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 Abstract—Competitive transactions resulting from recent 
restructuring of the electricity market, have made achieving a 
precise and reliable load forecasting, especially probabilistic load 
forecasting, an important topic. Hence, this paper presents a 
novel hybrid method of probabilistic electricity load forecasting, 
including generalized extreme learning machine (GELM) for 
training an improved wavelet neural network (IWNN), wavelet 
preprocessing and bootstrapping. In the proposed method, the 
forecasting model and data noise uncertainties are taken into 
account while the output of the model is the load probabilistic 
interval. In order to validate the method, it is implemented on the 
Ontario and Australian electricity markets data. Also, in order to 
remove the influence of model parameters and data on 
performance validation, Friedman and post-hoc tests, which are 
non-parametric tests, are applied to the proposed method. The 
results demonstrate the high performance, accuracy and 
reliability of the proposed method. 

Index Terms—Probabilistic Forecasting, Improved Wavelet 
Neural Network, Generalized Extreme Learning Machine, 
Bootstrapping, Wavelet Processing. 

I. INTRODUCTION 

N the last decades, the structure of the electricity market 
has changed a lot, forming the restructured market. In this 

market, it is essential to access a reliable and accurate load 
forecasting considering some other activities such as economic 
dispatch, bidding strategies and unit commitment. However, 
demand is becoming significantly active and less predictable 
due to the various demand response programs, distributed 
energy sources and emerging technologies [1]. As a result, 
load forecasting plays a very significant role in decision-
making activities for market participants. 

The majority of the studies in the field of load forecasting   
focus on the point forecasting techniques.  

 
 

However, the results are not reliable because of the 
fluctuations’ existence in load and structure of the electricity 
market. Point forecasting has done some statistical techniques 
such as exponential smoothing models [2], regression [3] and 
time series [4].  

Also, the forecasting type has implemented some artificial 
intelligence techniques such as neural networks [5], support 
vector machines [6] and fuzzy systems [7]. In [8], a multiple 
time series equation model, based on frequent use of first-
order least squares, is represented to forecast the load, and its 
superiority is compared with non-linear and non-parametric 
methods. 

Recurrent extreme learning machine with high accuracy is 
proposed in [5] as a new method for forecasting the load. This 
method has been used to train the single-layer recurrent neural 
network. In [9], a new design based on type II fuzzy logic 
system is proposed and applied to the active learning theory to 
forecast the electrical load.  

Recently, based on the increased market competition, aging 
infrastructure, renewable integration requirements and the 
more active and less predictive electricity market, the market 
participants are interested in using the probabilistic load 
forecasting, which provides additional information on the 
variability and uncertainty of electricity load series in 
comparison with point forecasting technique. Also, the 
probabilistic load forecasting is needed in some processes 
such as stochastic unit commitment [10,11], reliability 
planning [12] and probabilistic load flow [13].  

One form of achieving the probabilistic load forecasting is 
the prediction intervals (PIs). In this method, the forecasting is 
based on the point forecasting and the error obtained by 
uncertainties [14]. In [15], semi-parametric regression model, 
multivariate time series simulation model and resampling 
strategy are used for point load forecasting, temperature 
forecasting and building probabilistic forecasting, 
respectively. In [16], the quantile regression averaging method 
on a set of forecasted points is presented to predict the 
probability. The advantage of this method is the ability to use 
point forecasting. In [17], a diffused heteroscedastic 
forecasting method based on the Gaussian process in daily 
load forecasting is proposed.  

Another method which is defined and used in this area is 
deep learning, which is presented in [18, 19]. The aim of such 
researches on deep learning theory is to show its ability in 
different areas. But, still there are two common issues about 
the theory, which are overfitting and computation time. 
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The strategy of [20] consists of producing temperature 
scenarios for probabilistic load forecasting which is performed 
by fitting a quantile generalized additive model. More articles 
on this topic are discussed in [14]. 

It is logical to select the neural network for load forecasting, 
due to the wide use of neural networks in load forecasting and 
their extrapolation and estimation ability compared to other 
methods. In this article, a combination of generalized extreme 
learning machine (GELM), wavelet processing and 
bootstrapping is used to forecast the electricity demand. 

Indeed, GELM is utilized to train the improved wavelet 
neural networks (IWNNs), where the benefits of this neural 
network are more profitable, compared to the common neural 
networks. This method utilizes the high-speed advantages of 
ELM-based methods compared to other methods.  

Moreover, the wavelet preprocessing is applied to the load 
data, dividing it into the well-behaved subseries. Then, the 
forecasting method is individually applied to each subset 
according to its own characteristics which leads to an 
improved forecasting model. The bootstrapping technique is 
used to obtain the uncertainties and PIs. The data noise and 
model forecasting uncertainties are considered as well. As a 
result, a hybrid method is achieved which leads to a load 
forecasting with high reliability, accuracy and speed. The high 
accuracy and speed of the proposed method lead to its 
practical applications in the electricity market. Finally, the 
proposed method is tested on the Ontario and Australian 
markets while its performance is acceptable and validated as 
well. 

