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Abstract 

In this paper, a new bi-level framework is presented for operational scheduling of a smart distribution company (SDISCO) with 

electric vehicle (EV) parking lot (PL) and renewable energy sources (RES), i.e., wind and photovoltaic (PV) units. In the proposed 

bi-level model, maximization of the profit of SDISCO is obtained in the upper-level (leader) problem by minimizing the cost of 

power purchased from the wholesale market due to the EV PL unique capability, i.e., PL-to-grid. The lower-level (follower) problem 

aims to maximize the profit of the PL owner. This model is converted to a non-linear single-level problem by using Karush–Kuhn–

Tucker (KKT) conditions. Fortuny-Amat and McCarl method is used for linearization based on auxiliary binary variables and 

sufficiently large constants. Moreover, uncertainties such as duration of the presence of EVs in PL, the initial state of the charge 

(SOC) of EVs and output power generation of wind and PV units are simultaneously considered through a set of scenarios. The 

SDISCO’s profit is investigated in four modes: 1) without RES and with the controlled charging of EVs; 2) without RES and with 

smart charging/discharging of EVs; 3) with RES and with the controlled charging of EVs; 4) with RES and with smart 

charging/discharging of EVs. In all these modes, a price-based demand response (DR) program is considered, as well as incentive-

based DR, and combined price-based DR and incentive-based DR. The presented model is tested on the IEEE 15-bus distribution 

system over a 24-h period. The results show that SDISCO gains more profit by using a suitable charging/discharging schedule and 

employing a critical peak pricing (CPP) program. Furthermore, by comparing this bi-level model with the centralized model, the 

effectiveness of the bi-level model is demonstrated. Also, sensitivity analyses on the number of EVs, size of RES and the percentage 

of customer participation in the DR program are evaluated on the optimal operation of the SDISCO. 

© 2018 Elsevier Ltd. All rights reserved. 

Keywords: Operational scheduling; bi-level model; electric vehicles; demand response; uncertainty. 
 

Nomenclature 
 
Indices 
b , bˊ  Index for branch or bus tdep Departure time of EVs from the PL 
F Index for linear partitions in linearization VR ated

 Nominal Voltage (V) 
n , N Index for EV number Vmax

 Maximum allowable voltage (V) 
S , s Index for scenarios Vmin Minimum allowable voltage (V) 
Sb Index for slack bus X b, bˊ Reactance between branch b , bˊ (Ω) 
t , tˊ Index for time (hour) Z Impedance (Ω) 
Parameters  ΔS Upper limit in the discretization of quadratic flow terms (kVA) 
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A(t) Incentive of DR programs at t-th hour ($/kWh) ηch Charging efficiency (%) 
Ccd Cost of equipment depreciation ($/kWh) ηdch Discharging efficiency (%) 
E(t,t) Self-elasticity SOCdep Desired SOC of EVs at the departure time from PL (kWh) 
E(t,tˊ) Cross-elasticity  SOCmax Maximum rate of SOC (kWh) 
I max, b, bˊ Maximum current of branch b, b  ́(A) SOCmin

 Minimum rate of SOC (kWh) 
P(t) Customers’ demand at t-th hour after DR (kW) tarv

 Arrival time of EVs to the PL 
P0(t) Initial demand at t-th hour (kW) πs Probability of each scenario 
Pcon Contracted power in DR programs (kW) Variables  
PL Customers’ demand before DR (kW) I,I2  Current flow (A), Squared current flow (A2) 
PL,DR Customers’ demand after DR (kW) Pch

 Transferred power for EVs charging (kW) 
Pmax

 Charging or Discharging rate (kWh) Pdch Discharging power of EVs (kW) 
PPV Output power of PV unit (kW) PLoss

 Power loss of SDISCO (kW) 
PPV,max Maximum Output power of PV unit (kW) PWh2G Power purchased from wholesale market by SDISCO (kW) 
PW Output power of wind unit (kW) P+

 Active power flows in downstream directions (kW) 
PW,max Maximum Output power of wind unit (kW) P-

 Active power flows in upstream directions (kW) 
PEN(t) Penalty of DR programs at t-th hour ($/kWh) QWh2G SDISCO’s reactive power (kVAR)  
Pr0(t) Initial electricity price at t-th hour ($/kWh) Q+ Reactive power flows in downstream directions (kVAR) 
Pr(t) Electricity price at t-th hour after DR ($/kWh) Q-

 Reactive power flows in upstream directions (kVAR) 
ρL,DR  Electricity price after DR ($/kWh) V,V2  Voltage (V), Squared voltage (V2) 
ρch

 Charging tariff of EVs ($/kWh) X Binary variable for linearization of the complementary 
conditions 

ρPL2EV Price of power purchased of PL by EVs ($/kWh) λ dual variable ($/kWh) 
ρdch Discharging tariff of EVs ($/kWh) Others  
ρWh2G Price of buying electricity from the wholesale 

market by SDISCO ($/kWh) 
C Greater than or equal to zero constraint 

QL,DR Customers’ reactive power after DR (kVAR) L Lagrangian function 
R b, bˊ Resistance between branch b , bˊ (Ω) M Sufficiently large constants 
SOCarv

 Initial SOC of EVs at the arrival time to the PL (kWh)   
 

1. Introduction 

1.1. Motivation 

Among various energy consumers in the world, the transportation sector is one of the largest users of fossil fuels and 

the largest contributor to greenhouse gas emissions and pollutants. According to the report of the international energy 

agency (IEA), the transportation sector consumed 45% of the worlds’ oil in 1973, and this value was reached to 62.3% 

in 2011. In terms of greenhouse gas emissions, the transportation sector accounts for more than 20% of the carbon 

dioxide [1]. On the other word, the global demands for fossil fuels due to the continuous growth of human activities are 

incrementing which leads to an increase in greenhouse gas emissions and pollutants. With regard to benefits, e.g., 

reducing the fuel consumption and greenhouse gas emissions and improving the energy efficiency, electric vehicles 

(EVs) have recently gained much attention and will be widely used in the transportation system in the future [2]. For 

example, 62% of the total fleet in the United States of America is estimated to be hybrid EVs in 2050 [3].  

The power system has limited storage capacity, therefore vehicle-to-grid (V2G) concept, that has emerged with the 

EVs, has attracted the attention of many operators and planners, and it has created new hopes for providing the storage 

requirements of the power system. It is noted a large number of EVs that is imposed on smart distribution company 

(SDISCO) in the future, resulting in high energy consumption demands. In this situation, coordination of PLs in the 

operation modes consist of PL-to-Grid (PL2G) and Grid-to-PL (G2PL) is a challenging issue of the SDISCO. In the PL-

to-Grid mode, the PL’s power is injected into the SDISCO, that is resulting from discharging the EVs. In the Grid-to-

PL mode, the power is drawn from the SDISCO by PL for charging the EVs. Also, the high penetrations of EVs to 

SDISCO increase the production of the traditional power plant. So, the fossil fuel consumption and greenhouse gas 

emission increase. Therefore, the use of renewable energy sources (RES) is also inevitable alongside traditional power 

plants for supplying this part of the energy. Studies show that EV owners do not use the vehicles more than 93% to 96% 

of day-time [4-5]. Thus, it is clear that by increasing the penetration of EVs in the transportation sector, the battery 

storage capacity of these vehicles while they are parked can be used for improving the performance of SDISCO. 
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Moreover, demand response (DR) is one of the most cost-effective and efficient methods for smoothing the load profile. 

By participating in DR programs, customers are able to change their energy consumption in response to energy price 

changes and get incentives in return.  

This paper aims at the operational scheduling of SDISCO considering RES and PL along with their uncertainty. Since 

the PL owner is private, a new bi-level model is developed. In the upper-level, maximization of the profit of SDISCO 

has performed, while in the lower-level, maximization of the profit of PL owner has conducted. However, the uncertain 

nature of RESs and PL may have a considerable effect on the optimal operation of SDISCO. So, uncertainties are 

modeled by the probability distribution function (PDF). Furthermore, the effect of charging methods, i.e., controlled 

charging, smart charging/discharging, and also a price-based and an incentive-based DR program are considered on the 

operational scheduling of SDISCO. In addition, the effect of the size of wind and photovoltaic (PV) units and the 

number of EVs are evaluated on the operations of SDISCO. Since the model involves uncertainties, stochastic 

programming is used for solving the objective function. In fact, this paper aims at answering the following questions: 

- What is the appropriate model with the aim of maximization of the SDISCO’s profit considering the presence 

of the new decision maker, i.e., the private owner of PL? 

- What is the optimal operational scheduling of the SDISCO, PV and wind units, and PL? 

- How to prioritize different DR programs based on some indices such as profit of SDISCO and network losses?  

- What are the main effecting factors on the optimal operational scheduling of SDISCO? 

