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Abstract14
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In this paper, a new model is developed to optimize the performance of a plug-in Electric Vehicle (EV) aggregator in electricity markets,16
considering both short- and long-term horizons. EV aggregator as a new player of the power market can aggregate the EVs and manage the17
charge/discharge of their batteries. The aggregator maximizes the profit and optimizes EV owners’ revenue by applying changes in tariffs to18
compete with other market players for retaining current customers and acquiring new owners. On this basis, a new approach to calculate the19
satisfaction/motivation of EV owners and their market participation is proposed in this paper. Moreover, the behaviour of owners to select20
their supplying company is considered. The aggregator optimizes the self-scheduling program and submits the best bidding/offering strategies21
to the day-ahead and real-time markets. To achieve this purpose, the day-ahead and real-time energy and reserve markets are modelled as22
oligopoly markets, in contrast with previous works that utilized perfectly competitive ones. Furthermore, several uncertainties and constraints23
are taken into account using a two-stage stochastic programing approach, which have not been addressed in previous works. The numerical24
studies show the effectiveness of the proposed model.25
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1. Introduction31

1.1. Motivation and Aim32

Today, replacement of combustion vehicles with electric ones makes the management of this resource more important than33

before. Since the importance of energy conservation and environmental protections is growing, plug-in Electric Vehicles (EVs)34

can significantly affect the grid and play a major role in the future smart grid [1]-[4]. References [1]-[4] showed that, if there35

was not a comprehensive plan for EVs management, not only the EVs would deteriorate the conditions of distribution network,36

but also their charge time might be simultaneous with the system load peak and increase the stability, reliability and economic37

problems of the power system.38

At any given time, at least 90% of the EVs are theoretically available to behave as a generation unit and participate in the39

electricity market [5], [6]. Ref. [7] has indicated that, the daily average travel distance in the United States is less than 5140
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kilometres, leading an average time of 52 minutes to commute, although the commuting times vary from one city to another one.41

On this basis, in average, EVs are located in the parking spaces about twenty-three hours per day and the distance driven is less42

than the EVs’ battery capacity. It can be concluded that, the entire energy of EVs is not consumed during daily travel [7].43

Although EVs are able to provide various ancillary services [8], the simultaneous connection of numerous EVs to the44

network can be a major threat for the power quality and even the power system stability [9]. EV aggregator as a new player of45

the power market can aggregate the EVs and manage the charge/discharge of their batteries.46

Recent advances in smart metering technologies provide a bi-directional communication between the utility operator and the47

consumers. To this end, the EV aggregators offer incentives to the EV owners, usually in the form of monetary rewards, to allow48

them to operate their EV batteries. In this context, smart metering devices can positively affect the future of smart grid by49

obtaining precise information and effective involvement of the EV owners. On the other hand, since a large number of managing50

and controlling data in the network imposes market participants to employ new computational methods to mitigate the system51

operation time, the utilization of future advanced analysis techniques is required. Therefore, development of the future advanced52

analysis techniques can significantly facilitate the aggregation of EVs. Therefore, both smart metering technology and advanced53

analysis techniques (e.g. collective awareness systems [10] and cloud-based engineering systems [11]) are required to support54

the participation of EVs in the electricity markets and they can be an effective solution to increase the participation of EV55

owners in the markets.56

As a matter of fact, the EV aggregators can provide connectivity communication capabilities for EV owners’ components in57

order to connect them to the analysis system and they are responsible for the installation of the smart meters at EV owners’58

premises. This can reduce the technical complexity and the required efforts to increase the local computational resources at the59

level of each EV owner’s component. On the other hand, the advanced techniques can improve the security of the mechanisms60

and consequently they can increase the robustness of collecting data by the aggregators.61

In this paper, a new model is described to optimize the performance of the EV aggregator in electricity markets. The EV62

aggregator as a financial agent in the power market has to compete with other players to sell or purchase electricity in the day-63

ahead and real-time markets. In the business competition, the aggregator has to compete for keeping the existing customers and64

attracting new owners. In other words, the aggregator should struggle with other market participants in three sides: offering65

strategy with Generation companies (Gencos), bidding strategy (with retailers) and customers (also with retailers).66

The aggregator is considered as a private entity who wants to maximize its own profit. The player is able to manage its67

customers’ charge and discharge pattern using a direct control approach when they are plugged-in. The paper models that the68

EV owners can select their supplying company for buying/selling electricity, so the EV aggregator should compete with other69

market players to preserve and increase the number of customers by optimizing its proposed prices in the contract. The70
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competition of the EV aggregator for customers has not been addressed in previous works. The competition space of the71

aggregator is illustrated in Fig. 1.72

The new model developed in this paper considers the impact of tariffs to motivate the owners to participate in the electricity73

market and to connect to the aggregator.74

"See Fig. 1 at the end of the manuscript".75

On this basis, short- and long-term objectives of the EV aggregator are simultaneously considered, involving both grid-to-76

vehicle (G2V) and vehicle-to-grid (V2G) capabilities. The short-term objective is to maximize the profit obtained from77

offering/bidding strategy of the aggregator in the electricity markets, while the long-term one is to maximize the profit resulted78

from grabbing the market share from other competitors. The participation of EV owners (both new and existing customers) in79

each month is also calculated, using a motivation function.80

1.2. Literature Review and Contributions81

Many reports have presented the advantages and disadvantages of EVs without V2G capability [9], [12]-[13]. In [9], a82

stochastic programming method was presented to demonstrate the influence of EVs’ charging on the distribution network. In83

