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Abstract—A new probabilistic approach for microgrids (MGs)
optimal energy management considering ac network constraints
is proposed in this paper. The economic model of an energy
storage system (ESS) is considered in the problem. The reduced
unscented transformation (RUT) is applied in order to deal with
the uncertainties related to the forecasted values of load demand,
market price, and available outputs of renewable energy sources
(RESs). Moreover, the correlation between market price and load
demand is taken into account. Besides, the impact of the correlated
wind turbines (WT) on MGs’ energy management is studied. An
enhanced JAYA (EJAYA) algorithm is suggested to achieve the
best solution of the considered problem. The effective performance
of the presented approach is verified by applying the suggested
strategy on a modified IEEE 33-bus system. It can be observed that
for dealing with probabilistic problems, the suggested RUT-EJAYA
shows accurate results such as those of Monte Carlo (MC) while
the computational burden (time and complexity) is lower.

Index Terms—EJAYA algorithm, microgrid (MG) energy man-
agement, reduced unscented transformation (RUT), uncertainty.

NOMENCLATURE

DG Distributed generator.
MG Microgrid.
RES Renewable energy sources.
WT Wind turbine.
PV Photovoltaic.
MCS Monte Carlo simulation.
PHEV Plug-in hybrid electric vehicle.
CHP Combined heat and power.
PEM Point estimate method.
ESS Energy storage system.
UT Unscented transformation.
RUT Reduced unscented transformation.
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OC Operational cost.
FC Fuel cell.
MT Microturbine.
DoD Depth of discharge.
TLBO Teaching-learning-based optimization.
SD Standard deviation.
MGCC MG central controller.
CDF Cumulative density function.
T Horizon of energy management prob-

lem study.
P t
MT, P t

FC Real output powers of MT and FC at
time t (kW).

Bt
MT, B

t
FC Bid of MT and FC at hour t (€ /kWh).

SUC Start-up cost (€ ).
P t
PV, P t

WT, P t
Batt Real output powers of PV, WT, and

battery at hour t (kW).
Bt

WT, B
t
PV, Bt

Batt Bid of WT, PV, and battery at hour t (€
/kWh).

CosttDeg Battery degradation cost (€ ).
P t
Grid Active power of the utility at time t

(kW).
pricet Market price at hour t (€ /kWh).
CBatt Battery investment cost (€ ).
EBatt Usable energy of the battery (kWh).
Et Battery current capacity (kWh).
Ncycle Battery cycle life.
EBattmin

, EBattmax
Minimum and maximum usable capac-
ity of the battery (kWh).

Pch(Pdisch) Permitted rate of charge/discharge
(kW).

ηc/ηd Efficiency of the battery during
charge/discharge process.

Pch, max(Pdisch, max) Maximum rate of battery
charge/discharge during each time
interval Δt (kW).

P t
MTmin

, P t
MTmax

Minimum and maximum active powers
of the MT (kW).

P t
FCmin

, P t
FCmax

Minimum and maximum active powers
of the FC (kW).

P t
Batt, min, P t

Batt, max Minimum and maximum active powers
of the battery (kW).

NBus Number of buses.
θij Angle of bus (i, j) element of Ybus

admittance matrix.
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δt
i
, δt

j
Angle of voltage at bus i and j at hour t.

V t
i , V

t
j Voltage magnitude of bus i and j at hour

t (V).
Yij Magnitude of (i, j) element of Ybus

admittance matrix.
PLD Load demand (kW).
QLD Load reactive power (kVar).
P line
ij Active power flow in line ij (kW).

P line
ij,max Maximum active power flow in line ij

(kW).
Qline

ij Reactive power flow in line ij (kVar)
Qline

ij, max Maximum reactive power flow in line
ij (kVar).

I. INTRODUCTION

D ISTRIBUTED generators as a convenient solution for
concerns arisen from fossil fuel energy limitations are

aggregated to the power system through MGs. In order to clean
energy production, the application of RESs, including WT and
PV, has been increasing in new MGs [1]. However, the operation
and control of MGs have become complicated due to load
demand and market price fluctuations, as well as the inherent
uncertainties of RESs [2]. Consequently, numerous approaches
have been developed for the sake of probabilistic analysis of
MGs’ performance.

