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Abstract: Unpredictable system component contingencies have imposed vulnerability on power systems, which are under 
high renewables penetration nowadays. Intermittent nature of renewable energy sources has made this unpredictability 
even worse than before and calls for excellent adaptability. This paper proposes a flexible security-constrained structure 
to meet the superior flexibility by coordination of generation and demand sides. In the suggested model, demand-side 
flexibility is enabled via an optimum real-time (RT) pricing program, while the commitment of conventional units through 
providing up and down operational reserves improves the flexibility of supply-side. The behaviour of two types of 
customers is characterized to define an accurate model of demand response and the effect of customers' preferences on 
the optimal operation of power networks. Conclusively, the proposed model optimizes RT prices in the face of contingency 
events as well as wind power penetration. System operators together with customers could benefit from the proposed 
method to schedule generation and consumption units reliably. 
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Nomenclature 

Indices  w  Index of wind power units 
',b b  Index of system buses  Parameters 

C  Index of network components  SU
gC  Start-up cost of unit g ($) 

g  Index of generation units  SU
gtC  Start-up cost of unit g at hour t ($) 

l  Index of transmission lines  (m)gC  Slope of segment m in fuel cost curve of unit 
g ($/MWh) 

m Index for segments of linearized fuel cost  
gC  Min. fuel cost of unit g ($/h) 

NB  Number of system buses  DSR
gtC  Down-spinning reserve cost of unit g at hour 

t ($/MWh) 
NC  Number of network components  USR

gtC  Up-spinning reserve cost of unit g at hour 
t ($/MWh) 

NG  Number of generation units  0
btd  Basic demand of bus b at hour t (MW) 

bNG  Number of generators on bus b   
bDRP  Max. customers’ response to DR at bus b  

NL  Number of transmission lines   ELNS  Max. limit of ELNS 

NM  Number of segments for piecewise linearized 
fuel cost 

 
'ttE  Elasticity of demand 

NS  Number of scenarios  
gP  Min. output of generation unit  g  (MW) 

NT  Number of hours  
gP  Max. output of generation unit  g  (MW) 

 
NW  Number of wind power units  

(m)  gtp  Max. output power of segment m for unit g  

s  Index of scenarios  ,l lP P  Max./Min. permitted flow of power in line l  

, 't t  Index of time periods  
wtsP   Available power of wind power unit w  in 

scenario s and  hour  t  (MW) 
D
gR  Ramp down of unit g  (MW/h)  shed

btsL  Load shedding at bus b at hour t in 
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1. Introduction 
The flexibility is the ability of a power system to 

respond to change in supply and demand at all periods and 
balance them. Unpredictable renewable energy supply can 
make this equilibrium hard to attain. Independent system 
operators (ISO) face significant challenges due to 
unforeseen network component contingencies as well as the 
uncertainty of renewable energy resources in the electricity 
supply side. As a result, the power system stability is 
disturbed. For enhancing the stability, the ISO should 
schedule some production units at a non-optimal generation 
level according to the units’ constraints. In addition, flexible 
demand-side resources and system operations could support 
network flexibility [1].  

Ref. [2] has studied the influence of expanded 
penetration of renewable energy resources on thermal power 
plants operation. In response to considerable changes in 
supply and demand sides, network components should 
operate in a flexible manner to provide uninterrupted 
services while the operational cost is in a reasonable range.  
Latest publications incorporated wind power uncertainty to 
unit commitment (UC) problem. Authors have introduced a 
unit commitment model in [3] to elucidate the variation 
between ramp-capability and power-capacity reserves 
considering the wind power uncertainty. In [4], researchers 
developed a probabilistic UC approach for balancing wind 
power uncertainties. In [5], authors designed a developed 
energy hub and presented a mathematical formulation for 
deterministic and stochastic situations of renewable 
resources, power demand, and price. Papers such as [6-7] 

have deployed transmission switching in a unit commitment 
problem to improve wind power utilization and grid 
flexibility. However, they have neglected demand-side 
activities. Ref. [8] suggests an optimization model for the 
security constraint unit commitment (SCUC) taking into 
account the uncertainty of wind power. A comprehensive 
review is presented in [9] considering additional flexibility 
in power systems in response to uncertainty from the 
penetration of renewable power resources. Market clearing 
by means of optimization methods can assist power system 
operators to make near-optimal decisions. In addition, due to 
hardship in making a distinction between ramping capability, 
load following and regulation reserves, some investigations 
should measure the prices and payments. 
 Demand response (DR), as a fundamental element 
of future smart grids, not only mitigates the impacts of 
uncertain renewable energy resources but also can be 
utilized either to cut high energy prices or when the safety of 
power systems is in danger. Several reports employed DR to 
enable customers' potential for enhancing the flexibility of 
the network in the face of renewable energy penetration. In 
Ref. [10], authors have modelled several flexible resources 
such as energy storages, parking lots and a DR program with 
a focus on the ramp products to provide enough flexibility in 
response to the penetration of renewable energy resources. 
A flexibility metric is presented in Ref. [11] to calculate the 
possible flexibility of conventional generators. Researchers 
have incorporated the proposed model into the day-ahead 
market clearing to assess the flexibility of energy storages 
and DR. However, the mentioned works have not 
considered the outages of network components such as 
generation units or transmission lines. In addition, the 

scenarios (MW) 
U
gR  Ramp up of unit g  (MW/h)  

bb'tP  Active power through line between buses b and 
'b  at hour t  

crtV  Value of wind power curtailment ($/MWh)  (m)gtP  Generation of segment m  in linearized fuel cost 
curve (MW) 

