
0885-8950 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2017.2785266, IEEE
Transactions on Power Systems

 

  
Abstract—Large-scale integration of wind generation in power 

systems increases the need for reserve procurement in order to 
accommodate its highly uncertain nature, a fact that may 
overshadow its environmental and economic benefits. In this study, a 
joint energy and reserve day-ahead market structure based on two-
stage stochastic programming is presented. The developed model 
incorporates explicitly the participation of demand side resources in 
the provision of load following reserves. Since a load that incurs a 
demand reduction may need to recover this energy in other periods, 
different types of the load recovery effect are modeled. Furthermore, 
in order to evaluate the risk associated with the decisions of the 
system operator and to assess the effect of procuring and 
compensating load reductions, the conditional value-at-risk (CVaR) 
metric is employed. To solve the resulting multi-objective 
optimization problem, a new approach based on an improved 
variant of the epsilon-constraint method is adopted. This study 
demonstrates that the proposed approach to risk management 
presents conceptual advantages over the commonly used weighted 
sum method. 
 
 

Index Terms—augmented epsilon-constraint method; conditional 
value-at-risk; day-ahead market; demand side reserves; load 
recovery; risk management; stochastic optimization; wind power. 
 

I.  NOMENCLATURE 
 

The main notation used throughout the paper is alphabetically 
listed in Tables I-III. Other symbols and abbreviations are defined 
where they first appear. 

II.  INTRODUCTION 

A.  Motivation and Background 

ARGE-scale integration of renewable energy sources (RES) 
in power systems plays a central role in ambitious programs 
initiated by leading countries around the world, such as the 

regional greenhouse gas emission control schemes in the U.S. and 
the 20/20/20 targets in the European Union [1].  
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 TABLE I  
SETS AND INDICES ܾ Index of transmission lines. ݂ Index of steps of bidding curves of generating units.  ݅ Index of conventional units. ݆ Index of demand. ݊ Index of nodes. ݏ Index of scenarios. ݐ Index of time intervals. ݓ Index of wind farms. ܤ(݊, ݊݊) Set of transmission lines. ܤ௕௡ Set of sending nodes of transmission lines. ܤ௕௡௡ Set of receiving nodes of transmission lines. ܬ଴ Set of inelastic loads. ܬଵ Set of demand response providers of type 1. ܬଶ Set of demand response providers of type 2. ௡ܰ௫ Set of resources of type ݔ ∈ {݅, ,ݓ ݆} connected to node ݊. 

 

TABLE II 
PARAMETERS ܤ௕,௡ Absolute value of the imaginary part of the transmission line ܾ

admittance (p.u.). ܤ௜,௙,௧ீ  Size of the ݂-th block of the bidding curve of unit ݅ in period ݐ (MW). ܥ௜,௙,௧ீ  Marginal cost of the ݂-th block of the bidding curve of unit ݅ in period ݐ
(€/MWh). ܥ௜,௧ீ,௎ Offer cost of up spinning reserve from unit ݅ in period ݐ (€/MWh). ܥ௜,௧ீ,஽ Offer cost of down spinning reserve from unit ݅ in period ݐ (€/MWh). ܥ௝,௧஽ோ௉,௎ Offer cost of load reduction scheduling from demand ݆ in period ݐ
(€/MWh). ௝ܿ,௧஽ோ௉,௎ Cost of load reduction deployment from demand ݆ in period ݐ
(€/MWh). ܦ௝,௧ Nominal load of demand ݆ in period ݐ (MW). ௕݂௠௔௫ Maximum capacity of transmission line ܾ (MW). ௝ܰ௜௡ Maximum allowed number of interruptions of demand ݆. ௜ܲ௠௔௫ Maximum power output of unit ݅ (MW). ௜ܲ௠௜௡ Minimum power output of unit ݅ (MW). ௪ܲௐ,௠௔௫ Capacity of wind farm ݓ (MW). ݌ Maximum participation of demand side resources (%). ௝ܴ஽ோ௉,௎,௠ Minimum load reduction of demand ݆ (MW). ܴܦ௜ Ramp down rate of unit ݅ (MW/min). ܴܦ௝஽ோ௉ Load pick-up rate of demand ݆ (MW/min). ܴ ௜ܷ Ramp up rate of unit ݅ (MW/min). ܴ ௝ܷ஽ோ௉ Load drop rate of demand ݆ (MW/min). ܵܥܦ௜ Shut-down cost of unit ݅ (€). ܷܵܥ௜ Start-up cost of unit ݅ (€). ߒ௝௥௘௖ Duration of the load recovery period (h). ܶௌ Spinning reserve delivery time (min). ௝ܸாேௌ Cost of energy not served/not recovered for demand ݆ (€/MWh). ܸௌ Wind energy spillage cost (€/MWh). ܹ ௪ܲ,௧,௦ Random variable — power output of wind farm ݓ in period ݐ in 
scenario ݏ (MW). ܽ Confidence level used in the calculation of CVaR஑. ߛ௝ Load recovery rate with respect to load reduction of demand ݆ (%). ߒ߂ Duration of time interval (min). ߦ௝,௧஽  Maximum downward modification rate of demand ݆ in period ߦ .(%) ݐ௝,௧௎  Maximum upward modification rate of demand ݆ in period ߨ .(%) ݐ௦ Probability of scenario ݏ. 
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TABLE III 

DECISION VARIABLES ܴܸܽܥ௔ Conditional Value-at-Risk at a confidence level	ܦ .(€) ߙ௝,௧,௦஺  Actual consumption of demand ݆ in period ݐ in scenario ݏ (MW). ܰܧ ௝ܴ,௦ Energy of demand ݆ not recovered in scenario ݏ (MWh). ௕݂,௧,௦ Power flow through transmission line ܾ in period ݐ in scenario ݏ
(MW). ܮ௝,௧,௦௦௛௘ௗ Load shed from demand ݆ in period ݐ in scenario ݏ (MW). ௜ܲ,௧,௦ீ  Actual output of unit ݅ in period ݐ in scenario ݏ (MW). ௜ܲ,௧௦௖௛ Output scheduled from unit ݅ in period ݐ (MW). ௜ܲ,௙,௧௦௚  Output scheduled from the ݂-th segment of unit ݅ in period ݐ (MW). ௪ܲ,௧ௐ,௦௖௛ Wind power scheduled from wind farm ݓ in period ݐ (MW). ௝ܴ,௧஽ோ௉,஽ Load recovery scheduled from demand ݆ in period ݐ (MW). ௝ܴ,௧஽ோ௉,௎ Load reduction scheduled from demand ݆ in period ݐ (MW). ܴ௜,௧ீ,஽ Down spinning reserve scheduled from unit ݅ in period ݐ (MW). ܴ௜,௧ீ,௎ Up spinning reserve scheduled from unit ݅ in period ݐ (MW). ݎ௝,௧,௦஽ோ௉,ௗ Load recovery of demand ݆ in period ݐ in scenario ݏ (MW). ݎ௝,௧,௦஽ோ௉,௨ Load reduction of demand ݆ in period ݐ in scenario ݏ (MW). ݎ௜,௧,௙,௦ீ  Reserve deployed from the ݂-th block of unit ݅ in period ݐ in scenario ݏ (MW). ݎ௜,௧,௦ீ,ௗ Deployed down spinning reserve from unit ݅ in period ݐ in scenario ݏ
(MW). ݎ௜,௧,௦ீ,௨ Deployed up spinning reserve from unit ݅ in period ݐ in scenario ݏ
(MW). ܵ௪,௧,௦ Available wind generation spilled from wind farm ݓ in period ݐ in 
scenario ݏ (MW). ߦ Value-at-Risk (€). ݑ௜,௧ Binary variable-1 if unit ݅ is committed in period ݑ .ݐ௝,௧,௦஽ோ௉,ௗ Binary variable- 1 if demand ݆ is recovering in period ݐ in scenario ݑ .ݏ௝,௧,௦஽ோ௉,௨ Binary variable- 1 if demand ݆ is curtailed in period ݐ in scenario ݕ .ݏ௜,௧ Binary variable- 1 if unit ݅ is starting up in period ݖ .ݐ௜,௧ Binary variable- 1 if unit ݅ is starting up in period ߜ .ݐ௡,௧,௦ Voltage angle at node ݊ in period ݐ in scenario ݏ (rad). ߟ௦ Auxiliary variable used in the calculation of CVaR (€). ߤ௝,௧,௦ Auxiliary variable used to linearize load recovery (MW). 

 
Among the different RES options, wind capacity is expected to 

increase significantly in the future [2, 3]. Despite the potential 
environmental benefits that arise from the widespread adoption of 
wind power generation, its uncertain nature may jeopardize the 
security of the power system and pose new challenges to system 
operators (SO) [4]-[7]. 