[12], the charging strategies have been studied to achieve the lowest energy losses in the distribution network. In [13], a84

decentralized control of EVs has been presented to coordinate their charging. In other researches the diverse impacts of EVs85

with V2G capability have been studied [14]-[16]. In [14], the economic advantages of V2G systems have been reported. In [15],86

a centralized control strategy based on a dynamic programming method has been accomplished to obtain the maximum of EVs’87

income from frequency regulation. In [16], the aggregated EVs have been modelled to be utilized in long-term simulation.88

From the EV aggregator’s point of view, several frameworks have been proposed to improve the participation of EV89

aggregators in electricity markets. In [17], a framework has been described to integrate the EVs in the planning and operation90

studies. In [18], a heuristic charging strategy has been presented to provide the regulation service. Moreover, a heuristic91

algorithm has been developed to manage the EVs charging in reaction to prices in a traditional power system [19]. In [20], the92

bidding strategy of an EV aggregator has been optimized by using a stochastic approach, considering the uncertainty for the93

energy content of regulation signals. In [21], a methodology has been presented to maximize EV aggregator profit considering94

the uncertainties of market prices and fleet mobility. In [22], an optimization algorithm has been proposed to manage the95

individual charging of EVs, in order to ensure a reliable supply of manual reserves. In [23], a model has been proposed to96

support the participation of an EV aggregator in day-ahead spot and secondary reserve markets. In [24], the energy and reserve97

scheduling have been studied by both EV aggregators and the distribution system operator. In [25], an approach has been98

proposed to coordinate the system operator and an EV aggregator in order to enhance the efficiency and security of the power99

system. Reference [26] addressed EV charge patterns and the electricity generation mix and competitiveness of next generation100

vehicles. In [27], the effects of changes in market rules and regulations on the EV aggregator’s profit have been reported.101
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Nevertheless, in most of the reports it has been assumed that EV variables are deterministic, so no uncertainties have been102

considered and perfect forecasts are assumed. In addition, no appropriate model has been presented to predict the behaviour of103

vehicle owners, and these models are not able to consider the long-term effects of changing the tariffs. Moreover, many104

constraints have been ignored for the aggregator and EV owners in previous reports. Furthermore, in former researches there is105

no accurate electricity market model from the aggregator’s point of view. All these issues are now addressed in this paper as106

new contributions.107

In the proposed model several uncertainties have been considered, such as behaviour of market player in energy and spinning108

reserve (SR) markets, number of connected EVs, the connection duration of EVs to the aggregator, the quantity of energy stored109

in the batteries, and regulation requests to the aggregator by the Independent System Operator (ISO) for power generation. In110

addition, the constraints of minimum connection duration of EVs to the aggregator and minimum battery charge of EVs have111

been considered. Since the customers’ profits have significant effects on the customers’ satisfaction, the model also considers112

the costs of the charging infrastructure, including V2G inverters, battery degradation and fleet management. Furthermore, the113

tariffs are proposed in such a way that they encourage EV owners to take part.114

In previous reports, modelling the EV aggregator in the electricity market can be categorized in two major approaches:115

1) Modelling the aggregator in the perfectly competitive electricity market;116

2) Modelling the aggregator in the electricity market from the ISO’s point of view.117

In some reports [27], the EV aggregator in an oligopoly market has been considered. However, these reports studied the EV118

aggregators from the ISO’s viewpoint and they supposed that all characteristics of market players are available (complete119

information game theory). Although, these kinds of models are suitable for ISO that has more information about characteristics120

of market players, they are not convenient for market participants such as EV aggregators that have only some limited121

information about other players. In the future, by increasing the number of EVs, the EV aggregators will play a more important122

role in power market prices. On this basis, modelling the aggregators as price making players in an oligopoly power market is123

vital. Therefore, this paper proposes a new model for the EV aggregator in the oligopoly electricity markets as far as it is124

concerned. In this model, it is supposed that all information of market competitors (e.g. cost function of generation units) is not125

available for the aggregator, very similar to reality (incomplete information game theory [28]).126

According to the above expression, the new contributions of the paper can be summarized as follows:127

- Modelling the oligopoly behaviour of an EV aggregator in an incomplete information electricity market128

- Modelling the long-term objective of an EV aggregator to enhance its market share by modelling EV owners’129

satisfaction130

- Optimizing the long-term behaviour of an EV aggregator by calculating the optimal tariffs131
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1.3. Paper Organization132

The paper continues as follows: Section 2 models the uncertainty characteristics related to competitors’ cost and revenue133

functions and EV owners’ behaviour. In section 3, the formulation of EV aggregator’s self-scheduling is explained. Modelling134

the oligopoly electricity market from the aggregator’s point of view is shown in section 4. Modelling the customers’ motivation135

to contract with the aggregator is expressed in section 5. Numerical studies are implemented in section 6. Finally, last section is136

devoted to the conclusion.137

138

2. Uncertainty Characterization139

EV aggregators are threatened by several uncertainties in order to take part in the electricity markets. In this section,140

modelling of the uncertainties and the two-stage stochastic programming approach to employ the uncertain variables are141

presented. In this paper, two major sets of uncertainty are considered, namely regarding the uncertainties of EV owners’142

behaviour and market uncertainties. Market uncertainties include the uncertain behaviour of market players and being called by143

ISO to generate energy. Modelling the above mentioned uncertainties is expressed as following:144