FITV  FIT value ($/MWh)    Sch
gtP  Scheduled power of unit g at hour t (MW) 

shed
btV  Value of lost load at bus b  at hour t ($/MWh)  crt

wtsP  Curtailed power of wind power unit w  in 
scenario s hour t  (MW) 

s  Probability of outage in scenario s   inc
wtsP  Incorporated power of wind power unit w  in 

scenario s hour t  (MW) 
0
bt  Basic price of bus b at hour t ($/MWh)  Sch

wtP  Scheduled power  of wind power unit w  at hour 
t  (MW) 

Variables   Sch
gtUSR

 

Scheduled up-spinning reserve of unit g at hour 
t (MW) 

Cgt  Fuel cost of  generation unit g at hour t ($)  dep
gtsUSR

 

Deployed up-spinning reserve of unit g at hour 
t in scenarios (MW) 

btd  Demand of bus b at hour t after DR 
implementation (MW) 

 
'bbX  Reactance of line between buses b and 'b  

Sch
gtDSR

 

Scheduled down-spinning reserve of unit g at 
hour t (MW) 

   Spinning reserve market lead time 

dep
gtsDSR

 

Deployed down-spinning reserve of unit g at 
hour t in scenarios (MW) 

 
gs  State of reserve of generating unit g in scenario s  

gtI  Binary status (off -on) of generation unit g at 
hour t  

 
tsb  Voltage angle at bus b at hour t in scenario s  
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authors mainly focused on generation-side scheduling and 
ramp products. Calculation of optimal prices and customers’ 
payment considering consumers’ role have been neglected 
in their works. Ref. [12] proposed an IGDT-based model for 
economically dispatching of generating units considering 
the existence of wind power uncertainties. The proposed RS 
IGDT-based model gives the chance to achieve lower 
network cost under uncertain scenarios. Authors have not 
considered different types of customers for ideal price 
design in the power system. Also, contingencies as a result 
of network component outages have not been taken into 
account in their work. Ref. [13] discussed a frequency based 
approach for the provision of primary operating reserve 
from residential consumers. Authors endeavoured to answer 
crucial questions concerning the implementation of DR for a 
variety of individual appliances in a thermodynamic load 
model and investigated the frequency regulation. Ref. [14] 
presented some metrics related to diverse stakeholders to 
evaluate building-to-grid DR flexibility from heat pump 
aggregations. Authors proposed precise control algorithms 
for the aggregations through a residential power 
consumption tool. The aggregator which is responsible for 
extracting the flexibility from individual consumers and 
providing various services to DR buyers could model each 
load individually. Compared to Refs. [13, 14], the current 
paper looks at the total usage in the power system rather 
than individual usage pattern modelling for only residential 
loads. Authors consider that ISO aims to manage the grid 
and ensures its flexibility considering a total load for each 
bus. In this regard, DR programs allow the ISO to schedule 
an appropriate generation capacity. The authors in [15] 
mainly focused on the role of the incentive-based DR 
penetration in a smart distribution system. For estimating the 
system reliability, authors applied a new hybrid technique 
based on the best possible load-dispatch and sequential 
Monte Carlo. The reserve market modelling and optimal 
price calculation have been overlooked in [15]. Also, they 
have focused on demand-side solutions, and supply-side 
management and the link between supply and demand sides 
have been neglected. 

Ref. [16] has analysed a parametric model to find 
the relation between the generation cost and the necessary 
parameters of the flexible ramp product. No uncertainty has 
considered in the proposed deterministic model, while the 
model of this paper considers the wind power uncertainty. 
Besides, our model looks at the customers’ role and impacts 
of products such as up/down spinning reserves. 
 In Ref. [17], the authors modelled an emergency 
DR program in the unit commitment problem and examined 
its impact in reliability improvement in case of failure of 
generation units. It is worth noting that the outage of 
transmission lines and the uncertainty of renewable energy 
sources have been neglected in their works. 

Availability of DR is not only dependent on the 
operation of electric appliances but also can be influenced 
by customers’ behaviours. In the electricity market, financial 
gain is the main motivation for consumers to engage in DR 
programs. So, considerable mistakes may occur in 
evaluating the flexibility commitment of DR if the impacts 
of consumers are overlooked. Engagement in DR can 
characterize consumers and is reflected in price elasticity 

matrix (PEM) structure and components. It is an undeniable 
fact that the elasticity of electricity demand can change with 
the shift in price like any other commodities. In practical 
situations, low price periods are considered to have low 
values of own-elasticity components. In [18], the 
information of a regression investigation was modified and 
used for obtaining the elasticity variables which can increase 
with growing price signals. A comprehensive socio-
economic study based on real data is essential for measuring 
PEM values in a specific society. Detailed PEMs can be 
developed to the model the behaviour of consumers for 
applying several enhancements to DR programs. Authors 
have offered an algorithm for reshaping the electricity 
demand profile in Ref. [19]. The proposed algorithm 
considers the customer eagerness to participate in DR, price 
elasticity, and customers comfort by determining a price 
signal, which minimizes their electricity bill when shifting 
their adaptable load. A real-time price design approach is 
introduced in Ref. [20] to support consumer participation in 
energy delivery. The proposed DR program which is 
designed on behalf of the Load Serving Entity (LSE) aims to 
maximize its revenue. However, Refs. [19,20] have not 
taken into account price design for optimal supply-side 
scheduling and improving the network flexibility which ISO 
is responsible for. 

