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Abstract

Co-generation plants have become mainstream energy production facilities at the de-

mand side owing to their high efficiency and flexibility in operation. During the transi-

tion to more integrated energy supply, trading of energy mix will become an important

issue, and a retailer is expected to play an active role. This paper discusses the de-

sign of retailer’s optimal contract with asymmetric information. Bilateral relationship

between the retailer and consumers is characterized by a package contract based on

publicly observable information. First, a mathematical model for the optimal contract

design problem involving two energy markets is established. Then, the model is simpli-

fied by eliminating redundant constraints. Consumer behaviors behind each reduction

step are revealed. Thereafter, the market equilibrium is characterized; its existence is

proved and the impact on retailer’s strategy is revealed. An illustrative example with

locational marginal price based heat and power markets is presented. Case studies con-

firm the theoretical analysis and show that our model can promote retailer’s profit. The

impact of several factors, such as the preference difference, probability, energy conver-

sion efficiency and reservation utility level, has been tested, providing more insights

into the market behavior under asymmetric information.
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market.

Nomenclature

Indexes, Sets, and Symbols

i Index of consumers

w Index of buses in energy network 1

v Index of nodes in energy network 2

N Set of consumer types

C Set of package contracts

P consumer’s distribution

Ξ̂ Optimal solution of retailer’s contract design problem under symmetric information

Ξ∗ Optimal solution of retailer’s decision-making problem under asymmetric information

Ξ∗
′

Optimal solution of retailer’s decision-making problem under countervailing incentive

ϕp,ϕh Functions depict the relationship between energy consumption and energy prices

Γ(.) Risk preference function

U(.) Identical form in the consumer’s utility function

Parameter

αp,αh Preference coefficient for power/heat

ηeh Transfer efficiency from electricity to heat

Ū Reserve utility

πi The probability of consumer with type i, especially πL,πH in the case studies

cp,ch Cost coefficient in energy network 1/2 and ch = [c1
h;c2

h]

Fp,Bp Coefficient matrix in market-clearing problem 1

Fh,Bh Coefficient matrix in market-clearing problem 2

bp,dp Constant vector in market-clearing problem 1

bh,dh Constant vector in market-clearing problem 2

Ai Coefficient of the utility function of consumer i, especially AL,AH in the case studies

NU j
i Net utility of consumer i with contract j

IRi Information rent of consumer i, especially IRl , IRh in the case studies

r1, ...,rm Buses of energy system 1 from which energy system 2 buys energy
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Decision Variable

xp,xh Decision variables in the market-clearing problem in energy network 1 and 2, and xh = [x1
h;x2

h]

λ p Marginal energy price in energy market 1, for example, the power market,

and λ
p
w is the price for the retailer

λ h Marginal energy price in energy market 2, for example, the heat market,

and λ h
v is the price for the retailer

ω p,ωh Dual variables of the inequalities in the market-clearing problems

pi,d ,hi,d Energy amount in package for consumer of type i, especially pl , ph in the case studies

Si Package price for consumer of type i, especially Sl ,Sh in the case study

Ci Package contract i

pu Heat bought/generated in the heating system

Abbreviations

RCF Retailer–consumer framework

LMEP Locational marginal energy price

CHP Combined heat–power

MCP Market-clearing problem

HPM Heat–power market

SI Symmetric information

AI Asymmetric information

SE Separating equilibrium

IR Information rent

1. Introduction

Global concerns about environmental pollution and energy shortage have drawn

great attention to high-efficiency allocation of resources, leading to the prosperity of

energy markets worldwide. In the past decades, the electricity market has continued to

flourish in many countries, such as Australia and the US [1]. District heating markets

have been liberalized in such countries as Finland and Sweden [2], where heating prices5

are deregulated. In Germany, green power marketing is promoted, which has success-

fully increased the share of renewable energy [3]. Generally, different energy systems
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and markets have been planned and operated individually. However, this situation is

changing owing to the integration of energy networks. Most recently, inspired by high

efficiency and low environmental impacts, co-generation plants, such as electric boil-10

ers, combined heat–power (CHP) units, and high-performance heat pumps, continue

to flourish [4–6]. These energy conversion facilities create strong coupling across his-

torically independent networks both in energy flow and market behavior[7, 8]. In the

UK, there has been a trend toward “multi-utility” bundling [9], increasing the coupling

of multiple energy markets. The multi-energy market is a prevalent trend and in the15

future, energy prices and consumption will probably be determined contractually with

energy mix, which is a combination of multiple energy as a package to sell. In this

context, a sophisticated market design for energy mix is necessary, albeit challenging,

as there is still lack of in-depth understanding of its fundamental features, such as the

incentive scheme, the equilibrium characterization, and the behavior patterns of mar-20

ket participants, to name a few. In multi-energy market researches, two main aspects

are the market structure and the information structure. This study takes a first step to

close the gap by considering a specific problem in which a retailer designs energy mix

contracts for consumers in a liberalized retail market under asymmetric information.

Energy Market1 Energy Market2

Multi-energy Retailer

amount price amount price

price

amount

Figure 1: Structure of the multi-energy market.

The typical market structure of multi-energy trading is shown through Fig.1. First,25

the multi-energy retailer bids the desired amount of energy to the respective energy

markets, and then receives the energy prices it has to pay. According to different market

settings, the energy prices can be determined by a market clearing process [10] or just

set as a fixed value. The marginal pricing method adopted in most market clearing

procedures can better reflect the real-time needs of the system. Several existing works30

have studied the optimization of the multi-energy market. Reference [11] and [12]

investigated the profitable operation of CHP plants in liberalized electricity markets. A
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decentralized multi-energy flow algorithm was proposed to optimize energy allocation

in the carbon energy market [13]. A multi-lateral trading model for a gas–heat–power

coupled system was proposed in [14], considering the strategic behaviors of different35

energy systems. The market power of a natural gas producer and its impact on the

power system were analyzed in [15] and the optimal operation of gas-fired power plants

in a competitive power market was considered in [16]. The above works only power

market clearing is considered while the other forms of energy are treated as fixed source

or demand. Nevertheless, it is worth noting that other energy markets can be cleared in40

a similar way, for example, a marginal price-based scheme for the heat-power market

was considered in [17]. Reference [18] presented a strategic offering model for coupled

gas and electricity markets, which considered clearing processes in both markets. In

this paper, since energy mix is considered, it is more reasonable to take into account

the market-clearing processes in all energy markets involved. Besides, electric boilers45

consume electricity whose price is time varying, so the marginal production cost of

heat also varies across time periods. This is different from traditional boilers and CHPs

which mainly consume coal and natural gas, whose prices are typically constant in

a short period. In this regard, we envision a heat market in which the heat price is

determined from an optimal thermal flow problem.50

In an energy market, the retailer usually acts as an intermediary agent that purchases

energy from energy distribution systems and resells it to end consumers by setting up

bilateral contracts [19, 20]. A stochastic programming method was adopted in [21]

to determine the optimal contract strategy of the retailer aiming at maximizing the

retailer’s profit while limiting its risk. A model based on a Stackelberg game was55

studied in [22] taking into account the response of consumers to the retail price. A

stochastic bilevel model was presented in [23] to identify the optimal offering price of

the energy hub manager. Decision-making conflict between the multi-energy players

and the local energy system was discussed in [24]. In the abovementioned works,

the pool price is set as a given value, without considering the impact of the retailer’s60

decision on the market price. A bilevel approach was used in [25] to evaluate the multi-

energy players’ behaviors and the reaction of the local energy system with the market-

clearing process modeled in the lower level. However, only power market clearing
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process was included, either.

It is worth nothing that previous works on multi-energy markets under a game the-65

ory framework usually assume a symmetric information structure, in which the utility

function of each player is common knowledge. However, in reality, the information

between multiple market participants is usually asymmetric. Even though a retailer

can collect certain information or historical data to roughly estimate consumers’ usage

levels, their real willingness to pay is difficult to identify exactly before signing the70

contract. Such private information creates unclearness about consumers’ true utility,

particularly when different types of energy are involved simultaneously. On the other

hand, strategic behaviors of some consumers could blur their true types. In such cir-

cumstances, consumers may deliberately misrepresent their energy consumption for a

period to influence the decision of the retailer, for the sake of gaining additional profit75

via taking advantage of their better knowledge of their own preferences [26]. This

situation is exactly the case of information asymmetry. This kind of information asym-

metry cannot be eliminated via historical data analysis.

In practice, the adverse impact of neglecting information asymmetry has been ob-

served in the wholesale electricity market in New England, US, promoting the revamp80

of market rules for the Day-Ahead Load Response Program (DALRP) [27]. In this

program, the customer baseline, which is a 10-day rolling average of interval meter

data from days with no load response event, is used as a benchmark. The consumers

offer load reduction in the DALRP, which are cleared as measured against their cus-

tomer baseline and paid at day-ahead locational marginal price (LMP). In real time,85

if consumers reduce usage by more than the amount cleared in the DALRP, they are

paid for the excess at the real-time LMP, which is high than the day-ahead LMP in

most cases. The designer of the DALRP anticipated that all consumers would make

offers that can reflect the maximum reductions they could deliver in real time, at prices

that reflected their opportunity costs. However, adverse consumer behaviors have been90

observed since August 2007. A majority of consumers submit load reduction offers

at the minimum level allowed by the program rules, even though they are capable of

delivering greater load reduction in real time, in order to earn the price difference be-

tween day-ahead LMP and real-time LMP. In this case, consumers’ demand sensitivity
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to price is not transparent and information asymmetry exists. Some consequences of95

such adverse behaviors in the power system are discussed in [28]. In our case, when

energy mix trading is considered with multiple market-clearing processes, such adverse

behaviors may be more likely and influential on the market operation, which should not

be neglected.