2.1. Uncertainty of EV owners’ behaviour145

The EV aggregator has been confronted with plenty of uncertainties to participate in the market because of the probabilistic146

behaviour of EV owners. The uncertain parameters include the number of EVs connected to aggregator per hour, connection147

duration and state of charge (SOC) of batteries of EVs (while connecting to the aggregator). The EV owners behave differently148

due to social and economic concerns. Therefore, connection duration and SOC of each EV will be different from other EVs. The149

aggregator should estimate the uncertain parameters of probabilistic behaviour of EV owners by using past statistical data.150

In this paper, the aggregator models the estimation uncertainty by using a probabilistic approach. For this purpose, the151

aggregator uses the statistical data of EVs and generates scenarios based on time series of uncertain variables using Roulette152

Wheel Mechanism (RWM) [29] and [30]. Since the time series of all related stochastic variables have been generated together153

on the basis of a unique historical data, the correlation between stochastic variables and subsequent hours has been considered.154

In this paper, EVs’ pattern has been obtained from the real data in [31]. The aggregator should mitigate the risk of unreliable155

forecasts of EV owners’ behaviour; because EVs are its only source to take part in electricity markets. To this end, RWM has156

been employed to generate probable scenarios to tackle the forecast errors. Considering the scenarios enables the EV aggregator157

to take into account the plausible deviations around the predicted number of EVs. Normal distribution has been applied to158

generate scenarios, because forecast errors regularly have a distribution absolutely close to Normal [32].159

According to Normal distribution, quantity and the probability of scenarios are associated to mean value,  , and standard160

deviation, , of the predicted number of EVs. Since the closer time to the market closure causes the more accurate forecast of161
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the number of available EVs, the standard deviation in the real-time session is considered to be less than that in the day-ahead162

session. This means that, the aggregator’s forecast of its customers in the real-time stage has a less deviation from the actual163

value than in the day-ahead stage (i.e. RT < DA ). Moreover, the mean value of the number of available EVs in both the164

mentioned sessions is considered to be equal to the actual value that will be used in the realization session.165

Total accumulated SOC of EVs, as another uncertainty, depends on available EVs, type of EVs and their travelled distances.166

The battery capacity of each EV depends on the EV class. In [33], twenty four different EV battery classes and their redundancy167

have been presented. In this paper, the capacity of each EV is considered to be equal to one of the twenty four EV classes and it168

is associated with a probability equal to the redundancy of that class as illustrated in Fig. 2. In [34], lognormal distribution has169

been employed to generate probabilistic daily driven distances. On this basis, in this paper lognormal random variables have170

been generated using (1) [35].171

exp( . )d m mM N   (1)172

where Md denotes the daily travelled distance and N is standard normal variable.173

According to historical data, μm and σm can be obtained from mean value and standard deviation of daily travelled distance that174

are respectively presented as μmd and σmd, as follows:175

( )2 2 2lnm md md mdm m m s= + (2)176

 2 2ln 1m md mdμ   (3)177

"See Fig. 2 at the end of the manuscript".178

In this paper, the probabilistic travelled distance is applied as a parameter of calculating the SOC. The lognormal distribution179

function is utilized to generate the probabilistic daily travelled distance [34]. The general assumptions to generate the scenarios180

are based on [31] where an average of 4.2 trips per day, yielding an average daily distance of 63.57 kilometres is considered for181

each vehicle. On the other hand, an EV takes approximately 0.22 kWh to recharge for each kilometre travelling.182

2.2. Modelling the uncertainties of being called by ISO183

Being called by ISO is one of the uncertainties of EV aggregator to participate in the reserve market. In this paper, Poisson184

distribution is proposed to model the probability of being called to generate energy in the spinning reserve market. Since being185

called has a discrete probability distribution and it can be considered as an event that occurs in a day with a known average rate186

and it is independent of the number of being called during the previous day, it can be modelled by Poisson distribution. Thus,187

the Probability Distribution Function (PDF) can be expressed by (4):188

.exp( )
( , ) , 0 , 0,1,2,...

!

k

f k k
k

 
 


   (4)189
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where µ and k denote the expected value and the number of being called, respectively. Considering the mentioned PDF,190

different outcomes of ISO’s behaviour for calling EV aggregator are considered by a RWM-based scenario generation process191

[29] and [30]. The uncertain amount of activated reserve, ,
Res
tAct  , has been taken into account to be uniformly distributed192

between zero and EV aggregator’s offered quantity. Therefore, PDF of quantity of activated reserve can be formulated as:193

,
,

1
, 0

( )

0 ,

Res
tRes

t

x Offer
Offerf x

Otherwise




   



(5)194

According to Eqs. (4) and (5), diverse regulation requests to the aggregator by the ISO have been considered by employing195

RWM-based scenario generation [29] and [30].196

2.3. Uncertainty of competitors’ cost/revenue functions197

The behaviour of EV aggregators relies on the behaviour of EV owners and market participants. Incomplete information198

about market participants’ cost/revenue functions enables the aggregator to simply predict their behaviour in the power market.199

It should be noted that, the range of coefficients of the cost/revenue functions can be estimated [36]. In other words, the cost200

functions of Gencos are related to type, size, manufacturer, age, etc., of their power plants and the revenue functions of retailers201

are associated with tariff, number and demand of their customers. On this basis, this basic information is available for the202

aggregator to estimate coefficients of the above mentioned functions. However, realizing the accurate cost/revenue functions is203

difficult even to their owners with detailed data [36]. On the other hand, making decisions based on inaccurate models of204

competitors can create inappropriate results. Therefore, the aggregator should decrease the risk of unreliable estimation. In order205

to overcome the problem, this paper proposes RWM-based scenario generation to cover the uncertainty of the mentioned206

estimated coefficients. On this basis, the scenarios for amounts of the cost/revenue function coefficients of market players are207

generated by RWM. Since estimation errors have a distribution very close to Normal [32], Normal distribution is employed to208

generate the scenarios of competitors’ cost/revenue functions. Therefore, the value and the probability of each scenario is209

associated to mean value,  , and the standard deviation, , of the estimated coefficient (i.e. ,ia  , ,ib  , ,ic  , ,je  , ,jf  , ,
up
i  and210