The contributions of this paper are summarized as follows: 
(1) the usage of IWNN and GELM in the probabilistic load 
forecasting problem; 
(2) considering data noise uncertainties which are a result of 
non-iterative training machine; 
(3) proposing the combination of GELM, wavelet 
preprocessing and bootstrapping; 
(4) the usage of Friedman and post-hoc tests to validate the 
approach.  

The rest of this paper is organized as follows: Section II 
explains the Wavelet preprocessing, Improved WNN and 
generalized ELM. In section III, the concept of PI, the way to 
consider uncertainties and calculate PIs, and PIs validation 
indexes are presented. The implementation of the proposed 
method is shown in section IV. Section V discusses applying 
the proposed method on a case study based on real data, while 
Section VI provides the conclusions. 

II. METHODOLOGY 

A. Wavelet Preprocessing 

One of the most significant tools for frequency component 
analyzing is the wavelet transform. Indeed, wavelet functions 
divide information into different parts with different frequency 
attributes, and each part will be analyzed with similar 
resolution scale. Here, the wavelet transform is utilized to 
divide electricity demand series into a set of well-behaved 
productive subseries.  

This method is used for probabilistic electricity price 
forecasting in [21], and its performance is proved. Forecasting 
is done separately on productive subseries.  

Then, by inverse wavelet transform, the final forecasted 
load is produced. Dividing coefficients for load series are 
regulated according to [22] as follows: 
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where ( )W ⋅  is the picked wavelet function, pt is the amount of 

load at t, T is the length of series, and W
RLp  is the coefficient 

for resolution level R and position L.  
Preferably, orthogonal wavelet function is selected due to 

its appropriate mathematical property. Hence, the 
approximation sets, AR(R=1,2,..,R*), and details sets, 
DR(R=1,2,..,R*), are defined by orthogonal wavelet functions.  

Finally, the basic load series pt(t=1,2,..,T) can be reproduced 
as follows: 

* *1t R R
p D D A= + + +                                                               (2) 

In such problems, the two most common and appropriate 
wavelet functions are Daubechies and Morlet. The 
performance of these two functions in probabilistic load 
forecasting is compared and the related results are shown in 
section V. Based on the results, Daubechies wavelet function 
has better efficiency and is used here. Daubechies wavelet 
offers an appropriate trade-off between wavelength and 
smoothness, resulting in an appropriate behavior for the load 
forecast and has been used in lots of excellent research in load 
and price forecasting [23]. 

B. Improved Wavelet Neural Networks (IWNNs) 

One appropriate tool for load forecasting is wavelet which is 
the activation function of neural network. Indeed, in 
comparison with classic feed-forward neural networks, the 
coefficients and implementation of activation function on 
inputs have a different structure. Compared to conventional 
activation functions, WNNs have a high capability of 
generalization [24]. In this paper, Morlet wavelet is utilized as 
the hidden layer of the neurons’ activation function in WNN. 
In addition to the hidden layer neurons, inputs are connected 
directly to outputs by some coefficients to ameliorate the 
WNN’s performance and structure. Consequently, the 
structure can profit from the capabilities of wavelet functions 
and can also take the load signal’s tendencies.  

Fig. 1 shows an IWNN, where xi and y are inputs and target 
variables, respectively.  

 
Fig 1: Structure of an IWNN 



1949-3053 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2018.2807845, IEEE
Transactions on Smart Grid

3 
 

In the hidden layer, neurons’ activation functions are 
determined as follows: 
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where L is the number of hidden layer neurons, and τ(x) is 
Morlet function, which is defined as follows: 

( ) ( )20.5 cos 5xx e xτ −=                                                             (5) 

where ai and bi are Morlet function’s shift and scale 
coefficients, respectively.  

Finally, the neural network’s output is represented as 
follows: 

1 2
1 1

( , ,..., )
L n

i i n j j
i j

y w F x x x v x
= =

= +                                           (6) 

in which, wi is the ith hidden neuron’s coefficient, and vj is the 
jth input’s coefficient.  

Based on previous equations, it’s obvious that the number 
of the IWNN’s free parameters is equal to np=3L+n and their 
vector can be shown as follows: 

[ ]1 1 1 1,..., , ..., , ,..., , ,...,, L L LnZ v v w w a a b b=                                   (7) 

C. Generalized ELM (GELM) 

As a fast training method for the single layer feed-forward 
neural networks (SLFNs), the extreme learning machine is 
presented in [25, 26].  