In order to accommodate the wind power volatility, apart from 
the traditionally required ancillary services (i.e. regulation, 
contingency reserve etc.), increased additional amount of load 
following reserves must be generally procured to match the total 
production and consumption [8]. Interestingly empirical facts 
from some particular markets, such as the German energy market, 
concur that on some occasions the integration of RES can be 
supported by alternative means. In fact, since 2008, the capacity 
of RES in Germany has grown from 27 GW to 78 GW, yet over 
the same period, the amount of balancing reserves procured by the 
Transmission System Operators (TSO) was reduced by 15%. 
Hirth and Ziegenhagen [9] highlighted this issue which is known 
as the “German Paradox”, providing also several candidate factors 
that could have overcompensated the expansion of renewables: 
improved forecasting tools, reduced frequency of power plant 
outages, more cost-aware behavior of TSOs, cooperation of TSOs 
in reserve sizing and improved intraday market liquidity. Recently 
Ocker and Ehrhart [10] argued that there are two main reasons 
that can explain this “paradox”. First, the introduction of a 
common balancing market between the four German TSOs in the 
period 2009-2010 and the foundation of the International Grid 

Control Cooperation (IGCC) in 2011 led to a significant reduction 
in reserve procurement in Germany, induced by the augmentation 
of the balancing area. Second, market design adaptations which 
allowed more flexible wind trading closer to real-time have 
improved the liquidity of the intraday market. Based on this 
evidence Ocker and Ehrhart suggested that the increasing 
penetration of renewables can be managed without necessarily 
increasing the amount of operational reserves by implementing 
such national and international measures. Nevertheless, this 
would require the harmonization of European balancing power 
markets which are currently characterized by large discrepancy in 
market design and renewable energy integration [11]. In addition 
to that, the liquidity of the different intraday markets varies 
significantly across Europe. For instance, in contrast with the 
relatively liquid German intra-day energy market, the amount of 
energy traded in the Nordic intraday market accounts only for 
about 1% of the total consumption [12]. Finally, on many 
occasions it is not possible to augment the balancing area due to 
geographical restrictions. This is the case for non-interconnected 
power systems such as the ones in islands in which the magnitude 
of the problems related to the integration of RES depends on their 
penetration level in the production mix, while their mitigation is 
reflected by the flexibility of the power system [13]. 

Until recently, the required reserve services have been almost 
exclusively procured by the generation side. However, several 
types of demand side resources are technically capable of 
providing ancillary services and especially, the recently proposed 
flexibility reserve which responds to large and unexpected wind 
and solar ramp events [14]. The utilization of demand side 
resources to provide flexibility reserves alleviates the adverse 
environmental, technical and economic impacts of regulating the 
highly volatile wind power generation using fast-response 
conventional generators. However, one of the main barriers to 
introducing demand response (DR) in the operational practice is 
its justification as a valuable system addition in comparison with 
other technologies. Strbac [15] argues that the value of DR lies 
both in system operation and development. The operational status 
of the system and the flexibility of the generation mix are 
important criteria to assess the value of DR. In systems that are 
stressed, i.e. that operate close to their capacity limits and have a 
relatively inflexible base load generation, the contribution of DR 
to integrate greater amounts of RES generation could be 
significant.   

Many SOs, especially in the U.S., have taken steps towards 
integrating demand side resources by initiating market-based 
programs that allow the participation of demand response 
providers (DRP) [1].  A DRP may be an individual load (i.e. a 
large consumer) or an aggregation of loads that are technically 
qualified (in terms of response time, minimum level of 
curtailment etc.) to participate in a specific DR program. DRPs 
are allowed to bid on load curtailments. If the bids are accepted, 
the DRPs are paid for committing to be on standby. In case the 
load curtailments are indeed required during the actual operation 
of the power system, the participants are notified by the SO and 
are paid for the energy reduction they provide. More details 
regarding existing demand side participation programs in the U.S. 
markets may be found in [16]. However, despite the fact that the 
implementation of various demand side participation programs in 
the U.S. has proven beneficial in many aspects, demand response 
(DR) is currently available only in a few European countries [17]. 
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The integration of demand side resources into electricity 
markets has also drawn the attention of the technical literature. 
Several studies investigate the participation of demand side 
resources in the procurement of energy and reserve services. 
Seminal studies [18]-[20] have developed pool based market 
structures considering the participation of demand side resources 
into the energy and reserve markets. However, these models are 
deterministic. The economic effect of price responsive demand on 
energy only markets was investigated in [21] and [22]. A more 
detailed deterministic model of demand side participation in the 
day-ahead energy market was presented in [23]. There are also 
studies that evaluate the contribution of demand side resources to 
contingency and load following reserves [24]-[27]. Nevertheless, 
these studies do not consider the effect of wind power penetration 
on reserve procurement. 
 The exploitation of demand side resources to support the 
integration of RES, especially wind power, has been studied in 
[28]-[31]. However, these studies do not investigate the effect of 
DR on the risks associated with the operational cost of the system. 
Risk-aware stochastic programming based decision making has 
been widely applied to portfolio optimization. Recently, risk-
constrained optimal offering strategies for microgrid aggregators 
[32], wind power producers [33, 34] and virtual power plants [35] 
have been proposed, considering also the participation of DR in 
the mitigation of the risk associated with the distribution of 
profits. Nevertheless, although stochastic programming has been 
also applied to market clearing and unit commitment formulations 
[36], investigating the risk that is embedded in the decisions of 
the SO under the presence of renewables’ related uncertainty, the 
potential benefits of DR and pinpointing potential limiting factors 
is a topic that has not been studied extensively in the relevant 
literature. For instance, in [37] a stochastic programming model 
was presented in which demand side resources may provide load 
following and contingency reserves, disregarding the risk 
associated with the decisions of the SO. Also, in [1] and [2], 
demand side resources were employed to facilitate the integration 
of wind power, employing deterministic reserve criteria. In [38] a 
stochastic load model of an industrial consumer participating in 
load following reserves procurement under high wind power 
penetration was presented. However, this study also neglected the 
quantification of the risk in the decision making of the SO.  

Finally, although, several risk-constrained unit commitment 
formulations have also been proposed in the literature, most of 
them focus on the operational risk, i.e., security of the load supply 
and uncertainty [39]-[43], while only a few are investigating the 
economic risk the SO is exposed to in terms of solving a 
probabilistic optimal power flow problem that incorporates 
variance and semi-variance as risk metrics [44], [45]. 

 

B.  Contribution and Organization of the Paper 

Determining the optimal levels of reserves in order to allow for 
the SO to respond to the deviations of wind power production 
with respect to the amount cleared in the day-ahead market is a 
technically and economically challenging task. When accounting 
for the uncertainty in the wind power production in order to 
schedule the optimal levels of reserves using stochastic 
programming, the volumes are optimal with respect to the 
expectation of operational costs, while other characteristics of the 
distribution of the system costs are disregarded, exposing the SO 
to financial risks. For this reason, in this study, a risk-aware joint 
energy and reserve day-ahead market structure based on two-stage 

stochastic programming is developed. The SO that is responsible 
for the clearing of the market may utilize generation and demand 
side resources in order to procure load following reserves in order 
to accommodate the uncertain wind production.  

Risk-management is applicable when decision making is 
subject to uncertainty. As it has already been mentioned the 
notion of risk-aversion is common in studies that deal with 
investments and the trading strategy of market participants. This 
may be attributed to the fact that risk has a direct influence on the 
profitability of an investment or the economic effectiveness of a 
market participant. However, the perception of the risks that a SO 
has to take mostly focuses on the technical management of the 
grid (e.g., energy not served, etc.) and the fact that economic 
inefficiencies can, at least to some extent, be socialized. In fact 
considering the reliability of the power system while clearing a 
joint energy and reserve market introduces a notion of risk in the 
daily decision making of the SO, while reserves are the technical 
instrument that is used to face such risk. Although it is not so 
common, studies that consider the financial risk faced by the SO 
due to wind power generation uncertainty can be also found in the 
literature [44], [45]. 

The main contributions of this work are summarized in the 
following:  

• The risk-averse behavior of the SO in terms of the operational 
costs of the system is considered. The formulation presented 
in this study is conceptually different from other risk-
constrained unit commitment-based market clearing 
approaches in the sense that the focus is mainly on the 
economic risks due to the uncertainty in wind power 
production. 

• Unlike the majority of the relevant studies in the literature 
where risk management is enforced by means of optimizing a 
composite objective function where each objective (e.g., 
cost/profit and risk metric) is accounted for with a weighting 
factor, a multi-objective optimization approach based on an 
improved implementation of the epsilon-constraint method, 
namely the augmented epsilon-constraint method 
(AUGMECON) is proposed in this study. Simulation results 
indicate a richer mapping of the Pareto frontier.   

• The contribution of DRPs to reserve procurement is taken into 
account. A generic load recovery effect model is developed in 
order to preserve the internal energy balance of the demand 
side resources participating in reserve provision, with the aim 
of investigating its impact on the deployment of demand side 
resources, expected cost and risk. The proposed methodology 
is applied on the insular power system of Crete, Greece, in 
order to extract realistic quantitative results. 
The remainder of the paper is organized as follows: in Section 

III the optimization model is developed. Then, in Section IV the 
proposed solution technique is presented. Numerical results are 
presented and discussed in Section V. Finally, conclusions are 
drawn in Section VI. 

