL

c
jt ,∀j, t (2)

Lf
jt = PL2A

jkt − PD2L
jt , ∀j ∈ Ak, t (3)

PD2L
jt ≥ 0,∀j, t (4)∑

j∈Ak

Lf
jt = 0 ,∀t (5)∑

t

Lf
jt = 0 ,∀j (6)

Hierarchical bottom-up energy trading from end-users to
aggregators, and from aggregators to DisCo is represented
in (7). The maximum and minimum constraints of traded
energy price between aggregators and the DisCo, λA2D

kt , are
represented in (8). (9) provides a balance for energy traded
between the DisCo and the RTEM (in the DisCo layer).

PA2D
kt =

∑
j∈Ak

PL2A
jkt ,∀k, t (7)

δktλ
L2A
kt ≤ λA2D

kt ≤ λrtt ,∀t, k (8)

P rt
t =

∑
j

PD2L
jt −

∑
k

PA2D
kt ,∀t (9)

B. Proposed Iterative Algorithm

In this section, an iterative algorithm is proposed to model
energy trading based on interaction between aggregators and
the DisCo. According to this algorithm, aggregators are in
charge of determining the quantity of trades between the
aggregators and the DisCo, PA2D

kt . Meanwhile, the DisCo sets
the price for the transaction, λA2D

kt in the distribution network.
Noted that λA2D

kt is different with the real-time electricity
price, λrtt , which is determined in the RTEM. The proposed
algorithm is shown in Fig. 2. As it is seen in (8), λA2D

kt is
limited to maximum and minimum bands to be profitable for
aggregators. Thus, if the energy exchange between aggregators
and the DisCo is positive, PA2D

kt ≥ 0, then the DisCo sets
the minimum band of price’s limitations. However, the DisCo
determines the maximum band of price’s limitation where

traded energy between aggregators and the DisCo is negative,
PA2D
kt < 0. Hence, we have:
IF PA2D

kt ≥ 0 →
λA2D
kt =Min.{δktλL2A

kt , λrtt }→ zkt = 0.
ELSE PA2D

kt < 0 →
λA2D
kt =Max.{δktλL2A

kt , λrtt }→ zkt = 1.
Here, zkt is defined as a binary variable which is determined

by the DisCo to represent states of electricity price. In the
following, the nonlinear term, λA2D

kt PA2D
kt , which is profit

(cost) for the DisCo and aggregator based on their transaction
is restated as seen in (10)-(13).

λA2D
kt PA2D

kt = {δktλL2A
kt (1− zkt) (10)

+ λrtt zkt}PA2D
kt = PPkt,∀t, k

PPkt = PP dn
kt + PPup

kt ∀t, k (11)

PP dn
kt = δktλ

L2A
kt (1− zkt)PA2D

kt ,∀t, k (12)

PPup
kt = λrtt zktP

A2D
kt ,∀t, k (13)

Eqs. (12) and (13) are redefined as mixed integer linear
constraints according to Ref. [22]. Hence, Eq. (10) is redefined
as presented in (14)-(18).

− zktM ≤ PP dn
kt − δktλL2A

kt PA2D
kt ≤ zktM,∀t, k (14)

− γjδktλL2A
kt (1− zkt)

∑
j∈Ak

Lc
jt ≤ PP dn

kt (15)

≤ γjδktλL2A
kt (1− zkt)

∑
j∈Ak

Lc
jt,∀t, k

− (1− zkt)M ≤ PPup
kt − λ

rt
t P

A2D
kt (16)

≤ (1− zkt)M,∀t, k

− γjλrtt zkt
∑
j∈Ak

Lc
jt ≤ PP

up
kt (17)

≤ γjλrtt zkt
∑
j∈Ak

Lc
jt,∀t, k

− γjzkt
∑
j∈Ak

Lc
jt ≤ PPA2D

kt (18)

≤ γj(1− zkt)
∑
j∈Ak

Lc
jt,∀t, k

Therefore, the objective functions of aggregators and the
DisCo are represented in (19) and (20), respectively. Hence,
the respective energy management problems are presented
considering (11), and (14)-(18).