Different research concentrate on probabilistic MGs’ opti-
mal operation management problem [3]–[22]. In this regard,
two main categories for consideration of uncertainties, namely
simulation (including MCS) and analytical approaches can be
applied [23].

In [5]–[13], the uncertainties in modeling RESs using MCS
are considered. In [5], uncertainties in modeling PHEVs and
RESs using MCS are investigated. In order for determining the
capacity of hybrid wind, photovoltaic, and battery generation
systems with the uncertainties in wind and photovoltaic power
production, the particle swarm optimization (PSO) algorithm
has been used, whereas MCS has been applied to capture the
uncertainties of wind and PV power generation [6].

A two-stage stochastic program formulation is dealt with in
[7] for power scheduling and bidding problem where system
uncertainties are considered using the MCS approach. In [8],
MCS is employed to handle the uncertainties associated with
the daily distance driven of PHEVs, load values and prices.
Xiang et al. [9] develop a scenario-based energy management
method to simultaneously maximize the total exchange cost and
minimize the social benefit. The uncertain set of the proposed
energy management problem is modeled by MCS. A stochastic
day-ahead MG management is proposed in [10], in which the
method is employed to maximize MG’s benefit considering
the load demand and wind power generation uncertainty. For
modeling uncertainties, some scenarios are generated according
to MCS. A two-stage stochastic optimization algorithm is
developed in [11], adopting the MC method for definition of the
multiobjective optimization problem of optimal integrated siz-
ing and operation of a CHP system for long-term uncertainty in
energy demands. Gu et al. [12] conduct a technoeconomic eval-
uation of a solar photovoltaic/thermal concentrator in Sweden

for the building application. In order to take the integrated
uncertainties and risks of various variables into account, an
analytical model is developed based on the combinations of
MCS techniques and multi energy-balance/financial equations.
A two-stage stochastic model for optimizing the profit of a
smart MG is proposed in [13] where the uncertainty of loads,
electricity market price and renewable generation are modeled
by developing stochastic scenarios using the MC method.

Although MCS does not depend on the system dimension, it
is a comparatively time-consuming method. In [14]–[22], the
probabilistic MG operation management is investigated, where
PEM is suggested in order to deal with uncertainties. The optimal
operation of smart distribution systems considering demand
response is solved in [14] in order to minimize the operation
and maintenance costs, power loss cost, and cost of energy
not supplied. The uncertainties of load demand and renewable
power generation are considered using the PEM approach. To
address the uncertainties in the optimal operation of MGs,
Gazijahani and Salehi [15] propose Hong’s 2m-PEM to min-
imize the operating costs as well as to reinforce the reliability
and resiliency of interconnected MGs. 2m-PEM is also applied
in [16] to model the uncertainties in load demand, market
prices and the available power of RES to minimize the total
operation cost of MG in the presence of ESS. Najibi et al. [17]
used 2m-PEM for consideration of uncertainties of market price
variation, PV and WT output power change and load demand
error in MG’s energy management. Additionally, 2m-PEM is
proposed in [18] to investigate the charging effect of PHEVs on
the optimal operation and management of MGs. Hong’s PEMs
is also suggested in [19] and [20] to optimize the operation
management of MGs under uncertainty.

The 2m-PEM is applied in [21] for modeling the wind and
solar power uncertainties in MGs optimal energy management.
In [22], for analyzing the energy consumption of buildings
2m-PEM is used to model the uncertainties of structural and
environmental parameters.

Moreover, wherever the correlation between uncertain input
variables is considered, the two above-mentioned approaches
may require additional calculations, which in turn leads to
computational cost burdens. UT as a new analytical method
is proposed in order to overcome this inefficiency, while a
good level of accuracy along with reasonable execution time
is provided [22], [23]. Furthermore, the statistics of a random
variable can be calculated using the UT, which is subjected to
a nonlinear transformation and operates based on the fact that
it is easier to approximate a probability distribution rather than
account for an arbitrary nonlinear function [24].

In this paper, the RUT [25] method is employed, which has all
advantages of UT, whereas the computational time is approxi-
mately half of that of the UT method. In order to investigate
an MG’s economic optimization problem, an enhanced JAYA
(EJAYA) algorithm is introduced and applied.