Generally, there are two types of asymmetric information problems: adverse selec-100

tion, caused by ex-ante asymmetry, and moral hazard, caused by ex-post asymmetry

[29]. In this study, we focus on adverse selection, which indicates that before trading,

the player with private information has the incentive to misrepresent the information in

order to hurt other players. A famous example is Akerlof’s “lemon market” [30]. In

economics, the problem of adverse selection has been fully considered under an infor-105

mation game framework for the labor market [31], insurance market [32], credit market

[33], etc. However, there are few studies on multi-energy markets to date.

Energy, such as electricity, is a special product that cannot be stored on a large

scale. In contrast to other markets, the energy market is restricted by various system

and operational constraints. Reference [34] analyzes the statistics of the multiple price-110

list experiments and finds that households that consume less energy during peak hours

are more likely to take part in time-of-use programs, which is evidence of adverse

selection. Motivated by the debate about electricity market design, [35] empirically

compares the effect of asymmetric demand information between sellers on two auction

institutions. The importance of considering information asymmetry in the retailer’s op-115

timal pricing problem has been recognized [36]. The mathematical models developed

therein not only consider load uncertainty due to inaccurate prediction but also the fact

that consumers may take advantage of their private information on their own utility

functions to choose contracts strategically, which in turn influences the profit of the re-

tailer. The coordination of interaction between various types of consumers and a power120

company is investigated in [37] based on contract theory. The optimal contract design

for plug-in hybrid electric vehicles (PHEVs) under asymmetric information is studied

in [38]. These researches evidently show that the asymmetric information between a

retailer and consumers in an energy market is a real problem that deserves research ef-

forts. As multiple energy markets are coupled to each other, this issue turns to be more125
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prominent. Our work makes the first step to understand such an important problem,

by analyzing the strategic behaviors of the retailer and consumers under asymmetric

information. It is expected to provide insights to facilitate the design of future multiple

energy markets. On the other hand, the models and mathematical techniques used in

deriving the theoretical results can also be applied to analyze other coupling markets,130

particularly under asymmetric information.

Table 1: Differences between this work and previous works.

Information Structure

Symmetric

information

Asymmetric

information

No clearing

process
Retailer’s optimal strategy [21]-[24]. Retailer’s optimal strategy [36];

Contract design [37, 38].

Market

Structure

Only power

market

clearing

Optimal operation [11, 12, 16];

Energy trading [13, 14, 25];

Market power analysis [15].

Strategic producers’ bidding [39, 40].

Multi

market

clearing

Strategic offering for

gas-power market [18];

Energy trading for

heat-power market [17].

The proposed model considers the

retailer’s optimal strategy under

asymmetric information while

taking into account the heat-power

market clearing.

The work in this study differs from previous works both in market structure and

information structure, which are summarized in Table I, and possesses three unique

features, as follows.

1. The “retailer–consumer” framework (RCF)-based pricing mechanism for135

transactive energy mix. In this study, an RCF-based pricing mechanism for the

multi-energy market is proposed. In practice, the consumer’s real willingness

to pay (or its preference) is usually private information and is not disclosed to

the retailer. Hence, an asymmetric information game exists between the retailer

and consumers. The RCF model deals with this problem by imposing incentive140

compatibility constraints and guiding the consumers’ behaviors via observable

contracts of energy mix. Unlike the frameworks of previous works, in which the
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production price is a fixed value, for example, the “principal–agent” framework

proposed in [29] and the contract design problem for PHEV owners in [38], our

model considers the impact of consumption amount on energy prices by consid-145

ering market-clearing processes as a sub-problem. To the best of our knowledge,

this business mode is new in the literature of energy market research.

2. Model reduction and consumer’s behavior analyses. To facilitate computa-

tion, several reduction techniques are proposed to simplify the RCF model by

removing redundant constraints and identifying binding inequalities, resulting in150

a reduced RCF model that can be solved efficiently by commercial software. It is

interesting that underlying the economic intuitions of consumers’ behavior pat-

terns for each reduction step can be unveiled with rigorous mathematical inter-

pretation. We believe these results aid understanding of the interactions among

multiple market participants, particularly under asymmetric information.155

3. Equilibrium characterization and retailer’s behavior analysis. Based on the

reduced model, the necessary and sufficient condition for a separating equilib-

rium (SE) for a risk-neutral retailer is derived, and the distortion of the retailer’s

optimal contract strategy due to asymmetric information is analyzed. The under-

lying economic logic of the retailer is also characterized.160

The rest of this paper is organized as follows. The mathematical formulation of the

retailer’s contract design problem based on RCF is described in Section 2. The reduc-

tion technique and underlying consumer behavior patterns are presented in Section 3.

Based on the reduced RCF model, the market equilibrium is characterized with proofs

and economic interpretations in Section 4. A heat–power market (HPM) RCF problem165

is presented as an illustrative example to demonstrate our proposed methodology in

Section 5. Finally, we conclude with remarks in Section 6.

2. Problem Formulation

2.1. Market Settings and Notations

In this section, an RCF is formulated. For simplicity, the retailer in this study is170

assumed as the aggregator of one specific class of load, for example, office buildings.
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A more general situation in which multiple classes of consumers are considered can be

found in Appendix A. The main theoretical results in this study remain valid. Assume

there are n types of consumer and denote N := {1,2, · · · ,n} as the set of types. With-

out loss of generality, we assume there is only one (aggregate) consumer for each type.175

Then, consumer i represents all consumers of type-i (denoted as “she”). There are two

types of energy, namely, electricity and heat. A multi-energy retailer (denoted as “he”)

wishes to sell a combination of the two types of energy to the consumers, by offering

a series of energy “package” contracts. The package contract refers to a contract that

offers a special package of mixed energy supply, which can be depicted by a tri-tuple180

(pd ,hd ,S), where pd and hd are the two energy amounts provided to the consumers, and

S denotes the price of the package. Assume the retailer knows the number of consumer

types, and hence, he needs to determine n contracts subject to n types of consumers.

We use the subscript “i” to represent the specific contract for consumer i and denote

this contract by Ci := (pi,d ,hi,d ,Si). Then, C := {Ci, i∈N } is referred to as a menu of185

energy contracts. Assume the utilities of all consumers have an identical form, denoted

by U(pi,d ,hi,d). We further denote Ai ·U(pi,d ,hi,d) as the utility function of consumer

i, and NU j
i = AiU(p j,d ,h j,d)−S j as the net utility of consumer i subject to contract C j.

Here, Ai is the utility coefficient of consumer i. Since there are n consumers, we define

A := {Ai, i ∈N }. Generally, both Ai and U(·) are positive.190

The information structure is set as: 1) the function U(·) is common knowledge; 2)

the type of consumer i, Ai, is private knowledge that is only known to herself reflecting

her willingness to pay.1 The higher Ai is, the more consumer i is willing to pay for the

same amount of energy pi,d and hi,d .; 3) the retailer knows the number of consumer

types as well as the distribution of the n type of consumers. The distribution is denoted195

by P := {πi (i ∈N )}, and ∑i∈N πi = 1. This information structure is asymmetric

and an asymmetric information game exists among the retailer and consumers. Our

main focus in this study is the influence of such information asymmetry on market

equilibrium.

1Without confusion, sometimes we simply use “type Ai” to refer to the type of consumer whose utility

function has a coefficient of Ai
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The structure of the RCF is shown in Figure 2 and consists of two layers: 1) the200

market layer, which gives the energy prices by a market-clearing process; 2) the retailer

layer, which describes the contract design problem under asymmetric information be-

tween the retailer and consumers. The retailer can access energy system 1 via bus w

and energy system 2 via node v. Hence, he can buy energy from two energy markets

at the local marginal prices on bus w and node v, denoted by λ
p
w and λ h

v , respectively.205

Then he offers a contract menu {Ci, i ∈ N } to the consumers, aiming to maximize

his expected profit. Each consumer chooses which contract to sign to maximize her

individual utility. Here, we assume that the consumer’s “reservation utility” level is

zero, which means that a consumer will accept the contract as long as she can obtain

net utility greater than zero. The overall process is shown in Figure 3.210

Energy Market1 Energy Market2

Multi-energy Retailer

1

1 [ ,..., ]
m

p p T

h r rc l l=

1

1[ ,..., ]
m

p p

r r hd d x=p

wd p

wl
h

vl

h

vd

1, 1, 1( , , )d dp h S 2, 2, 2( , , )d dp h S , ,( , , )n d n d np h S

Consumer-typenConsumer-type2Consumer-type1

Market Layer

Retailer Layer

Figure 2: Structure of the “retailer–consumer” framework-based model in the multi-energy market.