On the above premises, we extend a clear model and 
some constraints to characterize the availability of customer 
DR capabilities. It can explain how the readiness of various 
consumers to join DR programs influences their economic 
profitability as well as the flexibility of a power system 
with a high share of wind power.  
 A two-phase SCUC program is presented for 
enhancing the flexibility of the system through an optimal 
real-time (RT) pricing scheme. The proposed reliability 
evaluation method in this paper is formulated as a mixed-
integer linear DC optimal power flow which can be 
modelled in GAMS and solved using CPLEX as a powerful 
Mixed-Integer Linear Programming (MILP) solver. 
Although the problem formulation is a “two stages” 
problem, it is solved in one step. It is noteworthy that the 
solving engine of MATPOWER Optimal Scheduling Tool 
(MOST) can be also CPLEX as a high-performance solver 
to study stochastic day-ahead (SCUC) and DR problems 
Refs. [21,22]. Therefore, the solving engine of both MOST 
and GAMS can be the same. The proposed framework will 
be illustrated using numerical examples applied to the IEEE 
Reliability Test System (RTS). However, the discussions 
and conclusions in this paper won’t lose their general 
validity and can be extrapolated further than the scenarios 
and cases studied in this piece of work. Although the 
literature presents valuable findings, the subsequent 
viewpoints indicate that our proposed approach is different 
from existing strategies.  
 

- The proposed method focuses on total usage rather 
than individual usage pattern modelling. 

- This paper develops a pricing algorithm for 
determination of optimum RT tariff rates with the 
aim to minimize operating costs. 

- Our method aims to provide essential flexibility by 
planning generation units and responsive 
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consumers to supply network stability in the face of 
wind power uncertainty as well as network 
contingencies  

- The proposed model investigates the effect of two 
different consumers’ reaction on network operation 
considering the wind power unreliability and 
emergency conditions. 

The structure of the manuscript is as follows: Section 2 
illustrates the proposed model and its mathematical 
definition. The test system is presented in Section 3. Section 
4 gives the simulation results, and at last, this paper is 
concluded in Section 5. 

2. Problem formulation 
The introduced adaptable security constrained 

scheduling structure optimizes the operation of demand and 
supply sides. Two-phase stochastic programming is utilized 
for the most advantageous planning of supply-side. The 
primary phase gives decisions as the output of the day-ahead 
market of the system. The second-phase measures network 
component outages and wind power uncertainty in order to 
get a single day-ahead market clearing. Demand-side 
participation is also included in the suggested formulation 
using a developed economic model of loads. In fact, the 
eagerness of customers to join DR programs is characterized 
by the customer participation rate [12]. It varies between [0, 
1], the larger the participation rate is the more consumers 
will change their demand when asked. Several participation 
rates (0.1, 0.2 and 0.3) are considered in Ref [12] in order to 
analyse the influence of risk preferences on the time-of-use 
DR implementation. In Ref. [23], authors have represented 
the impact of customers’ participation level in Emergency 
DR programs on the microgrid operation. 

In another line of research, it was found that 
between 5% to 15% of consumers in the United States 
participated in DR programs [24, 25]. Results of a survey 
from Australians over all states and regions showed that 
approximately 80% of respondents were not familiar with 
DR programs. It means that if in the most optimistic 
scenario, 20% of consumers know about DR and half of 
them participate in DR programs, still 10% of consumers 
join DR plans [26]. Considering all these studies, customer 
participation rate in DR not only depends on their comfort 
level but also on the socioeconomics, source of power etc. 
So, 10% is assumed as the participation rate considering 
mentioned references. 

The initial demand profile, consumers’ elasticity 
data and their participation rate are entered as required 
inputs. After calculating RT rates at each load bus and time 
period, the supply-side planning division has an input which 
is the reshaped demand. Consequently, the objective 
function sees the effects of elasticity as change in load and 
the amount of load shedding. These values also affect the 
reserve values. This connection between demand-side and 
supply-side can guarantee an acceptable and adaptable 
power system operation. Finally, the output variables 
pertaining to economic and flexibility operation targets of 
ISO is extracted as outputs. A schematic of the calculation 
process is given (see Fig. 1). 

 
 

Fig. 1 Schematic of the proposed model 
 

 
2.1. DR formulation 
 

PEM is the most practical way in DR modelling 
and can represent the behaviour and preference of 
consumers. The elasticity of demand can be characterized in 
this model as demand change in t th interval with respect to 
the price deviation in 't th period (See Eq. (1)) [27]. 