 
 

III.  OPTIMIZATION MODEL 

In this section the mathematical model of the joint energy and 
reserve day-ahead market based on two-stage stochastic 
programming from the point of view of a risk-averse SO is 
presented. The aim is to determine the optimal energy and reserve 
volumes while guaranteeing that reserves are sufficient to tackle 
the plausible realizations of the uncertain wind power production 
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which is modelled in terms of a finite set of scenarios. Three sets 
of constraints can be discerned. The first stage constraints involve 
variables that do not depend on any specific scenario (here-and-
now decisions), while the second stage constraints describe 
relationships pertaining only decision variables that depend on 
scenario realizations (wait-and-see decisions). In other words, the 
second stage variables represent the reaction of the SO to each 
plausible realization of uncertainty. Finally, the linking 
constraints connect the day-ahead market decisions with each 
specific scenario realization by involving both scenario dependent 
and independent variables. It is to be noted that reserve providers 
are compensated both for committing to be on stand-by and for 
the actual deployment of reserves. 

This approach aims to guarantee that within the considered set 
of scenarios, energy and reserve volumes are optimally 
determined. In practice it is possible that the realization of 
uncertainty will not match exactly any of the realizations that are 
explicitly considered in the scenario set. Nevertheless, the reserve 
levels are sufficient to respond to at least any wind power 
generation realization that is higher than the minimum amount of 
wind power that is being explicitly considered in the scenario set. 
To optimally determine the individual response of each reserve 
provider in real-time a rolling decision making approach can 
deployed [46]. The output of the generators must be fixed to the 
energy output level cleared in the day-ahead market, while the 
available reserves from each provider are also fixed to the cleared 
reserve volumes. Then, a sequence of optimization problems has 
to be solved by the SO at each real-time interval to define the 
exact contribution of each provider on the basis of their reserve 
deployment costs. Note that since intertemporal constraints have 
been taken into account during the determination of the reserve 
levels, they do not need to be accounted for in real-time. 
Formulating the problem of optimally dispatching the scheduled 
reserves in real-time is out of the scope of our study.  

The only source of uncertainty considered is related to the 
production of the wind farms since uncertainty associated with the 
response of the demand side resources may be neglected, based 
on practical evidence [14] that indicate reliable performance of 
DRPs. In addition to that, in cases where the DRP is either an 
aggregator of small-scale flexible loads or a large industrial 
consumer participating directly in the day-ahead market, it can be 
assumed – on the basis of the development of regulatory 
framework that promotes the non-discriminatory participation of 
resources in electricity markets, e.g. the Articles 15.4 and 15.8 of 
the Energy Efficiency Directive of the European Commission 
[47] – that they are also balance responsible parties. This means 
that guaranteeing the delivery of the service for which they are 
committed is not the responsibility of the SO. 

In the proposed formulation the SO strives to optimize 
simultaneously both the expected cost and the associated financial 
risk. As a result, the proposed two-stage stochastic programming 
model is in fact a multi-objective problem that needs to be solved 
by means of employing a suitable methodology as described in 
Section IV. An overview of the proposed methodology is 
portrayed in Fig. 1. 

A.  Objective Functions 

A.1. Expected Cost 
The objective of the SO is to minimize the total expected cost 

of energy and reserve procurement.  

 
Fig. 1. Overview of the proposed methodology.  
 

The expected cost (ܥܧ) comprises a scenario independent 
 component which are (௦ௌ஽ܥܧ) and a scenario dependent (ௌூܥܧ)
expounded in (2) and (3) respectively. In (2) the energy 
procurement cost, the start-up and shut-down costs of generating 
units, as well as the generation and demand side reserve 
procurement costs are taken into account. The cost that emerges 
from altering the output of generating units to deploy reserves, the 
cost of deploying reserves from DRPs, the penalty of involuntary 
load shedding, the wind spillage cost, as well as the cost of energy 
not recovered after the deployment of a DRP load reduction are 
considered in (3).  

ܥܧ  = ௌூܥܧ +෍ߨ௦ ∙ ௦ௌ஽௦ܥܧ  (1) 

ௌூܥܧ =෍൦෍൮෍൫ܩݐ,݂,݅ܥ ∙ ݃ݏݐ,݂,݅ܲ ൯௙௜௧+ ൫ܷܵ݅ܥ ∙ ݐ,݅ݕ + ݅ܥܦܵ ∙ ൯ݐ,݅ݖ
+ ൫ܩݐ,݅ܥ,ܷ ∙ ܷ,ܩݐ,ܴ݅ + ܦ,ܩݐ,݅ܥ ∙ ൯൲ܦ,ܩݐ,ܴ݅ +෍൫ܴܲܦݐ,݆ܥ,ܷ ∙ ൯݆ܷ,ܴܲܦݐ,݆ܴ ൪ 

(2) 

௦ௌ஽ܥܧ = ෍቎෍෍൫ܩݐ,݂,݅ܥ ∙ ܩݏ,݂,ݐ,݅ݎ ൯݂݅ݐ+෍ቀ݆ܿ,ܴܲܦݐ,ܷ ∙ ݑ,ܴܲܦݏ,ݐ,݆ݎ + ܵܰܧ݆ܸ ∙ ቁ݄݀݁ݏݏ,ݐ,݆ܮ +෍൫ܸܵ ∙ ݓ൯ݏ,ݐ,ݓܵ ൩݆+෍൫ܸ݆ܵܰܧ ∙ ൯݆ݏ,݆ܴܰܧ  ݏ∀
(3) 
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A.2. Conditional Value-at-Risk 
Although attempting to minimize the expected cost of the 

operation of the system is advantageous in comparison with a 
deterministic approach in which a perfect forecast for the wind 
power generation is considered, the characteristics associated with 
the distribution of the outcomes of the individual scenarios are 
disregarded. As a result, an acceptable expected cost value may 
correspond to a cost distribution in which the probability of facing 
significant costs in several scenarios is high. To overcome this 
ambiguity, a notion of risk should be incorporated in the 
optimization problem. A risk measure is a scalar function 
characterizing the risk associated with the obtained expected cost.  

There are various perceptions of risk and therefore, several 
different risk measures may be used. Extensive discussion on how 
to incorporate different risk measures in stochastic programming 
formulations is performed in [48]. The risk measure employed in 
this study is the Conditional Value-at-Risk (CVaR) metric [49] 
since it presents three important advantages: 1) it is a coherent 
risk measure, 2) in contrast with the popular Value-at-Risk (VaR) 
metric, it quantifies “fat tails” in the cost distribution and, 3) it is 
compatible with a linear formulation.  

For a given confidence level ߙ ∈ (0,1) the ܸܴܽ௔ is equal to 
the minimum value ߦ for which the probability of obtaining a cost 
less than ߦ is higher than ߙ. It should be noted that ߦ is a variable 
representing the value of the risk metric and not a pre-fixed 
parameter. ܸܴܽఈ is defined by (4). 

 ܸܴܽఈ = min	{ߦ: ௌூܥܧ|ݏ)ܲ + ௦ௌ஽ܥܧ ≤ {ߦ ≥  (4) {ߙ

 ఈ is defined as the expected value of the cost of theܴܸܽܥ 
scenarios with cost higher than the (1 −  quantile of the cost-(ߙ
distribution (ܸܴܽఈ). The mathematical definition of ܴܸܽܥఈ is 
given in (5).  

ఈܴܸܽܥ  = min	{ߦ + 11 − ௦ߨ]෍ߙ ∙ max	{ܥܧௌூ + ௦ௌ஽ܥܧ − ,ߦ 0}]௦ } (5) 

 

Risk aversion may be enforced by considering (6) as an 
objective function (see Section IV) and (7)-(8) as constraints of 
the optimization problem. Constraint (7) states that the risk metric 
is considered with respect to the expected cost of each scenario. 
Finally, (8) states that the auxiliary variable is nonnegative. It 
should be noted that the continuous auxiliary variable ߟ௦ equals to 
the maximum of ܥܧௌூ + ௦ௌ஽ܥܧ −  .and 0 according to (5) ߦ

ఈܴܸܽܥ  = ߦ + 11 − ߙ ∙෍ߨ௦ ∙ ௦௦ߟ ௌூܥܧ (6)  + ௦ௌ஽ܥܧ − ߦ ≤ ௦ߟ (7) ݏ∀	௦ߟ ≥  (8) ݏ∀	0
In this study it is considered that wind producers are exempt 

from the participation in the market and the wind energy that is 
accepted in the day-ahead market is determined by the SO. For 
instance this might be imposed by policies that consider RES 
generation as must-take. At any rate, costly reserve services have 
to be procured from conventional generating units on a market 
basis in order to satisfy this requirement in real-time, a fact that 
increases the financial risk that the SO is exposed to. It is to be 
noted that in markets in which wind producers are considered as 
Balance Responsible Parties, they bear the financial obligation of 

covering the imbalances that they cause through appropriate 
market mechanisms. In fact this defines the scope of this work 
since in such cases risk management should be rather included in 
the decision making of the wind producers rather than of the SO 
[33]-[35]. Nevertheless, the proposed day-ahead market model is 
still be applicable when SO operators have the balancing 
responsibility of a number of relatively small or subsidized RES 
producers [50]. 