,
down
i  ).211

2.4. Stochastic Programming Approach212

In order to consider the impact of the sources of uncertainty mentioned previously on the strategic behaviour of EV213

aggregator, they have been characterized as stochastic procedures and the problem has been solved by using a two-stage214

stochastic programming approach.215

In the proposed approach, each stage denotes a market horizon as illustrated in Fig. 3. It should be noted that, the EV216

aggregator forecasts the prices of the day-ahead and the real-time markets by simulating the proposed oligopoly market217
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framework. It is noteworthy that, the realization session is equivalent to employ the actual EVs’ variables and the actual218

coefficients of the market players’ cost/revenue function. The classification of decision variables of each stage is based on the219

time horizon of electricity markets (day-ahead and real-time) and it is presented as follows:220

 Ω1: The first stage (here-and-now) stochastic decision variables are , ,
DA
j tD  , ,

En
tOffer  , ,

Res
tOffer  , ,

NRes
tOffer  , , ,

DA
i tP  ,221

, ,
Res

i tP  , , ,
NRes

i tP  , ,
DA

t  , ,
Res

t  and ,
NRes

t  . In the here-and-now stage, the EV aggregator offers/bids both hourly prices and222

quantities to the day-ahead market. According to the probable realizations of the stochastic procedures consist of223

EVs’ pattern, regulation requests to the aggregator by the ISO and market players’ behaviour, decisions of this stage224

are made.225

 Ω2: The second stage (wait-and-see) stochastic decision variables are , ,
RT
j tD  , , ,i tI  , , ,

Disconnect
v tSOC  , , ,v tSOC  , ,

del
tP  ,226

,
Res
tAct  , , .

RT
i tP  , G2V

, ,v tP  , V2G
, ,v tP  , , ,

charge
v tr  , , ,

discharge
v tr  , ,t 

 , ,t 
 , and ,

RT
t  . The wait-and-see stage is relevant to the real time227

market. In the second stage, although hourly prices and quantities of the day-ahead market are known, the prices of228

the real time market, the regulation requests to the aggregator by the ISO and EVs’ behaviour are still unknown. At229

the end of this stage, the mentioned variables will be known and consequently, hourly deviations incurred by the EV230

aggregator will be obtained and the subsequent imbalance costs can be calculated.231

"See Fig. 3 at the end of the manuscript".232

3. EV Aggregator’s Self-Scheduling Formulation233

Considering several kinds of uncertainties mentioned in Section 2, the EV aggregator should manage the charge/discharge of234

EVs. In this paper, the constraint of minimum connection duration of EVs to the aggregator has been modelled. Additionally, in235

order to ensure the owners about the desired charge of their batteries, the model cares about the minimum charge of EVs. The236

objective function of EV aggregator can be expressed as:237


,

,

1 , , ,

, , , , ,2 1

max E

E

t

t

Energy Res NRes
t t t

t

Charge Call Imb Imb Charge Obl Res
t t t t t

Income Income Income

Income Income Income Cost Cost Cost Cost





  


      




 

    

        


(6)238

, , ,.Energy En DA
t t tIncome Offer   (7)239

, , ,.Res Res Res
t t tIncome Offer   (8)240

, , ,.NRes NRes NRes
t t tIncome Offer   (9)241

( , )

( , )

G2V
, , ,. .

Full v

tot Connect v

t
Charge ContEn

v t t v
v PEV t t

Income P U




  
 

 
  

  
  (10)242
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, , , ,. .Call Res RT del
t t t tIncome Act P    (11)243

, , ,. .Imb DA
t t t tIncome r      (12)244

, , ,. .Imb DA
t t t tCost r      (13)245

2
, , , ,.

tot

Charge G V DA
t v t t

v PEV

Cost P  


  (14)246

, , , ,. . .Obl Agg Res del RT
t t t tCost FOR Act P    (15)247

( , )

( , )

G2V
, , ,. .

Full v

tot Connect v

t
Res ContRes

v t t v
v PEV t t

Cost P U




  
 

 
  

  
  (16)248

, , ,
En

t t tP Offer     (17)249

, , ,t t t  
    (18)250

where ,vU  is a binary number equal to 1, if the EV owner respects to the minimum connection duration in scenario ω, and 0251

otherwise. ,tP  is the actual amount of the generated power.252

Eq. (6) indicates the objective function of the scheduling problem and denotes the components of aggregator’s profit. The253

objective of the aggregator is maximizing the profit in a certain period. Obviously, the profit is dependent on the behaviour of254

the aggregator in the markets and, subsequently, it is a function of uncertain variables that occur in day-ahead and real-time255

study horizon. The aggregator income resulted from participation in the day-ahead energy market has been considered in (7).256

The aggregator income resulted from the participation in the non-spinning and spinning reserve markets have been considered in257