1.2. Literature survey 

With the increasing penetration of EVs and RES on the distribution company, operation and planning of this system are 

facing new challenges. Distribution Company must supply the demand at acceptable voltage magnitudes and feeder 

loading levels. So, a reasonable operation strategy is provided by SDISCO in the presence of RES and EVs and 

purchasing power from the wholesale market while maintaining the system security. In fact, SDISCO buys the energy 

from the wholesale market for inconstant prices and sells to the customers for flat or dynamic tariffs. 

Many studies focused on the impact of EVs on the distribution company such as losses [6-7], distribution company 

equipment [8-9], voltage profile [10-12], and the increase of power demand [13-14]. In [6], with penetration of EVs to 

the network, the energy losses increase 40%. In [7], a model for minimizing the losses is proposed. The result shows 

that the energy losses of the system are 1.4%, 2.4% and 2.1% in without EVs situation, uncoordinated charging mode 

and coordinated charging mode, respectively. In [8], the impact of EV charging is analyzed on the distribution 

transformer. Also, the result shows that with smart charging scenarios, the negative effects on the transformer lifetime 

are mitigated. In [9], the load capability of cable in the presence of EVs is evaluated. The cable loading is limited to 

15% and 25% penetration of EVs by fast charging and normal charging, respectively. In [10], with a model for 

minimizing the purchasing energy for charging the EVs and losses, the voltage profile and total cost are evaluated. The 

result shows that the voltage drop of the system is 7.64%, 17.15% and 10% in without EVs situation, uncoordinated 

charging mode and coordinated charging mode, respectively. In [12], with the aim of maximizing the delivered 

charging power of EVs, the voltage drop and total cost are improved. In [13], it is shown that with penetration of one 

million EVs, the peak load increases only up to 1.5%. Also, if all conventional cars are replaced by EVs, the peak load 

increases up to 200%. In [14], the increasing load due to the uncoordinated charging of EVs and the negative effect on 

the system reliability is investigated. Also, the adverse effect of EVs is addressed by the implementation of time-of-use 

programs. In fact, EVs are charged in off-peak and mid-peak periods. 
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Also, the allocation of optimal capacity and the location of PL are addressed in [15-19]. In [15], the allocation of PL in 

the distribution system is studied to achieve several aims such as the reliability improvement, power losses reduction, 

and increasing V2G revenue. In [16], minimizing the overall energy cost of the distribution system for optimal 

allocation and sizing of PL is performed by using an artificial bee colony and firefly algorithm considering 

charging/discharging scheduling. In [17], with the aim of maximizing the distribution system profit and by using the 

probabilistic approaches and presenting a simple scheduling model for the optimal charge/discharge of EV, the 

allocation of PL is investigated. Subsequent to [17], in [18], another approach is presented that solves the allocation of 

PL by genetic algorithm. The objective function of this approach is the maximization of the distribution system profit 

with considering the welfare of the EV owners. In [19], siting and sizing of charging station are carried out with two-

stage optimization model. In this model, in the first stage, the power system, and in the second stage the transportation 

network are optimized.  

In [20], for optimal scheduling of EV charging, dynamic optimal power flow is solved. Moreover, according to the 

result of some studies such as [21-22], EV charging only with traditional power plants creates inappropriate 

environmental impact. Thus, it is inevitable to use RES along with traditional power plants. Therefore, interactions of 

EVs are investigated with solar photovoltaic [23-24], wind turbine [25-26] and both of them [27-28]. On the other hand, 

uncertainty is one of the important and inherent characteristics of RES. On this basis, operation and planning of the 

distribution systems confront with the uncertainty. Therefore, it is essential to employ DR programs as means to 

manage the energy not supplied by these resources. Studies [29-31] evaluate different DR strategies in power systems. 

For showing the difference between the current paper and previous related studies, Table 1 is presented. In [32], a  

mixed-integer second-order cone programming (MISOCP) model is proposed for solving the optimal operation problem 

of radial distribution networks with energy storage. For accuracy of the proposed MISOCP model, a Mixed-Integer 

Linear Programming (MILP) formulation is also suggested. In [33], a probabilistic framework is presented for the 

operation of the distribution system in the presence of distributed generations (DGs) and battery energy storage. In this 

model, the uncertainty of electricity prices and output power of DGs is also considered. 

In [34], a multi-objective bi-level optimal operation model is presented for the distribution system with grid-connected 

microgrid. The aim of the upper level is the power loss reduction and voltage profile improvement, while the lower-

level minimizes the operation cost of micro-grid. For solving this model, a combination method is used based on a self-

adaptive genetic algorithm and non-linear programming.  

In [35-36], the operation of active distribution grids in which distribution company (DISCO) and MGs cooperate with 

each other is modeled by the bi-level approach. Maximization of the DISCO profit and minimization of the MGs cost in 

upper and lower level is achieved, respectively. For solving the problem is used Karush–Kuhn–Tucker conditions and 

dual theory.  

In [37], a bi-level model is presented for the operational decision making of a distribution company with DG and 

interruptible loads. The objective function of the upper-level and lower-level problem is to minimize the cost of market 

purchases and DG unit dispatch, and the maximization of social welfare, respectively. The problem formulated an 

equilibrium problem with equilibrium constraints (EPEC) and is solved by non-linear programming solver. In [38], a 

bi-level model is proposed for virtual power plant (VPP) operation with wind power and solar photovoltaic power. In 

the upper-level, the maximum VPP operation income is taken as the objective function, but in the lower-level, the aim 

is the minimum system net load and the minimum system operation cost. 
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In [39], a bi-level framework is described for EV fleet charging. The bi-level framework includes the outer-level where 

the genetic algorithm is used for optimization of the state of charge increments over each charging period and 

minimization of the maximum charging power of individual EVs. Also, in the inner-level, the aggregated battery 

charging power is optimized by the dynamic programming-based algorithm. In [40], the stochastic bi-level model is 

offered, in which the aim of the upper-level and lower-level is the maximization of the profit of active distribution 

network operator and maximization of the social welfare in the clearing of the market from the perspective of the 

independent system operator (ISO). Also, the complementary theory is used for converting the model into an MILP 

model. In [41], for minimizing the cost of Distribution System Operator (DSO) for installing and operating of PLs, a  

single-level model is offered. In this system, uncertainties of PLs, wind and PV units as well as planning and operation 

constraints such as network limits, network loss, urban restrictions, etc. are also considered. In [42], for PL placement in 

a distribution company, a single-level model is presented with the aim of maximization network reliability index. This 

model employs the probabilistic modeling of EV for the PL studies. In [43], a two-stage model is suggested for siting 

the private PL and distributed renewable resources by considering economic constraints of PL investor and distribution 

network constraints. Firstly, the Canadian place for installing PL is introduced to distribution network operator by PL 

investor based on reliability index, bus attraction index and price of land index. Then, loss reduction is performed for 

the distribution network operator. In [44], a multi-objective model for siting and sizing of renewable energy sources and 

EV charging station is proposed. The goal of the model is the minimization of power loss, total voltage fluctuations 

index, EVs charging and demand, while supplying depreciation costs of the battery. 

In [45], the stochastic bi-level model is suggested for an EV aggregator in a competitive environment. The 

maximization of the profit of aggregator and minimization of the cost paid by the EV owners are the main aim of  

the bi-level model. Also, by using Karush–Kuhn–Tucker (KKT) and Strong duality theory the nonlinear bi-level model 

is converted to a linear single-level model. In [46], a new multi-objective bi-level model is proposed for the distribution 

network expansion planning. The minimizing of the net present value of the total planning cost and maximizing the 

profit of PL are the goal of the upper and lower levels, respectively. Since bi-level model is a mixed-integer nonlinear 

programming problem, for solving a two-stage mixed integer linear programming-embedded Immune-Genetic 

Algorithm is used. 

In [47], a bi-level model for reduction of the peak-to-average ratio of the load of a distribution transformer in the 

presence of EVs is presented. The objective function in the upper level is minimizing the maximum peaks of the 

distribution transformer load. In the lower level, the aim is to minimize the individual household electricity bill using 

dynamic pricing. In [48], for congestion management of smart distribution system, a bi-level model is offered. 

Minimizing the total operation cost of the distribution system and maximizing the profit of each aggregator are the aims 

of the upper-level and lower-level, respectively. The model is solved by highly efficient commercial solver CPLEX 

12.4 in MATLAB environment. In [49], a two-stage two-level model is proposed to investigate the mutual impacts of 

the behavior of PLs and renewable-based distribution systems. In this model, decisions taken at the first level should be 

considered in the optimization of the second level. The objective function at the first level is maximizing the profit of 

the PLs, while the second level aims at minimizing the distribution system operator’s cost.  

Although many works have been performed about the operation of distribution systems, a bi-level model in which by 

using the power exchange between SDISCO and private PL owners, the profit of both sides is maximized has not been 

addressed in the literature. Also, simultaneous evaluation of the effect of the RES and PL uncertainty, price-based DR 

and incentive-based DR programs in the operational scheduling of SDISCO has not been reported. Therefore, in this 

paper, by developing a new bi-level model, the optimal operational of SDISCO and private PL owners is presented. 
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Also, for solving the proposed model, KKT conditions and the Fortuny-Amat and McCarl linearization method have 

been used. These methods transform the bi-level and non-linear models into single-level and linear models that can be 

easily solved with optimization tools.  