B.  Constraints 

B.1. First Stage Constraints  
B.1.1. Generating Units 

The bidding curves of the generators are approximated using a 
monotonically ascending step-wise linear marginal function as in 
[37]. This is enforced by (9) and (10). The output of a generating 
unit is constrained between a minimum and maximum value 
considering also the scheduled down and up spinning reserves by 
(11) and (12), respectively. The ramping constraints are taken into 
account by (13) and (14). Furthermore, the scheduled up and 
down reserves are limited by (15)-(16). Minimum up and down 
time constraints and unit commitment constraints are also taken 
into account as in [25]. 

 ௜ܲ,௧௦௖௛ = ෍ ௜ܲ,௙,௧௦௚௙ 	∀݅, 0 (9) ݐ ≤ ௜ܲ,௙,௧௦௚ ≤ ௜,௙,௧ீܤ 	∀݅, ݂,  (10) ݐ

௜ܲ ,௧௦௖௛ − ܴ௜,௧ீ,஽ ≥ ௜ܲ௠௜௡ ∙ ,݅∀	௜,௧ݑ  (11) ݐ

௜ܲ,௧௦௖௛ + ܴ௜,௧ீ,௎ ≤ ௜ܲ௠௔௫ ∙ ,݅∀	௜,௧ݑ  (12) ݐ

௜ܲ,௧௦௖௛ − ௜ܲ,௧ିଵ௦௖௛ ≤ ܴ ௜ܷ ∙ ,݅∀	ߒ߂  (13) ݐ

௜ܲ,௧ିଵ௦௖௛ − ௜ܲ,௧௦௖௛ ≤ ௜ܦܴ ∙ ,݅∀	ߒ߂ 0 (14) ݐ ≤ ܴ௜,௧ீ,஽ ≤ ௜ܦܴ ∙ ܶௌ ∙ ,݅∀	௜,௧ݑ 0 (15) ݐ ≤ ܴ௜,௧ீ,௎ ≤ ܴ ௜ܷ ∙ ܶௌ ∙ ,݅∀	௜,௧ݑ  (16) ݐ
 

B.1.2. Wind Power Production 

Constraint (17) limits the wind power production that may be 
scheduled. In this study, it is considered that the minimum 
scheduled wind production is zero and the maximum limit 
coincides with the installed capacity of the wind farm. 

 0 ≤ ௪ܲ,௧ௐ,௦௖௛ ≤ ௪ܲௐ,௠௔௫	∀ݓ,  (17) ݐ
 

B.1.3. Demand Response Providers  
In this study, it is considered that DRPs may participate in 

upward reserve scheduling by rendering a portion of their demand 
available to be curtailed under suitable incentives. Furthermore, 
the fact that the demand which is curtailed during a given interval 
may have to be recovered in other periods allows the DRPs to 
contribute to downward reserves through appropriate coordination 
of the curtailment and the recovery periods. In order to participate 
in the reserve market, the SO may require several parameters to 
be submitted by the DRPs together with the demand reduction 
and recovery costs such as: maximum demand modification rate, 
rate of energy recovery, load pick-up/drop rate, minimum demand 

curtailment, load recovery duration and maximum number of 
curtailments per day. Constraints (18)-(20) enforce the reserve 
scheduling from the DRPs.  
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 0 ≤ ௝ܴ,௧஽ோ௉,௎ ≤ min൫ߦ௝,௧௎ ∙ ,௝,௧ܦ ܴ ௝ܷ஽ோ௉ ∙ ܶௌ൯ ∀݆ ∉ ,଴ܬ 0 (18) ݐ ≤ ௝ܴ,௧஽ோ௉,஽ ≤ min	(ߦ௝,௧஽ ∙ ,௝,௧ܦ ௝஽ோ௉ܦܴ ∙ ܶௌ)	∀݆ ∉ ,଴ܬ ෍ (19) ݐ ௝ܴ,௧஽ோ௉,௎௝∉௃బ ≤ 1݌ − ݌ ∙෍ܴ௜,௧ீ,௎௜  (20) ݐ∀	

 
Specifically, (18) states that the upward reserve scheduled by a 

DRP is constrained either by the maximum upward demand 
modification rate or by the load drop rate. Similarly, the 
downward reserve as a result of scheduled load recovery is 
constrained either by the maximum downward demand 
modification rate or by the load pick-up rate (19). 

Despite the fact that the utilization of demand side resources is 
generally promoted, a SO may impose limits on their contribution 
to reserves. This market rule is taken into account by (20) that 
states that the contribution of DRPs into upward reserves during a 
given period cannot exceed ݌% of the total scheduled upward 
reserves during that period. For instance, the Midcontinent 
Independent System Operator (MISO) adopted a limit of 30% (in 
the summer of 2012) on spinning reserve capacity procurement 
from DRPs in order to reduce the dependence on demand side 
resources for critical ancillary services until the performance of 
these resources is proven [51]. The reasons why a SO may 
enforce such constraints on the procurement of services from 
DRPs can be manifold. For instance, progressive evaluation of the 
effect of procuring reserves from the demand side on the market 
and the capacity factor of conventional generation that has been 
traditionally providing these services might be desirable. As a 
result, the reliability of response is not necessarily the major 
reason for imposing such limitations. The reason why constraint 
(20) is enforced in the mathematical formulation is to highlight 
the fact that valuating the participation of DRPs in reserve 
provision under such conditions might underestimate positive 
externalities such as financial risk mitigation for the SO. 

 
 

B.1.4. Power Balance 
Equation (21) enforces market power balance. It is common in 

the literature and also in real power systems not to enforce the 
network constraints in the first stage [8]. Nonetheless, any market 
scheme can be implemented within the proposed formulation. 

 ෍ ௜ܲ,௧௦௖௛௜ +෍ ௪ܲ,௧ௐ,௦௖௛௪ = ෍ܦ௝,௧௝  (21) ݐ∀	

 
B.2. Second Stage Constraints 
B.2.1. Generating Units 

Constraints (22)-(24) enforce the minimum and maximum 
power output as well as the ramp up and ramp down limits for the 
actual generation in each individual scenario.  ௜ܲ௠௜௡ ∙ ௜,௧ݑ ≤ ௜ܲ,௧,௦ீ ≤ ௜ܲ௠௔௫ ∙ ,݅∀	௜,௧ݑ ,ݐ ௜ܲ,௧,௦ீ (22) ݏ − ௜ܲ,௧ିଵ,௦ீ ≤ ܴ ௜ܷ ∙ ,݅∀	ߒ߂ ,ݐ ௜ܲ,௧ିଵ,௦ீ (23) ݏ − ௜ܲ,௧,௦ீ ≤ ௜ܦܴ ∙ ,݅∀	ߒ߂ ,ݐ  (24) ݏ
 
B.2.2. Wind Spillage and Load Shedding 

Constraints (25) and (26) state that the system operator may 
opt for spilling available wind production or partially shed 
inelastic load in order to satisfy the system constraints. Naturally, 
this is the last option of the operator since using such measures 
bears significant penalties.  

 0 ≤ ܵ௪,௧,௦ ≤ ܹ ௪ܲ,௧,௦	∀ݓ, ,ݐ 0 (25) ݏ ≤ ௝,௧,௦௦௛௘ௗܮ ≤ ݆∀	௝,௧ܦ ∈ ,଴ܬ ,ݐ  (26) ݏ
 

B.2.3. Demand Response Providers  
    1)  Reserve Deployment  

Constraints (27)-(29) enforce the requirement that a DRP 
cannot reduce and increase its consumption simultaneously. Also, 
the left hand side of (27) states that a load reduction should be 
over a minimum amount of curtailment. Furthermore, (30) 
imposes a maximum limit to the load reductions that may be 
procured by a DRP over a given scheduling horizon.  

௝,௧,௦஽ோ௉,௨ݑ  ∙ ௝ܴ஽ோ௉,௎,௠ ≤ ௝,௧,௦஽ோ௉,௨ݎ ≤ ܴ ௝ܷ஽ோ௉ ∙ ܶௌ ∙ ௝,௧,௦஽ோ௉,௨ݑ ∀݆, ,ݐ 0 (27) ݏ ≤ ௝,௧,௦஽ோ௉,ௗݎ ≤ ܴ ௝ܷ஽ோ௉ ∙ ܶௌ ∙ ,݆∀	௝,௧,௦஽ோ௉,ௗݑ ,ݐ ௝,௧,௦஽ோ௉,௨ݑ (28) ݏ + ௝,௧,௦஽ோ௉,ௗݑ ≤ 1	∀݆, ,ݐ ௝,௧,௦஽ோ௉,௨௧ݑ෍ (29) ݏ ≤ ௝ܰ௜௡	∀݆,  (30) ݏ

    2)  Energy Recovery 
Practical and economic reasons suggest that the provision of 

reserves by DRPs should not be viewed as a mere increase or 
decrease in their load. Electrical energy is used in order to 
facilitate the activities of a certain sector (i.e., residential, 
commercial, or industrial), the primary activity of which is not the 
participation in the electricity market. Thus, technical and social 
constraints imply that the curtailed energy will have to be 
provided to the consumers before or after the interruption occurs. 
Alternatively, in economic terms, if the internal load energy 
balance is not conserved, then the value that the DRPs assign to 
electrical energy is not consistent [21]. In certain cases, depending 
on the dynamics of a load that incurs an interruption, more energy 
than the amount that has been curtailed has to be provided [24]. 
The aforementioned facts suggest that DRP reserve provision is to 
be viewed as a redistribution of the demand over time and 
therefore the energy recovery should be appropriately modeled. In 
this paper, two different types of load recovery are considered. 
The first type (type 1) refers to a DRP that represents loads 
capable of storing (e.g. using batteries, air compressors, products 
[22] etc.) or foregoing energy and therefore, the energy recovery 
is rather flexible. This type of load recovery is modeled by (31).  