Consumer

discovers his

type Ai.

Retailer offers

contracts.

Consumer

accepts or

refuses.

The contract is

executed.

Next time slot

Figure 3: Time line of the “retailer–consumer” framework-based process.

Although currently there is no such contract of energy mix, our model offers an

outlook for the future multi-energy market and an instrument to analyze market equi-

librium under asymmetric information. Here, four steps are considered, as follows.

Step 1: The retailer finds out the possible utility coefficients of consumers A :=

{Ai, i ∈ N } and the related distribution P := {πi (i ∈ N )}. This information can215
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be acquired via statistics of historical data. Then, the retailer designs a set of energy

package contracts Ci := (pi,d ,hi,d ,Si) for consumers to choose.

Step 2: Knowing the selectable contracts Ci, i ∈N , each consumer decides which

contract to sign, aiming to maximize her net utility.

Step 3: After signing the contracts with consumers, the retailer reports his energy220

demand dp
w,dh

v to the energy markets (specifically, the power market and heat market

in this study).

Step 4: The energy markets are cleared with the objective of minimizing opera-

tional costs. Then, the energy trading x1
h = [dp

r1 , ...,d
p
rm ] between the two energy markets

as well as the marginal energy prices λ
p
w ,λ

h
v for the retailer are given.225

Remark 1: The energy conversion facility appears in the market layer of the model,

such as the electric boiler, which can transform electricity into heat, in the illustrative

case. It is worth noting that in current practice, the CHP unit appears at the consumer

level (at the bottom of Figure 2) and directly provides electricity and heat to end users

in most cases [41]. Since our study focuses on the market and retailer layers, the CHP230

unit is not included in the market model. In the future, large-capacity CHP units may

participate in the HPM as an energy hub. This is another story that involves the model-

ing of energy hub behavior and the market mechanism design. Some pioneering works

have been reported in [42, 43], such as the optimal bidding problem. However, the

market setting is different from that proposed in this study, which employs an accurate235

power flow model and market-clearing scheme based on locational marginal energy

price (LMEP). More dedicated research is still ongoing.

2.2. Energy Market-Clearing Problems

The energy prices λ
p
w and λ h

v in Figure 2 are given by solving the market-clearing

problems (MCPs) of energy markets 1 and 2 (EM1 and EM2, respectively). In EM1,240

MCP can be formulated as a constrained optimization problem in the form of

MCP1: min cT
p xp (1a)

s.t. Fpxp ≤ bp : ω
p (1b)

Bpxp = dp : λ
p (1c)
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where xp is the vector of decision variables in the energy market, for example, power

injection in a power system or temperature setting in a heat system. The objective

function (1a) is to minimize the total cost, where cp is the cost coefficient of units,

such as, power units or heat pumps. Inequality (1b) depicts the capacity limitations.245

Equation (1c) is the energy balance constraint and dp refers to the demand vector. ω p

and λ p are the dual variables and the LMEP in EM1 can be found in λ p. A similar

model (2) can be formulated considering the MCP for EM2.

MCP2: min cT
h xh (2a)

s.t. Fhxh ≤ bh : ω
h (2b)

Bhxh = dh : λ
h (2c)

When the two energy markets are coupled, we say that one energy market can

buy/sell energy from/to the other at the marginal prices, and λ p and λ h turn out to250

depend on each other. Demand change in either dp or dh influences the marginal energy

prices in both markets. Without loss of generality, we assume that EM2 can buy energy

from bus r1,...,rm in EM1 at LMEPs. The cost coefficient of EM2 can be divided into

two parts, ch = [c1
h;c2

h], where c1
h refers to the costs of units connected with EM1 and

c2
h refers to the costs of traditional units; and xh can be divided into x1

h and x2
h. We have255

c1
h = [λ p

r1 , ...,λ
p
rm ]

T . The energy bought by EM2 is the demand in EM1, and we say that

[dp
r1 , ...,d

p
rm ] = x1

h. Note that, if MCP1 and MCP2 are both linear programs, then each

has a unique optimal solution in most cases. For simplicity, we use ϕp(.) and ϕh(.) to

depict the relationship between LMEPs and the demand of the retailer, which is defined

by λ
p
w := ϕp(d

p
w,dh

v ) and λ h
v := ϕh(d

p
w,dh

v ). An example of such a market setting is the260

gas-power market in [18].

2.3. Retailer’s pricing problem

The retailer is connected to energy system 1 at bus w and to energy system 2 at node

v, so that it can buy energy from the two energy markets at the marginal prices λ
p
w and

λ h
v . Then, the retailer offers a menu of contracts C = {Ci, i ∈N } to the consumers to265

earn a profit. Under symmetric information, the retailer knows the exact type of each
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consumer, and thus, can design a contract specialized for her. The RCF model under

symmetric information is given as follows.

max
Si,pi,d ,hi,d

f (Ξ) = ∑
i∈N

πiΓ(Si−λ
p
w pi,d−λ

h
v hi,d) (3a)

s.t. AiU(pi,d ,hi,d)−Si ≥ 0,∀i ∈N (3b)

dp
w = ∑i πi pi,d , dh

v = ∑i πihi,d (3c)

λ
p
w = ϕp(dp

w,d
h
v ),λ

h
v = ϕh(dp

w,d
h
v ) (3d)

Here, the objective function (3a) of the retailer is to maximize his expected profit,

where Γ(·) is the risk preference function with Γ′(·) ≥ 0; and Γ′′(·) ≤ 0 for the risk-270

averse type, Γ′′(·) ≥ 0 for the risk-preferent type, and Γ′′(·) = 0 (or Γ′(·) = constant)

for the risk-neutral type. Constraint (3b) is the participation constraint, which ensures

that contract Ci is always a feasible option for consumer i. The total demand dp
w and

dh
v is the weighted sum of pi,d and hi,d , as shown in (3c). λ

p
w and λ h

v are the marginal

energy prices given by MCP1 and MCP2.275

The situation is different under asymmetric information, as the retailer does not

know the exact type of each consumer and cannot sign specific contracts. An incentive

compatibility constraint (4c) is included, which means that choosing contract Ci is the

best choice for consumer i. Then, the RCF model under asymmetric information is

given as follows.280

max
Si,pi,d ,hi,d

f (Ξ) = ∑
i∈N

πiΓ(Si−λ
p
w pi,d−λ

h
v hi,d) (4a)

s.t. AiU(pi,d ,hi,d)−Si ≥ 0,∀i ∈N (4b)

i = argmax
j∈N

{AiU(p j,d ,h j,d)−S j} (4c)

dp
w = ∑i πi pi,d , dh

v = ∑i πihi,d (4d)

λ
p
w = ϕp(dp

w,d
h
v ),λ

h
v = ϕh(dp

w,d
h
v ) (4e)

2.4. Definitions and Assumptions

In model (4), the retailer always expects that a consumer of type i would sign his

matching contract Ci. However, sometimes, consumer i strategically chooses to sign

contract C j instead of Ci. When such behavior occurs, we say consumer i “mimics”
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consumer j. This occurs owing to asymmetric information by which the retailer is un-285

aware of the exact type of the consumer, and the consumer can benefit from mimicking

another type of consumers. Such benefit created by asymmetric information is referred

to as information rent (IR). Denote NU j
i as the net utility of consumer i signing contract

C j, that is,

NU j
i := AiU(p j,d ,h j,d)−S j (5)

Then, the definition of IR is given as below.290

Definition 1 (information rent (IR)). For consumer i, the maximal net utility she can

get from signing a contract is called her IR, which is defined by

IRi := max{NU j
i : ∀C j ∈ C } (6)

At market equilibrium, the optimal package for consumer i is Ci. Thus, (6) is

equivalent to (7).

IRi := NU i
i = Ai(pi,d ,hi,d)−Si (7)

Remark 2: In this study, “mimic” refers to behavior by which the consumer mis-295

represents her real utility and chooses the contract not designed for her. We are mainly

interested in the common requirement among consumers, for example, both types need

power and heat. Offering contracts together with a specific service is a way to cope

with the problem of asymmetric information to some extent, like distinguishing an of-

fice building from a steel mill. However, when faced with two consumers of a similar300

service, such as two steel mills, this method may fail. Our study focuses on the con-

tract design problem of the retailer who offers homogeneous packages, which consist

of the same products but with different quantities and prices only. Specific services

provided by the retailer are not considered in this study. A similar problem can be

found in [34], where it can be concluded from statistics that households that consume305

less energy during peak hours would “mimic” households that consume more energy

during peak hours and enroll in the time-of-use pricing programs to make profit. The

mimic behavior between different types of PHEV owners in [38] is another example.
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To simplify the analysis, without loss of generality, throughout the study, we make

the following assumptions.310

A1. Ai > A j > 0 for any i < j (i, j ∈N ).

A2. The optimal solution Ξ∗ := {(p∗i,d ,h
∗
i,d ,S

∗
i ), ∀i ∈N } of model (4) exists, which

implies that both the RCF problem and the MCP are always feasible.