(8) and (9), respectively. Eq. (10) represents the aggregator income resulted from receiving the batteries charge cost from EV258

owners who have respected the minimum connection duration. Eq. (11) considers the aggregator income resulted from being259

called by the ISO in order to generate electrical energy in the reserve markets. Eq. (12) represents the imbalance income because260

of the surplus of injection compared to day-ahead offers. Eq. (13) represents the imbalance cost due to lack of injection in261

comparison with day-ahead offers. Eq. (14) denotes the purchase cost of electrical energy from the energy market in order to262

charge the battery of EVs in scenario ω. The inability of the aggregator to generate energy at the time of being called by ISO263

may be caused by an error in predicting uncertain parameters. In order to model the reliability of the distribution system AggFOR264

is considered. Eq. (15) represents the purchase cost of electrical energy in order to meet the aggregator obligations while being265

called to generate energy in the reserve markets. Eq. (16) denotes the cost of the contract with EV owners to persuade them to266

participate in the reserve markets. Equations (17) and (18) have been employed to obtain energy deviations using the scheduled267

energy. The objective function is maximized considering the constraints described below:268
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, , ,[ ].Disconnect
v t vSOC MCB U  (19)269

min max
, ,0 1v tSOC SOC SOC    (20)270

The constraints of MCB (minimum charge of battery) of EVs are formulated as (19), and these limitations should be met by271

the aggregator for the EV owners who respected the minimum connection duration. Eq. (20) is applied to avoid being272

overcharged and to take into account the depth of discharge of all connected EVs during their connection.273

G2V V2G
, , , 1, , , , , , , , ,. . (1 ).C

v t v t v t v v t v t v tSOC SOC P P           (21)274

Eq. (21) introduces changes in SOC of EVs. Binary variable δ ensures that an EV is not charged and discharged at the same275

time.276

The constraints of maximum charging/discharging rates depend on their infrastructures [37] and they can be formulated as277

below:278

  ,max
, , , , , 1,

charge C charge
v t v t v t v vr SOC SOC r      (22)279

  ,max
, , , 1, , , .discharge D discharge

v t v t v t v vr SOC SOC r      (23)280

Eqs. (24) and (25) ensure that the aggregator will offer to the energy and reserve markets, based on the power of EVs in V2G281

mode.282
V2G

, , , ,. .
tot

En D
t v v t v

v PEV

Offer P U  


    (24)283

, , , , ,. . .
tot

Res NRes D EV
t t v v t v v

v PEV

Offer Offer SOC C U   


     (25)284

4. Modelling the Oligopoly Electricity Market from Aggregator’s Point of View285

In this paper, by the aim of improving the reality of the studies, the electricity market is modelled as an oligopoly market286

instead of being perfectly competitive. Therefore, in order to model the oligopoly electricity market, a multi-agent environment287

based on bi-level optimization has been developed. The basis of the proposed model is the reality of market players’ behaviour in288

the electricity market. Therefore, each agent should behave as if it is a real market participant. On this basis, the structure of the289

model has been inspired by the real world electricity markets. One of the main differences between the proposed model and the290

previous ones is that the market is modelled as an oligopoly also from EV aggregator’s viewpoint, so the aggregator does not have291

all information about its competitors. Therefore, the mentioned environment for the aggregator becomes an incomplete292

information game theory [28]. On this basis, the aggregator and other market players neither know the cost/revenue functions of293

their competitors nor the competitors’ bidding/offering strategies. Each player only knows the generating capacities of every other294

player. It is noteworthy that the expressed method in Section 2 has been developed to overcome the uncertainties of incomplete295

information game theory. The details of proposed electricity market model from the aggregator’s viewpoint have been expressed296

as follows.297

4.1. Market Players298

In order to simulate the electricity market from the aggregator’s point of view, an agent-based virtual environment is299
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developed. Each market player (e.g. Gencos and retailers) has been independently modelled by using agents, so that their300

objective functions correspond to maximize their profit. In this paper, it is supposed that Gencos participate in the spinning and301

non-spinning reserve markets.302

The objective function of each Genco can be formulated as follows:303




,

1 , , , , , , , , ,

2
, . , , , , , , , , , , , , , , , ,2 1

max{  } max E . . .

E . . . .

t

DA DA Res Res NRes NRes
i t t i t t i t t

t

RT RT up down
i t t i i t i i t i i t i i t i i t

Expected Profit P P P

P a P b P c I y z


     

           

  

  



 

  

       


(26)304

Subject to:305

min max
, , , , , ,. .i i t i t i i tP I P P I    (27)306

, , , 1, , , , ,i t i t i t i tI I y z      (28)307

, , , , 1i t i ty z   (29)308

1

, , , ,
1

1
iMU

i t i t j
j

y z 






  (30)309

1

, , , ,
1

1
iMD

i t i t j
j

z y 






  (31)310

, , , 1, , , , 1,. .( )i t i t i t i t iI I P P RU      (32)311

, , , 1, , 1, , ,. .( )i t i t i t i t iI I P P RD       (33)312

where , ,i ty  and , ,i tz  are binary values to show the time of start-up and shut down of the power plant i and , , , , , ,
RT DA

i t i t i tP P P    .313

Equation (27) denotes the unit output limits. The constraints of minimum up and down times are linearly expressed in (28)-314

(31). The constraints of unit ramp up and ramp down are presented in (32) and (33), respectively. It should be noted that, in315

addition to day-ahead and real-time energy markets, the aggregator should compete with the Gencos to supply SR capacity. The316

other market players are retailers which are modelled as agents with the formulated objective function as follows:317

  
,

1 , , , , , , , , , ,2 1max{  } max E . E . .
t

DA DA RT RT
j t t j t t j j j t

t

Expected Profit D D e f D


      
   