 ෍ݎ௝,௧,௦஽ோ௉,ௗ + ܰܧ ௝ܴ,௦௧ ≥ ௝ߛ ∙෍ݎ௝,௧,௦஽ோ௉,௨௧ 	∀݆ ∈ ,ଵܬ  (31) ݏ

 
The system operator may procure load reduction from a DRP 

of type 1, on the condition that the energy is recovered before or 
after the reduction occurs. Note that if  0 ≤ ௝ߛ < 1 a portion of 
energy is not necessarily recovered.  

The second type (type 2) describes a DRP with the strict 
requirement to recover the reduced energy within ߒ௝௥௘௖ intervals 
starting directly after a reduction occurs, while another 
interruption cannot be sustained before this period is over (e.g., 
air-conditioning load). The first requirement is fulfilled by the 
nonlinear constraint (32), the use of which is further motivated in 
Appendix I. Additionally, in order to preserve the mixed-integer 
linear programming (MILP) formulation, a reformulation of this 
constraint is presented in Appendix II. The second requirement is 
enforced by (33). This constraint states that in a period ݐ a DRP is 
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in the recovery phase ൫ݑ௝,௧,௦஽ோ௉,ௗ = 1൯ if a curtailment has taken 

place (ݑ௝,௧,௦஽ோ௉,௨ = 1) up to ߒ௝௥௘௖ period in the past. As a result, 
another curtailment cannot occur because of (27) and (29). In the 
special case in which ߒ௝௥௘௖ = 1, constraint (32) may be substituted 
by the simpler constraint (34). Finally, (35) states that during the 
first scheduling interval, load recovery is not possible. 

௝,௧,௦஽ோ௉,௨ݑ  ∙ ෍ ௝,ఛ,௦஽ோ௉,ௗ௧ାఁೕೝ೐೎ݎ
ఛୀ௧ାଵ = ௝ߛ ∙ ݆∀	௝,௧,௦஽ோ௉,௨ݎ ∈ ,ଶܬ ,ݐ  (32) ݏ

௝,௧,௦஽ோ௉,ௗݑ = ෍ ௝,ఛ,௦஽ோ௉,௨௧ିଵݑ
ఛୀ௧ିఁೕೝ೐೎ 	∀݆ ∈ ,ଶܬ ,ݐ ௝,௧ାଵ,௦஽ோ௉,ௗݎ (33) ݏ = ௝ߛ ∙ ݆∀	௝,௧,௦஽ோ௉,௨ݎ ∈ ,ଶܬ ,ݐ ,ݏ ௝௥௘௖ߒ	݂݅ = ௝,௧,௦஽ோ௉,ௗݑ (34) 1 = ݐ	݂݅	0 = 1, ∀݆ ∈ ,ଶܬ  (35) ݏ

 
The constraints that are used to model reserve deployment and 

load recovery in this study are generic. Other constraints such as 
minimum and maximum duration of an interruption, load 
recovery sequence etc. are out of the scope of this paper. 

 

B.2.4. DC Power Flow  
The network constraints are considered for the actual operation 

of the power system, using a DC power flow representation. The 
power balance at each node is enforced by (36), while the flow 
through a branch is defined by (37) and (38). Note that voltage 
angle must be fixed at the reference node.  

 ෍ ௜ܲ,௧,௦ீ௜∈ே೙೔ + ෍ ൫ܹ ௪ܲ,௧,௦ − ܵ௪,௧,௦൯ + ෍ ௕݂,௧,௦௡∈஻೙್೙௪∈ே೙ೢ− ෍ ௕݂,௧,௦௡∈஻೙್ = ෍ ൫ܦ௝,௧,௦஺ − ௗ,௧,௦௦௛௘ௗ൯௝∈ே೙ೕܮ 	∀	ܾ, ݊, ,ݐ  ݏ
(36) 

௕݂,௧,௦ = ௕,௡ܤ ∙ ൫ߜ௡,௧,௦ − ,ܾ∀ 	௡௡,௧,௦൯ߜ (݊, ݊݊) ∈ ,݊)ܤ ݊݊), ,ݐ  ݏ
(37) − ௕݂௠௔௫ ≤ ௕݂,௧,௦ ≤ ௕݂௠௔௫	∀ܾ, ,ݐ  (38) ݏ

 

B.3. Linking Constraints  

B.3.1. Generating Units 
Constraints (39)-(41) link the scheduled power output with the 

actual power generation and the scheduled reserve capacity with 
the deployed reserves, respectively. Moreover, constraints (42)-
(44) decompose the deployed reserves into the blocks of energy.  

 ௜ܲ,௧,௦ீ = ௜ܲ,௧௦௖௛ + ௜,௧,௦ீ,௨ݎ − ,݅∀	௜,௧,௦ீ,ௗݎ ,ݐ 0 (39) ݏ ≤ ௜,௧,௦ீ,௨ݎ ≤ ܴ௜,௧ீ,௎	∀݅, ,ݐ 0 (40) ݏ ≤ ௜,௧,௦ீ,ௗݎ ≤ ܴ௜,௧ீ,஽	∀݅, ,ݐ ௜,௧,௦ீ,௨ݎ (41) ݏ − ௜,௧,௦ீ,ௗݎ =෍ݎ௜,௧,௙,௦ீ௙ 	∀݅, ,ݐ ௜,௧,௙,௦ீݎ (42) ݏ ≤ ௜,௙,௧ீܤ − ௜ܲ,௙,௧௦௚ 	∀݅, ݂, ,ݐ ௜,௧,௙,௦ீݎ (43) ݏ ≥ − ௜ܲ,௙,௧௦௚ 	∀݅, ݂, ,ݐ  (44) ݏ
 

B.3.2. Demand Response Providers 

Constraints (45)-(47) are similar to (39)-(41) that hold for the 
generating units.  

௝,௧,௦஺ܦ  = ௝,௧ܦ − ௝,௧,௦஽ோ௉,௨ݎ + ,݆∀	௝,௧,௦஽ோ௉,ௗݎ ,ݐ 0 (45) ݏ ≤ ௝,௧,௦஽ோ௉,௨ݎ ≤ ௝ܴ,௧஽ோ௉,௎	∀݆, ,ݐ 0 (46) ݏ ≤ ௝,௧,௦஽ோ௉,ௗݎ ≤ ௝ܴ,௧஽ோ௉,஽	∀݆, ,ݐ  (47) ݏ
 

IV.  SOLUTION TECHNIQUE 

In Section III it was rendered evident that both the objective 
functions (1) and (6) that represent the expected cost and the ܴܸܽܥఈ metric value are to be minimized, subject to constraints 
(2)-(3) and (7)-(47). Essentially, this is a multi-objective 
optimization problem (MOOP) with conflicting objectives, which 
implies that the set of Pareto efficient solutions is sought. In this 
section the classical approach (weighted sum method) to solve the 
MOOP is firstly discussed and its drawbacks are highlighted. 
Subsequently, the application of a variant of the epsilon-constraint 
method, namely the AUGMECON method to address the risk 
management problem of this study is presented.  

Meta-heuristics based MOOP solution algorithms are generally 
considered to present computational advantages, especially in the 
case of large-scale optimization problems with unfavorable 
mathematical properties [52], [53]. However, they return an 
approximation of the Pareto frontier (pseudo-optimal Pareto 
solutions). On the contrary, AUGMECON is an exact 
(deterministic) solution technique that is capable of mapping the 
actual Pareto front for multi-objective MILP problems. 
Furthermore, AUGMECON has been proved to be statistically 
more computationally efficient in comparison with the widely-
applied Non-dominated Sorting Genetic Algorithm-II (NSGA-II) 
for combinatorial problems such as the radial distribution system 
reconfiguration problem [54]. More specifically, due to the 
dependence of the solutions on the initialization of the algorithm, 
many independent runs have to be performed that may be 
characterized by significantly variable computational time.  
 
A.  Classical Approach 

The classical approach suggests transforming the MOOP into a 
single objective optimization problem by constructing a 
composite objective function [55] as in (48).  