A3. The marginal utility of consumers is nonnegative and diminishing in pi,d and hi,d ,

which means that for all i ∈N ,315

∂U(pi,d ,hi,d)

∂ pi,d
≥ 0 ;

∂U(pi,d ,hi,d)

∂hi,d
≥ 0

and ∇2U(pi,d ,hi,d) is negative definite with

∂ 2U(pi,d ,hi,d)

∂ pi,d∂hi,d
=

∂ 2U(pi,d ,hi,d)

∂hi,d∂ pi,d
≥ 0

3. Model Reduction and Underlying Behavior Patterns of Consumers

In this section, we simplify model (4) by eliminating redundant constraints and

identifying binding constraints. Meanwhile, we characterize the behavior patterns of

consumers behind each reduction step. All the proofs of the lemmas and theorem320

presented in this section are found in Appendix B.

3.1. Elimination of Redundant Constraints

As there is a finite number of contracts, by simple enumeration, the constraint (4c)

can be unfolded into (8).

NU i
i ≥ NU j

i , (∀i, j ∈N ) (8)

Constraints in (8) can be further classified into two categories: constraints that involve325

adjacent types and those that involve nonadjacent types. The consumers are ordered

by its utility coefficient Ai by the retailer. This can be undertaken using statistics of

historical data. The adjacent and nonadjacent types are defined as below. It should

be noted that the consumer does not need to know the exact information on which

consumers are adjacent or nonadjacent.330
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Definition 2 (adjacent and nonadjacent types). A type k is called an adjacent type of

type i, if k = i−1 or k = i+1.

According to the definition, the adjacent-type constraints in (8) can be written as

NU i
i ≥ NU i+1

i , ∀i ∈N \{n} (9a)

NU i
i ≥ NU i−1

i , ∀i ∈N \{1} (9b)

Next, the following lemma shows that (8) can be simplified into (9), and describes the

characteristics of consumers’ behaviors from the perspective of the retailer.335

Lemma 1. Assume Assumption A1 holds. Then, constraints (8) must be satisfied if

(9) holds.

According to Lemma 1, constraint (4c) (or (8)) can be reduced to (9), so that the

RCF problem (4) is simplified. From an economic point of view, this lemma essentially

reveals a behavior pattern of consumers: if the contracts that the retailer offers can en-340

sure that no consumer has incentive to mimic their adjacent type of consumers, then we

can guarantee that the consumers have no motivation to mimic any nonadjacent types

either. The implication of this behavior pattern is that, in order to have a consumer sign

his matching contract, the retailer needs only prevent the consumer from mimicking

her adjacent type of consumer. An example is given in Subsection 5.3.345

Lemma 2. Assume Assumption A1 holds. Then, the constraints in (4b) for i∈N \{n}

must be satisfied if the following two conditions hold:

1. The constraints in (9a) are satisfied;

2. The constraint in (4b) for i = n is satisfied.

With Lemma 2, all the constraints in (4b) except i = n can be removed, which350

greatly simplifies the RCF model (4). Lemma 2 indicates that if the consumer with

the least Ai, that is, An, chooses to accept the matching contract decided for her, that

is, Cn, then Ci is definitely a feasible option for consumer i ∈N \{n}. This can be

understood as follows. When (9a) are satisfied, the consumers would not like to mimic

consumer with An, which implies IRi ≥ NUn
i . Note that An is the minimum in A , and355
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we have NUn
i ≥ IRn. Therefore, the retailer needs only IRn ≥ 0 to hold, and then, there

must be IRi ≥ 0 for all i ∈N . This result means that each consumer has a nonnegative

incentive to join the market.

3.2. Identification of Binding Constraints

Denote the optimal solution to the RCF problem (4) as Ξ∗ = {(p∗i,d ,h
∗
i,d ,S

∗
i ), ∀i ∈360

N }. Then, we show that some constraints in (4b) and (9) must be binding, which can

be used to simplify model (4) further.

Lemma 3. Assume Assumptions A1 and A2 hold. Then, at the optimum Ξ∗ of the

RCF model (4), the following must hold.

1. All constraints in (9a) are binding;365

2. The constraint in (4b) for i = n is binding.

The proof of Lemma 3 shows that, whenever assertions 1) and/or 2) are not satis-

fied, we can always find another better solution than the optimal solution Ξ∗, which is

impossible. Therefore, inequalities (9a) and (4b) for i = n must be binding, and hence,

can be converted into equations.370

Lemma 3 is in line with common sense, as we know that a consumer with a higher

Ai has the incentive to mimic a lower adjacent type Ai+1, but not vice versa. Lemma 3

implies that

IRi =
n−1

∑
j=i

(A j−A j+1)U(p j+1,h j+1) (10a)

and

IRn = 0 (10b)

This implication means that the IR of consumer n, that is, IRn, is zero while other375

consumers can obtain positive IRs. Moreover, the higher Ai is, the more IRi the con-

sumer can obtain. As mentioned previously, under symmetric information, only the

participantion constraints need to be considered. Hence, the IR of each consumer is

zero. This essentially reveals that, under an asymmetric information circumstance,

consumers may obtain positive IR by taking advantage of private information.380
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3.3. Equivalent Model Reduction

Since (9a) are all binding, we substitute them into (9b) to eliminate Si in the con-

straints. Then, (9b) is converted into

(Ai−Ai−1)[U(p∗i,d ,h
∗
i,d)−U(p∗i−1,d ,h

∗
i−1,d)] ≥ 0 (11)

By Lemmas 1∼3, we obtain an equivalent reduced model of (4), as stated in the

following theorem.385

Theorem 1 (Model Reduction). Assume Assumptions A1 and A2 hold. Then, the

RCF model (4) is equivalent to

max
pi,d ,hi,d

f (Ξ) = ∑
i∈N

πiΓ
(
AiU(pi,d ,hi,d)

+
n−1

∑
j=i

(A j+1−A j)U(p j+1,d ,h j+1,d)

−λ
p
w pi,d−λ

h
v hi,d

)
(12a)

s.t. (Ai−Ai−1) ·
[
U(p∗i,d ,h

∗
i,d)

−U(p∗i−1,d ,h
∗
i−1,d)

]
≥ 0 (12b)

dp
w = ∑i πi pi,d , dh

v = ∑i πihi,d (12c)

λ
p
w = ϕp(dp

w,d
h
v ),λ

h
v = ϕh(dp

w,d
h
v ) (12d)

The first and second terms in (12a) are obtained by substituting the binding con-

straints (9a) and (4b) with i = n, as stated in Lemma 3. (12b) is obtained by replacing

(9b) with (11). It is interesting that in this model, the decision variables Si have been390

eliminated, benefiting from the reduction techniques, which means that the retailer

needs only decide the amount of energy mix. This feature greatly facilitates the analy-

sis of equilibrium. The proof of Theorem 1 is straightforward by using Lemmas 1∼3,

and hence, is omitted here.

4. Optimal Contract Strategy and Underlying Behavior Patterns of the Retailer395

In this section, we characterize the optimal contract strategy of the retailer under

asymmetric information, and reveal the underlying behavior patterns of the retailer.

19



All the proofs of the lemmas and theorem presented in this section can be found in the

Appendix C.

4.1. Existence of a Separating Equilibrium400

In this subsection, we derive the condition that guarantees the existence of an SE.

As the risk preference of the retailer involves high complexity in analyzing the equi-

librium, here, we provide only the necessary and sufficient condition for a risk-neutral

retailer. As for risk-averse/risk-preferent retailers, we empirically analyze the equilib-

rium using case studies.405

When an SE exists, which means all the constraints in (12b) are strictly satisfied,

we have the optimal conditions for pi,d by using the derivate of pi,d , which is given by

0 =

{
∑

i−1
j=1 [π jΓ

′(Vj) · (Ai−Ai−1)]

πiΓ′(Vi)
+Ai

}
·

∂Up

∂ pi,d
−λ

p
w

−

n
∑

k=1
πkΓ′(Vk)pk,d

Γ′(Vi)
·

∂φp

∂dp
w

−

n
∑

k=1
πkΓ′(Vk)hk,d

Γ′(Vi)
· ∂φh

∂dp
w

(13)

where Vi are defined by

Vi := AiU(pi,d ,hi,d)+
n−1

∑
j=i

(A j+1−A j)U(p j+1,d ,h j+1,d)

−λ
p
w pi,d−λ

h
v hi,d

The optimal conditions for hi,d are similar to (13).

Denote410

Ci :=
∑

i−1
j=1 [π jΓ

′(Vj) · (Ai−Ai−1)]

πiΓ′(Vi)
+Ai

Bi :=

n
∑

k=1
πkΓ′(Vk)pk,d

Γ′(Vi)

Di :=

n
∑

k=1
πkΓ′(Vk)hk,d

Γ′(Vi)
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Then, the optimal conditions can be abbreviated as

Ci
∂U

∂ pi,d
= λ

p
w +Bi

∂ϕp

∂dp
w
+Di

∂ϕh

∂dp
w

(14a)

Ci
∂U

∂hi,d
= λ

h
v +Di

∂ϕh

∂dh
w
+Bi

∂ϕp

∂dh
w

(14b)

Next, we give the necessary and sufficient condition for the existence of an SE for

a risk-neutral retailer. We start with the following lemma.

Lemma 4. Assume Assumption A3 holds for model (12). For a risk-neutral retailer

(i.e., Γ′(·) = constant), if Ci > Ck (∀i, j ∈N ), then pi,d > pk,d and hi,d > hk,d must415

hold.