        (34)318

where , , , , , ,
DA RT
j t j t j tD D D    .319

Like the EV aggregator, its competitors use the prices of reserve and energy markets, obtained from the previous iteration of320

clearing the transactions of the market, to determine their bidding/offering strategies in order to participate in the markets for the321

next iteration. For this purpose, each agent maximizes its profit by using the mentioned prices to obtain the optimal amount of322

bid/offer in each hour of the next iteration. Afterward, the agents generate their bidding/offering strategies by applying the optimal323
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quantity and price using Supply Function Equilibrium (SFE) model [28]. Therefore, each player uses the SFE vector SFE SFE
t t( , ) 324

to submit its offers/bids to the markets, where SFE
t and SFE

t are the variables of bidding/offering strategy that denote the slope325

and the y-intercept of the price-quantity curve, respectively. It should be noted that all market participants are considered as the326

price-makers, including the EV aggregator. On this basis, after maximizing the players’ profit and obtaining the optimal prices327

and quantities for participating in the markets, the SFE vector is formed. Since the amount of optimal quantity and price ( * *
, ,i t tP  )328

is known, by assuming , ,
SFE SFE
i t i t  equals to i ia b , ,

SFE
i t and ,

SFE
i t are obtained as follows:329

*

, *
,

.

.
SFE i t
i t

i i i t

a

b a P


 


(35)330

*

, *
,

.

.
SFE i t
i t

i i i t

b

b a P


 


(36)331

4.2. Clearing the Electricity Market Transactions332

The most conventional method to clear power market transactions is Optimal Power Flow (OPF). However, in this paper, the333

role of ISO in clearing the electricity market and determining auction winners has been defined by using a Security Constrained334

Unit Commitment (SCUC) problem, which maximizes social welfare considering security constraints.335

The main reason for utilizing the SCUC instead of OPF is the inherent nature of EV aggregators. The new players of power336

market are limited energy participants. Therefore, simulation of their behaviour in an hour (or even in some independent hours) is337

not accurate, so their behaviour should be modelled in a specific period. Based on this, the SCUC problem is utilized to obtain the338

most economical solution of electricity market (maximizing the offer-based social welfare) in a certain period of operation as339

expressed in (37). Additionally, the objective of ISO in real-time market is accomplished by a Security Constrained Economic340

Dispatch (SCED) as presented in (38). It should be noted that the additional costs due to the network congestions and supplying341

the system security are considered in the prices resulting from the SCUC program, which increases the accuracy of the method.342

From ISO’s point of view, some other constraints should be considered as presented in below:343

 
  

, , , , , , , , , , , ,
, ,1

max{  } max . . . .
T

DA DA DA DA Res Res NRes NRes
j t t i t t i t t i t t

Retailers Gencost j iAggregators Aggregators

Social Welfare D P P P          
  

 
      
 
   (37)344

  
, , , , , ,

, ,1

max{  } max . .
T

RT RT RT RT
j t t i t t

Retailers Gencost j iAggregators Aggregators

Social Welfare D P    
  

 
    
 
   (38)345

       
, , , , , , , ,

, , , ,

 ,DA DA RT RT
j t i t j t i t

Retailers Gencos Retailers Gencosj i j iAggregators Aggregators Aggregators Aggregators

D P D P   

   

     (39)346
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   
max
, , , , ,

, ,

.i t i t j t t
Gencos Retailersi jAggregators Aggregators

P I D SR 

 

   (40)347

max max max max
, , , ,, cg

k t k k k t k kF F F F F F       (41)348

Equation (39) ensures the balance between supply and demand. Required spinning reserve is expressed in (40). Inequality (41)349

considers the network limits in normal and contingency states.350

4.3. Relationship between Model Elements351

Fig. 4 shows the proposed EV aggregator’s model to simulate the oligopoly behaviour of the electricity market. The details of352

the proposed oligopoly electricity market model from the EV aggregator’s point of view are explained in the following steps:353

- Step 0 – In this step a set of initial prices for both the day-ahead and the real-time markets is considered.354

- Step 1 – In this step, each agent (including EV aggregator) self-schedules the operation of its resources to maximize its355

profit based on the initial prices of the day-ahead (energy and reserve) and the real-time markets. The EV aggregator356

tackles the uncertainties of the estimated coefficients of players’ cost/revenue functions, using the method explained in357

Section 2. On this basis, in addition to the estimated coefficients of cost/revenue functions, the higher and lower amounts358

that players might have, are considered as well, by using the discrete normal distribution. In addition, the scenarios of359

available EVs in the day-ahead session are employed. In order to optimize the objective function of each agent, the360

stochastic programing based on the state enumeration method is utilized. Since this step of the market takes place before361

the closure of the day-ahead market, the prices of both mentioned markets are unknown. This step is equivalent to the362

here-and-now stage from the agents’ point of view. The output of this step is the agents’ offers/bids SFE SFE
t t( , )  to363

participate in both the day-ahead and real-time markets resulting from (6), (26) and (34).364

- Step 2 – In this step, the agents’ offers/bids are the input to the SCUC program. Then, ISO obtains the economic solution365

for the participant agents in the day-ahead market, considering the security constraints of the system. It should be noted366

that, in this step, ISO does not consider the agents’ offers/bids for the real-time market; therefore it only aims to maximize367

the social welfare in the day-ahead market. This step is equivalent to the here-and-now stage from the ISO’s point of view.368

The output of the step is prices of the day-ahead market and auction winners in the day-ahead energy and reserve markets.369

The output results from (37) and includes the mentioned prices and auctions for all 24 hours of the day ahead.370

- Step 3 – In this step, the won prices and quantities of the agents in each hour of the day-ahead market are known.371