 

Minimize (1 − (ߚ ∙ ܥܧ + ߚ ∙ CVaR஑ 

s.t. (2) − (3) and (7) − (47) (48) 

 
The parameter ߚ ∈ [0,1] is a weighting factor that implements 

the trade-off between the expected cost and risk aversion. By 
varying the parameter ߚ different solutions are obtained and the 
efficient frontier of expected cost versus risk is constructed. This 
approach is straightforward and easy to implement and therefore, 
has been widely adopted in the technical literature in different 
power systems problems in which risk needs to be considered. 
However, it presents several technical disadvantages [55]: 1) this 
method is only usable for convex efficient sets, 2) a uniformly 
distributed set of weights does not guarantee a uniformly 
distributed set of efficient solutions and as a result, the mapping 
of the Pareto efficient set may be insufficient, and 3) the weighted 
sum method suffers from the fact that there may be different 
combinations of weights that result into the same efficient 
solution. In practical terms, many more iterations would be 
needed in order to discover a given number of unique efficient 
optimal solutions. 
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B.  Proposed Approach 

The aforementioned problems of the weighted sum method 
may be addressed by another well-known MOOP solution 
method, namely the epsilon-constraint method, in which one of 
the objective functions is optimized using the other objective 
functions as constraints, as shown in (49).  

 
Minimize ܥܧ 
s.t. ܴܸܽܥఈ 	≤ ݁̅	 (2) − (3)	and (7) − (47)  

(49) 

 
By parametrical variation in the right hand side of the 

constrained objective function in (49) the efficient solutions of the 
problem are obtained. This approach is advantageous since it 
addresses the pitfalls of the weighting method. However, the main 
implication associated with the application of this method is that 
the parameter vector ݁̅	must lie in the range of the objective 
functions, else the efficiency of the returned solutions is not 
guaranteed and the method may return weakly efficient solutions, 
instead. AUGMECON is a variant of the epsilon-constraint 
method that retains its advantages and addresses its 
disadvantages. Specifically, the ranges of the objective functions 
are calculated using lexicographic optimization, the efficiency of 
the returned solutions is proven and the use of acceleration 
techniques enhances the computational efficiency of the method. 
These conceptual advantages qualify AUGMECON as an 
acceptable exact technique to incorporate risk management into a 
stochastic optimization problem. A detailed presentation of the 
method can be found in [56]. The application of AUGMECON 
can be decomposed into three distinct steps: use of lexicographic 
optimization to define the ranges of the objective functions, 
definition of the parameter vector and solution of the optimization 
sub-problems. 

 
B.1. Lexicographic construction of the pay-off table 

The calculation of the range of the objective functions is not 
trivial. The common approach is to calculate the ranges using the 
pay-off table that contains the results of the individual 
optimization of the objective functions. Without loss of 
generality, considering two objective functions to be minimized, 
although the minimum value of the objective functions is easily 
obtained, the maximum value is not easily identified. In case of 
the maximum value is approximated by the maximum value of 
the corresponding column, these values may not represent 
efficient points. This problem is confronted with the use of 
lexicographic optimization that defines reservation values, i.e. 
upper limits for the objective functions. In this case, the values of 
the pay-off table (50) ݔ݁ܮ are calculated by solving the 
optimization problems (51)-(54).   

ݔ݁ܮ  = ൤ݔ݁ܮଵ,ଵ ଶ,ଵݔ݁ܮଵ,ଶݔ݁ܮ  ଶ,ଶ൨ݔ݁ܮ
 

(50) 

ଵ,ଵݔ݁ܮ :∗ܥܧ = ൬ Minimize	ECs. t. (2) − (3)	and	(9) − (47)൰ 

 
(51) 

ଶ,ଶݔ݁ܮ ∗ఈܴܸܽܥ = : ൬ Minimize	ܴܸܽܥఈs. t. (2) − (3) and	(7) − (47)൰ (52) 

ଵ,ଶݔ݁ܮ  = ∗ఈܴܸܽܥ ∶ ቌ Minimize	ܴܸܽܥఈs. t. (2) − (3), (7) − (47) andEC = ଵ,ଵݔ݁ܮ ቍ 

 

(53) 

ଶ,ଵݔ݁ܮ = ∗ܥܧ ∶ ൭ Minimize	ܥܧs. t. (2) − (3), (7) − (47) andݔ݁ܮଶ,ଶ = ఈܴܸܽܥ ൱ (54) 

B.2. Definition of the constraint parameter vector 
The decision maker needs to specify a number ܲ of grid points ݁௣ ∈ ݁̅ over which the Pareto efficient frontier is evaluated. The 

number of points defines the detail in which the efficient frontier 
is represented. The values of ݌ evenly distributed points are 
calculated using (55). 

 ݁௣ = ݁௣ିଵ + ଵ,ଶݔ݁ܮ − ଶ,ଶܲݔ݁ܮ 	 , ݌ > 1 ݁௣ = ,	ଶ,ଶݔ݁ܮ ݌ = 1 
(55) 

 

B.3. Optimization problem 
To guarantee that the solutions produced at each iteration are 

indeed efficient, the inequalities constraining the second objective 
in the original epsilon-constraint method (49) must be binding. 
Thus, a transformation of the inequality constraint of the original 
method to equality is used to force the method produce only 
efficient solutions. The equivalent optimization problem is 
presented in (56) in which ߝ → 0 and ߪ is a non-negative slack 
variable. By parametrically varying ݁௣ in the vector defined by 
(55), the efficient frontier of ܥܧ versus ܴܸܽܥఈ is constructed. 

 
Minimize ܥܧ + ߝ ∙  ߪ
s.t. ܴܸܽܥఈ + ߪ = ݁௣ (2) − (3), (7) − (47) and σ ≥ 0 

(56) 

V.  NUMERICAL RESULTS 
A.  Input Data 

The proposed methodology is tested on the insular power 
system of Crete for a representative day with 626.2 MW peak 
load. The HV system of the island consists of 19 buses and 24 
branches [57]. The generation mix of the island includes 25 
thermal units in 3 power stations across the island exclusively 
utilizing diesel and heavy fuel oil. Furthermore, there are 31 
wind-farms across the island with a total installed capacity of 186 
MW. Technical and economic data of the generation system are 
illustrated in Table IV [58]. The generator reserve prices are 
considered equal to 25% of the most expensive block of the 
marginal energy bidding function of each generator, as in [8]. It is 
noted that only spinning up and down load following reserves are 
assumed to be scheduled by the SO. This simplification is 
justified by the fact that the generation mix of the island consists 
of several fast-start internal combustion engine (ICE) and open 
cycle gas turbine (OCGT) units, allowing for the SO to take 
corrective actions in real-time. To account for the stochasticity in 
wind power generation, an initial set of 70 scenarios is generated 
by performing 70 forecasts using ARIMA for a randomly selected 
day using the ECOTOOL Matlab toolbox [59] and historical data 
from the island of Crete, Greece [60]. More specifically, 
forecasting is performed for the 24 h of a specific day by 
considering different ranges of historical data when fitting the 
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model. Starting from a forecast using the historical data of the 
first week in the past, a day is progressively added to the 
historical time series to obtain a new forecast, while a new 
ARIMA model is fit when adding a whole new week to the data 
range. To maintain the tractability of the problem, a scenario 
reduction technique based on k-means clustering is to derive a 
reduced set of 20 non-equiprobable scenarios depicted in Fig. 2. 
More extensive studies on generating and reducing scenarios, as 
well as investigating the impact of the number of scenarios on the 
quality of the optimization problem solution for this particular 
power system can be found in [58] and [61]. 

The DRPs are considered to have a load pick-up/drop rate 
equal to 10 MW/min and can provide reserves at a capacity cost 
of 5 €/MWh and an exercise cost of 10 €/MWh [24], unless it is 
stated otherwise. The value of lost load and energy not recovered 
is set to 1000 €/MWh. The wind spillage cost is neglected in order 
to avoid introducing bias in the results. The confidence level for 
the evaluation of ܴܸܽܥ is considered equal to 0.99, except for the 
cases in which it is differently declared. 

 

B.  Results and Discussion 
B.1. Types of Load Recovery 

Firstly, the deployment of the response of DRPs for the two 
different types of load recovery is illustrated. At a bus that stands 
for 15% of the total system load, a DRP is considered to render 
available up to 10% of its nominal load for reserve procurement.  

A load recovery rate of 90% is considered. For the case that the 
DRP is of type 1 (Fig. 3) the number of interruptions is not 
limited, while for the case that the DRP is of type 2 (Fig. 4), only 
one interruption is allowed and the load recovery must be 
completed within two periods.  In both cases the load curtailment 
occurs in periods in which the wind power that is available in a 
specific scenario is lower than the wind power that is scheduled 
day-ahead, so that the energy deficit is counterbalanced. The load 
recovery periods are coordinated in such a way that they coincide 
with periods of excessive wind power production. Especially, in 
Fig. 3 it may be noticed that during periods 6-7 and 23-24 
significant amounts of energy are recovered in order to limit the 
curtailment of available wind power. 

The contribution of DRPs to reducing the cost of operating the 
system is a function of several interlaced factors including the 
amount of wind spillage, the load reduction due to relaxed energy 
recovery requirements and, especially, the amount of reserves that 
are procured by the demand side. More specifically, the energy 
cost is affected by the load reduction over the scheduling horizon 
as a consequence of partial load recovery and improved wind 
power integration, which are in turn affected by the amount of 
deployed reserve. For the results of Fig. 3 the expected cost of 
energy is 1.07% lower than the baseline case, while the expected 
reserve procurement cost is reduced by 29.93%. The same 
changes in the components of the expected cost are 0.72% and 
37.37%, respectively, in the case in which 100% of the load that 
is deployed by the SO needs to be recovered. 