OF ag
k =

∑
t

∑
j∈Ak

λL2A
kt PL2A

jkt −
∑
t

PPkt,∀k (19)

OF d =
∑
t

PPkt +
∑
t

λrtt P
rt
t (20)

− λD2L
∑
t

∑
j

PD2L
jt

As represented in (19), the objective function consists of
two terms: first term,

∑
t

∑
j∈Ak

λL2A
kt PL2A

jkt , represents the



expected trading energy cost between end-users and aggregator
k, and the second one,

∑
t PPkt, represents the expected en-

ergy transaction profit between aggregator k and the DisCo. In
(20), OF d includes three terms consisting of the expected cost
of energy transaction with aggregators,

∑
t PPkt, the expected

cost of energy exchanged with the RTEM,
∑

t λ
rt
t P

rt
t , and

the expected profit from based on selling energy to end-users,
λD2L

∑
t

∑
j P

D2L
jt .

According to the proposed algorithm, aggregators and the
DisCo make decisions regarding their own autonomous energy
management problem considering interaction signals among
aggregators and the DisCo. In the following, the energy man-
agement problems of aggregators and the DisCo are presented:
• Aggregators’ problem (Problem A):

Min. ECag =
∑

k OF
ag
k

s.t. (1)-(3), (5)-(7), (11), (14)-(18).
Decision-making variables: Ljt, L

f
jt, P

L2A
jkt , PA2D

kt ,
PPkt, PP dn

kt , PPup
kt . Fixed variables: PD2L

jt , zkt.
Passed variables to problem D: PA2D

kt .
• DisCo’s problem (Problem D):

Min. ECd = OF d

s.t. (4), (9), (11), (14)-(18).
Decision-making variables: PD2L

jt , P rt
t , PPkt, PP dn

kt ,
PPup

kt . Fixed variables: PA2D
kt . Passed variables to problem

A: PD2L
jt , zkt.

In this way, PA2D
kt is determined by aggregators in problem

A, and it is a fixed variable in problem D. However, in
Problem D, PD2L

jt and zkt are determined by the DisCo, and
they are fixed varaibles in problem A. In this structure, the
energy flexibility of bottom-layer of the system is managed
only by aggregators. This model has an advantage of being
able to directly manage the quantities energy which are being
traded between aggregators and the DisCo, PA2D

kt . However,
the expected costs of end-users in decision-making is not seen
(where end-users are the main agents providing flexibility in
the system) which is the lack of this algorithm.

III. RESULTS AND DISCUSSIONS

A. Case Study

In this paper, the 33-bus test system presented in [17]- [19]
and [23] is used to assess the proposed algorithm for energy
trade management as shown in Fig.3. Three aggregators and
the price at which they trade electricity in their corresponding
regions are presented in Table I. Moreover, it is assumed that
λD2L = 0.6 [e/kWh], γj = 0.1, and δkt = 1.1 according
to Refs. [17] and [18]. Also, ε is assumed to equal 1e−10

as the stopping criteria of the iterative loop. Energy flexibility
scenarios are presented in Table II. The proposed MILP model
was implemented and solved using the General Algebraic
Modeling System (GAMS) version 24.0.2 [24].

B. Simulation Results

The impact of the proposed iterative algorithm on the
expected costs for aggregators and the DisCo is studied in this

Fig. 2. Proposed iterative algorithm for real-time energy trading between
aggregators and the DisCo.

TABLE I
HOURLY PRICES FOR ENERGY TRANSACTED BETWEEN CONSUMERS AND
AGGREGATORS AND BETWEEN THE RTEM AND THE DISCO [17]- [19].

Time λL2A
k=1,t λL2A

k=2,t λL2A
k=3,t λRT

t

(h) [e/kWh] [e/kWh] [e/kWh] [e/kWh]
1 0.05 0.08 0.06 0.13
2 0.05 0.08 0.07 0.12
3 0.05 0.09 0.07 0.15
4 0.04 0.07 0.05 0.11
5 0.11 0.18 0.15 0.30
6 0.12 0.20 0.16 0.32
7 0.13 0.22 0.17 0.35
8 0.15 0.24 0.19 0.40
9 0.16 0.25 0.20 0.42

10 0.24 0.41 0.33 0.66
11 0.26 0.42 0.36 0.71
12 0.28 0.43 0.37 0.74
13 0.25 0.40 0.32 0.69
14 0.18 0.26 0.21 0.50
15 0.15 0.24 0.20 0.41
16 0.14 0.22 0.18 0.40
17 0.15 0.25 0.19 0.42
18 0.20 0.36 0.30 0.60
19 0.21 0.36 0.29 0.65
20 0.22 0.41 0.30 0.67
21 0.24 0.42 0.33 0.70
22 0.12 0.22 0.16 0.35
23 0.11 0.19 0.15 0.28
24 0.06 0.09 0.07 0.15

TABLE II
ENERGY FLEXIBILITY SCENARIOS.