  
0
'

' 0
'

1, 2, 3, ..., 24  ,   't t
tt

t t

dE t
d
 


   

 
(1) 

  
The demand elasticity comprises a single-period 

and multi-period responses. The single-period response 
deals with the ongoing period; hence, it changes the energy 
usage in the corresponding interval and is not able to shift 
the load to other periods. In the multi-period response, 
customers can change their usage in any period based on 
electricity price adjustment. In the modelling of multi-period 
response, elasticity factors include self-elasticity and 
mutual-elasticity values. According to Eq. (1), the definition 
of self-elasticity and mutual-elasticity coefficients can be 
specified as Eqs. (2) and (3). 
 

' 0,   if   '  ttE t t   (2) 

' 0,    if  'ttE t t   (3) 

 
Ref. [27] presented a complete economic model of 

DR. The overall model of DR will be achieved by Eq. (4) by 
considering the concept of cross- and own- elasticity. 

In the RT demand response program, the utilities 
set the highest prices at the peak hours. It makes clear the 
relation between energy rate and the load, the increase of 
tariffs can flatten the load profile in the peak hours. 
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2.2. Demand response constraints 

 
Several limitations must be considered to find an 
appropriate pricing program. We intend to design a DR 
program to make use of the maximum amount of DR 
potential and consumers responsiveness to our flexibility 
improvement. So, we assume a situation in which the lowest 
price is designed for the lowest demand period (see Fig. 2 
[28]). ISO should raise the electricity price according to the 
demand until getting to the highest amount of consumption, 
which happens at the eighteenth period. 

In this way, consumers are encouraged to shift their 
shiftable loads to the lowest price period. As a result, we 
have a flatter load profile and less amount of load shedding 
after DR implementation. We develop twenty-four 
limitations for change in price bt , as shown in the Eq. (5).  

 

 
0

bt bt
bt 0

bt

 





  
 
(5) 

 
Larger bt  should be set for hours with more 

consumption compared to other times (see Fig. 2 [28]). This 
limit for ( t  2-8) should be negative, which implies less 
expensive tariffs than the flat rate. For (t  1,9,15,16,23 and 
24), bt is set to be free and for the other times is set to be 
positive, which means consumers face higher electricity 
prices than the flat rate. Eq. (6) shows the highest capacity 
of customers for changing their loads; the maximum amount 
of load that can be changed at different time intervals and 
each bus. 

 
  0 0

b bt bi b btDRP d d DRP d     (6) 

 

 
Fig. 2.  Hourly load profile 

Eq. (7) shows that during DR exertion, overall energy usage 
at every bus has to remain invariable to guarantee the users’ 
convenience. In other words, loads are shifted from peak 
hours to low-load and off-peak hours. In reality, less 
electricity would be consumed in higher prices and the 
shiftable loads shift their electricity usage to lower prices 
hours. 
 

1
0  

NT

bt
t

d


  
(7) 

 
2.3. Objective function 

 
This part gives the recommended structure of the 

SCUC problem considering the reliability measures and DR. 
The objective function is the expected operational cost and 
incorporates two stages as shown in Eq. (8). The primary 
stage calculates electricity market costs, including power 
generation, down- and up-spinning reserves, and start-up 
costs to clear the day ahead market. 

The next stage which is related to the scenario 
realization covers the possibility of each component outage 
and wind uncertainty, compulsory load shedding costs, and 
rescheduled down- and up-spinning reserves in each 
scenario.  

Although Feed-In-Tariff (FIT) do not incentivize 
market-efficient participation of renewables on a short-term 
basis, according to outputs of some research manuscripts 
[29-31], it is rather a common perception that FITs can 
attract investment into renewables.  So, the authors consider 
the FIT mechanism to persuade wind production units to 
contribute to power generation.  

 

 

1 1

1 1

1 1 1

1 1

min

( )

SU
NT NG gt gt gt

USR sch DSR sch
t g

gt gt gt gt

NT NG
USR dep DSR dep
gts gts gts gts

t g

S NT NB
shed shed

s bt bts
s t b

NT NW
FIT inc crt crt

wts wts
t w

C I +C
TC

C USR C DSR

C USR C DSR

V L

V P V P



 

 

  

 

 
  

   
   
 

 






 











 
(8) 

Furthermore, wind power curtailment cost is also 
considered for demonstrating the condition that operation 
limitations do not permit the wind power incorporation. 

An incremental cost function in a linear piecewise 
style can demonstrate the fuel expense in thermal units. Eq. 
(9) shows the generation cost of each unit k at the 
simulation time i .  

 
C (m)

NM
f

gt g gt g gt
m =1

= C I + C P (m)   
(9) 
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where: 

 
0 ( ) (m) gt gtP m p   (10) 

2.3.1 First stage constraints: For defining the 
primary stage constraints which relate to the 
power market, scenarios are overlooked: 
 

- Start-up cost limitations of production units 
0 ( )SU SU

gt g gt g,t -1C C I - I   (11) 

 Eq. (12) shows the linear definition of the 
programmed power of production units Sch

gtP .
 

1
( ) 

NM
Sch

gt g gt gt
m

P P I P m


   
 
(12) 

Limitation of wind power production  
0  Sch inst

wt wP P   (13) 

The energy offer of a wind farm w  is submitted 
as inst

wP  in Eq. (13) with a value equal to the installed 
capacity of the wind farm. 