With this lemma, we can prove the following theorem.

Theorem 2 (Existence of a separating equilibrium). Assume Assumption A3 holds

for model (12). For a risk-neutral retailer, an SE exists if and only if C1 > C2 > ... >

Cn−1 >Cn.420

Theorem 2 provides a necessary and sufficient condition for the existence of an

SE of model (12), and hence, of the original model (4) if Assumptions A1 and A2

hold. The theorem indicates that if C1 > C2 > ... > Cn−1 > Cn, a risk-neutral retailer

will provide different package contracts for different consumers accordingly. For a

risk-averse/risk-preferent retailer, the situation is more sophisticated. We can just solve425

problem (12) and then analyze the obtained contract strategies, which is demonstrated

in the case studies.

4.2. Distortion of the Retailer’s Strategy

In this subsection, we compare the optimal contract strategy of the retailer under

symmetric and asymmetric information to show the impact of information. Denote430

Ξ̂ := {(p̂i,d , ĥi,d , Ŝi), ∀i∈N } as the retailer’s optimal contract strategy under symmet-

ric information (model (3)), which is the solution of

Ai
∂U

∂ pi,d
= λ

p
w +B

′
i
∂ϕp

∂dp
w
+D

′
i
∂ϕh

∂dp
w

(15a)

Ai
∂U

∂hi,d
= λ

h
v +D

′
i
∂ϕh

∂dh
w
+B

′
i
∂ϕp

∂dh
w

(15b)
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where

B
′
i :=

n
∑

k=1
πkΓ′(V

′
k)pk,d

Γ′(V ′i )

D
′
i :=

n
∑

k=1
πkΓ′(V

′
k)hk,d

Γ′(V ′i )

V
′
i := AiU(pi,d ,hi,d)−λ

p
w pi,d−λ

h
v hi,d

If we neglect the adjustment of energy price, then, because Ci < Ai(i > 1) and

C1 = A1, we have435

1) p∗1,d = p̂1,d ,h∗1,d = ĥ1,d .

2) p∗i,d < p̂i,d ,h∗i,d < ĥi,d , ∀i ∈N \{1}.

The analysis indicates that the retailer provides the same package contract as under

symmetric information for the consumer with the highest Ai (i.e., A1). However, the

retailer distorts downward the optimal packages for other types of consumers. At this440

time, the total amount of energy satisfies dp∗
w < d̂p

w and dh∗
v < d̂h

v .

When taking into account the impacts of energy price, the analysis becomes more

complicated. In our model setting, the change in energy amount exerts influence on

energy prices, which in turn affect the optimal contract. As the two energy markets are

coupled together, the variation trend of the energy price when both systems’ consump-445

tion decreased is not explicit. We find the impact by simulation, as shown in Section

5.

Remark1: Potential limitations of the proposed method and possible remedies are

summarized as follows.

1) About the assumptions. In Section 2, to simplify the analysis, three assump-450

tions are made. Assumption A1 can be easily fulfilled by sorting the consumer types.

Assumption A2 is made to ensure that the problem we discuss makes sense. Admit-

tedly, it is possible that A2 does not meet. If the optimal solution of model (4) does

not exist, Lemma 3 is no longer valid. In that situation, if we still follow Lemma 3 to

simplify the model, then the feasible region of the obtained reduced model becomes455

smaller than the original model. Therefore, the optimal solution of the reduced model

does not exist either. Assumption A3 requires the marginal utility of consumers should
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be nonnegative, diminishing and concave, which is relatively mild for smart grid users,

as suggested in [44]. Additionally, we assume that

∂ 2U(pi,d ,hi,d)

∂ pi,d∂hi,d
=

∂ 2U(pi,d ,hi,d)

∂hi,d∂ pi,d
≥ 0

This means the marginal utility of power increases with the amount of heat and also460

the marginal utility of heat increases with the amount of power. The economic intuition

behind is straightforward. When there is not enough heat, the amount of power added

might be used for meeting some basic needs such as heating, and its marginal utility

is low. When there is more heat, the amount of power added can be used for more

advanced requirement, and thus, its marginal utility is higher. This phenomenon can465

be observed in most common utility functions, such as the Cobb-Douglas function and

the CES utility function. Admittedly, if consumer’s utility function fails to meet A3,

the proof of Lemma 4 and Theorem 2 will no longer be valid. This may be a limitation

of the proposed method.

2) About the equilibrium analysis. Only the existence of separating equilibrium470

for a risk-neutral retailer is proved. For a risk-aversive retailer, the situation is more

sophisticated. However, the simplification techniques in Section 3 still work, and we

can just solve problem (12) and then analyze the obtained contract strategies as demon-

strated in the case studies.

3) About the modeling. To model the retailer’s problem under asymmetric infor-475

mation, one important factor is the possible consumer types Ai and its related proba-

bility πi. In practice, the exact value of πi might be difficult to acquire. This might

be another limitation of the proposed model. But fortunately, such information can be

inferred from big data analysis, which is attracting increasing attention in recent years.

5. An Illustrative Example480

In this section, we use an HPM-based retailer’s contract design problem to show

the effectiveness of the proposed RCF. The HPM-RCF model might be implemented

in countries or areas with long cold winters, where electricity and heat are two major

sources of energy demand. The problem is depicted as a bi-level model. The upper
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level is formulated as (4) and the lower level as the HPM-clearing problem. A power485

market model with AC power flow, as adopted in [45], and a deregulated heat market

model, as adopted in [17], are used here. To solve such a bilevel model, traditional

methods replace the heat/power market clearing problem with its individual KKT opti-

mality condition, introducing extensive non-convex complementarity constraints, and

then solve the obtained mixed integer nonlinear program (MINLP),which can be solved490

by branch-and-bound method [46], and metaheuristic approaches including evolution-

ary algorithm [47–50], particle swarm method [51, 52] and the natural phenomena

inspired algorithm [53].

The problem in this paper possesses some unique features. The upper level re-

tailer’s problem has several nonlinear constrains but controls only a few variables, and495

the lower level heat-power market clearing problem which is relatively large in size

can be turned into convex optimization [17]. In this paper, the bilevel model is first

simplified by eliminating redundant constraints and identifying binding constraints via

the certified lemmas and theorems. After that, the reduced model can be separated into

two parts: A nonlinear objective function and the market clearing problem. Then the500

pattern search algorithm [54], a derivative-free searching method, is adopted to solve

the reduced problem and updates pi,d ,hi,d ,∀i ∈N . To evaluate the objective function

of the retailer, the heat-power market clearing problem which can be turned into linear

programming is solved by CPLEX solver, and the energy price λ
p
w ,λ

h
v are determined

from the dual multiplier associated with nodal energy balancing constraints. This strat-505

egy takes full advantage of the computational superiority of convex optimization, and

search optimum of the non-convexity objective function in a low dimensional space.

The framework is shown in Fig.4.

In the convex optimization embedded pattern search algorithm for the reduced

problem, the market clearing problem can be globally solved in less than one sec-510

ond without an initial guess; the main routine of pattern search algorithm evaluates

the objective function at uniformly distributed samples. The sampled points are up-

dated in each iteration, until an optimum is found [54]. Efficiency is guaranteed since

the retailer controls only a few variables pi,d ,hi,d ,∀i ∈N , and hence the dimension

of searching space is low. In summary, in the proposed method, no initial point is515
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Figure 4: Procedure of solving the reduced model.

needed; convergence is guaranteed by the discussion in [55]. Efficiency is enhanced

by performing the majority of computation (market clearing problem) via convex opti-

mization.

Numerical experiments are presented on the IEEE 33-bus power system and 32-bus

heat system to illustrate the efficacy of the proposed model and algorithm. The HPM-520

RCF model is solved by CPLEX12.6 on a laptop with Intel(R) Core(TM) i7 CPU with

2.00GHz and 8 GB of RAM.

5.1. Data

The topology of the IEEE 33-bus power system and 32-bus heat system is shown

in Figure 5. The power system has five power units. The heat system buys electricity525

at buses 2 and 11 from the power system for the heat boilers. Two heat boilers are

connected at nodes 18 and 32 in the heat system. The retailer can buy electricity from

the power system at bus 3 and heat from the heat system at node 3. To simplify the

illustration, we assume that there are two types of consumer (denoted as Type-H and

Type-L) with probability of πH = πL = 0.5. The utility function is chosen as the sum530

of two isoelastic functions U(pi,d ,hi,d) = Ai(
√

ap pi,d/N+
√

ahhi,d/N) (see [56]) with

N = 100, AH = 0.623 for Type-H, and AL =0.492 for Type-L. It is easy to prove that

the utility function satisfies assumptions A1 and A3. We let ap =2.00 and ah =2.93.

We consider the market equilibrium of the retail spot market at 1 hour. The topology

and parameters of the test system can be found in [57].535
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Figure 5: Topology of 33-node power system and 32-node heat system.