In ELM, biases of hidden layer and input’s coefficients are 
picked randomly, and output’s coefficients are achieved by 
matrix generalized inverse transformation. Here, GELM is 
used to train the IWNNs.  

Based on the generalization, Morlet functions’ shift and 
scale coefficients are picked out randomly, and then the 
hidden layer’s coefficients and also inputs’ coefficients are 
taken by matrix inverse. 

It’s assumed that there are N different training data cases 

( ){ }
1

,
N

i i i
x t

=
, in which inputs and outputs vectors are 

xi=[xi1,xi2,…,xin] and ti=[ti1,ti2,…,tim], respectively.  
An IWNN with activation function F(.) and L hidden 

neurons should be considered, which can estimate N cases 
with zero error, so: 
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In the above-mentioned equation, wi=[wi1,wi2,…,wim]T is the 
ith hidden neuron’s coefficients vector and vi=[vi1,vi2,…,vim]T  
is the ith input’s coefficients vector. Also, Fi(xj) is the ith 
hidden neuron’s output by applying the jth input. The equation 
(8) can be rewritten in matrix form as follows: 
FW VX T+ =                                                                         (9) 

where: 
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Matrix F’s ith row represents the outputs of hidden neuron, 
while the ith training data pair is applied as input. By defining  
equations (15), (9) can be rewritten as (16). 
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H Tβ =                                                                                (16) 

In the training process, coefficients ai and bi are taken 
randomly. Consequently, matrices F and H are defined, and β 
will be the matrix of under training variables. Also, matrix T is 
a definite matrix, then by a generalized inverse, matrix β can 
be easily calculated as follows: 

†H Tβ ∗ =                                                                             (17) 

where H† is the Moore-Penrose generalized inverse of matrix 
H. 

As a result, ELM has significant benefits compared to the 
traditional approaches. This is mainly because traditional 
approaches include several iterations with high computational 
cost, while considering simple matrix calculations, ELM is a 
high speed approach.  

In addition, it  is shown that ELM has a better performance 
in comparison with traditional approaches [26]. The benefits 
of GELM compared to the basic ELM are presented in 
section V as well.  

III. PREDICTION INTERVALS  

A. PIs Formulation 

Uncertainties associated with the forecasting model are the 
main agents that cause uncertainty in load forecasting. The 
uncertainty befalls because of the incorrect structure and the 
parameters of neural networks. 

Another reason for the forecasting uncertainty is the noise 
of training data. Indeed, the random behavior of data 
regression causes this type of uncertainty.  
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If a set of different data pairs ( ){ }
1

,
N

i i i
x t

=
 is considered, the 

forecasting target would be expressed as follows: 

( ) ( )i i it r x xε= +                                                                  (18) 

In the equation above, ti is the ith forecasting target, xi is the 
vector of inputs, ɛ(xi) represents noise, which has zero 
average, and r(xi) is the true regression average.  

Practically, the learned neural network ( )ˆ ir x  can be 

considered as an estimator of true regression r(xi). Therefore, 
the forecasting error can be described as follows: 

( ) ( ) ( ) ( )ˆ ˆi i i i it r x r x r x xε− = − +                                         (19) 

term ( )ˆi it r x− shows the sum of forecasting errors, and 

( ) ( )ˆi ir x r x−  represents neural network’s estimation error 

based on true regression. 
Taking the assumption that the noise and the forecasting 

errors are statistically independent, the total forecasting error 
variance 2ˆ tσ  is equal to the summation of variances of the 

uncertainty model and data noise as the following equation: 
2 2 2ˆ ˆ ˆ( ) ( ) ( )t i r i ix x xεσ σ σ= +                                                      (20) 

Also, assuming that the time series {(xi,ti)} and ( )2ˆt ixσ  as 

the total variance of uncertainty, a PI of ti with 100(1-δ)% 
confidence level is given as ( ) ( ) ( ) ( ),r i r iL x U xδ δ 
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where 
1 2

z δ−
 is the standard normal distribution critical value 

and it depends on a given confidence level. It is expected that 
ti is in the structure of PI with 100(1-δ)%

 
nominal possibility, 

so that equation (22) can be concluded as follows: 
( ) ( ) ( ) ( )( ) ( ), 100 1 %i r i r iP t L x U xδ δ δ ∈ = −                          (22) 

B. Bootstrapping technique 

Bootstrapping technique is employed to model the 
forecasting model uncertainties. In fact, bootstrapping is a 
powerful tool to analyze statistical inference processes [27]. 
Therefore, the model uncertainty is estimated by bootstrapping 
that can be illustrated as follows: 

Step 1: for training the data ( ){ },i ix t , ( )ˆ .r  is obtained. (Using 

GELM) 
Step 2: the error between the forecasting result and the main 

target is calculated ( )ˆ ˆi ie t r x= − . 