Table 1. A summary of previous studies  
Reference DISCO EVs PV wind DGs price-

based 
DR 

incentive-
based  
DR 

Bi-level Single-
level 

uncertainty Solution 
 method 

[32] * - * * - - - - * - GAMS - CPLEX 
[33] * - * - - - - - * * MCS - MATLAB 
[34] * - * * - - - * - - NSGA II - MATLAB 
[35] * - - * - - - * - * GAMS - CPLEX 
[36] * - - - * - - * - - GAMS - CPLEX 
[37] * - - - * - - * - - Not stated 
[38] - - * * - * * * - * GAMS - CPLEX 
[39] - * - - - - - * - - NSGA II - MATLAB 
[40] * - - - * - - * - * GAMS – CPLEX 
[41] * * * * - - - - * * GAMS – CPLEX 
[42] * * - - - - - - * * GA - MATLAB 
[43] * * * * - - - - * - GA,PSO-MATLAB 
[44] * * * * - - - - * * GA-PSO-MATLAB 
[45] - * - - - - - * - * GAMS – CPLEX 
[46] * * - - - - - * - * GAMS – MATLAB 
[47] * * - - - - - * - * MATLAB 
[48] * - - - - - - * - * CPLEX – MATLAB 
[49] * * * * - - - - - * GAMS – CPLEX 

Current paper * * * * - * * * - * GAMS – CPLEX 

1.3. Contributions  

The number of decision makers in SDISCO is increasing. Apart from SDISCO owners, the PL owners would also be 

part of the decision-making process, due to the high penetration of EVs into the network. So, this paper develops a bi-

level model for operational scheduling of SDISCO in the presence of EV PL and RES. The main contributions of the 

paper are as follows: 

1. Developing a new bi-level model in which SDISCO and PL owners maximize the profits. 

2. Converting the bi-level optimization model of SDISCO and PL considering RES as well as price-based DR 

and incentive-based DR programs to the linear single-level model by KKT conditions. 

3. Investigating different factors which may affect the operational scheduling of SDISCO in the presence of RES, 

PL and DR programs using sensitivity analysis. 

1.4. Paper organization  

The rest of the paper is organized as follows. Modeling of price-based DR and incentive-based DR programs are 

explained in section 2. Problem formulation of bi-level model is explained in section 3. Numerical results are discussed 

in section 4. Finally, conclusions are reported in section 5.  

2. Modeling the price-based and incentive-based DR programs  

Based on Eq. (1), the demand sensitivity respect to the price is defined as elasticity [50]. 

0

0

Pr PE = .
PrP



 
(1) 
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The customers’ demand is shifted or reduced when the electricity price increases, i.e., at the on-peak periods. To 

encounter the price mutability, loads respond in two ways: single-period loads and multi-period loads. The load that 

cannot shift to other periods is a single period load. These loads should be connected or disconnected while the 

electricity price is changed. These loads are sensitive to a single-period and known as self-elasticity that the value of 

elasticity is negative. Because when the price increases during a period, the demand at the same period decreases and 

vice versa. However, the loads that adapt themselves to changing the price and to shift from on-peak period to off-peak 

or mid-period are known as multi-period loads. These loads are sensitive to a multi-period and known as cross-elasticity 

in which the value of elasticity is positive. Insomuch when prices increase over a period, demand increases at other 

periods. These elasticities are shown in Eq. (2) [50]. 

0 0

0 0

0 0

0 0

'
'

' '

Pr ( ) ( ) ( )( , ) . 0
( ) Pr( ) Pr ( )

Pr ( ) ( ) ( )( , ) . 0
( ) Pr( ) Pr ( )

t P t P tE t t
P t t t

t P t P tE t t
P t t t


 




 



  (2) 

Based on Fig. 1, DR programs are divided into two main groups involving price-based DR programs and incentive-

based DR programs. The price-based DR programs are voluntary programs; however, the incentive-based DR programs 

include voluntary programs, mandatory programs, and market clearing programs. So, for load economic model we will 

have Eq. (3) [50]: 

0 0
0

0 0' '

' ' ' '24
'

'
t =1,t t

Pr(t) - Pr (t) + A(t) + PEN(t) Pr(t ) - Pr (t ) + A(t ) + PEN(t )P(t) = P (t)× 1+ E(t, t)× + ×E(t, t )
Pr (t) Pr (t )

  
 
  

   (3) 

Eq. (3) calculates how much the customers’ consumption will be changed to obtain the maximum profit. As regards the 

SDISCO that is responsible for implementing DR programs, the contribution of customers in these programs may bring 

some additional costs as presented in Eq. (4). 

      0 con 0DRC = A(t)× P (t) - P(t) - PEN(t)× P (t) - P (t) - P(t)   (4) 

 
Fig.1. The category of DR programs 

3. Problem Formulation 

Urban PL is a suitable place for parking the EVs because of easy access, convenient spaces and long-term parking the 

EVs. However, it should be noted that urban PL usually has a high capacity, and a large number of EVs can be parked 

at the same time. It means that at any time, a large amount of energy are required to charge EVs which should be 

carefully monitored and controlled. EVs can be used as a load/generator and receive/inject the electrical energy from/to 

the SDISCO. It leads to some complexity in the optimization problem. Also, with the controlled charging and smart 

charging/discharging of EVs and due to V2G ability, SDISCO can solve this problem for reducing the peak load and 

Demand Response (DR) 
Programs 

1. Time of use (voluntary) 
2. Real time pricing (voluntary) 
3. Critical peak pricing (voluntary) 

 

1. Emergency DR program (voluntary) 
2. Direct load control (voluntary) 
3. Interruptible /curtailable programs (mandatory) 
4. Capacity market program (mandatory) 
5. Demand bidding (market clearing) 
6. Ancillary services market (market clearing) 

Price-based DR 
programs 

Incentive-based DR 
programs 
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providing ancillary services, etc. Therefore, the proper operation of SDISCO can be achieved if an energy management 

system is developed with the ability to control and effectively manage the process of charging/discharging of EVs. The 

SDISCO, PL owners as aggregators, and EV owners are the main players of the operational scheduling of SDISCO. 

The PL owner wants to maximize his profits. EV owners expect to pay a lower cost for charging their EVs. The 

SDISCO is also interested in improving the distribution system operation by reducing losses, improving voltage profile, 

increasing reliability index, avoiding feeder or transformer congestion, etc. 

3.1. The Proposed Bi-level framework 

The proposed model in this paper is related to the operational scheduling of SDISCO that is the owner of PV and wind 

units. Besides, in this system, there is a private PL owner. When there are two decision makers in the optimization 

problem in which each decision affects their desired results, a bi-level model needs to be used. Fig. 2 shows a schematic 

of the proposed framework. The main block of the proposed framework includes the bi-level model in which the 

problem of each level is shown. The objective function of the upper-level maximizes the profit of SDISCO. 

Maximization of PL’s profit is the objective function of the lower-level considering the exchange of the energy with the 

SDISCO and EV owners. The operational scheduling of SDISCO, PV unit, wind unit and PL are the outputs of the 

framework. 

 
Fig.2. The proposed bi-level framework 

3.2.  The upper-level model 

The objective function in the upper-level is a single-objective model, i.e., the maximization of SDISCO’s profit. The 

decision variable at this level is the amount of the power purchased from the wholesale market and the power 

purchased/sold from/to PL (power exchange with PL). Also, power flow, RES generation, bus voltage and line current 

and power balance are considered as constraints. 

Forecasting input power of PL by 
PDF & Real data of SDISCO 

Upper-Level: SDISCO Operation 
Objective Function:  Maximization of the profits. 
Decision variables: power purchased from the wholesale market, power 
purchased /sold from/to PL (power exchange whit PL). 
Constraints: Linear Power flow, RES generation, Bus voltage and Line 
current, Power Balance. 

Operational Scheduling of SDISCO, 
PV, Wind, PL. 

Lower-Level: PL Operation 
Objective Function:  Maximization of the profits. 
Decision variables: power purchased/sold from/to SDISCO (power 
exchange whit SDISCO), power purchased /sold from/to EVs (power 
exchange whit EVs), SOC of each EV. 
Constraints: SOC (min, max, desired), charging/discharging power. 

Feedback 
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3.2.1. Objective Function 

For the customers’ orientation and satisfaction, SDISCO should supply the demand including the charging of EVs. So, 

the objective function is composed of as follows: 

1. The income from the selling the energy to PL.  

This term is the income from the selling energy to the PL for charging the EVs. The income is presented in Eq. (5). It is 

noted that a part of the power for charging the EVs is supplied by RES generation. 

24

1 , , t
1 1 1

×Δt
Ns N

ch ch
s n t s

s n t

F P
  

      
(5) 

2. The income from the selling the energy to the customers. 

This term is the income from the selling energy to residential, industrial and commercial loads. This income is 

formulated in Eq. (6). RES generation is also used for supplying the customers’ demand. 