- Limitations of down - and up-spinning reserve  
The reliability of the system against the changes in 

demand-side and supply-side are assured by down- and up-
spinning reserves. Eqs. (14-17) show the limitations of 
spinning reserves capacity and the market lead time of 
spinning reserves  . 

Sch Sch
gt gt g gtP USR P I   (14) 

Sch Sch
gt gt g gtP DSR P I   (15) 

0 Sch U
gt gUSR R    (16) 

0 Sch D
gt gDSR R    (17) 

- Production units up and down limits 

, 1 , (1 ) Sch Sch U
gt g t g g t g g,t -1P P R I P I     (18) 

, 1 ( )Sch Sch D
g t gt g g,t -1 g gtP P R I P 1- I     (19) 

 

- Production units’ up and down time limits 

'
' 2

( )  
gt

g,t g gt g,t -1 g
t t

(1 - I ) I - I


 

 

    
  
(20) 

'
' 2

gt
-

gt g g,t -1 gt g
t t

I + (I - I )




 

    
  
(21) 

- Active power equilibrium limit 

1

 
NG NB

Sch 0
gt bt bt bb't

g b' =1
b'b

P d d P


     
  
(22) 

'

1 ( )bb't bt b't
bb

P
X

      
(23) 

- Ramp-down and Ramp-up constraint 

, 1
D Sch Sch U
g gt g t gR P - P R    (24) 

 The total generated power at supply-side should 
satisfy the total energy consumption at the demand-side. 

btd is the demand for bus b  at hour t . 

1 1 1

NG NW NB
Sch Sch

gt wt bt
g w b

P P d
  

     
(25) 

2.3.2 Second stage constraints: 
 

- The restriction of active power balance in scenarios  
 

Power balance at every bus should be guaranteed 
by load blocks and generation units in each event. So, Eq. 
(26) show the DC power flow equation.  and  are 
utilized as two binary parameters for presenting the 
accessibility of transmission lines and production units, 
correspondingly. During the component outages, their 
values are 0. When we have no component outage, they 
are considered 1. 

 

 
1 1

1

L

  

NGb NGb
Sch shed dep

gt bt bts gts
g g

NGb NL
dep inc crt
gts wts wts lts

g l

P d USR

DSR P P P





 



  

   

 

 
 

     

(26) 

'

( ) lts bts b'ts
bb

lP
X

        
(27) 

- Up and down spinning reserve limits  
0  dep Sch

gts gs gtUSR USR   (28) 

0  dep Sch
gts gs gtDSR DSR   (29) 

gs is 0 for generator g and in scenario s if generator 
outage has occurred and it is considered as 1 otherwise. 

- Load shedding constraint 
The adjusted load at each bus after executing RT 

demand response program in each scenario ought to 
remain more than the amount of load reduction, as Eq. 
(30). 

 
0 shed

bts btL d   (30) 
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- Transmission line power limit 
The transmission flow limits are considered in Eq. 

(31). For each line, the power flow through the line 
should consider this limitation. 

 

 l lts lP P P     (31) 

- Limitation of wind power units 

The total wind power capacity is more than the 
amount of incorporated power of each wind farm. It is 
noteworthy that scheduled and curtailed power of each wind 
power unit are positive values. So, the amount of wind 
power capacity is more than the summation of incorporated 
and curtailed power of wind farms (see Eqs. (32) and (33)). 

 

0  ,   0  inc crt
wts wts wtsP P P    (32) 

   inc crt
wts wts wtsP P P   (33) 

 

2.4. Reliability Assessment 
 
This paper utilizes an expected load not served 

(ELNS) index for measuring the reliability of the system as 
presented in [32]. Eq. (34) calculates the ELNS by 
multiplying the load shedding value in each scenario and the 
plausibility of component loss. The highest permissible 
quantity of ELNS set by the ISO guarantees the reliable 
power generation and consumption planning (see Eq. (35)). 

 

1 1

NB NS
shed

t s bts
b s

ELNS L
 

  
(34) 

tELNS ELNS  (35) 

3. Test System  
 

Fig. 3 shows the IEEE 79-bus test system; including 26 
generation units, two wind farms, 38 transmission lines, and 
the overall load capacity of 2670 MW. The hourly load 
profile is extracted from [28] and divided into three 
categories, low consumption (2-8), off-peak (1, 9, 14-16, 23, 
24) and peak (10-13, 17-22) hours. Furthermore, price 
elasticity matrices are extracted from Ref. [18]. The value of 
the maximum incremental cost of energy generation of each 
production unit is supposed as the deployed up- and down-
spinning reserves. In [28], complete data of loads, 
transmission lines, and generation units are presented, as 
well as reliability data. We selected bus 2 and bus 21 to add 
wind farms to. Considering a large-scale integration of 
renewable energy resources, we decided to reach a position 
that wind farms provide 30% (1200 MW) of the total 
generation capacity.     