Step 3: the center of obtained error is transferred to 

zero ( )( )ˆ ˆi i ii
e e e N= −  . 

Step 4: new error replaces the previous error. New targets are 

obtained based on ( ) ( )ˆi i it r x e x= +  , and new training data is 

produced in the form of ( ){ },i ix t . 

Step 5: for new data, ( )q̂ ir x  is forecasted in qth bootstrapping 

iteration. 
Step 6: steps 2 to 5 are repeated for B replacements and 
generation of the new data. 
in all of the above equations, i=1,2,…,N. Finally, new learning 
data is produced B times, and each time, neural networks are 
trained, and the demand is forecasted. Afterward, using (23) 
the average of neural network outputs is calculated. In this 

equation, ( )q̂ ir x  represents the forecasted value corresponding 

to the qth iteration. 

( ) ( )( )ˆ ˆi q iq
r x r x B=                                                         (23) 

Eventually, the variance of the model uncertainty is attained 
as the following. 

( ) ( ) ( )( )( ) ( )22ˆ ˆ ˆ 1r i q i iq
x r x r x Bσ = − −                             (24) 

C.  Noise variance 

In traditional neural networks, there was no concern about 
data noise due to the disappearing effect of the noise by 
repetition. However, in non-repetitive methods such as 
GELM, there is a concern about data noise. To solve the 
problem, noise is considered as an uncertainty. Therefore, it is 
essential to obtain the variance of noise data to model the 
noise of the data. Thus, (20) can be taken into account as 
follows: 

2 2 2ˆ ˆ ˆ[( ) ] rE t rεσ σ= − −                                                           (25) 

To estimate the forecasted model with the fitting extra 
residual goal, the remaining squares can be defined in the 
following form: 

2 2 2ˆ ˆ( ) max([ ( )] ( ),0)i i i r iR x t r x xσ= − −                               (26) 

Now, new sets of trained data with the input xi and 
remaining squares output are defined as {(xi,R2(xi))}, 
i=1,2,…,N while the output of the trained neural network is 
always positive. Therefore, the variance noise data can be 
achieved by these trained data. As a result, for considering the 
uncertainty model, which depends on data noise, a separate 
neural network with the new data should be trained (according 
to (20)) while its output should be added to the related 
variance of the uncertainty forecasting model. 

D. PIs evaluation 

In this study, to systematically validate the PI, the main 
indexes for PI evaluation are offered in both reliability and 
resolution aspects. 

Reliability: The key index for the estimated PI validation is 
reliability. According to the definition of PI, it is expected that 
ti is in the PI’s limits with the nominal probability 100(1-δ)%, 
which is called prediction intervals’ nominal confidence 
(PINC). Based on Nt test samples, the real coverage 
probability of the relating PI is illustrated by the prediction 
intervals coverage probability (PICP), and its definition is as 
follows: 

( )

1

1 tN

i
it

PICP I
N

δ

=

=                                                                 (27) 

where 
( )
iI δ

 is the PICP’s index and is obtained as follows: 
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                               (28) 

The PI’s reliability degree is directly represented by PICP. 
To have a high reliability, the obtained PIs should 
asymptotically reach the related PINC. Then, the average 
coverage error (ACE), which is defined as the difference 
between PICP and PINC, can be calculated and used for 
evaluating the reliability of PI.   
ACE PICP PINC= −                                                           (29) 

As it mentioned, the value of ACE should be close to zero 
as much as possible. 

Resolution: High reliability PIs can easily be obtained by 
increasing wideness of intervals. However, it’s not a logical 
strategy for practical applications. Hence, the evaluation 
criterion of resolution (ECR), which represents the sharpness 
of intervals, is applied to calculate the average of PIs. The 
criterion expresses the ability of the method in focusing the 
uncertainties. ECR is obtained as follows: 

( ) ( ) ( ) ( )( )1

tN

r i r i ti
ECR U x L x Nδ δ

=
 = −                            (30) 

Smaller ECR shows narrower intervals and PIs with better 
performance. An efficient probabilistic forecasting has to 
provide both the desired reliability and acceptable resolution.  

IV. IMPLEMENTATION 

Based on (26), to obtain the data noise uncertainty, first, the 
load forecasting and the variance of the model uncertainty 
should be determined.  

Fig. 2 shows the flowchart of the probabilistic load 
forecasting method. According to the flowchart, in the 
beginning, the training data should be selected based on the 
forecasting period. In this paper, the objective is forecasting 
the demand for a period of one week as an hourly prediction. 
The hourly load data for a year before the under forecasting 
week are used as training data. In order to test and validate the 
system performance, the one-year data are divided into three 
subseries as training, validation and test data. These subseries 
are used as neural network training, parameter regulation and 
performance evaluation of the model. 