24
L,DR L,DR

2 b,t t
2 1

P × ×Δt
Nb

b t

F
 

    
(6) 

3. The cost of providing energy from the wholesale market. 

SDISCO purchases energy from the wholesale market to supply various customers such as industrial, commercial and 

residential load and also PL for charging the EVs. This cost is expressed in Eq. (7). 

24
2 Wh2G

3 , t
1 1

×Δt
NSb

W h G
Sb t

Sb t

F P
 

    
(7) 

4. The cost of energy purchased from PL. 

This term is the PL’s bidding cost to the energy market, and it is resulted from discharging the  

EVs at the on-peak period. This energy is used for supplying the customers. This cost is given by Eq. (8). 

24

4 , , t
1 1 1

×Δt
Ns N

dch dch
s n t s

s n t

F P
  

      
 

(8) 

5. The cost of implementation of price-based and incentive-based DR programs. 

As previously mentioned, with the implementation of DR programs, SDISCO incurs some costs that can be calculated 

by Eq. (9). 

    
Nb 24

L L,DR con L L,DR
5 t b,t b,t t b,t b,t b,t

b=2 t =1

F = A P - P - PEN P - P + P t    
(9) 

It is noted that the time interval in this paper is 1 hour (Δt=1). After the description of income and cost, the objective 

function is presented in Eq. (10). 

1 1 2 3 4 5  ( ) ( )    MAX OF F F F F F  (10) 

3.2.2. Constraints 

In the following, the constraints related to the objective function are defined. 

 RES generation  
The wind and PV generation in each scenario must be limited to the minimum and maximum generation. Eqs.  

(11) - (12) describe these constraints. 
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max,
,,0 WW
stb PP   (11) 

max,
,,0 PVPV
stb PP   (12) 

 Bus voltage and Line current  
The optimal power flow must satisfy the limitations assigned by the constraints of bus voltages and branch flows. 

According to Eqs. (13)-(14), the voltage of each bus and the current of each branch should be in the range. The 

maximum and minimum values of the voltage in each bus are 1.05 and 0.95 p.u., respectively. Also, because of the line 

thermal capacity, the maximum value of each branch current is limited by the conductor specifications, i.e., resistance 

and reactance of the branch. 

,max
, ,

b
b t sI I   (13) 

maxmin
, ,0.95 1.05b t sV V V     (14) 

 Linear power flow 
According to this constraint, the generated total energy or power must be equal to the consumed total power or energy. 

In this paper, the linear power flow is adopted from [49]. This power flow model can be only used for radial distribution 

networks. For this purpose, the term is considered as a block to avoid nonlinearities. Note that the EVs in the PL act as 

a source at the on-peak period and as a load at the off-peak or mid-peak period. The active and reactive power balances 

in this power flow are shown in Eqs. (15) - (16): 

 
 

' ' ' '
'

' '
'

2 PV W
, , , , , , , , , , , , , , , , , , ,

N N

L,DR
,, , , , , ,

2

0           t,s

W h G Trans dch ch
Sb t b t s b t s n t s n t s b b t s b b t s b b b b t s

b

b tb b t s b b t s
b

P P P P P P P R I

P P P

 

 

          

    

  


  

(15) 

   ' ' ' ' ' '
' '

2 L,DR
, , ,, , , , , , , , , , , , , , , ,

2 0                 t,sW h G
S b t s b tb b t s b b t s b b b b t s b b t s b b t s

b b

Q Q Q X I Q Q Q                (16) 

Note that I2 refers to an auxiliary variable that linearly represents the squared current flow I2 in a given branch. At most 

one of these two positive auxiliary variables, i.e., Pb,b,t,s and Qb,b,t,s can be different from zero at a time. This condition is 

again implicitly enforced by optimality. Moreover, constraints (17)-(18) limit these variables to the maximum apparent 

power for the sake of completeness. 

  'max, ,
' ', , , , , ,

0 b bR ated

b b t s b b t s
P P V I       (17) 

  'max , ,
' ', , , , , ,

0 b bR ated

b b t s b b t s
Q Q V I      (18) 

Eq. (19) represents the balancing of the voltage between two nodes. It should be noted that V2 in Eq. (19) is an auxiliary 

variable that represents the squared voltage relations. 

   ' ' ' ' ' ' ' ' '
2

, , , , , , , , , , , , , , , , , , , , , ,
2 2 2 2 2 0b t s b t s b b b b t s b b b b t s b b t s b b b b t s b b t s

V V Z I R P P X Q Q            (19 ) 

Eq. (20) is employed to linearize the active and reactive power flows that appear in the apparent power expression. 

   ' ' ' ' ', , , , , , , , , , , , ,
2. 2 2 1 2 1R ated

b b b t s b b b b f t s b b b b f t s
f f

V I f S P f S Q                 (20 ) 

For piecewise linearization of the flow constraints Eqs. (21) -(25) are represented. The number of blocks required to 

linearize the quadratic curve is set to five according to [51], which strikes the right balance between the accuracy and 

computational requirements. Further descriptions, justifications, and derivations of the network model used in this paper 

can be found in [52]. 
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' ' ', , , , , , , , , ,b b t s b b t s b b f t s
f

P P P      (21) 

' ' ', , , , , , , , , ,b b t s b b t s b b f t s
f

Q Q Q     (22) 

' ', , , , ,
0

b b f t s b b
P S      (23) 

' ', , , , ,
0

b b f t s b b
Q S      (24) 

'max, ,

',

b bRated

b b

V IS
F


    
(25) 

 Power balance 
Based on above descriptions, the power produced by the traditional power plant and RES must be equal to the power 

consumption by consumers. Also, PL acts as a source at the on-peak period and as a load at the off-peak or mid-peak 

period. Hence, the power balance is described in Eq. (26). 

2 L,DR
, , , , , , , , , , ,

N N

W h G Trans W PV dch Loss ch
Sb t b t s b t s n t s b t t s n t sP P P P P P P          (26 ) 

3.3. The lower-level model 
The objective function in this level is the maximization of the PL owner’s profit. The decision variable is the power 

purchased/sold from/to SDISCO (power exchange with SDISCO), power purchased/sold from/to EV owners and SOC 

of EVs. Also, the SOC (minimum/maximum/desired) and charging/discharging rate are all considered as constraints. 

3.3.1. Objective Function 

The PL can participate in the energy markets based on the number of EVs in PL. The PL owner can gain income from 

the selling power to energy markets and EV owners. Also, the cost of PL involves energy purchased from the SDISCO 

and RES and EV owners. So, the objective function is composed of as follows: 

1. The income from the selling the energy to EV owners.  

EV owners need to charge their batteries, so this term denotes the income from charging the EVs while parked at the 

PL. This income is presented by Eq. (27).  

24
2

1 , ,
1 1 1

×Δt
Ns N

ch PL EV
s n t s t

s n t

F P
  

      
 

(27) 

2. The income from the selling the energy to the SDISCO. 

This term is the income from the PL bids to the energy market that is resulted from discharging the  

EVs at the on-peak period. This income is described in Eq. (28). 

24

2 , ,
1 1 1

×Δt
Ns N

dch dch
s n t s t

s n t

F P
  

     
 

(28) 

3. The cost of energy purchased from the SDISCO and RES by PL owner.  

This cost is the energy purchased from the SDISCO and RES for charging EVs at the off-peak and mid-peak periods. 

This cost is given by Eq. (29). 

24

3 , , t
1 1 1

×Δt
Ns N

ch ch
s n t s

s n t

F P
  

     
 

(29) 
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4. The cost of payment to EV owners because of participation in the V2G interaction.  

For the participation of EV owners in the V2G mode, it is necessary to encourage them. So, PL owner must have a 

contract with EV owners. Therefore, the PL owner pays a part of income (that is obtaining from selling energy to the 

energy markets) to EV owners. This cost is presented in Eq. (30). Suppose that the cost of payments to EV owners, i.e., 

PrEV2PL is 70% of the received profit due to the selling of PL energy to SDISCO. 

24

4 , ,
1 1 1

0.7 ×Δt
Ns N

dch dch
s n t s t

s n t

F P
  

       
 

(30) 

5. The cost of battery depreciation. 

The depth of discharge affects the life of EVs’ battery [53]. This term is computed by the amount of power exchange 

between EVs and SDISCO. This cost is paid to EV owners and can be formulated as Eq. (31). 

24

5 , ,
1 1 1

×Δt
Ns N

dch cd
s n t s

s n t

F P C
  

     
 

(31) 

After the description of income and cost, the objectives function in this part is described by Eq. (32). 