5.2. Benchmark Case

We apply the proposed model to the IEEE 33-bus power system and 32-bus heat

system presented in the previous subsection. The optimal costs are $3,737.0 for the

power system, and $1,294.2 for the heat system. At the market equilibrium, the heat

system buys pu1 = 3,033.6 kW and pu2 = 2,443.8 kW from the power system and540

generates pu3 = 3,076.0 kW and pu4 = 659.3 kW via the heat boilers. The optimal

package settings of the retailer and the IR of consumers under symmetric information

(SI) and asymmetric information (AI) are shown in Table 2.

Some interesting observations are as follows.

1) The energy consumption and package price for Type-H are higher than those for545

Type-L, because a consumer with a higher utility is always willing to buy a larger

package. This is in accordance with Lemma 4 for an SE.

2) The market equilibrium is distorted because of asymmetric information. Specifi-

cally, Type-H consumers benefit from an IR, based on their ability to mimic Type-L
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Table 2: Optimal package settings of retailer and information rents of consumers

Type risk-averse risk-neutral risk-preferent

SI AI SI AI SI AI

ph/kWh 520.0 595.1 520.0 600.0 520.0 598.8

hh/kWh 617.2 674.7 617.2 674.7 617.2 678.5

Sh/$ 465.9 429.8 465.9 432.9 465.9 446.0

pl /kWh 321.9 215.6 321.9 197.5 321.9 124.1

hl /kWh 342.8 240.3 342.8 225.3 342.8 140.8

Sl /$ 280.5 232.5 280.5 224.0 280.5 177.3

IRh/$ 0 62.2 0 59.9 0 47.4

IRl /$ 0 0 0 0 0 0

consumers (whose IR is zero). The package for Type-L distorts downwards in order550

to reduce the IR of Type-H. We also find that the package for Type-H is higher than

that under symmetric information. This finding is because market distortion results

in an energy consumption decrease, reducing the energy price, which motivates the

retailer to set a larger package contract.

3) Among the three types of retailers, the market distortion is smallest with a risk-555

averse type and largest with a risk-preferent type. A risk-averse retailer is reluctant

to take a risk, and thus, he would rather pay more IR with less reduction of Type-L’s

package, while a risk-preferent retailer does the opposite.

5.3. More Insights into “Mimic” Behavior

First, we further discuss mimic behavior using the example of risk-neutral con-560

sumers in the benchmark case. The optimal contracts under symmetric and asymmet-

ric information are shown in Table 2. Denote (p̂h, ĥh, Ŝh) and (p̂l , ĥl , Ŝl) as the optimal

contract strategies under symmetric information for type-H and type-L, respectively,

while (p∗h,h
∗
h,S
∗
h) and (p∗l ,h

∗
l ,S
∗
l ) are the optimal contract strategies under asymmetric

information for type-H and type-L, respectively. The net utilities of different types of565

consumers with different contracts are shown in Table 3.
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Table 3: Net utility of consumers with optimal contracts under symmetric and asymmetric information

symmetric information asymmetric information

NU j
i /$ (p̂h, ĥh, Ŝh) (p̂l , ĥl , Ŝl) (p∗h,h

∗
h,S
∗
h) (p∗l ,h

∗
l ,S
∗
l )

AH 0.0 75.0 59.9 59.9

AL -97.9 0.0 -43.7 0.0

Under symmetric information, the retailer knows the exact utility coefficient Ai of

each consumer. Thus, the retailer can design contracts to target consumers, and specifi-

cally, gives contract (p̂h, ĥh, Ŝh) to the consumer with AH and contract (p̂l , ĥl , Ŝl) to the

consumer with AL. However, under asymmetric information, the situation appears to be570

much more complex. As the retailer does not know the exact type of each consumer, he

offers a series of contracts for consumers’ selection. If the retailer still offers the con-

tracts designed for the symmetric situation, which are (p̂h, ĥh, Ŝh) and (p̂l , ĥl , Ŝl), then

from Table 3, we find as follows. Since 75.0 = NU l̂
H > NU ĥ

H = 0.0, the optimal strat-

egy for the consumer with AH is to “mimic” the type with AL and choose (p̂l , ĥl , Ŝl).575

Hence, the contracts (p̂h, ĥh, Ŝh),(p̂l , ĥl , Ŝl) cannot distinguish between the two con-

sumers, which is unexpected for the retailer. Following the model in this study, the

optimal contracts under asymmetric information are (p∗h,h
∗
h,S
∗
h) and (p∗l ,h

∗
l ,S
∗
l ). From

Table 3, we have 59.9 = NUh∗
H = NU l∗

H = 59.9 and 0.0 = NU l∗
L > NUh∗

L =−43.7, and

thus, each type of consumer chooses the contract specifically designed for her without580

motivation to mimic the other type. Under symmetric information, the retailer’s profit

is $397.03. Under asymmetric information, if it still follows the model under symmet-

ric information to design the optimal contracts, its profit will become $304.95. If it

follows the model proposed in this paper, the profit obtained is $ 328.10, increasing

by about 7.6%. The proposed model can successfully distinguish different types of585

consumers and increase the retailers profit.

Then, we use an example with four types of consumer to illustrate Lemma 1 better.

We choose A1 = 0.505, A2 = 0.472, A3 = 0.429, and A4 = 0.343 with A1 > A2 > A3 >

A4. The form of the utility function and coefficient ap,ah are the same as the benchmark

case. The optimal contracts designed for each type are marked as (p∗i ,h
∗
i ,S
∗
i ),∀i. The590
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net utilities of each consumer when choosing different contracts are shown in Table 4.

Table 4: Net utility of different types of consumer with different contracts

NU j
i /$ A1 A2 A3 A4

(p∗1,h
∗
1,S
∗
1) 89.87 64.24 30.84 -35.58

(p∗2,h
∗
2,S
∗
2) 89.87 66.19 35.34 -26.01

(p∗3,h
∗
3,S
∗
3) 88.03 66.19 37.75 -18.82

(p∗4,h
∗
4,S
∗
4) 71.30 56.73 37.75 0.00

From Table 4, we find that the optimal contract for Ai is (p∗i ,h
∗
i ,S
∗
i ). Take consumer

with A1 as an example. The contract designed for her adjacent type is (p∗2,h
∗
2,S
∗
2)

and the contracts designed for her nonadjacent types are (p∗3,h
∗
3,S
∗
3) and (p∗4,h

∗
4,S
∗
4).

When the retailer designs the contract, according to Lemma 1, he need only prevent595

A1 from mimicking A2, that is, to ensure NU1
1 > NU2

1 . Then, because in Table 4, we

have 89.87 = NU2
1 > NU3

1 = 88.03 and 89.87 = NU2
1 > NU4

1 = 71.30, if A1 has no

incentive to mimic her adjacent type (NU1
1 > NU2

1 ), then she has no motivation to

mimic a nonadjacent type either. For A2, because 66.19 = NU3
2 > NU4

2 = 56.73, a

similar conclusion holds.600

5.4. Impact of Type Difference of Consumers

In this subsection, we examine the impact of type difference of consumers on the

optimal strategies. To this end, we fix AL to 0.492, and change AH from 0.5 to 0.75.

Other parameters remain the same as the benchmark case. Contract price, consumer’s

utility, and retailer’s profit under different AH values are shown in Figure 6. The change605

of the optimal package is shown in Figure 7.

From Figure 6, it is observed that, with the increase of the values of AH , the dif-

ference between the contract prices of different types of consumers increases. The IR

for Type-H increases, while that for Type-L remains zero. This result is because, when

AH is close to AL, the preferences of Type-H and Type-L are similar, and hence, their610

optimal contracts are also alike. An extreme case occurs when AH equals AL. In such

a case, there is actually only one type of consumer in the market and the information
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Figure 6: Changes of contract price, consumer’s utility, and retailer’s profit with different Ah.
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asymmetry vanishes.

When AH deviates from AL, the Type-H consumer will be more prone to mimic the

Type-L consumer. As a consequence, more IR should be provided to distinguish them.615

The retailer’s profit increases with AH , because a consumer with higher preference

tends to accept a contract with more energy consumption and higher price, as shown

in Figure 7. Thus, the retailer can benefit from such a behavior pattern. Furthermore,

in Figure 7, the package for the Type-L consumer declines with an increasing AH .

The reason is that a consumer with higher preference can create more profit for the620

retailer. Therefore, the retailer would rather sacrifice the Type-L consumer to maintain

the optimality of the Type-H consumer’s package. Electricity and heat offered in one

package show simultaneous growth, confirming the claim in Lemma 4.

5.5. Impact of Type Probabilities

The probability of different types of consumer, namely, πi, is another important fac-625

tor that influences the retailer’s optimal contract strategy. To demonstrate this feature,

we change πH from 0.3 to 0.7 with πL = 1− πH , while other parameters remain the

same as the benchmark. Contract price, consumer’s utility, and retailer’s profit under

different AH are shown in Figure 8. The change of optimal package is shown in Figure

9.630

In Figure 8, the utility of the Type-H consumer remains nearly unchanged and

the IR gradually decreases. For the Type-L consumer, her utility decreases and the IR

remains zero. The reason is that, an increasing πH implies the Type-H consumer makes

up a greater percentage of consumers, which deserves more concern from the retailer.