 

 
Fig. 3.  Single line diagram of the test system 

 
The FIT incentive value and wind power 

curtailment cost are supposed to be 20 and 35 $/MWh, 
respectively. The value of wind curtailment cost is chosen 
higher than the value of FIT incentive to convince the ISO 
to incorporate maximum accessible wind power. Our 
proposed method employs the process of Ref. [33] for 
calculating wind speed and the corresponding wind power. 
The authors of Ref. [33] introduced a common wind speed 
model to obtain the wind speed probability distribution for 
any geographic area. They also developed a power 
production model of a wind turbine generator placed at a 
distinct geographic position. This strategy would be useful 
for wind farm locations without sufficient historical 
information. The mechanism represented in Ref. [34] is 
applied for scenario generation and model the wind power 
uncertainty. In Ref. [34] a two-step procedure is employed 
to solve a stochastic problem for the joint market clearing. 

In the first stage, a Monte Carlo simulation and the 
roulette wheel mechanism are employed for adaptive 
scenario production to model the stochastic performance of 
network contingencies as well as load changes. The roulette 
wheel mechanism selects the load uncertainty and its 
probability distribution for the respective scenario. 
Concurrently, authors implement the MCS based on the 
FOR of network components for other sources of 
unpredictability. It was assumed that probability distribution 
and FOR of network units are available.  

Value of loss load (VoLL) is one of the critical 
factors that has a prominent role in the rate of load shedding 
allocation. This value can change by a change in the type of 
customers, time, duration, time of advanced notification, and 
other particular features of an outage. In practice, some 
consumers like industrial ones have higher VoLL than 
others and hence, are ready to spend more for higher 
security levels than those with less VoLL. So, its calculation 
needs a full study for each network. However, VoLL is 
generally considered between $0/MWh and $53,907/MWh 
[35]. As shown in Ref. [36], the amount of not supplied 
energy decreases with sharp slope when VoLL is in the 
range between $100/MWh and $1000/MWh. High VoLL 
during peak hours imposes excessive costs on the system 
operator, who can manage demand response programs to 
mitigate such high expenses [17]. Operators could penalize 



8 
 

the load not served by penalties equal to the market price, 
two times the market price, and five times the market price. 
However, when the penalty becomes high (analogous to the 
VoLL), operators may prefer to apply DR for some loads 
instead of paying for the penalty [37]. Considering these 
references, in our manuscript where the flat rate is 
approximately 23.4 $/MWh, we set the VoLL for off-peak 
hours almost ten-times of the flat rate (200$/MWh), a larger 
amount for peak hours (300 $/MWh), and a less amount for 
low-load hours (100$/MWh). 

4. Simulation results 
The target of the proposed framework is ensuring 

reliable and flexible operation of the network by calculating 
hourly RT rates, where the energy consumption should 
remain constant (see Eq. (7)).  

In order to evaluate the efficiency of the proposed 
model, the authors consider four case studies. Target is 
providing operational flexibility from technical and 
monetary viewpoints. Case 1 considers the wind power 
uncertainty and flat rate tariffs. Case 2 is similar to the first 
one except that in this case DR is included through optimal 
RT program. The RT tariffs are optimally calculated to 
obtain the minimum operation cost. Case 3 is again the same 
as the first one, but this case contains wind power scenarios 
and component contingencies using the N-1 criterion. Case 
4 is like the third one except that in this case DR is 
incorporated. 
 

4.1. Case 1: Influence of wind power variations on 
generation planning without DR 

 
  This case with a flat rate pricing program takes into 
account the impact of wind power uncertainty on the system 
operation. The necessary flexibility is provided entirely by 
conventional supply-side power plants through the 
operational reserve. The whole operation cost and 
customers’ payment, in this case, are $749345 and 
$1226616, respectively.  

Figs. 4 and 5 show a meaningful similarity between 
the hourly demand and operation cost in the first case. 
Customers’ payment is calculated by the sum of multiplying 
the real-time price and real-time consumption at  
each hour. The amount of involuntary load shedding due to 
infeasibilities in wind power generation and the wind power 
curtailment are calculated 0.088% (2.35 MWh) and 0.32% 
(8.63 MWh) of the overall power demand, respectively.  

 
4.2. Case 2: Influence of wind power variations on 

generation-side scheduling considering DR 
 

This case with an RT pricing scheme takes into 
account the influence of wind power volatility on the system 
operation. Supply-side and demand-side cooperation 
provides the necessary supplementary flexibility.  

As mentioned in the second section, 10 percent of 
consumers are assumed to be the responsive ones. First, 
authors considered all of responsive consumers (10%) as SR 
ones that change their demand at the current time interval in 
response to changes in price at the corresponding hour. 
These customers do not optimise their consumption and  

 
Fig. 4.  Consumption profile for case 1 and case 2 

 
their PEM only consists of diagonal elements with various 
values. Accordingly, the whole operation cost and 
customers’ payment, are reduced to $745240 and $1102099, 
respectively. Results show 1% reduction in operation cost 
and 10% reduction in customers’ payment compared to case 
1. The amount of involuntary load shedding due to 
infeasibilities in wind power generation and the wind power 
curtailment are calculated 0.076% (2.05 MWh) and 0.23% 
(6.21 MWh) of the overall power demand, respectively. This 
reduction in load shedding amount and operation cost 
compared to the previous case proves the applicability of 
DR implementation in flexibility enhancement. 

A different type of consumers may participate in 
DR so-called long range (LR) consumers who shift their 
usage over a broad span of hours. These consumers optimise 
their consumption in maximum acceptable range. In other 
words, their perception goes from the current time interval 
into the past (1st hour) and future (24th hour). It is supposed 
that half of the responsive consumers are SR and the other 
half are LR consumers. It means that we have 5% of whole 
consumers are SR ones and 5% of them are LRs. As a result, 
the total operation cost is $724877, 4% reduction compared 
to case 1. 