Using all of the one-year data, in addition to the complexity 
of the required neural network, can lead to increasing the 
computational load and forecasting time, while reducing the 
accuracy as well. The reasons for the accuracy reduction are 
the data that have no mutual relation with load forecasting 
data. Therefore, the auto correlation function (ACF) is used to 
reduce the complexity and computational burden and increase 
the accuracy of forecasting models by reducing irrelevant data.  

In the next step, the data is applied to the wavelet transform 
by Daubechies function and divides them into an approximate 
subseries A1 and three detail subseries D1, D2 and D3. These 
four subseries are used to train neural networks, as they have 
been forecasted. Consequently, the four outputs of the neural 
network are returned to the original load state by the inverse 
wavelet transform.  

As mentioned before, to consider the uncertainty of the 
forecasting model, a bootstrapping is used which requires B 
neural networks.  

Therefore, based on these two issues, 4*B neural networks 
are needed to obtain the forecasting model uncertainty. The 
neural network related to the data noise is trained, using the 
initial data and the output of the forecasting model uncertainty 
section. 
  According to the Fig. 3, overall, 4B+1 neural networks are 
needed for the probabilistic hourly load forecasting. 
 

 
Fig. 2. Flowchart of the proposed method. 
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Fig. 3. The performance of all 4B+1 N 

V. CASE STUDY AND RESULTS 

To evaluate the performance of the proposed method, it has 
been tested in two different cases. In both cases, the real 
market data are considered. In the first case, the objective is to 
analyze the performance and feasibility of the tools which are 
represented in the proposed method. The goal is to analyze the 
feasibility of GELM, wavelet preprocessing and Daubechies 
function. Then, the proposed method is compared with three 
other methods which in the first one, the wavelet processing is 
not applied (GELM + bootstrapping) while in the second one; 
instead of GELM, common ELM and NN are employed 
(Wavelet preprocessing + ELM + bootstrapping), and in the 
last one, the Morlet function is used as the wavelet function in 
wavelet preprocessing. Table I shows the results of this case. 
In the second case, the advantages of the proposed method are 
compared with four different methods. The features of these 
four methods are as follows: 

A. First method 
In this method, as proposed in [28], the conventional two-

layer neural network is trained with back propagation (BP) for 
forecasting the load. Both model and data noise uncertainties 
are considered, while bootstrapping is used to obtain the PIs. 

B. Second method 
In this method, the improved Dolphins optimization 

algorithm in [29] is used for learning two-layer neural network 
while both model and data noise uncertainties are considered. 
Also, bootstrapping is used to obtain the PIs.  

C. Third method 
In this method, a learning technique based on RELM in [5] 

is used to train the recurrent neural network. The uncertainty 
and PIs are as same as other methods.  

D. Fourth method 
In this method, the quantile regression averaging method 

[16] on a set of family forecasted points is used to calculate 
the PIs. Several neural network based forecasts with different 
variables are used for point forecasts, and their results are used 
in the regression.  

All these four methods have been simulated and applied on 
real data. As mentioned before, the first two methods and the 
fourth one use multi-layer neural networks.  

However, neural network methods which are employed in 
the proposed and the third methods are single-layered.  

In general, the multi-layer networks have high capabilities 
of modeling the systems, compared to the single layer ones. 
However, the proposed and the third methods have much 
higher speed. Therefore, it is more comfortable and 
unrestricted to use them on probability calculations problems 
which need to run frequently. The objective has overcome the 
limitations of single-layer network with the capabilities of the 
wavelet neural networks, its improvements and the 
performance of GELM. Also, it has tried to obtain high 
forecasting performance and probabilistic calculations as well. 
The comparisons of the methods are given in Tables II to V.  

In previous cases, the results obtained based on limited data 
sets and comparisons were parametric. Accordingly, it is 
normal that even a better approach shows a weaker result in 
some especial situations in these cases.  

TABLE I: 
VALIDATION OF THE TOOLS (ONTARIO-DEC. 2014) 

 

Time/Time of 
proposed method

ECR  ACE  PICP PINC Method

 

0.3  
1032.3  -1.57%  88.43%90%Without wavelet 

preprocessing  1434.7  -2.63%  92.37% 95% 

 

~1  
910.8  0.72%  90.72% 90%Basic ELM and SLFN

1193.6  -1.03%  93.97% 95% 

~1 981.4  -1.39%  88.61% 90%With Morlet wavelet 

function 11205.4  -0.93%  94.07% 95% 
 

1  
869.8  0.48%  90.48% 90% 

Proposed method 
1159.8  0.83%  95.83% 95% 

TABLE II: 
PERFORMANCE COMPARISON OF THE METHODS (ONTARIO-Aug. 2014) 

 

ECR ACE PICP  PINC Method 

830.6 -3.25% 86.75%   

 