TABLE IV 
 GENERATION MIX OF THE SYSTEM 

Technology Fuel 
Number of 

units 
Capacity 

[MW] 
Marginal Cost 
Range [€/MWh] 

ICE Heavy fuel oil 6 142 69.96 – 163.45 
Steam Heavy fuel oil 7 196 76.89 – 166.08 
CCGT Diesel oil 1 110 147.75 
OCGT Diesel oil 11 299 124.21 – 284.73 
Wind - 31 186 - 

 
Fig. 2. The reduced set of scenarios used in the simulations. 
 

 
Fig. 3. Example of load recovery of type 1 (scenario 20). 
 

 
Fig. 4. Example of load recovery of type 2 (scenario 3). 

B.2. Comparison Between the Classical and the Proposed 
Approach for Mapping the Pareto Efficient Frontier 

Although establishing a direct comparison between the 
classical and the proposed approach is challenging, the technical 
advantages of the proposed method as regards the consideration 
of risk management can be revealed by attempting to map the 
same set of Pareto efficient solutions, neglecting the effect of the 
DRPs without loss of generality. To generate the same number of 
solutions, a set of 21 evenly spaced values of ߚ ∈ [0,1] is used, 
while 20 evenly spaced grid points are used for the application of 
the proposed approach. The obtained frontiers are presented in 
Fig. 5. The following may be noticed: 

• The sets of efficient solutions discovered by the  
two methods (except for the solution for ߚ = 1  
and solution B) are incomparable since the methods result in 
two different mappings of the same Pareto frontier.  

• For ߚ = 0 the solution returned by the classical approach 
coincides with the extreme solution ܣ returned using 
AUGMECON. However, solution ܤ dominates the solution 
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obtained for ߚ = 1 since solution B is characterized by less ܥܧ for the same value of ܴܸܽܥ. In other words, for ߚ = 1 the 
returned solution is weakly efficient, i.e. for the same value of ܴܸܽܥ, a solution with a better (lower) value of EC is returned 
by AUGMECON. This is an expected result since the classical 
approach guarantees the efficiency of the returns solutions, 
only as long as the weights are strictly positive [55]. 

• Although evenly spaced values are used for both ߚ and ݁௣, 
AUGMECON results in a more even mapping of the Pareto 
frontier, returning a unique solution at each iteration. On the 
other hand, the application of the classical approach results in 
the same solution for ߚ = 0.75,… ,0.95. Also, it can be 
noticed that a range of 37729 € in terms of ܥܧ and 13496 € in 
terms of ܴܸܽܥ is left unmapped by the classical approach 
because the Pareto frontier between the solutions obtained by ߚ = 0.70 and ߚ = 0.75 is linear. The solutions obtained by 
the classical approach correspond to a tangent point in the 
objective space and thus only the two extreme solutions can be 
discovered for any ߚ ∈ [0.70,0.75]. 

B.3. Factors That Limit the Contribution of DRPs to Cost 
Reduction and Risk Mitigation 

In order to reveal different factors that would limit the 
capability of the demand side to reduce the expected cost and 
mitigate the associated risk when participating in reserve 
procurement, a number of factors are investigated. For these 
simulations, 47% of the total system load is considered to be 
managed by DRPs of type 1 at different buses, rendering available 
up to 10% of the demand for reserve procurement.  

Based on the results presented in Fig. 7 as the risk aversion 
level increases, the SO is willing to spill more wind in order to 
avoid procuring costly reserves (solution 1 corresponds to the 
minimum level of risk aversion). Thus, relying on resources that 
can both provide less costly reserves to handle wind power 
uncertainty in comparison with the generating units and to reduce 
the overall demand leads in decreased expect cost, due to reduced 
day-ahead energy cost, and risk, because of less costly reserve 
scheduling and higher wind power integration. Due to the fact that 
the trade-offs between risk and expected cost are affected by the 
cost of procuring reserves, the impact of the participation of 
demand side resources on improving the decision making of the 
SO is directly related to the cost of scheduling and deploying 
reserves, as indicated by Fig. 8. Reducing the cost of demand side 
resources results in more favorable Pareto frontiers for the SO for 
the same level of load recovery rate of 90%.  

 
 

 
Fig. 5. Comparison of the sets of efficient solutions obtained using the classical 
and the proposed approach.  

 
Fig. 6. Comparison of the sets of efficient solutions for different values of the load 
recovery rate.  

 
Fig. 7. Expected wind spillage for different levels of risk aversion and values of 
the load recovery rate (sol. 1- sol. 11 correspond to the AUGMECON solution 
numbering on an ascending order of risk aversion level). 
 

 
Fig. 8. Comparison of the sets of efficient solutions for different DRP reserve 
scheduling and deployment costs. 
 
B.4. Effect of Confidence Level 

The confidence level ߙ is an indication of the degree of 
conservatism by which the value of CVaR is evaluated by the 
decision maker. In the aforementioned simulations the confidence 
level was considered equal to 0.99. In order to investigate the 
influence of the selection of parameter ߙ on the performance of 
the system, additional simulations are performed considering that ߙ takes values in the set [0.90, 0.95, 0.99]. The characteristics of 
the DRPs are the same with those considered in Section B.3. 

The cumulative distribution functions (CDFs) of cost in 
individual scenarios for ߙ = 0.90 and ߙ = 0.99 together with the 
values of ܥܧ, ܸܴܽ and ܴܸܽܥ are displayed in Fig. 9. The CDFs 
correspond to the third AUGMECON solution on ascending order 
of risk aversion level (sol. 3). It may be noticed that for a lower 
value of the confidence level both the values of the ܥܧ and the ܴܸܽܥ are reduced. However, the standard deviation of the cost is 
increased by 12.4%. This is a consequence of considering a larger 
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number of scenarios for the calculation of ܴܸܽܥ as the 
confidence level decreases. Another important observation is that 
the CDF that was obtained by optimizing ܴܸܽܥ଴.ଽଽ presents a 
value of ܴܸܽܥ଴.ଽ that is lower by 0.23% in comparison with the 
CDF that was obtained by optimizing ܴܸܽܥ଴.ଽ. The opposite is 
observed when ܴܸܽܥ଴.ଽଽ is evaluated on a CDF that was obtained 
by optimizing ܴܸܽܥ଴.ଽ଴.  

In practice, the degree of conservatism affects the trade-off 
between wind spillage and cost of scheduled reserves. The 
expected available wind generation spillage is portrayed in a 
common diagram with the cost of scheduling reserves in Fig. 10 
for the three different values of the confidence level and different 
degrees of risk aversion that are evaluated. It is rendered evident 
that for lower confidence levels the amount of expected wind 
spillage increase is reduced for increasing levels of risk aversion. 
The contrary holds for the scheduled reserve costs. 

B.5. Impact of Limitation on the Contribution of DRPs in Reserve 
Provision 

Finally, the effect of potential rules that limit the participation 
of demand side resources in reserve provision is investigated. In 
Fig. 11 the efficient frontiers for the cases in which the total 
amount of upward demand side reserves (90% load recovery rate) 
are limited to 10%, 20% and 30% of the total amount of upward 
reserves are comparatively presented for a confidence level  0.99. 

It is noticed that the presence of rules that limit the 
participation of DRPs causes a shift of the efficient frontiers 
towards the efficient frontier that corresponds to the case in which 
the contribution of DRPs is neglected. Obtaining a more 
advantageous Pareto frontier may be viewed as a positive effect 
of the participation of DRPs on the operation of the power 
system.  
 

 
Fig. 9. Cumulative distribution functions (CDFs) of cost in individual scenarios for ߙ = 0.9 and ܽ = 0.99 for sol. 3. 

 
 

 
Fig. 10. Expected wind spillage (solid lines) and cost of scheduled reserves 
(dashed lines) for different degrees of risk aversion and confidence levels. 
 

 
Fig. 11. Comparison of the sets of efficient solutions for different limits to DRP 
contribution to reserves. 

 
To quantitatively assess the impact of such constraints each 

efficient frontier can be represented by its centroid, i.e., a 
fictitious point that can be found by averaging the coordinates of 
all the points it comprises. Subsequently the distance between the 
centroid of the efficient frontier corresponding to the case in 
which DRPs are not considered as a system resource and each of 
the efficient frontiers for different values of ݌ depicted in Fig. 11 
can be calculated as a performance metric. Evidently, greater 
distances correspond to more desirable efficient frontiers. For 
instance, the efficient frontier for the case in which participation 
of DRPs is not limited is 2.5 times greater in comparison with the 
efficient frontier for ݌ = 10	%. This is an indication that the 
presence of imposing restrictions on the dependence on DRPs for 
procuring reserves may significantly hinder the potential benefits 

of DR.  
 

C.  Computational Statistics 

The proposed methodology was implemented in GAMS 24.8 
and the optimization problems were solved using CPLEX 12. All 
the simulations were performed using a workstation with two 
Intel Xeon processors clocking at 2.60 GHz and 128GB of RAM 
memory, running a 64 bit version of Windows.  