Table 1 presents the calculated RT rates for 
different customers in case 2. The adjusted load curve in 
Fig.4 confirms that the load in peak intervals declines and 
the load in low-load intervals increases in comparison with 
case 1. In fact, high calculated RT rates for peak hours 
motivate consumers to change their consumption behaviour.  

It is notable that, although various RT rates are 
calculated for different load buses to reach the best solution, 
we report only average hourly rates because of a large 
amount of data. For SR consumers, hourly load standard 
deviation and average peak are reduced from 329.89 MW 
and 2476 MW to 288.11 (87%) MW and 2365 (95%), 
respectively as a result of applying an appropriate RT 
pricing scheme in which average prices are reduced from 
23.4 to 21.3 (91%). 

These results confirm the potential of demand-side 
flexibility in providing a flatter load profile in systems with 
high penetration of wind power. For the situation that LR 
and SR consumers are considered together, hourly load 
standard deviation and average peak are reduced to 264.56 
(80%) MW and 2301 (93%) MW, respectively. 



9 
 

 Fig. 5 shows the hourly total operating cost for two 
different types of consumers. It shows the efficiency of the 
proposed scheduling model on operation cost reduction in 
peak intervals by shifting load to low-load times. Consumers 
like LR ones with the ability to shift their usage over a 
broader span of hours could get more benefit of this 
reduction. 
 

Table 1 Optimal RT rates ($/MWh) in case 2  
Hour LR/SR SR Hour LR/SR SR 

1 18.41 21.79 13 26.46 23.19 
2 16.99 19.44 14 26.07 23.19 
3 14.82 15.08 15 22.51 23.19 
4 14.82 15.08 16 22.43 23.19 
5 14.66 14.92 17 27.82 25.06 
6 14.74 14.92 18 30.12 26.91 
7 15.19 15.89 19 29.26 25.60 
8 15.19 15.89 20 28.31 24.97 
9 15.58 16.12 21 27.96 24.97 
10 26.88 24.79 22 23.35 23.40 
11 26.39 23.04 23 21.05 23.40 
12 27.46 24.22 24 18.90 23.00 

 
Some terms of operation cost are given in Table 2 

to assess the usefulness of the proposed model from the 
economic perspective. LR consumers are better options than 
SR ones in supporting wind power incorporation due to the 
wind power cost reduction and involuntary load shedding 
decrease in the face of wind power instability. In addition, 
LR consumers decrease the call for reserve due to the load 
reduction in peak hours. 

It is notable that the increase in reserve cost for SR 
consumers in case 2 compared to case 1 is due to the fact 
that capacity reserve cost and deployed reserve cost are 
increased. This could be as a result of more required 
reserves in low load and off-peak hours to which the peak 
loads are shifted. If we had curtailable loads, the need for 
reserves would be decreased. In addition, although load 
shifting strategy is an effective strategy in facilitating wind 
power integration due to reducing wind power spillage in 
the face of wind power uncertainty, the FIT cost is increased 
and this will increase the total wind power cost in case 2 
compared to case 1. 
 

4.3. Case 3: Influence of wind power variations and 
component contingencies on generation 
planning without DR 

 
This case considers N-1 contingencies and wind power 

uncertainty in order to examine optimal supply-side 
scheduling under a flat rate price scheme. 

 
Table 2 Operation cost in cases 1 and 2 

 Start-Up + 
Energy Cost ($) 

Reserve 
Cost ($) 

Wind Power 
Cost ($) 

Load 
Shedding ($) 

Case 1  497529 42608 208729 468 
Case 2 (SR) 488484 45788 210536 428 
Case 2 
(SR/LR) 475053 39197 210212 415 

 

 
Fig. 5.  Comparison of operation cost for case 1 and case 2 

 
In this condition, operators should provide the necessary 
supplementary flexibility through the supply-side unit 
commitment. As a result, a unit commitment is obtained 
with the total operation cost of $1,157,330. This ($407985) 
54% increase in operation cost compared to case 1 is due to 
the fact that the ISO has to dispatch most expensive units 
even for 24 hours a day in order to preserve nonstop services 
with the smallest amount of load shedding. Provision of 
superior flexibility levels imposes some extra costs to the 
system operator due to the fact that in such conditions the 
peak load units should be started-up and work at a non-
economically efficiency point. In addition, in this case, the 
cost of customers’ comfort as a result of compulsory load 
shedding is added to the total operation cost. The quantity of 
calculated compulsory load shedding is 15.32% (409.08 
MWh) of total system load, which can bring consumer 
dissatisfaction and extra costs. It means that ISO needs some 
healing actions such as DR implementation or using 
storages to reduce the customers’ dissatisfaction and 
operation cost. 
 