90%  

BP + Bootstrapping [28] 

613.1 1.45% 91.54%  Dolphin + Bootstrapping [29] 

650-0.83%89.17% RELM + Bootstrapping [5]

663.7-2.24%87.76% Quantile Regression  [16]

614.9 -1.31% 88.69%  Proposed method  

983.8 -1.09% 93.91%   

 

95%  

BP + Bootstrapping [28] 

828.2 -0.76% 94.24%  Dolphin + Bootstrapping [29] 

845.50.81%95.81% RELM + Bootstrapping [5]

832.8-0.55%94.45% Quantile Regression  [16]

785.7 0.24% 95.24%  Proposed method  

TABLE III: 
PERFORMANCE COMPARISON OF THE METHODS (ONTARIO-Dec. 2014) 

 

ECR ACE PICP  PINC Method 

1023.5 1.03% 91.03%   

 

90%  

BP + Bootstrapping [28] 

934.6 0.78%90.78% Dolphin + Bootstrapping [29] 

944.1-0.79% 89.21%  RELM + Bootstrapping [5]

938.7-0.49%89.51% Quantile Regression  [16]

869.8 0.48% 90.48%  Proposed method  

1242.8 -1.43% 93.57%   

 

95%  

BP + Bootstrapping [28] 

1183.7 -1.11% 93.89%  Dolphin + Bootstrapping [29] 

1212.5-0.96%94.04% RELM + Bootstrapping [5]

1168.6-1.11%93.89% Quantile Regression  [16]

1159.8 0.83% 95.83%  Proposed method  
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TABLE IV: 
PERFORMANCE COMPARISON OF THE METHODS (AUSTRALIA-May. 2014) 

 
ECR ACE  PICP  PINC  Method  

326.1 -1.73%  88.27%   

 

90%  

BP + Bootstrapping [28]  

340.7 0.76% 90.76% Dolphin + Bootstrapping [29]  

313.61.03%  91.03%  RELM + Bootstrapping [5] 

306.50.83% 90.83% Quantile Regression  [16] 

292.5 -0.71%  89.29%  Proposed method  

397.0 1.43%  96.43%   

 

95%  

BP + Bootstrapping [28]  

381.5 -0.86% 94.14% Dolphin + Bootstrapping [29]  

357.61.17%  96.17%  RELM + Bootstrapping [5] 

395.10.83% 95.83% Quantile Regression  [16] 

377.8 0.83%  95.83%  Proposed method  

TABLE V: 
PERFORMANCE COMPARISON OF THE METHODS (AUSTRALIA-Oct. 2014) 

 
ECR ACE  PICP  PINC  Method  

250.6 1.02%  91.02%   

 

90%  

BP + Bootstrapping [28]  

203.0 0.57%  90.57%  Dolphin + Bootstrapping [29]  

195.5-0.33% 89.67% RELM + Bootstrapping [5] 

199.30.86% 90.86% Quantile Regression  [16] 

193.1 -0.12%  89.88%  Proposed method  

295.4 -1.59%  93.41%   

 

95%  

BP + Bootstrapping [28]  

224.6 1.01%  96.01%  Dolphin + Bootstrapping [29]  

265.30.87% 95.87% RELM + Bootstrapping [5] 

231.3-1.17% 93.83% Quantile Regression  [16] 

227.7 -0.95%  94.05%  Proposed method  

TABLE VI: 
COMPARISON OF ACE OF THE METHODS BASED ON FRIEDMAN TEST 

 
 

  Method 
 

Data set 
(2014) 

BP + 
Bootstrapping 

[28] 

Dolphin 
algorithm + 

Bootstrapping 
[29] 

RELM + 
Bootstrapping 

[5] 

Quantile 
Regression  

[16] 

Proposed 
method 

|ACE| rank |ACE| rank |ACE| rank |ACE| rank |ACE| rank
Ontario-Feb. 2.46% (5) 1.31% (3) 1.42% (4) 1.22% (2) 1.03% (1)

Ontario-May. 1.25% (2) 1.54% (4) 1.65% (5) 1.32% (3) 0.97% (1)

Ontario-Aug. 1.18% (5) 0.54% (1) 0.98% (3) 1.05% (4) 0.63% (2)

Ontario-Oct. 1.21% (4) 0.65% (2) 2.02% (5) 1.12% (3) 0.37% (1)

Ontario-Dec. 0.73% (4) 1.73% (5) 0.45% (1.5) 0.45% (1.5) 0.67% (3)

Australia-Feb. 1.65% (3) 0.48% (1) 2.37% (4) 2.43% (5) 1.02% (2)

Australia-May. 1.65% (2.5) 1.65% (2.5) 1.82% (4) 1.91% (5) 0.87% (1)