Although the uncertain data of EV behaviour are updated by the real-time scenarios, the decisions to participate in the372

real-time market are still unknown. On this basis, each agent maximizes its profit by obtaining the best real-time offer/bid373

in hour t=t1 to have the best participation in the real-time market by using (6), (26) and (34). To this end, the hourly374
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offered prices and quantities of the day-ahead market (i.e. here-and-now variables) are considered known. This step is375

equivalent to the wait-and-see stage from the agents’ point of view.376

- Step 4 – In this step, the ISO considers the agents’ offers and bids to the real-time market in hour t=t1 and maximizes the377

social welfare using the SCED program by (38). This step is equivalent to the wait-and-see stage from the ISO’s point of378

view. The output of this step is the won auctions and prices of the real-time market for hour t= t1.379

- Step 5 – In this step, the steps 3 and 4 are iterated for hour t= t2 to t= t24 to obtain all real-time market prices. At the end380

of this step, all hourly prices and auctions of both day-ahead and real-time markets are obtained.381

- Step 6 – In this step, the obtained prices of the day-ahead and the real-time markets are set as input prices (i.e. instead of382

initial prices) and steps 1 to 5 are iterated until the convergence constraints are achieved.383

The learning process of market agents is based on the hypothesis that each agent can observe the final market prices of384

previous iterations. Therefore, the price loop is repeated until the prices of market agents equal the market clearing prices. It385

should be noted that using the iteration-based (dynamic) game theory could help the market simulator to find the process of386

converging to the market equilibrium point. The flowchart of the mentioned steps is illustrated in Fig. 5.387

"See Fig. 4 at the end of the manuscript".388

"See Fig. 5 at the end of the manuscript".389

5. Optimization of the Long-term Behaviour of EV Aggregator390

In order to make an optimal decision, the EV aggregator should pay attention to the possibility of modifying the tariffs and391

attracting owners to attend the market. Accordingly, the aggregator should estimate the effects of each tariff change on its392

market share and profit. In the rest of this section, the proposed model of customers’ satisfaction is presented. By using the393

proposed model, an algorithm is proposed to optimize the tariffs.394

5.1. Modelling the Customers’ Satisfaction to Contract with the Aggregator395

In order to ensure the optimal long-term behaviour, the aggregator should know the number of its customers among EVs that396

will be added to the system in the future. Moreover, they should know how to optimally increase the number of their customers.397

A new approach is proposed in this paper to investigate the participation of EV owners (including new and former customers).398

Several reports have been presented in marketing and managing to show the importance and impacts of customers’399

satisfaction, discussing how higher customers’ satisfaction can cause higher retention and acquire new customers [38]. As a400

conclusion, the higher customers’ satisfaction, the higher market share.401

In addition, many criteria have been expressed in the reports to improve the customers’ satisfaction. One of the most effective402

criteria is the price of a product. In [39], the relationship between the price of some different products and the company’s market403
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share has been investigated in real-world retailing markets.404

Using data details in [39] (as shown in Figs. 6.a and 6.b), the relationship between the market share and the price of a product405

is obtained as a sample, and it is indicated in Fig. 6.c. According to Fig. 6.c, it can be inferred that by decreasing the price of a406

product, the market share will improve, but its rate is not steady. At the beginning and in the end the rate is low, but it is high in407

the middle. In other words, there is inertia in the behaviour of customers to switch to purchase from a new company who has no408

significant market share. Furthermore, acquiring the majority of the market share needs much higher customers’ satisfaction409

(product price reduction), so that the rate of market share is saturated in the end. Based on the expressed shape of “market share-410

product price” curve, a hyperbolic tangent function with the mentioned features can be fitted.411

"See Fig. 6 at the end of the manuscript".412

Since, in this paper, the EVs owners’ satisfaction is related to three tariffs (charge, discharge and reserve), the aggregator413

utilizes the expected annual profit of customers, instead of price, to calculate its market share. Thus, the owners’ annual profits414

are considered as the main motivation factor. It should be noted that, apart from annual profit, other parameters such as customer415

services can influence the customers’ behaviour. In this paper, the mentioned parameters for different companies are assumed416

practically similar. Due to the competition in the electricity market, the previous assumption is near to reality.417

The formulation of EV owner’s annual profit is given by:418

. . .
2 2 Charge. . . . . .

Degr Infras

cust ContRes ContEn ContEn cust cust
Res Reserve Energy V G Energy Energy G V sysProfit P t P t P t Cost Cost        (42)419

. . .
Degr

cust
Energy d EnergyCost P C t (43)420

d battery ETC C L (44)421

   . . 1 (1 ) y

Infras

Ncust
Wiring On boardCost Cost Cost dr dr 

    (45)422

where dr is the annual discount rate and yN is the number of years the device will last. The first two terms in (42) denote owner423

revenues resulted from participating in the SR market and energy generation, respectively. The third term denotes the owner’s424

cost associated with charging its batteries. Equation (43) presents the customer’s annual equipment degradation cost. This cost425

can be measured as degradation of V2G due to additional battery cycling in $/kWh. Based on this issue, it can be correlated to426

battery capital cost and battery lifetime as (44) [14]. Equation (45) denotes the annualized infrastructure costs. As shown in (45),427

the infrastructure cost includes the on-board incremental cost and wiring upgrade cost [14].428

The motivation function is formulated based on the mentioned hyperbolic tangent model. On this basis, the final number of429

customers can be calculated based on their profits.430

The developed model holds the ability to show the saturation of participation, due to a low or high level of owners’ profits.431

However, the mentioned equation can only calculate the steady state number of customers, so that it is unable to model the432
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dynamic of number of customers over time.433