 
4.4. Case 4: Influence of wind power variations and 

component contingencies on generation 
planning considering DR 

 
This case analyses the system flexibility as a result of 

supply-side and demand-side collaboration considering both 
component contingencies and wind uncertainty. Demand-
side scheduling part is included in the problem using an 
effective RT program. RT program implementation with SR 
consumers reduces the total operation cost to $1,067,223 (92 
% of case 3) and enhances the system flexibility by 
declining the load shedding value to 52.14 MWh (13% of 
case 3). It is notable that, if like case 2 half of the responsive 
consumers are SR and the other half are LR ones, the 
operation cost and involuntary load shedding decrease to 
$986501 (85% of case 3) and 39.39 MWh (9.6% of case 3), 
respectively. The average of optimal RT rates at each hour is 
calculated and given in Table 3. Results show that in this 
case, the price change is more than the price adjustment in 
case 2 where the system only faced wind instability. 
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Fig. 6 presents the hourly system consumption 
profile, while Fig. 7 shows the comparison of operation cost 
for case 3 and case 4, respectively. 

Comparison of operation cost in Fig. 7 shows that 
LR consumers act more efficiently in comparison with SR 
consumers in the face of component contingencies, 
especially in the peak period. 

Moreover, details of operation cost in case 3 and 
case 4 in Table 4 verify the ability of supplementary 
flexibility in enhancing power system operation from the 
economic and technical point of view. In case 3, some 
generation buses are committed in all the scheduling time 
while the operator schedules others for nearly half of the 
scheduling horizon.  

In case 4, when SR consumers participate in the DR, 
different units are committed for only 4 hours a day. 
Therefore, repeated commitment and re-commitment of 
units increase the start-up cost. On the other hand, when half 
of the customers are LR ones, the mentioned units are not 
committed at all. As a result, the start-up cost is diminished 
compared to the other cases.  

    
Table 3 Optimal RT rates ($/MWh) in case 4 

Hour LR/SR SR Hour LR/SR SR 
1 20.41 21.79 13 26.55 24.12 
2 16.78 19.06 14 25.14 23.42 
3 14.59 14.78 15 23.08 23.19 
4 14.52 14.78 16 22.81 23.19 
5 14.23 14.49 17 27.89 25.81 
6 14.40 14.63 18 30.41 27.99 
7 15.17 15.58 19 29.49 26.80 
8 15.17 15.58 20 28.44 26.02 
9 15.93 16.12 21 28.36 25.94 
10 27.02 25.53 22 24.64 24.29 
11 26.46 23.96 23 22.65 23.61 
12 27.68 25.43 24 21.05 23.00 

 
Table 4 Operation cost in cases 3 and 4 

 Start-Up + 
Energy Cost ($) 

Reserve 
Cost ($) 

Wind Power 
Cost ($) 

Load 
Shedding ($) 

Case 3  790973 67370 200878 98103 

Case 4 (SR) 778665 71525 203989 13039 

Case 4 SR/LR) 702434 73027 201206 9831 

 

 
Fig. 6.  Consumption profile for case 3 and case 4 

 
Fig. 7.  Comparison of operation cost for case 3 and case 4 

 
An identical reason can be applied for energy cost 

decrease as a consequence of SR and LR consumers’ 
participation. Moreover, the load shedding cost is 
diminished by almost 87% and 90% because of the 
participation of SR and LR consumers, respectively. Thus, 
the authors conclude that in the emergency events, LR 
consumers could help the system more efficiently. 

 

5. Conclusion 
 

DR is one of the most effective and cheapest tools for ISO 
to improve network reliability while facing uncertainty and 
contingencies. This paper has modelled a security-
constrained unit commitment structure in order to coordinate 
the operation of both supply-side and demand-side in the 
face of wind uncertainty and component contingencies. An 
optimum real-time pricing scheme was designed considering 
customers’ behaviour to facilitate demand-side 
responsiveness and to assist the ISO to minimize the total 
operating costs. The simulation results illustrated that DR 
implementation led to a similar flexibility level at the 
generation-side and demand-side scheduling accessible with 
conventional units at a lower cost. Network cost is reduced 
up to 8%, and reliability is enhanced up to 88% percent for 
SR consumers. 15% decrease in operation cost and 90% 
reduction in load shedding value for a mixture of SR/LR 
consumers prove our claim that customers who have the 
ability to change their consumption over a broader time span 
are more effective in the case of both emergency events and 
wind power generation instability. A flatter load profile to 
the maximum extent and 10% reduction in average RT price 
as a result of DR implementation are other pieces of 
evidence that show the value of the proposed model to 
overcome power network issues such as network outages 
and the uncertainty of the renewable energy resources. 
Besides, the incorporation of DR influenced reserves 
deployment and customers’ payment. The proposed model 
with such notable characteristics is an appropriate tool for 
managing power system fluctuation in response to wind 
power changes as well as unforeseen contingencies. Based 
on the obtained results, a few suggestions could be made to 
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enhance the operation of power systems with flexible 
consumers:  
• Considering the more flexibility potential of LR 
consumers, regulations should be restructured to allow the 
highest participation rate of this type of consumers in DR 
events or even incentives should be designed to motivate 
other consumers to act like SRs. 
•  There are side effects from DR provided by consumers, 
such as comfort loss. Optimization algorithms could be 
designed to bring an excellent balance between maximum 
flexibility and minimum corresponding negative impact. In 
addition, DR programs could be modelled through a 
scenario-based customers’ participation factor estimation.  
These ideas could be the focus of future works. 
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