Hence, the retailer tends to offer a higher Type-H contract price to earn more profit.635

Nonetheless, the retailer has to ensure that the Type-H consumer would not choose the

contract designed for the Type-L consumer. To this end, the retailer chooses to reduce

the package for Type-L, as shown in Figure 9. As an extreme case, say when πH is high

enough, the retailer would like to completely give up the Type-L consumer and design

the package for Type-H only.640

The profit of the retailer rises with increasing πH , because a consumer with higher

preference would like to consume more and pay more. In Figure 9, the package for
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Figure 8: Changes of contract price, consumer’s utility, and retailer’s profit with different πH .
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Type-H remains nearly the same, which can be inferred from (14a) and (14b), as Ch is

independent of πH . The decrease of Cl can account for the reduction in the package

designed for Type-L.645

5.6. Impact of Power-to-Heat Efficiency

Power-to-heat efficiency is another factor that may influence the contract strategy

of the retailer. Here, we change the efficiency ηeh from 0.75 to 0.95. The changes

of energy prices are shown in Figure 10; the changes of contract price, utility, and

retailer’s profit in Figure 11; and the change of packages in Figure 12.650
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Figure 10: Energy prices under different ηeh.

With the increasing power-to-heat efficiency, both energy prices decrease. How-

ever, the reduction in the heat price is more remarkable than that in the power price.

This outcome occurs because, when efficiency increases, the demand for using power

to produce heat decreases accordingly and the cost for the heat system declines, mo-

tivating the increase in heat consumption. On the other hand, the growth in heat con-655

sumption results in more demand for power, which in turn partly counteracts the power
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reduction by efficiency. Thus, the change in power price is moderate. The change of

packages in Figure 12 confirms this fact.

In Figure 11, the contract price, consumer’s utility, and retailer’s profit increase

with efficiency. As mentioned earlier in this section, higher efficiency leads to lower660

energy prices and more energy consumption. Thus, the retailer can ultimately benefit

from efficiency promotion.

5.7. Impact of Reservation Utility

In the above settings, we assume that both consumers’ reservation utilities are zero,

which means the consumer is willing to accept the contract as long as her net utility665

is no less than zero. However, in a more realistic situation, a consumer has positive

reservation utility. Furthermore, it is reasonable to assume that the consumer with

higher Ai has higher aspiration and requires higher reservation utility. Suppose the

reservation utility for consumer 1 is Ū . We increase Ū from 0 to $140. The change

of packages is shown in Figure 13. We observe that the variation of packages can be670

divided into five regions, noted as Regions 1∼5. Detailed analyses can be found in

Appendix D.

1) Region 1: When Ū is less than $60, the optimal solution remains the same as the

benchmark case. This outcome is because under asymmetric information, a consumer

obtains a positive IR. In addition, when the IR is larger than Ū , the optimal solution675

remains unchanged.

2) Region 2: When Ū is between $60 and $71, the IR of the Type-H consumer in

the benchmark case is smaller than Ū , and that of the Type-H consumer still has moti-

vation to mimic Type-L. The binding constraints and the equivalent problem are shown

in Appendix D. We find in Figure 13 that the optimal package for Type-L gradually680

rises with increasing Ū , while the optimal package for Type-H decreases because of

the response of energy prices.

3) Region 3: When Ū is between $71 and $98.5, neither type of consumer has

incentive to mimic the other type, and the optimal contracts are the same as those

under symmetric information.685

4) Region 4: When Ū continues to increase to between $98.5 and $124, the Type-L
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consumer has incentive to mimic Type-H, and the situation is opposite to that in Region

2. The binding constraints and equivalent problem are shown in Appendix D. At this

time, the retailer tries to distort upward the package for Type-H in order to reduce the

IR of Type-L. However, the increase of package for Type-H may increase the retailer’s690

costs. Therefore, we find in Figure 13 that the optimal packages for both consumer

types are higher than those in Region 3.

5) Region 5: If Ū is larger than $124, the situation becomes the opposite of that in

Region 1. While Ū is increasing, the optimal solution remains the same.

6. Conclusions695

In this paper, a retailer’s contract design model for energy mix markets under asym-

metric information is presented. A “retailer-consumer” framework is proposed to de-

pict the bilateral relationship between a retailer and consumers in an asymmetric infor-

mation game by package contracts. The energy prices are determined by solving the

market clearing problems. Despite of the complexity of the game, we show the model700
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size can be significantly reduced by identifying redundant constraints, and a separating

equilibrium exists under mild conditions. The example and case studies disclose some

interesting phenomena in the multi-energy market under asymmetric information.

1. The optimal contract strategy is distorted owing to asymmetric information; the

package for a consumer with lower preference is distorted downward in order to705

reduce the information rent of a consumer with higher preference.

2. Among the three risk types of retailers, the market distortion is smallest for the

risk-averse type and largest for the risk-preferent type. The risk-neutral type is

in between.

3. Several factors influence the optimal contract:710

• The larger the difference between consumer types is, the more severely the

multi-energy market is distorted.

• The retailer tends to pay more attention to consumers with higher probabil-

ity of occurrence.

• All market participants benefit from the power-to-heat efficiency enhance-715

ment.

• The reservation utility level may switch the binding constraints and thereby

change the optimal contract.

The result in this paper can help reduce the negative impact of asymmetric informa-

tion on power system, promote the profit of retailer and finally attract investment in720

retailers’ business. The proposed model and algorithm can also provide reference for

solving other asymmetric information related problems. Even though there are no ma-

ture multi-energy markets yet, in view of the progress of integrated energy systems

in both academic and engineering fields, the design of multi-energy market and busi-

ness mode that allocates energy resource in the optimal way is evidently an attractive725

direction. The proposed “retailer-consumer” framework is one of such attempts and

could also serve as a fundamental tool for retailer’s decision making in a multi-energy

market. Although this work is somewhat rudimentary, it provides some interesting

insights and observations, shedding new light on better understanding and design of

future multi-energy markets.730
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Appendix A. Retailer’s pricing problem with multiple classes of consumers

If the retailer offers electricity to more classes of load, such as office buildings and

steel mills, the problem can be generalized as follows. Assume there are m classes

of load and denote M := {1,2, · · · ,m} as the set of classes. For class k ∈M , there

are nk types of consumers and denote Nk := {1,2, · · · ,nk}. The utility function of735

consumer type i in class k is AikUk(pik,d ,hik,d). Here, the function Uk(.),∀k ∈M is

common knowledge and the utility coefficient Aik is private knowledge that is known

only to the consumer type i in class k. The retailer can distinguish between consumers

of different classes by different Uk(.), that is, he can distinguish an office building

from a steel mill. Nevertheless, he cannot exactly distinguish consumers within each740

class (consumers with the same Uk(.) but different Aik), that is, he cannot distinguish

office building i from office building j. The distribution of consumers in class k is

denoted by Pk := {πik (i ∈N )}, and ∑i∈N πik = 1. θk is the proportion of class k

and ∑k∈M θk = 1. In practice, πik and θk can be obtained through survey or statistics.

Then, the problem can be modeled as (A.1).745

max
Sik,pik,d ,hik,d

f (Ξ) = ∑
k∈M

θk ∑
i∈Nk

πikΓ(Sik−λ
p
w pik,d−λ

h
v hik,d) (A.1a)

s.t. AikU(pik,d ,hik,d)−Sik ≥ 0,∀i ∈N ,k ∈M (A.1b)

i = argmax
j∈Nk

{AikU(p jk,d ,h jk,d)−S jk},∀k ∈M (A.1c)

dp
w = ∑k θk ∑i πik pik,d , dh

v = ∑k θk ∑i πikhik,d (A.1d)

λ
p
w = ϕp(dp

w,d
h
v ),λ

h
v = ϕh(dp

w,d
h
v ) (A.1e)

The objective function (A.1a) and constraints (A.1b), (A.1d), and (A.1e) are similar

to problem (4). The incentive compatibility constraint (A.1c) means that in each class

k, choosing contract Cik is the best choice for consumer type i. Following similar

procedures in this study, it can be easily proved that all the lemmas and theorems still

hold.750
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Appendix B. Proofs of Lemmas 1∼3

proof of Lemma 1. We only need to prove that the constraints involve nonadjacent

types can be implied by the constraints involve adjacent types.

From (9a), ∀i ∈N \{n}, we have

AiU(pi,d ,hi,d)−Si ≥ AiU(pi+1,d ,hi+1,d)−Si+1 (A.1a)

and755

Ai+1U(pi+1,d ,hi+1,d)−Si+1 ≥ Ai+1U(pi+2,d ,hi+2,d)−Si+2

(A.1b)

Inequality (A.1b) gives

Ai+1
(
U(pi+1,d ,hi+1,d)−U(pi+2,d ,hi+2,d)

)
≥ Si+1−Si+2

By Assumption A1 (which implies Ai > Ai+1) and substituting into (A.1a), we have

AiU(pi,d ,hi,d)−Si ≥ AiU(pi+2,d ,hi+2,d)−Si+2 (A.2)

Following the similar line by using (9a) and (9b) repeatedly, all other constraints for

nonadjacent types are satisfied, provided all the constraints for adjacent types are sat-

isfied. This completes the proof.760

proof of Lemma 2. Assume the constraints in (4b) for i = n and constraints in (9a) for

i ∈N \{n} are satisfied. Then for i = n−1, we have

An−1U(pn−1,d ,hn−1,d)−Sn−1

≥ An−1U(pn,d ,hn,d)−Sn

≥ AnU(pn,d ,hn,d)−Sn ≥ 0 (A.3)

The first inequality is due to condition 1). The second is due to Assumption A1. The

last is due to condition 2).