Australia-Aug. 1.05% (2) 1.24% (5) 0.93% (1) 1.21% (4) 1.17% (3)

Australia-Oct. 1.32% (3,5) 2.22% (5) 1.32% (3.5) 1.05% (2) 0.54% (1)

Australia-Dec. 1.7% (5) 1.47% (4) 1.32% (3) 1.03% (1.5) 1.03% (1.5)

Total rank  3.6  3.25  3.4  3.1 1.65

 

Hence, three non-parametric test methods, like Friedman, 
Games-Howell and Tukey HSD methods were used while the 
Games-Howell and Tukey HSD methods were Post-hoc tests. 
As Friedman test, the neural networks are trained by ten 
various data sets and all of the five methods in the second case 
and ACE and ECR criterions are calculated as well. Indeed, 
for each data set and training method, both criterions achieved 

three different PINCs and five different initial parameters, 
which have contributed to using the total average. Then the 
utilized methods are ranked for each data set while the best 
method obtains the rank of 1, and the worst one obtains 
rank 5.  

Moreover, in methods with similar performances, the 
ranking is done in such a way that the average stays 3. In the 
next step, each method’s total rank, which is equal to the 
average of the method’s ranks, is calculated. Then, the method 
with the lowest total rank has the best performance in 
comparison with other ones. Comparing the five methods 
using Friedman test, the amount of critical difference (CD) is 
equal to 1.21 [30]. Thus, if the difference between two 
methods’ total ranks is more than CD, the lower rank method 
would have significantly better performance than the other 
one. Further details of the test are available in [30].  

Tables VI and VII illustrate the results of the test based on 
ACE and ECR criteria, respectively. For Tukey HSD and 
Games-Howell tests, the p-values of the proposed method and 
four others have been calculated as well. In these tests, the 
level of significance (α) is equal to 0.05. It should be noted 
that, according to the post-hoc tests, two methods are 
significantly different if the p-value between them is under α. 
Table VIII represents the results of these tests based on ACE 
and ECR criteria.  

The data of Ontario’s electricity market (OEM) and 
Australian electricity market (AEMO) are obtained from [31, 
32]. Based on Table I, using wavelet processing can increase 
the forecasting period by 3 times while the accuracy of 
forecasting can significantly increase. However, it can 
overlook this time based on the very high speed of ELM 
methods compared to the conventional methods. Also, it is 
seen that using ELM method and SLFN neural networks has 
no significant influence on the forecasting time. But, these 
methods slightly decrease the accuracy.  

Finally, the usage of Morlet wavelet function instead of 
Daubechies is shown that, the Morlet function slightly 
decreases the accuracy without any perceptible effect on time.  
Consequently, the results proved that the tools which are used 
in the proposed method had a positive impact on the accuracy. 

TABLE VII: 
COMPARISON OF ECR OF THE METHODS BASED ON FRIEDMAN TEST 
 

 
  Method 

 
Data set 
(2014) 

BP + 
Bootstrapping 

[28] 

Dolphin 
algorithm + 

Bootstrapping 
[29] 

RELM + 
Bootstrapping 

[5] 

Quantile 
Regression  

[16] 

Proposed 
method 

ECR rank ECR rank ECR rank ECR rank ECR rank
Ontario-Feb. 892.8 (4) 771.9 (2) 1003.8 (5) 792.3 (3) 683.3 (1)

Ontario-May. 1202.3 (5) 813.8 (2) 934.6 (3) 941.1 (4) 712.0 (1)

Ontario-Aug. 1044.7 (4) 819.2 (1.5) 1074.1 (5) 819.2 (1.5) 823.9 (3)

Ontario-Oct. 833.5 (2) 1192.5 (5) 819.2 (1) 955.1 (4) 928.3 (3)

Ontario-Dec. 885.7 (4) 860.1 (3) 942.8 (5) 820.4 (1) 828.2 (2)

Australia-Feb. 143.1 (1) 295.3 (4) 292.5 (3) 303.6 (5) 250.6 (2)

Australia-May. 312.7 (5) 244.6 (2.5) 297.0 (4) 244.6 (2.5) 203.0 (1)

Australia-Aug. 313.6 (5) 235.3 (2) 306.5 (3) 310.3 (4) 195.5 (1)

Australia-Oct. 347.0 (5) 333.6 (3) 243.2 (2) 337.7 (4) 193.1 (1)

Australia-Dec. 281.5 (2) 304.2 (5) 228.0 (1) 301.9 (4) 295.4 (3)

Total rank 3.7 3  3.2 3.3 1.8
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TABLE VIII: 
P-VALUES BETWEEN THE METHODS BASED ON POST-HOC TESTS 

 
 

Proposed method 
vs. 

p-value of Tukey 
HSD 

p-value of Games-
Howell 

 ACE ECR ACE ECR 
BP + Bootstrapping [28] 0.014 0.008 0.016 0.009

Dolphin algorithm + Bootstrapping [29] 0.027 0.074 0.027 0.081

RELM + Bootstrapping [5] 0.09 0.031 0.092 0.033

Quantile Regression  [16] 0.045 0.036 0.044 0.034

 
Tables II to V demonstrate the high performance of the 

proposed method, compared to the other methods. Also, in the 
result of the proposed method, the value of PICP is very close 
to the value of PINC, and thus, the value of ACE is very 
small. In all of the tests, the absolute value of ACE is not more 
than 1.4%. In addition, the value of ECR in the proposed 
method is less than other methods. 