The JAYA algorithm, which is modified and enhanced in this
paper, was first presented by Rao in 2016 [26] in order for the
solution of various optimization problems, which was to well
manifest the meaning of the Sanskrit word JAYA whose English
equivalent is “victory.” The major convenience of JAYA is that
there is no need to tune and control the algorithmic parameters.
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This superior feature is preserved in the suggested EJAYA while
the accuracy and search capability of the algorithm is improved.
Consequently, in addition to being independent of controlling the
algorithmic parameters, the suggested EJAYA demonstrates ac-
curate convergence and very low computational time, compared
to other metaheuristic algorithms. It should be mentioned that
since in this paper MG energy management while considering
ac network constraints, is solved by the EJAYA metaheuristic
algorithm, there is no need for linearization of the problem
as is ordinarily done when using mathematical optimization
methods [27].

Henceforth, the problem is solved in deterministic and proba-
bilistic frameworks. In deterministic conditions, the robustness
and effectiveness of the suggested EJAYA are justified by apply-
ing the method on a modified IEEE 33-bus system. Afterward,
in order to examine the proposed algorithm in probabilistic
conditions, the RUT-EJAYA method is applied to deal with
the uncertainties related to the forecasted values of the load
demand, market price, and available output of RESs. In order
to model the variations of the random input variables, a normal
distribution density function is made use of. As is naturally clear,
fluctuations of the market price in different hours of a day interact
with the load demand. Consequently, the correlation between
the load demand and market price along with the correlation
between WTs are dealt with. Due to the reduced number of
samples in the proposed RUT compared to other probabilistic
methods, application of RUT in problems with too many random
input variables can reduce the computational cost of the process.
Furthermore, in addition to computational time efficiency, RUT
provides high accuracy in high data rate problems [25].

The main contributions of this paper can be summarized as
follows.

1) In order to solve the nonlinear MG energy management
problem a novel and efficient algorithm, namely EJAYA,
is presented to eliminate the burdensome process of tun-
ing the control parameters of some other metaheuristic
algorithms.

2) The problem is investigated in two different deterministic
and probabilistic frameworks using the proposed algo-
rithm. The successful validation of the proposed EJAYA
is carried out, and the accuracy of EJAYA along with fast
convergence is demonstrated. The optimization model is
applied on a modified IEEE 33-bus system in order to
consider ac network constraints.

3) For dealing with the uncertainties related to the forecasted
values of the load demand, market price and available out-
put of RESs, the RUT-EJAYA method is applied. Addition-
ally, the correlated conditions of the uncertain parameters
are investigated.

4) The sensitivity of the parameters is analyzed while the
proposed method is applied in a probabilistic framework.

II. PROBLEM FORMULATION

The formulation of the optimization model including the
objective function along with constraints to be satisfied are
described in this section.

A. Operational Cost (OC)

The following can be considered for minimization of the MG
operational cost [29]:

Min OC =

T∑

t=1

{
[ut

MT.P
t
MT.B

t
MT + ut

FC.P
t
FC.B

t
FC

+ SUCMT.u
t
MT.(1− ut−1

MT)

+ SUCFC.u
t
FC.(1− ut−1

FC )]

+ P t
WT.B

t
WT + P t

PV.B
t
PV

+max(ut
s, 0).P

t
Batt.B

t
Batt

+ Cos ttDeg + P t
Grid.price

t
}

(1)

where Grid and Batt are the abbreviated forms of the utility grid
and the battery, respectively. ut

MT = ut
FC = 1 when the FC and

MT are in the ON state, whereas ut
MT = ut

FC = 0 when they
are in the OFF state. When the battery is charging, ut

s = −1;
whereas ut

s = 1 is used for hours that the battery is discharging,
and ut

s = 0 for hours that the battery is neither charging nor
discharging

if ut
s = −1 ⇒ −P t

Batt, min ≤ P t
Batt < 0

if ut
s = 0 ⇒ P t

Batt = 0

if ut
s = 1 ⇒ 0 < P t

Batt ≤ P t
Batt, max. (2)

CosttDeg is defined as follows [30]:

CosttDeg =
CBatt.DoD.EBatt

Ncycle
. (3)

DoD indicates an absolute discharge relative to the rated
battery capacity. In order to show the DoD the following is
applied [30]:

DoDt =
EBattmax

− Et

EBattmax

. (4)

The cycle life of the battery is then achieved as follows:

Ncycle = a.DoDb (5)

where a and b are battery-specific parameters, which are con-
sidered as 1331 and –1.825, respectively, for a Li-ion battery
[30].