2 1 2 3 4 5  ( ) ( )    MAX OF F F F F F   (32) 

3.3.2. Constraints 

In this section, constraints related to the charging/discharging of EVs are expressed. Based on Eq. (33), the total SOC of 

the EVs cannot exceed the minimum and maximum. According to Eqs. (34) – (35), the SOC of each EV at each hour 

appertains many factors including the remained SOC of the EV from the previous hour, the amount of energy that 

exchanged with the SDISCO and PL, charge/discharge efficiency, and the initial SOC of the EV [53]. The amount of 

power purchased by each EV from the PL is limited to its maximum rate. Also, the amount of power that each EV can 

sell to the PL is limited to its maximum rate. These constraints are shown in Eqs. (36) – (37), respectively. Finally, 

based on Eq. (38), the management of charging/discharging of EVs should be accurate in a way that in the departure 

time of PL, the SOC of EVs reaches the desired SOC. Also, it is noted that the EVs’ charge and discharge are not 

simultaneous. 

min max
, ,n n t s nSOC SOC SOC   n,t,s  1 2

n,t,s n,t,s,       (33) 

  , ,
, , , 1, , ,

ch

dch

dch
n t sch

n t s n t s n t s

P t
SOC SOC P t

 
       

  
n,t t ,sarv   3

n,t t ,sarv  (34) 

  , ,arv
, , n,t,s , ,SOC ch

dch

dch
n t sch

n t s n t s

P t
SOC P t

  
       

  
n,t ,sarv  4

n,t ,sarv  (35) 

max
, ,0 ch

n t s nP P    n,t,s  5 6
n,t,s n,t,s,      (36) 

max
, ,0 dch

n t s nP P   n,t,s  7 8
n,t,s n,t,s,      (37) 

dep
, , nSOCn t sSOC   n,t ,sdep  9

n,t ,sdep  (38) 

3.4. Reformulation of bi-level as a mathematical problem with equilibrium constraints 
By using two methods, a bi-level model can be converted into a single-level model. Both of these methods are 

equivalent and can be used instead of each other. One of these methods is using the dual of optimization model and 

formation of related constraints, as well as strong duality condition, which can form non-linear or linear constraints, 
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depending on the type of model. Another method is using the KKT condition, which consists of a series of equal and 

new inequality constraints, which are inherently non-linear. The reason of non-linearity of this method is the presence 

of complementary constraints, 0 0a b   . These series of constraints do not exist in the first method, and their 

existence is as strong as the dual constraint [36, 54, 55]. 

In the proposed model, since the lower-level is linear and convex, KKT method is used for converting the bi-level 

model to single-level model. In fact, by implementing the KKT method, decision-making variables in the upper-level 

are considered as a parameter in the lower-level. Thus, the lower-level and upper-levels is linked together.  

Of course, due to the existence of complementary constraints, the model is nonlinear, which is easily linearized by 

Fortuny-Amat and McCarl linearization method. After the problem becomes a single-level and linear, a simple 

optimization problem is obtained by a series of constraints (that it is called the mathematical program with equilibrium 

constraints (MPEC) that can be solved by a mathematical solver).  

Fig. 3 schematically shows such a problem for the proposed model. Therefore, the operational scheduling model 

discussed in the previous section has become a solvable single-level problem using former constraints and a series of 

new constraints. This new constraint has the objective function and constraints of the lower level problem. 

MPEC 
Operational scheduling of SDISCO 

maximization of the profit of SDISCO (upper level objective function) 
Subject to 

Upper level constraints 
Lower level constraints 

Optimization constraints of KKT 
Complementarily constraints of KKT 

Fig. 3. The framework of the proposed model as MPEC 

As stated, optimization constraints and complementary constraints KKT are necessary for obtaining the MPEC 

problem. The KKT conditions are explained in Appendix A. 

3.5. The linear single-level model 

According to descriptions in pervious section and Appendix A, the linear single-level model of bi-level model is 

formulated by Eq. (39). 

    

    

, , 2 2
, ,24

2 1

1 , ,
, , , , , , , , , ,

2

24

, , , ,
1 1 1

Maximize
Nb Nsb

L DR L DR Wh G W h G
b t t Sb t t

b Sb

Nb
t L L DR con L L DR

t b t s b t s t b t s b t s b t s
b

Ns N
ch ch dch dch

s n t s t n t s t
s n t

P P

A P P PEN P P P

P P

 

  

 





  

 
   

 
 
     
 

   

 




 

  

(39) 

Subject to: 

(11)-(26) 

(33)-(38) 

 (A11)- (A13) 

 (A21) - (A26)  
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3.6. Centralized Model 

In the centralized model, SDISCO is responsible for the operational scheduling of PLs. The objective function in this 

case is similar to the objective function of the upper level of the bi-level model. The only difference is that, the SDISCO 

pays the cost of battery depreciation to EV, owners. The centralized model is formulated by Eq. (40). 

    

      

, , 2 2
, ,24

2 1

1 , ,
, , , , , , , , , ,

2

24

, , , , , ,
1 1 1

Maximize
Nb Nsb

L DR L DR Wh G W h G
b t t Sb t t

b Sb

Nb
t L L DR con L L DR

t b t s b t s t b t s b t s b t s
b

Ns N
ch ch dch dch dch cd

s n t s t n t s t n t s
s n t

P P

A P P PEN P P P

P P P C

 

  

 





  

 
   

 
 
     
 

     

 




 

 

(40) 

Subject to 

(11)-(26) 

(33)-(38) 

3.7. Problem solving process 

Since this problem has different uncertainties, stochastic programming is used for solving the objective function. The 

following five uncertainties are considered in this paper: 

1. Wind Generating Units Uncertainty 

 Because of intermittent wind speed, many experiments prove that stochastic wind speed in many regions roughly 

pursues the Weibull PDF. The output of wind turbine can be obtained through the linear relationship between wind 

speed and wind turbine output [38]. 

2. Solar Generating Sources Uncertainty 

Predominantly illumination intensity affects the output of PV. In [57], it is shown that distribution of solar irradiance is 

characterized by using Weibull PDF. The output of PV can be obtained through the linear relationship between 

irradiance and photovoltaic array output.  

3. Uncertainty of Arrival Time of EVs to PL  

4. Uncertainty of Departure Time of EVs from PL  

5. Uncertainty of Initial SOC of EVs  

Obtaining sufficient historical data for determining the exact PDF of the uncertainty in the estimation of EVs, i.e., initial 

SOC, duration of presence of EVs in PL (departure time minus arrival time) is very difficult. However, most studies 

have reasonably suggested that a truncated Gaussian distribution PDF can be employed [49]. 

Also, a scenario tree of all uncertainty is generated with Monte Carlo method. Then, the scenarios are reduced with the 

concept of Kantorovich distance (K-distance). The initial number of scenarios is 1000. Then, by using Kantorovich 

distance approach, the number of scenarios is reduced to 8. In fact, the main problem is solved by considering 8 

scenarios. 

There are the binary and integer decision variables in the linear single-level model. Therefore, with considering all the 

relations, the proposed model is Mixed-Integer Linear Programming (MILP) problem. So, in this paper, the simulations 

are carried out through CPLEX solver in GAMS.  
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The simulations have been implemented in a laptop with Core i7 up to 3.5 GHz CPU, 12 GB RAM (DDR4), and 4 MB 

Cash. The flowchart of stochastic programming-based operational scheduling of SDISCO is shown in Fig. 4.  

 
Fig. 4. Process solving of operational scheduling of SDISCO 

 
4. Numerical results 

A standard IEEE 15-bus distribution system is considered as the case study over a 24-h period. The data of this test 

system shown in Fig. 5 are extracted from [58]. The required specification of wind and PV units is summarized in Table 

2. The modified details of EVs probability distributions are expressed in Table 3. Also, the PL is installed on bus 11. It 

is assumed that the capacity of PL is 100 EVs. With considering the data of Table 3, the number of EVs that enter the 

PL and the number of EVs that depart from the PL in eight scenarios are shown in Tables 4 and 5, respectively. Since 

we assumed PL capacity is 100 EVs, from 10:00 to 17:00, 100 EVs are parked in PL. Also, the amount of arrival SOC 

of EVs in one of the scenarios is shown in Fig 6.  

The power factor of customers’ demand is 0.95 lagging. Also, the wind and PV units are assumed to have a fixed power 

factor equal to 1. The charge and discharge efficiencies of EVs are assumed 90% and 95%, respectively. The battery 

capacity is 50 kWh, and the rate of charging/discharging is 10 kW per hour. The maximum and minimum SOC are 7.5 

and 45 kWh, respectively. The price of degradation cost of V2G is 0.03 $/kWh [59]. The price elasticity of the demand 

is considered as listed in Table 6. In order to study the operational scheduling, various price-based DR and  

incentive-based DR programs are considered, as presented in Table 7. The hourly prices of the energy market in RTP 

program are extracted from [60]. 