According to Tables VI and VII, compared to BP, RELM 
and Quantile Regression methods, the difference between the 
final rankings of the proposed method, is more than CD which 
can lead to the conclusion that the proposed method is 
significantly superior to the mentioned methods. Also, the 
difference between the final ranking of the proposed method 
and the improved Dolphin algorithm is not more than CD in 
ACE criteria, however, the difference is quite close to CD.  

Table VIII demonstrates the comparison of the BP and 
Quantile Regression, in which the p-values of the proposed 
method are less than α in both ACE and ECR criteria. 
Therefore, the proposed method is more useful than the BP 
and Quantile Regression methods. Also, in both tests, the p-
values of the proposed method are less than other methods 
such as the improved Dolphin algorithm (from the ACE 
perspective) and RELM (from the ECR perspective) which is 
less than α as well. Consequently, the proposed method has 
rejected the improved Dolphin algorithm from the ACE 
perspective and RELM from the ECR perspective. However, 
from the ACE perspective, the p-values of the proposed 
method and RELM are very close to α.  

In addition to what is specified in the tables, the time factor 
should be checked as well. This is mainly due to the fact that 
the main goal is to reach probabilistic forecasting and many 
program executions are required to calculate the variance. The 
calculation time of the BP, improved Dolphin and Quantile 
Regression methods are hundred times more than the proposed 
method. Although, the performance on BP and improved 
Dolphin methods are good in some cases, in many other cases 
are impractical and lose their application because of the high 
computational load. 

Therefore, the proposed method has a limitation on the 
number of layers. However, the high ability of the network 
structure and training method has led to the superiority and 
significantly applicability of the proposed method.  Overall, 
by developing ELM methods (such as the suggested GELM 
method) and using them in multi-layer neural networks, a high 
speed and efficient method can be achieved. 

Figures 4 to 7 show the graphical results of the load 
probabilistic forecasting. The first two figures demonstrate the 
Ontario electricity market in December and August 2014. 
Also, the next two figures show the Australian electricity 
market in May and October 2014, respectively.  

Each figure contains actual and forecasting load information 
related to the one week hourly demand.  

The forecasting results are represented for both PICP=90% 
and PICP=95%, respectively. 

Both the numerical and graphical results have demonstrated 
higher accuracy and efficiency of the proposed method in 
forecasting followed by a series of demand with high 
reliability.  

Flexibility, accuracy and reliability of the proposed method 
proved the effectiveness and acceptable performance in 
practical applications of the load forecasting. 

 

 
Fig. 4. Load PIs by the proposed method with confidence levels 90% and 95% 
(Ontario-Dec. 2014). 

 
Fig. 5. Load PIs by the proposed method with confidence levels 90% and 95% 
(Ontario-Aug. 2014). 

 
Fig. 6. Load PIs by the proposed method with confidence levels 90% and 95% 
(Australia-May. 2014). 
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Fig. 7. Load PIs by the proposed method with confidence levels 90% and 95% 
(Australia-Oct. 2014). 

VI. CONCLUSIONS 

  The nature of time-series electricity demand is highly 
nonlinear and is dependent on various parameters. Therefore, 
it is always difficult to be forecasted since it involves 
numerous uncertainties. An accurate and reliable load 
forecasting can help market participants and facilitate related 
activities such as economic dispatch and unit commitment. 
Therefore, using a new and efficient tool is very important to 
obtain such a goal. In this paper, a new high performance 
combined method was proposed, consisting of GELM, 
IWNNs, wavelet processing and bootstrapping. Additionally, 
the uncertainties related to the forecasting model and data 
noise were considered, while forecasting intervals were 
obtained as well. Based on the used tools, the proposed 
method had high speed and reliability. Its performance was 
evaluated using real data from Ontario and Australian markets, 
and the results were acceptable. Also, based on the results, it 
can be concluded that the high speed, accuracy and 
uncertainties’ consideration have made this method a highly 
efficient technique for practical applications of probabilistic 
load forecasting. Future work can include: i) to consider other 
data such as weather information as neural network inputs;  
ii) to make a new generalization on ELM based methods to be 
used on multi-layer neural networks. 
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