It is worth mentioning that, during charging hours, the battery
is considered as load and its cost is added to the load’s cost.

B. Constraints

1) Battery Limits: In order to consider the limitation on
charge and discharge rates along with limits on the energy
stored in the battery, the following equation and constraints are
considered for a typical battery [29]:

EBattmin
≤ Et

Batt ≤ EBattmax
(6)

where Et
Batt is associated with the time t as in the following:

Et
Batt = Et−1

Batt + ηcPch.Δt+
1

ηd
Pdisch.Δt
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P t
ch ≤ Pch, max;

P t
disch ≤ Pdisch, max

P t
ch = min(ut

s, 0).P
t
Batt

P t
disch = −max(ut

s, 0).P
t
Batt. (7)

2) Real Power Constraints: Power generations for each
dispatchable DG are limited as

P t
MTmin

≤ P t
MT ≤ P t

MTmax

P t
FCmin

≤ P t
FC ≤ P t

FCmax
. (8)

Constraints on the rate of charge and discharge of the battery
during an hour are considered as follows:

P t
Battmin

≤ P t
Batt ≤ P t

Battmax
. (9)

3) Power Flow Constraints: The ac network constraint for
the modified IEEE 33-bus system is reviewed as follows [28]:

NBus∑

i=1

V t
i V

t
j Yij cos(θij − δti + δtj)

= ut
MT.P

t
MT + ut

FC.P
t
FC + P t

PV + P t
WT − P t

LD − ut
s.PBatt

NBus∑

i=1

V t
i V

t
j Yij sin

(
θij − δti + δtj

)
= −Qt

LD. (10)

Other constraints are

V min
i ≤ V t

i ≤ V max
i

∣∣P line
ij

∣∣ ≤ P line
ij,max

∣∣Qline
ij

∣∣ ≤ Qline
ij,max. (11)

III. RUT METHOD

Proper probabilistic methods should be used to deal with the
inherent uncertain characteristic of power systems. The RUT
approach is a powerful tool to be applied in order to model
uncertainty in correlated transformations [25].

To this end, no extra computational time is imposed on the
problem when RUT is applied for modeling the uncertainty of
the considered nonlinear problem �Y = f(�Z), where �Y is the
output vector, f is the nonlinear function, and �Z is the vector of
the random input. The length of vector �Z is equal to the number
of uncertain variables, i.e., m. In the UT method, in order to
model uncertainty, the problem is solved 2m + 1 times. This is
while in RUT the problem is solved m + 2 times [22], which
makes the RUT method more proper from the computational
time viewpoint. The following steps are carried out in the RUT
method to achieve the output variable (operational cost), and its
covariance matrix Pyy [25]:

Step 1: Choose 0 ≤ W0 ≤ 1
Step 2: Choose weight sequence

Wk =
(1−W0)

(m+ 1)
, k = 1, . . . ,m+ 1. (12)

Step 3: Initialize vector sequence

ξ10 = [0], ξ11 =
[
− 1√

2W1

]
, ξ12 =

[
1√
2W1

]
.

Step 4: Expand vector sequence (ξjk) for j = 2, … , m accord-
ing to the following:

[
ξj−1
0

0

]

k=0

,

[
ξj−1
k

− 1√
j(j+1)W1

]

k=1,...,j

,

[
0j−1

j√
j(j+1)W1

]

k=j+1

.