Calculation of each EV energy with considering desired 
SOC, charging/discharging rate and battery capacity for 

Grid-to-PL or PL-to-Grid mode 

Output power of wind unit 
with Weibull PDF 

 

R and X of line, Load Data, 
etc. of SDISCO 

 

Uncertainty (with Monte Carlo simulation) 

 

Obtaining the optimized charging/discharging schedule for purchasing power from SDISCO (distribution system, PV, 
Wind) and selling power to SDISCO by solving the objective function 

Operational scheduling of SDISCO, PV, wind and PL 

Output power of PV unit 
with Weibull PDF 

 

Duration of presence of EVs 
in PL with truncated Gaussian 

distribution PDF 

Initial SOC of EVs with 
truncated Gaussian 

distribution PDF 

Real Data of SDISCO 

 Price-based DR and 
incentive- based DR 

implementation 
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Fig. 5. The 15-bus distribution system 

 

Table 2. Considered data for PV and wind unit [57] 

Wind unit 
Size (kW) bus shape index scale index cut-in speed (m/s) nominal speed (m/s) cut-out speed (m/s) 

200 12 2 6.5 4 14 25 
PV unit 

Size (kW) bus shape index scale index rated illumination intensity (w.m2) 
1000 200 12 1.8 5.5 

 

Table 3. The modified probability distribution of EVs [49] 

 Mean Standard Deviation Min Max 
Initial SOC (%) 50 25 30 60 
Arrival Time (h) 8 3 7 10 
Departure Time (h) 20 3 18 24 

 

Table 4. The number of entered EVs in arrival time in 8 scenarios 

Time (h) Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

7 43 58 50 53 45 53 54 46 

8 19 11 12 11 16 11 15 12 

9 14 6 12 7 9 10 10 17 

10 24 25 26 29 30 26 21 25 

 
Table 5. The number of departed EVs in departure time in 8 scenarios 

Time (h) Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7 Scenario 8 

18 38 34 27 41 28 34 32 26 

19 9 16 16 14 16 10 19 11 

20 14 13 15 12 11 14 4 12 

21 15 7 14 8 16 12 16 13 

22 9 12 12 11 8 14 13 17 

23 4 9 5 7 11 8 9 7 

24 11 9 11 7 10 8 7 14 
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Fig. 6. The SOC of 100 EVs in scenario 1 

 

Table 6. Self and cross elasticities [50] 
 On-peak Mid-peak Off-peak 

On-peak (10-14 and 19-21) -0.1 0.016 0.012 
Mid-peak (8-9 and 15-18) 0.016 -0.1 0.01 
Off-peak (1-7 and 22-24) 0.012 0.01 -0.1 

 

Table 7. Considered cases for price-based and incentive-based DR for operational scheduling of SDISCO 

Program 
Electricity Price for load, charging/discharging EVs 

($/MWh) 
Incentive value 

($/MWh) 
Penalty value 

($/MWh) 
Base case 171.125flat rate 0 0 

TOU 85.562,171.125, 342.25at off-peak, mid-peak and on-peak, respectively 0 0 
CPP 400 at 19,20,21 h and 171.125at other hours 0 0 
RTP As reference [56] 0 0 

TOU+ CPP 
85.562,171.125, 342.25at off-peak, mid-peak and on-peak, respectively 
and 400 at 19,20,21 h 

0 0 

EDRP 171.125flat rate 150 0 
CAP 171.125flat rate 150 50 

TOU+ EDRP 85.562,171.125, 342.25at off-peak, mid-peak and on-peak, respectively 150 0 
TOU+ CAP 85.562,171.125, 342.25at off-peak, mid-peak and on-peak. respectively 150 50 

 
From the SDISCO’s point of view, profit, network losses and peak load are the main indices in the operational 

scheduling. For investigation of the network operation in the presence of RES and EVs, four modes are considered as 

follows: 

1. SDISCO considering EVs with controlled charging, without wind and PV units, 

2. SDISCO considering EVs with controlled charging, with wind and PV units, 

3. SDISCO considering EVs with smart charging/discharging, without wind and PV units, 

4. SDISCO considering EVs with smart charging/discharging, with wind and PV units. 

Moreover, based on Table 6, eight programs have been considered for the comprehensive review of the impact of DR 

programs. In this paper, it is assumed that the total signed contracts for the participation of customers in DR programs 

are equal to 20% of the total customers’ demand during the scheduling period. In the base case, flat rate prices are 

implemented where no DR program is adopted.  

The results of the operational scheduling in 36 programs are listed in Table 8. Also, the result of comparing this data is 

shown in Table 9. As can be seen in the first program, the profits of SDISCO even by controlled charging of EVs are 

negative. Also, in the twenty-fifth program, despite the encouraging incentive for consumers to reduce their 
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consumption, the SDISCO still faces a negative profit. Therefore, it is very cost-effective for SDISCO to use RES, 

appropriate DR programs and smart charging/discharging mode of EVs. 

Table 8. Technical comparison of the programs 

Program no. Programs Mode Losses (KW) Profit ($) Peak (MW) 
1  

Flat rate 
1 644.585 -268.833 2.124 

2 2 554.352 596.782 1.975 
3 3 721.052 768.345 2.508 
4 4 627.111 1607.79 2.350 
5  

TOU 
1 635.544 842.128 2.228 

6 2 547.645 1705.71 2.078 
7 3 716.553 1353.08 2.523 
8 4 629.590 2211.62 2.369 
9  

RTP 
1 652.672 176.979 2.391 

10 2 560.204 1043.39 2.172 
11 3 652.672 176.979 2.391 
12 4 560.204 1043.39 2.172 
13  

CPP 
1 624.901 922.111 2.144 

14 2 537.979 1786.29 1.995 
15 3 701.695 1920.29 2.517 
16 4 614.403 2782.55 2.371 
17  

TOU + CPP 
1 631.516 1066.75 2.232 

18 2 543.742 1930.23 2.083 
19 3 714.244 1580.06 2.526 
20 4 627.320 2435.36 2.377 
21  

CAP 
1 602.499 210.618 2.169 

22 2 516.786 1074.04 2.020 
23 3 689.856 1217.12 2.547 
24 4 606.925 2097.33 2.404 
25  

EDRP 
1 611.989 -198.207 2.158 

26 2 525.995 665.457 2.009 
27 3 696.570 809.107 2.538 
28 4 610.610 1676.30 2.388 
29  

TOU + EDRP 
1 607.683 288.224 2.261 

30 2 522.463 1150.26 2.112 
31 3 701.404 811.542 2.568 
32 4 616.549 1666.58 2.417 
33  

TOU + CAP 
1 598.414 489.368 2.273 

34 2 515.864 1350.24 2.123 
35 3 697.240 1014.68 2.579 
36 4 607.641 1849.19 2.417 

Table 9. Results of comparing 36 programs 

 Profit point of view Losses point of view Peak point of view 
worst The best worst The best worst The best 

Mode 1   - - - - - 
Mode 2 - - -   -   
Mode 3 - -   -   - 
Mode 4 -   - - - - 
price-based DR RTP CPP RTP CPP TOU + CPP CPP 
incentive-based DR EPDR CAP EPDR CAP CAP EPDR 
price-based DR + 
incentive-based  DR 

TOU + EPDR TOU + CAP TOU + EPDR TOU + CAP TOU + CAP TOU + EPDR 

In the following, by using a technique for order preference by similarity to ideal solution (TOPSIS) [50], the best 

program is determined. In this method, first, the decision matrix is established. In this paper, the decision matrix 

includes m alternatives, i.e., price-based and incentive-based DR programs, the presence or absence of RES and the 

controlled charging or smart charging/discharging of EVs and k attribute, i.e., SDISCO’s Profit, losses, and peak. Then, 

the decision matrices must be normalized. By computing weighting based on entropy method, a weighted decision 

matrix is obtained. After that, ideal alternatives and anti-ideal alternatives have to be identified. Next, a Euclidean 

distance of each alternative and the ideal and anti-ideal solution is computed.  



19 
 

Finally, the value of relative closeness is calculated. After implementation of TOPSIS, the result of the prioritization is 

shown in Fig. 7. As it can be seen the program 16 (i.e., CPP with EVs with smart charging/discharging, with wind and 

PV units) has the highest priority and program 9 (i.e., RTP with EVs with controlled charging, without wind and PV 

units) has the lowest priority. It is noted that programs 1 and 25 due to the negative profits, and programs 11 and 12 

because of the similarity to programs 9 and 10 are eliminated. 

 

Fig.7. Priority of 36 programs based on TOPSIS method 

For more precisely of the bi-level model, the best program, i.e., program 16, is evaluated from different points of view. 

Also, it is compared with the centralized model in which the SDISCO is responsible for PL. In the centralized model, 

SDISCO is paid the total cost of power purchased from EVs and the cost of battery depreciation to EV owners. It is 

noted that the computation time for the proposed bi-level and centralized models in CCP program are 454.27 and 43.12 

seconds. The income of SDISCO in two models is shown in Table 10. As can be seen, in bi-level model, the income of 

SDISCO is about 50 dollars more than the centralized model. 