Inequality (A.3) indicates that constraint in (4b) for i = n−1 is satisfied under the765

condition 1) and 2). Following the same line, it is easy to see all the constraints in (4b)

for i = 1,2, · · · ,(n−1) are satisfied, which completes the proof.
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proof of Lemma 3. We first prove assertion 1). To this end, we assume that (9a) is not

binding for i for the sake of contradiction. Define

∆i := AiU(p∗i,d ,h
∗
i,d)−S∗i −AiU(p∗i+1,d ,h

∗
i+1,d)+S∗i+1

Then there must be ∆i > 0. We can use ∆i to construct another solution, denoted by Ξ′,770

following the rules that

Ξ
′ :=

 (p∗j,d ,h
∗
j,d ,S

∗
j +∆i) : ∀ j ≤ i

(p∗j,d ,h
∗
j,d ,S

∗
j) : ∀ j > i

Because we have i < n, so (p′n,d ,h
′
n,d ,S

′
n) = (p∗n,d ,h

∗
n,d ,S

∗
n) and constraint (4b) for

i = n is still satisfied. For j < i− 1, Mi is subtracted on both side of the inequalities,

(9a) and (9b) is still met. For j = i, (9b) is still met for the same reason as the former.

According to the definition of Mi, the left-side of (9a) is equal to the right-side of (9a).775

So constraint (9a) for j = i is satisfied. For j = i+1, obviously (9a) is met. The left-

side of (9b) is the same as in Ξ∗ and the right-side of (9b) is reduced by Mi. Hence

(9b) is satisfied. For j > i+ 1, the contracts in Ξ′ are the same as in Ξ∗, implying the

constraint satisfaction will not change.

From above, Ξ′ is also a feasible solution of the problem and f (Ξ′)> f (Ξ∗), which780

is contradict to the optimality of Ξ∗. Hence (9a) must be binding, which proves asser-

tion 1).

Next we prove assertion 2). Assume the constraint in (4b) for i = n is not binding

for the sake of contradiction. Define ∆n := AnU(p∗n,d ,h
∗
n,d)− S∗n. Then there must be

∆n > 0. Let Ξ′′ := (p∗i,d ,h
∗
i,d ,S

∗
i +∆n) for all i ∈N . Then following a similar process785

as above, we can easily prove that Ξ′′ is also a feasible solution of the problem and

f (Ξ′′) > f (Ξ∗), which is contradict to the optimality of Ξ∗. Hence the constraint in

(4b) for i = n must be binding, which proves assertion 2).

This completes the proof.

Appendix C. Proofs of Lemma 4 and Theorem 2790

proof of Lemma 4. For a risk-neutral type, we have Γ′(Vi) = constant for all i ∈N ,

which means Bi = B j and Di = Dk for all i,k ∈N . If we have Ci >Ck, then from (15a)
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and (15b), we have ∆U
′
p =−U

′
p(pi,d ,hi,d)+U

′
p(pk,d ,hk,d)> 0 and ∆U

′
h =−U

′
h(pi,d ,hi,d)+

U
′
h(pk,d ,hk,d)> 0. Denoting ∆p := pk,d− pi,d and ∆h := hk,d−hi,d , we have

∆U
′
p = U

′′
pp∆p+U

′′
ph∆h (A.1a)

∆U
′
h = U

′′
hp∆p+U

′′
hh∆h (A.1b)

Solving these equations yields795

∆p =
∆U

′
p ·U

′′
hh−∆U

′
h ·U

′′
hp

U ′′
pp ·U

′′
hh−U ′′

hp ·U
′′
ph

(A.2a)

∆h =
∆U

′
h ·U

′′
pp−∆U

′
p ·U

′′
ph

U ′′
pp ·U

′′
hh−U ′′

hp ·U
′′
ph

(A.2b)

With Assumption A3, we have U
′′
hh ≤ 0, U

′′
hp ≥ 0 and

U
′′
pp ·U

′′
hh−U

′′
hp ·U

′′
ph > 0

By noting U ′p > 0 and U ′h > 0, it is easy to see

U
′
p ·U

′′
hh−U

′
h ·U

′′
hp < 0

Hence we have ∆p < 0 and so as ∆h, which means pi,d > pk,d and hi,d > hk,d . This

completes the proof.

proof of Theorem 2. We prove the theorem from the following two aspects.800

Sufficiency: If we have C1 > C2 > ... > Cn−1 > Cn, by Lemma 4 we have p1,d >

p2,d > ... > pn,d and h1,d > h2,d > ... > hn,d . With Assumption A3, (12b) is strictly

satisfied, so there is a seperating equilibrium.

Necessity: If a separating equilibrium exists, but we have Ci ≤Ck. If Ci < Ck, by

Lemma 4 a contradiction appears. If Ci = Ck, it is obvious that we have pi,d = pk,d and805

hi,d = hk,d , and it is contradict to the existence of a separating equilibrium.

This completes the proof.

Appendix D. Impact of reservation utility

In this subsection, we analyze the impact of non-zero reservation utility of con-

sumers. To simplify the discussion, we suppose that there are only two types of con-810

sumers, i.e., i = 2. The retailer is still assumed to be risk-neutral.
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We change the reservation utility of consumer 1 from zero to a positive value, Ū >

0. Denote Ξ̃ := {(p̃i,d , h̃i,d , S̃i), ∀i ∈N } as the retailer’s contract strategy resulting in

a reservation utility of consumer 1 no less than Ū . Then the retailers decision-making

problem becomes:815

max
(p1,h1,S1),(p2,h2,S2)

π1(S1−λ
p
w p1−λ h

v h1)

+π2(S2−λ
p
w p2−λ h

v h2) (A.1a)

s.t. A1U(p1,d ,h1,d)−S1 ≥ Ū (A.1b)

A2U(p2,d ,h2,d)−S2 ≥ 0 (A.1c)

A1U(p1,d ,h1,d)−S1

≥ A1U(p2,d ,h2,d)−S2 (A.1d)

A2U(p2,d ,h2,d)−S2

≥ A2U(p1,d ,h1,d)−S1 (A.1e)

dp
w = ∑i πi pi,d , dh

v = ∑i πihi,d (A.1f)

λ
p
w = ϕp(d

p
w,dh

v ),λ
h
v = ϕh(d

p
w,dh

v ) (A.1g)

With the increase of Ū , the solution to the problem exhibits the following five

different regimes.

Region 1: When Ū ≤ (A1−A2)Up(p∗2,d ,h
∗
2,d), Ξ∗ satisfies all the constraints in

(A.1) and the optimal package is still Ξ∗.

Region 2: When (A1−A2)Up(p∗2,d ,h
∗
2,d) < Ū ≤ (A1−A2)U(p̂2,d , ĥ2,d), (A.1b) is820

not met for Ξ∗. The binding constraints become (A.1b), (A.1c) and (A.1d). In this

situation, problem (A.1) is equivalent to

min
S2,p2,h2

λ
p
w p2 +λ

h
v h2 (A.2a)

s.t.
√

ap p2 +
√

ahh2 =
Ū

A1−A2
(A.2b)

The optimal solution to problem (A.2) can be obtained simply by invoking Cauchy-

Inequality.

If the energy prices are fixed, we have ( p̃1,h̃1) = (p̂1,ĥ1), ( p̃2,h̃2) > (p̂2,ĥ2). How-825

ever, if we take into account the regulation of energy prices as in our model, when
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p1,h1 goes up, the energy prices will change. Hence, the optimal package ( p̃2,h̃2) will

change accordingly. Unfortunately, there is no closed-form expression to describe such

a change.

Region 3: When (A1−A2)U(p̂2,d , ĥ2,d) < Ū ≤ (A1−A2)U(p̂1,d , ĥ1,d), both types830

of consumers have no incentive to mimic the other type, the binding constraints change

into (A.1b) and (A.1c). The optimal contract strategy is the same as the situation under

symmetric information, which means Ξ̂ = Ξ̃.

Definition 3 (countervailing incentive). The consumer with lower Ai has the incentive

to mimic the consumer with a higher Ai, i.e., A2 has the incentive to choose the package835

decided for A1.

A4. The optimum, Ξ∗
′

:= {(p∗
′

i,d ,h
∗′
i,d ,S

∗′
i ), ∀i ∈N }, of the retailer’s pricing model

under countervailing incentive exists.

Region 4: When (A1 - A2)U(p̂i,d , ĥi,d) < Ū ≤ (A1−A2)U(p∗
′

i,d ,h
∗′
i,d), the situation

is opposite to the situation in Region 2. Constraint (A.1e) is not fulfilled for Ξ̂. The840

binding constraints are (A.1b), (A.1c) and (A.1e).

Region 5: When Ū > (A1−A2) ·U(p∗
′

i,d ,h
∗′
i,d), the situation is opposite to the situ-

ation in Region 1. The binding constraints are (A.1b) and (A.1e).
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