If a random variable vector �Z has mean �μz and covariance
matrix Pzz , the kth sigma point is

Zj
k = �μz +

√
Pzzξ

j
k (13)

where √
Pzz is a matrix square root of Pzz . For a positive

definite matrix P, the matrix square root means that a matrix
A =

√
P exists such thatP = AAT , which should be calculated

using numerically efficient and stable methods such as Cholesky
decomposition [14]. If there is no correlation between uncertain
variables, the elements of Pzz’s main diameter will be the
square of uncertain variables’ standard deviation (σ). However,
in correlated conditions, depending on which uncertain variables
are correlated, the corresponding rows and columns’ elements
ofPzz have negative or positive values. Accordingly,Pzz matrix
can be obtained as follows:

Pzz = [pzz(α, β)]m×m α, β = 1, 2, . . . ,m

pzz(α, α) = σi
2 α = β

pzz(α, β) = γα,β .σα.σβ α �= β (14)

where γα, β is the correlation coefficient between the αth and
βth elements of the covariance matrix Pzz .
Step 5: Input m + 2 sigma points to the function to find the

output samples

�Yk = f(�Zk). (15)

Step 6: Calculate the mean �μy and covariance matrix Pyy of
the output �Y as follows:

E(y) = �μy =
m+1∑

k=0

WkYk (16)

Pyy =

m+1∑

k=0

Wk(Yk − �μy)(Yk − �μy)
T . (17)
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IV. EJAYA ALGORITHM

A. Brief Overview on Original JAYA

The JAYA algorithm that was proposed by R. Venkata Rao
is enhanced and applied in this paper. As the methodology is
demonstrated in the following, due to the simplicity and rapidity
of the algorithm and since no need exists to have any information
about control parameters, JAYA becomes more advantageous
compared to other metaheuristic algorithms [27]. The goal is to
minimize the MG operational cost as the objective function.
Let us assume that the best solution “best,” and the worst
solution “worst” obtain the best and the worst values of OC
in the entire candidate solutions, respectively. Let �Xnew

i,iter be the
ith candidate during the iterth iteration. Then, to modify the
decision variables, the individuals could be changed according
to the following [27]:

�Xnew
i,iter =

�Xi,iter + r1,i,iter( �Xbest − �Xi,iter)

− r2,i,iter( �Xworst − �Xi,iter) (18)

where r1 and r2 are random variables in [0, 1]. �Xbest is the best
solution in each iteration, whereas �Xworst is the worst solution in
the population. �Xnew

i,iter will be accepted if its objective function

value is better than that of �Xi,iter.

B. Enhanced JAYA (EJAYA)

When the dimensions of the problem increase, the origi-
nal JAYA suffers from getting trapped in local optima. Con-
sequently, in order to achieve the global best solution, three
modifications as in [30] are applied to improve the convergence
ability and accuracy of the algorithm. The major convenience
of JAYA which is its independence from tuning and controlling
the algorithmic parameters is preserved in EYAYA while the
accuracy and search capability of the algorithm are improved.

1) First Modification: To increase the accuracy of the algo-
rithm, the size of population is considered variable and changes
as follows:

N = round

(
(Nmax −Nmin)× iter

itermax
+Nmin

)
(19)

where Nmin and Nmax are, respectively, the minimum and
maximum populations, and itermax is the maximum number of
iterations. To avoid being trapped in local optima, a variable
population size is considered in each iteration. As a result, the
accuracy of the algorithm will improve.

2) Second Modification: The second modification is applied
to improve the accuracy of the proposed approach. Five constants
k1 �= k2 �= k3 �= k4 �= k5, all unequal to i, are chosen randomly
from the population. Three mutations ( �Xmutl , l = 1, 2, 3) are
defined as

�Xmut1 = �Xk1
+ rand1(.)× ( �Xk2

− �Xk3
) (20a)

�Xmut2 = �Xmut1 + rand2(.)× ( �Xbest − �Xworst) (20b)

�Xmut3 = �Xk4
+ rand3(.)× ( �Xbest − �Xk5

). (20c)

TABLE I
PSEUDOCODE OF THE THIRD MODIFICATION

3) Third Modification: In order to increase the convergence
speed of the algorithm, the third modification is applied accord-
ing to the pseudocode of Table I. This modification can increase
the search ability of the algorithm. Applying this modification
helps the algorithm to better investigate the search space, and
also it prevents the algorithm to be trapped in the local optima.
In Table I, N and iter are, respectively, the representatives of the
size of the population and number of iterations.