Scenario Min. s.t.
A1 ECag (1)-(4), (7), (9), (11), and (14)-(18).
A2 ECag (1)-(4), (6)-(7), (9), (11), and (14)-(18).
A3 ECag (1)-(5), (7), (9), (11), and (14)-(18).



Fig. 3. The 33-bus test system and aggregators [17]- [19] and [23].

TABLE III
TOTAL EXPECTED COSTS OF AGGREGATORS AND THE DISCO BASED ON

THE ITERATIVE ALGORITHM.

ECag [e] ECd [e]
A1 -239.444 -3339.466
A2 -143.924 -2413.909
A3 -72.618 -1753.407

Fig. 4. Impact of flexibility scenarios on real-time energy transaction flows
through end-users, aggregators, the DisCo, and the RTEM based on iterative
algorithm.

Section. The three flexibiity scenarios defined in Table II (A1-
A3) were used to assess the proposed system’s performance
under different conditions. In Scenario A1, the end-users were
modelled as interruptible loads. Shiftable loads were included
in Scenario A2. Finally, in Scenario A3, the self-consumption
constraint was incorporated to model aggregation of end-users.
Table III shows total expected costs of aggregators and the
DisCo based on the proposed energy trading algorithm. As the
amount of ECd is much higher than ECag , decisions which
are made by the DisCo are more effective on convergence of
our proposed iterative algorithm

Fig. 5. Energy exchanged between the DisCo and the RTEM in real-time for
scenarios A2 and A3.

Fig. 6. Quantity of energy flexibility of the end-users at: (1) j3 (in region of
aggregator 1), (2) j15 (in region of aggregator 2), and (3) j29 (in region of
aggregator 3) in A2 and A3. Red and green colours represent negative and
positive flexibilities, respectively. All values are in kWh.

Instead of A1 which is an optimal scenario of the system
in which all end-users play as interruptible loads, total ex-
pected costs of aggregators and the DisCo are less in A2 in
comparison with A3. On one hand, A2 is a more profitable
scenario for all players in the power distribution system in
comparison with A3. However, the distribution network acts
more sustainable in A3, because end-users, aggregators, and
the DisCo make a closed-lope energy trading system as shown
in Fig. 4. Meanwhile, the distribution power network is more
sustainable and does not depend on the upstream grid in A3,
as shown in Figs. 4 and 5. Moreover, Fig. 6 shows flexible
behavior of end-users j3, j15 and j29 as samples of end-users
in regions of aggregators 1 to 3, respectively. As illustrated
in Fig. 6, the behavior of sample end-users in A2 is more
dynamic and flexible than A3 that their dynamic behavior
increases the profit of end-users. Here, the dynamic behavior
of end-users is defined as a variation of up-ward and down-



ward energy flexibility which they can provide in Scenarios
A2 and A3, as shown in Fig. 6.

IV. CONCLUSION

In this paper, an iterative algorithm has been presented
for energy transaction management between distribution net-
work’s players. The proposed algorithm has been evaluated
based on impacts of end-users flexibility scenarios. By ana-
lyzing the results of the simulations for all three scenarios,
several conclusions can be made as listed below:
• The self-consumption constraint results in the distribution

network becoming a sustainable energy system, in the
sense that it has no dependence on the real-time electricity
market.

• Higher profits for the aggregators and the DisCo were
achieved by shiftable end-users than by self-consumption
end-users.

• Flexible behavior of end-users was found to be more
dynamic for the shiftable end-users compared to the self-
consumption end-users in the proposed energy trading
model.

Future work building on this study should develop a model
to decentralize the uncertainty modeling of distributed energy
resources. In addition, the modelling of a distributed energy
management system which takes into consideration peer-to-
peer energy trading among end-users and aggregators should
be investigated.
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