Table 10. The amount of the income and cost in bi-level and centralized models ($) 
Income Bi-level Model Centralized Model 
Selling of energy to EV owners 934.752  949.253 
Selling of energy to customers 6380.311  6380.311 
Cost 
Providing power from the wholesale market 4081.835  4052.503 
Energy purchased from EV owners for supplying customers’ demand 450.678  463.076  
Battery depreciation 0 81.183  
Implementation of price-based DR and incentive-based DR programs 0 0  
Profit 
Income minus Cost 2782.550  2732.802  

The amount of the customers’ demand with/without implementation of the DR program in each model is equal and 

shown in Fig. 8. Based on Fig. 8, at the on-peak periods, the amount of load is reduced, and this amount is transmitted 

to the off-peak and mid-peak periods. So, customers’ demand somewhat increases. As it can be seen, the unexpected 

peak load is avoided. In fact, by the implementation of CPP program, reduction of power consumption of customer’s 

demand is about 756.7 kW. The initial customers’ demand was 32170.1 kW, which is reduced to  

31413.4 kW. 

For comparing these models, the amount of power purchased from the wholesale market and the customers’ demand are 

shown in Fig. 9. Like [61], increasing the total load at the mid-peak and off-peak periods and reducing at the on-peak 

periods occur with smart charging/discharging of EVs. Also, like [62] the peak electricity consumption of SDISCO 

occurs during the early evening periods, i.e., 17:00 and 18:00.  
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Table 11 indicates the detailed analyses of power purchased from the wholesale market. Indeed, the amount of power 

purchased from the wholesale network in bi-level and centralized model is 30863.8 and 30879.54 kW, respectively, that 

25831.17 and 25722.09 kW are used for feeding the customers’ demand. Table 12 indicates the amount of power 

provided by the SDISCO and RES in two models.  

Also, Fig. 10 shows the difference of power purchased from the wholesale market in the bi-level and the centralized 

models. As can be seen, in charging time (mid-peak and off-peak) and discharging time (on-peak time), lower and 

higher power is respectively purchased by SDISCO in the bi-level model compared to the centralized model. In fact, in 

the bi-level model, 15.74 kW less than the centralized model is purchased. 

 
Fig. 8. Customers’ demand with/without implementation of the DR program in two models 

 

 
Fig. 9. Power purchased from the wholesale market in two models and customers’ demand 
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Table 11. Result of power purchased from the wholesale market 

Hour Results Cause 

1-6 Power purchased is about the amount of load. A part of load is supplied by RES. The absence of EVs 

7-9 Power purchased is increased. A part of load is supplied by RES. The presence of EVs  
(charging time) 

10-12 
Power purchased is severely decreased. A part of load is supplied by RES and  
PL-to-Grid programs. 

The presence of EVs   
(discharging time) 

13 Power purchased is about the amount of load. A part of load is supplied by RES. 
The energy price in this hour is 
lower than the (10-12) hours 

14 
Power purchased is severely decreased. A part of load is supplied by RES and  
PL-to-Grid programs. 

The presence of EVs  
(discharging time) 

15-18 Power purchased is dramatically increased. A part of load is supplied by RES. 
Discharging in previous period for 
participation in PL-to-Grid mode 

19-21 Power purchased is decreased. A part of load is supplied by RES and PL-to-Grid 
programs. 

The presence of EVs  
(discharging time) 

22 Power purchased is increased. A part of load is supplied by RES. Discharging in previous period for 
participation in PL-to-Grid mode 

23-24 Power purchased is about the amount of load. A part of load is supplied by RES. The absence of EVs 

 

Table 12. The amount of power provided by the SDISCO and RES for supplying customers’ demand and Relative quantities 

 Bi-level model (kW) Centralized model (kW) Relative quantities (%) 
SDISCO to load 25831.17  25722.09  0.424 
Wind unit to load 2362.67 2454.25 -3.731 
PV unit to Load 651.92  593.47  9.848 

 

 
Fig. 10. Difference of power purchased from the wholesale market in the bi-level model and the centralized model 

Fig. 11 shows the smart charging scheduling of 100 EVs in PL in two models. Based on Fig. 11, the total amount of 

power for charging of EVs in the bi-level and centralized models is 5462.39 and 5547.13 kW, respectively. The highest 

amount in the bi-level and centralized models is 991.67 and 1000 kW, respectively. Because in the centralized model, 

SDISCO has also the responsibility of the PL operation, SDISCO tries to selling more energy for gaining more profit. 

But in the bi-level model, the private PL owner's decision affects the charging and discharging of EVs, so less power is 

purchased from the SDISCO. This peak of charging EVs occurs at 18:00, unlike [63] where the peak (because of only 

charging of EVs) happens at 7:00. 

Also, Fig. 12 shows the smart discharging scheduling of EVs. Based on Fig. 12, the total amount of power for 

discharging of EVs in the bi-level and centralized models is 2633.61 and 2706.07 kW, respectively. Since in the bi-level 

model, less power is purchased for charging the EVs, less discharging power is available for selling to SDISCO.  
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The highest amount in the bi-level and centralized models is 734.63 and 751.48 kW at 12:00, respectively. Since the 

energy price of the wholesale market at 13:00 is lower than the one in on-peak periods and due to the limitation of 

discharging power of EVs, the SDISCO tries to purchase the discharging power in other time of on-peak periods when 

the energy price of the wholesale is very high. In fact, at 13:00, SDISCO uses the network and RES generation for 

supplying customers’ demand. Table 13 shows the amount of power provided by the SDISCO and RES. 

 

Fig. 11. Charging power of EVs in two models 

 

Fig. 12. Discharging power of EVs (back to SDISCO) in two models 

Table 13. Power charging of EVs by the SDISCO and RES in two models and relative quantities  

 Bi-level model (kW) Centralized model (kW) Relative quantities (%) 
Power charging of EVs by SDISCO 4592.23  4672.31  -1.713 
Power charging of EVs by wind unit 616.07  550.47 11.917 
Power charging of EVs by PV unit 254.09  324.35  -21.661 

The SDISCO losses in two models are also shown in Fig. 13. The total losses of SDISCO are 614.40 and 617.86 kW, in 

the bi-level and centralized models, respectively. Because of charging/discharging of EVs, increasing/decreasing losses 

happens, respectively. Table 14 shows the contribution of each source for supplying of losses. In the bi-level model, 

less power is sold to PL for charging of EVs, so SDISCO purchases less power from the wholesale market. Therefore, 

the network losses are reduced. 
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Fig. 13. Losses of SDISCO in two models 

Table 14. Network losses in the bi-level and centralized models and Relative quantities 

 Bi-level model (kW) Centralized model (kW) Relative quantities (%) 
SDISCO for supplying losses 440.4  485.137  -9.221 
Wind unit for supplying losses 89.41 63.429  40.960 
PV unit for supplying losses 22.67  10.845 109.036 
Discharging power of EVs for supplying losses 61.93  58.449  5.955 

Also, Fig. 14 illustrates the operational scheduling of RES and SDISCO in the bi-level model. According to Fig. 14 and 

its comparison with the customers’ demand (i.e., Fig. 8), it can be seen that at the time of charging the EVs, the overall 

load of the SDISCO increases, and the amount of power purchased from the wholesale network is higher. Also, at the  

on-peak periods, the purchasing of power from the wholesale network is significantly reduced, due to the power 

injection of EVs into the SDISCO for supplying customers’ demand. Also, the generation of a wind unit has a larger 

share in supplying customers’ demand and charging of EVs in comparison to PV generation. 

 

Fig. 14. Operational scheduling of SDISCO, wind and PV unit during the 24-hour period 

Finally, the impact of uncertainty on the operational scheduling of SDISCO in the bi-level model considering CPP 

program is evaluated. If the probabilistic behavior of parameters (i.e., uncertainties) is not considered, the objective 

function of the model is deterministic. In this situation, there is only one scenario with probability 1.  
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So, for investigation of the effect of uncertainties on operational scheduling, the deterministic bi-level model with one 

scenario is compared with the stochastic bi-level model with a set of scenarios, i.e., the above-presented results. Table 

15 shows the result of deterministic and stochastic models. By comparing these two models and considering that the 

amount of the customers’ demand is constant in two models, it is clear that the PV and wind units have a larger 

contribution in the deterministic model, in supplying the customers’ demand, charging the EVs as well as network 

losses. Also, EVs participate more in PL-to-Grid programs, and SDISCO buys less energy from the wholesale market in 

the deterministic model. Therefore, in the deterministic model, SDISCO gains more profit. 