V. APPLICATION OF THE PROPOSED METHOD

The specification of the DG’s produced powers in the MG as a
function of the input variables is the major purpose of the MG’s
optimal operation management. In the considered problem, the
vector of the input random variables, �Z, is as follows, whereas
the output vector, �Y , is the MG operational cost:

�Z =
[
�PWT

�PPV
�PLD �price

]T
. (21)

The following procedure is carried out in order to solve the
MG energy management problem.

Step 1: Initialize the population size, number of variables and
termination criterion. Problem information including
MG properties, beside bids and power information of
DGs, storages and utility, hourly WT and PV power
forecasts are specified. The initial battery charge is
also defined in this step.
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Step 2: Generate m + 2 sigma points for random input vari-
ables based on (13), and calculate the weight associ-
ated with each �Z using (12).

Step 3: Set k = 1.
Step 4: Choose the kth sigma point.
Step 5: Initialize the value of decision variables, ut

MT, P
t
MT

ut
FC, P

t
FC,ut

s, andP t
Batt according to their admissible

limits.
Step 6: Check the battery constraint according to (6) and (7)

and the ac network constraints according to (10) and
(11). If the constraints are not satisfied, a high value
will be attributed to the objective function of that
member of population such that it will be ignored
or eliminated.

Step 7: Calculate the objective function for the initial popu-
lation.

Step 8: Choose �Xbest and �Xworst as described in Section IV.
Step 9: Set iter = 1.

Step 10: Set i = 1.
Step 11: In order to achieve new solutions, apply the JAYA

algorithm based on (18), and modifications as de-
scribed in Section V, to the ith individual of the
population.

Step 12: For each new solution, check the battery constraint
according to (6) and (7) and the ac network constraints
(10) and (11). Calculate the objective function for
each new solution.

Step 13: If i < N, set i = i + 1 and go to Step 11; otherwise go
to Step 14.

Step 14: Update N according to (19).
Step 15: Determine the best solution in the new population.
Step 16: Sort the generated population in an ascending manner

based on their objective function values. Select the
first N individuals as the population of the next itera-
tion of the algorithm. Accordingly, the first individual
in the population is �Xbest, whereas the last individual
is selected as �Xworst.

Step 17: Control the termination criterion, and if satisfied,
terminate the algorithm and go to Step 18; otherwise,
set iter = iter + 1 and return to Step 10.

Step 18: Save the best solution.
Step 19: If k + 1 > m + 1, go to Step 20, otherwise go to

Step 4.
Step 20: Using m + 2 output sigma points (best solutions),

calculate the expected value and covariance of each
random variable according to (16) and (17).

VI. SIMULATION RESULTS

In order to verify the effectiveness of the proposed approach,
the approach is applied on two deterministic and probabilistic
frameworks on the modified IEEE 33-bus system of Fig. 1. The
technical data of the DG units are given in Table II. Two WTs
with a total capacity of 1.3 MW, along with a PV unit with
a capacity of 0.5 MW, are installed at buses 14, 32, and 24,
respectively. For the sake of clarity of the performance of each
power unit, a 24-h scheduling scheme is assumed for the analysis
of the simulated system. The load profile and market price are

Fig. 1. Single-line diagram of the simulated distribution system.

TABLE II
DATA OF THE DG UNITS

Fig. 2. Active and reactive load profiles during the scheduling horizon.

illustrated in Figs. 2 and 3, respectively [16]–[19]. The proposed
method was implemented in MATLAB 8.1 and solved with a
personal computer with Core i7 CPU and 32 GB RAM.

A. Deterministic Framework

In the deterministic framework, the random input vari-
ables are considered constant and equal to their forecasted
values.

As is observed in Table III, when the number of the population
is more than 40, the results remain constant, which can serve as a
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Fig. 3. Real-time market price [16]–[19].

TABLE III
INFLUENCE OF CHANGING THE NUMBER OF POPULATION ON

RESULTS OF THE PROPOSED ALGORITHM

TABLE IV
COMPARISON OF THE TOTAL COST AND SIMULATION TIME FOR DIFFERENT

ALGORITHMS IN THE DETERMINISTIC FRAMEWORK

proof of the robustness of the proposed algorithm. Consequently,
the number of population is considered equal to 40 for the
subsequent simulations.