In order to demonstrate the tractability of the proposed multi-
objective problem formulation, the size of each optimization sub-
problem and indicative computational statistics are presented. A 
modified system based on the actual power system of Crete that 
was described in Section V.A. is obtained by replicating the 
power system and considering an interconnection of limited 
capacity between the two new areas. The modified system 
consists of 50 conventional generating units, 22 aggregated wind-
farms, 38 buses and 49 transmission lines.  

The following cases are considered: 

• Case A: Power system of Crete as described in Section V.A. 
without considering the effect of the DRPs. 

• Case B: Power system of Crete as described in Section V.A. 
considering the effect of the DRPs (90% load recovery). 

• Case C: Modified power system of Crete without considering 
the effect of the DRPs. 

• Case D: Modified power system of Crete considering the 
effect of the DRPs (90% load recovery). 
The relevant results are compiled in Table V. The results 

indicate that a direct solution of the proposed optimization 
problem formulation is computationally tractable for real-life 
power systems.  
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TABLE V 

 COMPUTATIONAL STATISTICS 
 Case A Case B Case C Case D 
Number of continuous variables 511679 541799 1023813 1084052 
Number of integer variables 2788 7588 5576 15176 
Number of constraints 174917 189757 351226 380905 
Pay-off table construction time (s) 114 162 536 823 
Sub-problem solution time (s) 31 36 110 343 

 
VI.  CONCLUSIONS 

In this study, a risk-aware joint energy and reserve market 
structure, incorporating demand side resources was presented.  
The mathematical model is based on two-stage stochastic 
programming in order to capture the uncertain nature of 
significant wind power penetration, while the risk-averse behavior 
of the SO with respect to the expected operational costs was 
considered using a novel multi-objective optimization approach, 
based on the AUGMECON method. Furthermore, the load 
recovery effect was explicitly taken into account by developing 
generic models. Simulations performed for the case of the insular 
power system of Crete, Greece, allowed drawing useful insights 
regarding the advantages from applying the proposed 
methodology to risk management and the factors that affect the 
beneficial contributions from demand side resources participation 
in reserve procurement. The most important observations may be 
summarized as follows: 

• The application of the AUGMECON method resulted in a 
richer mapping of the Pareto frontier in comparison with the 
approximation obtained using the classical weighted sum 
approach. 

• The risk mitigation from the participation of DRPs in reserve 
provision is sensitive to the load recovery requirements and 
the costs related to the deployment of demand side reserves. 

• The mechanism through which the SO can control the risk 
embedded in its decisions is the amount of wind that is 
integrated in the system by procuring the necessary reserves. 
A more elastic demand side leads to higher exploitation of 
wind energy at any level of risk-aversion. 

• The existence of rules that limit the amount of reserves that 
may be scheduled by DRPs may underestimate their 
contribution, as well as positive externalities such as risk 
mitigation.  

APPENDIX I 
LOAD RECOVERY OF TYPE 2 

In Reference [24] load recovery is modeled using a constraint 
that is essentially equivalent to (32) when omitting the 
multiplication of the left hand side with the binary variable. 
Although such a constraint seems straightforward, in fact it can be 
easily proven that it is valid only for the case in which ௝ܶ௥௘௖ = 1. 

Let us assume that in period ߬ of scenario ݏ an amount of up 
reserve is deployed from DRP ݆ (ݎ௝,ఛ,௦஽ோ௉,௨ > 0) and that it must be 
recovered in the next ௝ܶ௥௘௖ > 1 periods. Without loss of 

generality, assume also that ߛ௝ = 1. Then, in period ߬,  ݎ௝,ఛ,௦஽ோ௉,௨ ௝,(ఛାଵ),௦஽ோ௉,ௗݎ= + ⋯+ ௝,ఛᇲ,௦஽ோ௉,ௗݎ + ⋯+ ௝,ቀఛାݎ ೕ்ೝ೐೎ቁ,௦஽ோ௉,ௗ . If ݎ௝,ఛᇲ,௦஽ோ௉,ௗ > 0, ߬ᇱ > ߬ +1, then the constraint ݎ௝,(ఛାଵ),௦஽ோ௉,௨ = ௝,(ఛାଶ),௦஽ோ௉,ௗݎ + ⋯+ ௝,ఛᇲ,௦஽ோ௉,ௗݎ + ௝,ቀఛାݎ+⋯ ೕ்ೝ೐೎ାଵቁ,௦஽ோ௉,ௗ , that must also hold, is violated due to the fact that ݎ௝,(ఛାଵ),௦஽ோ௉,௨ , … , ௝,ቀఛାݎ ೕ்ೝ೐೎ቁ,௦஽ோ௉,௨ = 0 since in the recovery period another 

curtailment is not possible as stated by (33), unless ݎ௝,ఛᇲ,௦஽ோ௉,ௗ =0, ∀߬ᇱ > ߬ + 1. This implies that either ௝ܶ௥௘௖ = 1 or alternatively, 
feasibility is achieved by recovering all the curtailed load in the 
first period following the interruption.   

To overcome this limitation, the nonlinear constraint (32) is 
introduced. Constraints (29) and (33) assert that if ݑ௝,ఛ,௦஽ோ௉,௨ = 1, 

then ݑ௝,ఛାଵ,௦஽ோ௉,௨ , … , ,௝,ఛᇲ,௦஽ோ௉,௨ݑ … , ௝,ቀఛାݑ ೕ்ೝ೐೎ቁ,௦஽ோ௉,௨ = 0. As a result,  ݎ௝,ఛ,௦஽ோ௉,௨ =൬ݎ௝,(ఛାଵ),௦஽ோ௉,ௗ + ⋯+ ௝,ఛᇲ,௦஽ோ௉,ௗݎ + ⋯+ ௝,ቀఛାݎ ೕ்ೝ೐೎ቁ,௦஽ோ௉,ௗ ൰ ∙ 1 and ݎ௝,(ఛାଵ),௦஽ோ௉,௨ =൬ݎ௝,(ఛାଶ),௦஽ோ௉,ௗ + ⋯+ ௝,ఛᇲ,௦஽ோ௉,ௗݎ + ⋯+ ௝,ቀఛାݎ ೕ்ೝ೐೎ାଵቁ,௦஽ோ௉,ௗ ൰ ∙ 0 are feasible for ݎ௝,ఛᇲ,௦஽ோ௉,ௗ > 0, ∀߬ᇱ > ߬ + 1.  

APPENDIX II 
MIXED-INTEGER LINEAR REFORMULATION OF (32) 

Constraint (32) can be substituted by the set of linear 
constraints (A.1.)-(A.5.) in order to preserve the MILP 
formulation.  

௝,௧,௦ߤ  ≤ ௝஽ோ௉ܦܴ ∙ ܶௌ ∙ ௝௥௘௖ߒ ∙ ,݆∀	௝,௧,௦஽ோ௉,௨ݑ ,ݐ (.A.1) ݏ

௝,௧,௦ߤ ≥ ෍ ௝,ఛ,௦஽ோ௉,ௗ௧ାݎ ೕ்ೝ೐೎
ఛୀ௧ାଵ − ൫1 − ௝,௧,௦஽ோ௉,௨൯ݑ ∙ ௝஽ோ௉ܦܴ ∙ ܶௌ ∙ ,݆∀௝௥௘௖ߒ ,ݐ ݏ (A.2.)

௝,௧,௦ߤ ≤ ෍ ௝,ఛ,௦஽ோ௉,ௗ௧ାݎ ೕ்ೝ೐೎
ఛୀ௧ାଵ 	∀݆, ,ݐ ௝,௧,௦ߤ(.A.3) ݏ = ௝ߛ ∙ ,݆∀	௝,௧,௦஽ோ௉,௨ݎ ,ݐ ௝,௧,௦ߤ(.A.4) ݏ ≥ 0	∀݆, ,ݐ (.A.5) ݏ

 

To achieve the linearization of (32), first the nonnegative 

auxiliary variable ߤ௝,௧,௦ which replaces ݑ௝,௧,௦஽ோ௉,௨ ∙ ∑ ௝,ఛ,௦஽ோ௉,ௗ௧ାఁೕೝ೐೎ఛୀ௧ାଵݎ  
must be bounded. A suitable upper bound is the maximum 
technically achievable amount of energy that may be recovered 
during the recovery period that is constrained by the load pickup 
rate (ܴܦ௝஽ோ௉ ∙ ܶௌ ∙  a curtailment ݐ ௝௥௘௖). Note that if in periodߒ
occurs, then ݑ௝,௧,௦஽ோ௉,௨ = 1 and from (A.2.)-(A.3.) it is deduced that ߤ௝,௧,௦ = 	∑ ௝,ఛ,௦஽ோ௉,ௗ௧ାݎ ೕ்ೝ೐೎ఛୀ௧ାଵ . Alternatively, if no curtailment occurs, 
then ݑ௝,௧,௦஽ோ௉,௨ = 0. In this case (A.1.) and (A.5.) imply that ߤ௝,௧,௦ = 0. 
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