Table 15. The result of stochastic and deterministic models 

Description Stochastic bi-level model Deterministic bi-level model 
SDISCO for supplying load (kW) 25831.17 25340.09 
Wind unit for supplying load (kW)  2362.67 2455.81 
PV unit for supplying Load (kW) 651.92 880.97 
Power charging of EVs by SDISCO (kW) 4952.23 4810.13 
Power charging of EVs by Wind unit (kW) 616.07 668.46 
Power charging of EVs by PV unit (kW) 254.09 325.22 
SDISCO for supplying losses (kW) 440.4 394.14 
Wind unit for supplying losses (kW) 89.41 116.25 
PV unit for supplying losses (kW) 22.67 73.70 
Discharging power of EVs for supplying losses (kW) 61.93 36.82 
Total discharging power of EVs (kW) 2633.61 2777.38 
Selling the energy to EV owners ($) 934.75 976.07 
Selling the energy to load ($) 6380.31 6380.31 
Providing power from wholesale market ($) 4081.83 3880.70 
Energy purchased from EV owners for supplying customer ($) 450.68 475.28 
Profit of SDISCO ($) 2782.55 3000.4 

 

4.1. Sensitivity Analysis 

Sensitivity analysis is performed by changing the number of EVs, the rated power generation of PV and wind units and 
participating customers in DR programs to investigate their impacts on the operational scheduling of SDISCO. Table 16 
shows the results of this analysis. The results of this sensitivity are as follows: 

- In each case, the bi-level model has a better result than the centralized model. 
- With the increase of all factors, the profit of SDISCO in two models increases. 
- By increasing the participation of consumers in the DR program, the energy purchased from the wholesale 

market is reduced. In this situation, if the rated power of RES is low, the EVs more participate in a smart 
charging/discharging schedule, and SDISCO gains more profit. But, if the rated power of RES is high, the 
SDISCO prefers to use these resources to supply the customer and charging the EVs, therefore less 
charging/discharging schedule occurs, and SDISCO achieves less profit.   

- By increasing the rated power of the RES, power purchased from the wholesale market dramatically decreases 
and SDISCO gains more profit. Therefore, it seems to be necessary using RES (in spite of the uncertainty) 
alongside traditional power plants.  

- By comparing the first and second cases, the losses increase by increasing the number of EVs due to the high 
power consumption which is purchased from the wholesale market. While, by comparing third and fourth 
cases, the network losses are reduced because of the high rated power of PV and wind units. In fact, the 
SDISCO uses RES and V2G program instead of the wholesale market to supply the customers, especially at 
the on-peak period. As a result, SDISCO buys less energy from the wholesale market. Fig. 15 illustrates this 
issue. Based on Fig. 15, the SDISCO at the first on-peak period (except at 13:00) does not buy the energy from 
the wholesale market. 
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Table 16. Sensitivity analysis of two models 
EVs 
no. 

Energy purchased from 
wholesale market (kWh) 

Loss  
(kW) 

Profit  
($) 

Charging power  
of EVs (kW) 

Discharging power 
 of EVs (kW) 

 Bi-level Centralized Bi-level Centralized Bi-level Centralized Bi-level Centralized Bi-level Centralized 
Case 1: participating customers in DR programs: 20% , Rated power of PV and wind: 200 kW 
50 29363.18 29367.70 530.09 530.70 2179.325 2144.838 2768.62 2795.59 1339.54 1362.60 

100 30863.80 30879.54 614.41 617.86 2782.550 2732.802 5462.40 5547.13 2633.62 2706.07 
150 32586.63 32593.75 738.34 740.33 3311.110 3203.046 8278.60 8313.99 4034.08 4064.35 
Case 2: participating customers in DR programs: 30% , Rated power of PV and wind: 200 kW 
50 28980.73 28984.13 524.04 524.51 2228.871 2192.727 2775.39 2795.59 1345.32 1362.60 

100 30497.40 30497.40 613.09 613.10 2861.194 2780.012 5547.13 5547.13 2706.06 2706.07 
150 32180.84 32210.03 727.64 735.56 3314.173 3248.136 8156.48 8303.21 3929.67 4055.12 
Case 3: participating customers in DR programs: 20% , Rated power of PV and wind: 1 MW 
50 14132.26 14132.73 1424.65 1424.72 5045.140 5018.267 2273.70 2276.52 916.38 918.80 

100 15163.17 15165.67 1101.115 1101.48 5431.491 5390.460 4082.79 4097.52 1454.06 1466.65 
150 17181.70 17182.87 941.13 941.92 5514.045 5462.596 5843.87 5846.49 1952.39 1954.62 
Case 4: participating customers in DR programs: 30% , Rated power of PV and wind: 1 MW 
50 13854.15 13855.33 1531.99 1532.13 5018.307 4994.070 2218.02 2225.26 868.78 874.97 

100 14833.27 14836.76 1161.51 1161.99 5387.285 5350.936 3993.75 4014.44 1377.93 1395.61 
150 16838.72 16842.12 994.63 995.56 5469.593 5419.423 5712.11 5729.25 1839.73 1854.38 

 

 
Fig. 15. Energy purchased from the wholesale market in two models in case 4 with 150 EVs 

For investigation of the effect of battery capacity on the profit of SDISCO, this profit is evaluated in case 3 with 

changing the battery capacity. Table 17 shows that with low capacity battery, the profit is reduced. 

Table 17. Profit of SDISCO in case 3 of sensitivity analyses with changing battery capacity 

EVs No. Model Profit ($) 
50 kWh 48 kWh 32 kWh 24 kWh 

50 Bi-level 5045.140 5025.729      4874.648      4787.990      
Centralized 5018.267 5001.458      4855.409      4773.881      

100 Bi-level 5431.491 5387.333      5217.003      5078.100      
Centralized 5390.460 5370.321      5191.087      5064.097      

150 Bi-level 5514.045 5453.545      5318.705      5123.030      
Centralized 5462.596 5435.971      5270.744      5097.424      

Finally, a sensitivity analysis is carried out by changing the payment to EV owners. Table 18 shows the profit of 

SDISCO in the bi-level model. Based on Table 18, when the payment to EV owners decreases, PL owner sells more 

energy to SDISCO. So, SDISCO buys less energy from the wholesale market, and consequently, SDISCO earns more 

profit.  
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Table 18. Profit of SDISCO in case 1 of sensitivity analyses with 100 EVs 

The cost of payment to EV owners Profit ($) 
50% 2873.989 
60% 2829.525      
70% 2782.550 
80% 2741.321      

5. Conclusions 

In this paper, a new bi-level model with the cooperation of SDISCO and PL owner for operational scheduling of 

SDISCO was developed. In this model, the objective function of the upper-level problem was maximizing the profit of 

SDISCO, and the objective function of the lower-level problems was maximizing the profit of PL owner. For solving 

the model, KKT conditions and a method based on auxiliary binary variables and sufficiently large constants was used. 

RES and EVs uncertainty, several groups of price-based DR and incentive-based DR programs and also system 

constraints such as nodal voltage, linear power flow, and charging/discharging schedule of EVs were simultaneously 

considered. Also, the impacts of size of RESs and number of EVs on the performance of the SDISCO were 

investigated. The following remarks were obtained: 

- In each model, with mode 4 of CPP program, the SDISCO achieved most profit. 

- Because of the penetration of EVs, the SDISCO’s demand increased by 16.97% and 17.24% in the bi-level and 

centralized models, respectively. 

- In the bi-level and centralized models, 8.10% and 8.41% of customers’ demand was supplied by PL-to-Grid 

capability, respectively. 

- Since the price of the wholesale market at 13:00 was lower than the other times of on-peak periods, 

discharging the EVs could happen in none of both models.  

- Wind unit had a larger share in supplying customers’ demand and charging of EVs in comparison to PV unit. 

- In the deterministic bi-level model, since more power for charging the EVs were purchased, more power was 

sold to SDISCO  

- The numerical study verified the effectiveness of the bi-level model. In this model, SDISCO obtained more 

profit. Also, the results from the technical points of view, i.e., losses and peak, in the bi-level model were more 

appropriate. 

- With a larger size of RES and higher number of EVs, the SDISCO had a higher performance (in terms of 

profit, losses and peak), so that even at the on-peak period, SDISCO did not buy energy from the wholesale 

market. 

Also for the future work the following suggestions are proposed: 

- Presenting a three-level model in which the third-level belongs to the EVs owner. The objective function of the 

third-level can be the maximization of the benefit of EV owners or the minimization of the EV owners’ cost. 

- Modeling the behavior of the EV PL in the reserve market. 

- In the proposed bi-level model, two or more private PLs can be considered. Then, the cooperative behavior of 

the PLs and the SDISCO can be studied. 
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Appendix A) KKT conditions 

To use KKT method, Firstly, constraints of the lower-level are rewritten as greater than or equal to zero as Eqs. (A1) – 

(A9): 
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So, the Lagrangian function is described by Eq. (A10): 
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KKT conditions including three sets of equations are illustrated in Eqs. (A11) – (A13): 
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For constraints that are greater than or equal to zero, the complementary constraints are Eqs. (A14) -(A19).  
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As can be seen, the MPEC problem is non-linear problem because of complementary constraints. The existence of  

non-linear constraints creates the non-convex environment and non-linear solver that sticks at the local optima and 

cannot guarantee the finding of global optima, while the response of the linear model is global optima. So in these non-

linear problems, a method is used based on auxiliary binary variables and sufficiently large constants, i.e., Fortuny-

Amat and McCarl linearization method. So, linearization of 0 0a b    is Eq. (A20) [56]: 
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Therefore, for the linearization of complementary constraints, Eqs. (A21) – (A26) are achieved. 
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Also, Fig.16 is provided for showing the correlations between equations of the model. 
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Fig.16. Correlations between equations of the proposed model 