For the sake of briefness, the ON–OFF conditions of the gen-
eration units are not shown in the tables, but it can be concluded
that during the hours when the output power of the generators
is equal to zero, ui = 0 holds. This is while during other hours
ui = 1. Furthermore, for the battery in hours where the power
is negative, which means that the battery is charging, ut

s = −1.
However, for positive powers which are during the discharging
hours of the battery, ut

s = 1. In hours when the battery is not
charging nor discharging, ut

s = 0.
In Table IV, a comparison is performed among the four dif-

ferent algorithms PSO, TLBO, JAYA, and the proposed EJAYA.
The comparison proves the best performance of the suggested
algorithm from total operational cost and computational time
points of view.

The proposed algorithm’s convergence characteristic is illus-
trated in Fig. 4. As is noticed, approximately from the 150th
iteration the algorithm converges to the best solution. Conse-
quently, favorably fast convergence, which is a positive aspect,
is well obtained by the proposed EJAYA.

The values of the total cost, SD and simulation time of the
suggested EJAYA and those of some other algorithms, including
PSO, TLBO, and JAYA, are compared and presented in Table IV.

Additionally, in Table V the same comparison is performed
among EJAYA, the original JAYA as well as other modified
versions, namely MJAYA I, II, and III, in order to justify the

Fig. 4. Convergence characteristic of the proposed EJAYA.

TABLE V
COMPARISON OF THE OBJECTIVE FUNCTION VALUE

ACHIEVED FOR 50 TRIALS

influence of each of the applied modifications. Each MJAYA
algorithm is obtained by applying one separate modification of
Section IV-B. In MJAYA I, the first, in MJAYA II the second,
and in MJAYA III the third modification is applied. The priority
of the proposed EJAYA in which all modifications are applied
simultaneously (see Section V), is obviously observed.

B. Probabilistic Framework

Being robust and efficient, the proposed algorithm is sug-
gested to be applied in the probabilistic framework. Some papers
such as [22], [31], and [32] carried out comparisons between the
UT and other probabilistic methods including MCS and PEM
in different subjects and problems such as probabilistic load
flow [22], stochastic system reconfiguration [31], and MG’s
operation management [32]; hence, the advantages of the UT
method is proved. Consequently, in this section, the comparison
is performed among the proposed RUT, the UT method, and
MCS. It is worth mentioning that in the MC approach, 20 sce-
narios are considered for each random variable, consequently,
the number of iterations for MCS equals 96 × 20 = 1920. In this
paper, uncertain variables follow a normal distribution function
whose mean values equal the base values in the deterministic
framework, and SDs equal a specific percentage of its mean
values [22]. In order to interrogate the probabilistic situation, two
scenarios are examined. In the first scenario, the uncertainties in
load demand, market price and available output of RESs without
any correlation are considered. In the second, the correlation
between the load demand and market price along with the
correlation between WTs are inspected while the uncertainties
are considered similar to the first probabilistic scenario.

1) First Scenario (Uncorrelated Variables): In this case, the
random input variables have a normal distribution with mean



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE SYSTEMS JOURNAL

Fig. 5. Bus voltages during the scheduling horizon.

TABLE VI
BEST SOLUTION FOR THE PROPOSED RUT METHOD (FIRST SCENARIO:

UNCORRELATED VARIABLES)

values equal to the ones expressed in [33], and SD equal to 10%
of the mean values. Fig. 5 shows the bus voltages during the
scheduling horizon. It is obvious that the voltages are kept within
permissible ranges. The best solution for the proposed RUT
method, including the mean values and SDs of the dispatchable
units, is shown in Table VI. Since FC has the lowest bid, in
most hours the maximum electrical energy is purchased from
FC. Thus, the SD of FC in most hours is approximately zero.
During the hours when the market price is high (from hour
9 to hour 16, and in hour 21), or when the load demand is
low, it is decided to purchase electrical energy from the MT
in the maximum value. In these situations, the SD values for
MT are about zero. A comparison between the results of the
proposed RUT method with those of UT and MCS is presented in
Table VII. According to Table VII, when the proposed RUT
method is applied, the total cost is approximately equal to that
of MCS, whereas the simulation time is considerably lower.
Besides, in comparison with the UT method, since the number of
sigma points in RUT is about half of UT, the runtime is less than
half while the accuracy of RUT is significantly more. It can be

TABLE VII
COMPARISON OF THE PROPOSED RUT AND OTHER METHODS (FIRST

SCENARIO: UNCORRELATED VARIABLES)

TABLE VIII
COMPARISON OF THE PROPOSED RUT AND OTHER METHODS (SECOND

SCENARIO: CORRELATED VARIABLES)

TABLE IX
THE BEST SOLUTION FOR THE PROPOSED RUT METHOD (SECOND SCENARIO:

CORRELATED VARIABLES)

concluded that for problems with high random input variables,
since the accuracy of the proposed method is comparable with
MCS, the proposed RUT is preferable.

2) Second Scenario (Correlated Variables): In addition to
consideration of uncertainties, the correlation between load de-
mand and market price (negative correlation coefficient equal to
0.2) and the correlation between WTs (it is supposed that there
exist two WTs in the considered MG with a positive correlation
coefficient equal to 0.7) are considered according to (14), in
order to show the ability of the proposed approach in solving
problems with correlated variables. The above-mentioned cor-
relation coefficients’ values are taken from [34]. A comparison
between the results of the proposed RUT method with those of
UT and MCS is shown in Table VIII. The best solution, including
mean values and SDs of the dispatchable units, for the RUT
method is shown in Table IX. Similar to the first scenario, SD is
near zero for FC in most hours, since FC is the least expensive
unit, which sells its maximum power value almost during all
hours. When the market price is high and the load demand is
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Fig. 6. Sensitivity analysis of the SD value of random variables on the cost
function value.

low, the MGCC decides to purchase from MT, which leads to a
lower SD, which is about zero.

C. Sensitivity Analysis

In order to have a better perception of the effects of SD
variations on the objective function, a sensitivity analysis was
performed. The effect of changing the SD values of random
variables on the cost function is investigated by simultaneously
changing the SD values of all variables, and the probabilistic
scheme is run for each case. The values of SD parameters alter
from 0.1 to 0.5 times their initial values in discrete steps of 0.1.
It is assumed that the cost function follows the normal distribu-
tion function and the concept of CDF is utilized. As expected,
according to Fig. 6, the increase of the random variables’ SD
leads to the increase of the SD value of the cost function.

VII. CONCLUSION

The novel RUT-EJAYA approach was suggested for optimal
operation of renewable-based MGs. Probabilistic and deter-
ministic frameworks were explored in order to investigate the
effectiveness of the proposed approach on the modified IEEE
33-bus system. In order to study the probabilistic framework, the
RUT method was proposed. The approach can efficiently find
the minimum solution for the total operation cost of MG while
considering the ac network constraints. The uncertainties were
considered in the output power of WT and PV units, along with
the load demand and market price. Additionally, the correlation
between the load demand and market price, along with the
correlation between WTs were taken into account. Results were
compared with the MCS and the original UT methods. It was
demonstrated that not only is the accuracy of RUT no less
than that of UT, but also this method surpasses UT from the
computational efficiency point of view. Moreover, in comparison
with the MCS, the results were significantly close to those of
MCS, whereas the computational time was considerably lower.
Finally, the sensitivity of the parameters was analyzed in the
probabilistic framework. Since the inherent uncertainties in the
parameters were taken into account, the probabilistic solution
was more accurate and real. It can be concluded that probabilistic
scheduling tools are the essential requirements of economic and
reliable optimal operation of systems, especially MGs, due to

the presence of RESs. According to the results and the compar-
ison with MCS, for dealing with other probabilistic problems,
RUT shows accurate results such as those of MCS while the
computational burden/time is less. Furthermore, since in EJAYA
the algorithmic parameters are less than other metaheuristics,
and comparatively there is less need to tune the parameters, the
suggested approach can be more convenient in real applications.
Future works can include investigation of stochastic MG energy
management while other objective functions, including emission
and reliability, can be added to the problem formulation.
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