On the other hand, the effect of improvement of customers’ satisfaction on the market share is a time-related process. Since,434

the aggregator longs for computing its long-term profit, it needs to obtain the number of customers during the time.435

Ref. [40] has considered the dynamic effects of price on the market share. Moreover, in [41], a model based on exponential436

functions has been presented to compute the market share. The mentioned model has utilized the information about the market437

share and the product elasticity of other competitors.438

This paper supposes that the policy and long-term behaviour of the aggregator’s competitors will not change. On this basis,439

the model presented in [41] can be simplified. The rate of participation of customers is related to features of the market (e.g.440

cultures, economics and politics) [38].441

The features can be considered by factors ini
yrrate and  , where  is a weighting  factor that can show how much the442

community is sensitive to changes of product price (in this case, the tariffs). Achieving the factors for a commercial company443

has been presented in [40].444

The proposed approach to calculate the participation of EV owners contains five steps, as follows:445

 Step 1- estimating the whole number of EVs at the end of the time horizon.446

 Step 2- estimating the annual profit of other competitors’ customers in each year of study; in other words, estimating447

the annual profit of a typical owner who has a contract with other aggregators or retailers.448

 Step 3- calculating the number of aggregator’s customers at the end of each year using (46).449

 Step 4- calculating the rate values based on the rate function using (47).450

 Step 5- calculating the number of aggregator’s customers in each month using (48).451

*

*
1 tanh

2
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yr yr yrcust

yr
yr

N Profit Profit
N

Profit


  
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N
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   
(48)454

where  is a factor that shows the sensitivity of owners to the expected annual profit, being obtained by using the current state455

of the system.456

If the aggregator just concentrates on short-term profit, associated with the effects of contract with owners on competition457

with market participants, some of its consumers might be missed and it will not have a suitable share of future owners.458
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Considering the effect of EV owners' contacts on the EV aggregator’s market share, optimization of the tariffs is expressed in459

the remainder of this paper.460

5.2. Optimization of tariffs461

The profit resulted from the enhancement of customers’ satisfaction is not instantaneous. Hence, the aggregator should462

consider both short- and long-term objectives. On this basis, in this paper, the aggregator selects the best tariffs and participates463

in the electricity market in such a way that the maximum long-term profit is achieved. For this purpose, several kinds of464

contracts with customers, based on the tariffs of charging, energy and reserve are considered as a decision space. Afterwards, the465

effect of each contract on the monthly number of customers is taken into account by calculating the expected annual profit of the466

owners.467

Using the new number of customers, the aggregator simulates its participation in the electricity markets and obtains its468

expected profit. Finally, by comparing the long-term profits, the aggregator chooses the tariffs associated with the maximum469

profit. The satisfaction model is illustrated in Fig. 7. The model is developed according to the annual profit of EV owners, so a470

trade-off has been performed between short- and long-term aggregator’s profits.471

"See Fig. 7 at the end of the manuscript".472

6. Numerical Studies473

In this paper, a 6-bus case study is used to illustrate the effectiveness of the proposed model. In this case study, the IEEE 6-474

bus test system has been expanded to reduce the level of structural market power and improve the similarity to real electricity475

markets. Accordingly, the number of Gencos has been increased from three to six, while three retailers have been considered to476

supply the demands. Energy and reserve markets are considered to be cleared as a uniform-pricing auction.477

In our experiments, the EV aggregator competes with the mentioned Gencos and Retailers for selling and purchasing478

electricity, respectively. Moreover, from another perspective, the EV aggregator and retailers compete for the EV owners. In479

order to calculate the EV owner’s profit, the typical EV data, obtained from [14] are used. The details of EV aggregator data and480

other considered parameters are presented in Table 1. In addition, the details of market players’ data are expressed in Appendix.481

"See Table 1 at the end of the manuscript".482

Based on the mentioned description in Section 2, scenarios related to uncertain amounts of the available number of EVs and483

total aggregated SOC from the viewpoints of the day-ahead and real-time sessions are generated as illustrated in Fig. 8 to Fig.484

11, respectively. In these figures, the generated scenarios and the expected value of uncertain parameters are indicated by blue485

cross-marked points and black dashed line, respectively. Also, the actual number of EVs and aggregated SOC that are obtained486

in realization session is shown by the red line. By considering a smaller standard deviation of the number of EVs in real-time487
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market, the more accurate prediction of the EV aggregator due to closer time to realization session has been taken into488

consideration.489

"See Fig. 8 at the end of the manuscript".490

"See Fig. 9 at the end of the manuscript".491

"See Fig. 10 at the end of the manuscript".492

"See Fig. 11 at the end of the manuscript".493

The rest of this section is divided into two sub-sections. In section 6.1, in order to investigate the short-term effectiveness of494

the proposed model, the results of the oligopoly model are compared with those of perfectly competitive models, in where all495

market players offer their marginal cost to the market, during a typical day. In section 6.2, the proposed owners’ motivation496

model is utilized to obtain the optimal tariffs, and then the impact of the contract on long-term profit of the aggregator is studied.497

In addition, the impacts of different scenarios of the first stage optimization (i.e. participation in the electricity markets) on the498

results of the second stage optimization (i.e. finding the optimal tariffs) are investigated.499

6.1. Impact of the Proposed Oligopoly Model500

The effect of modelling the oligopoly behaviour of market players on the prices of the energy market in a typical day has501

been indicated in Fig. 12. In order to show the effect, energy market prices of perfect competition are subtracted from the ones502

of oligopoly environment. Similarly, Fig. 13 shows the mentioned effect on SR market prices. If the aggregator models the503

power market as a perfect competition, it follows the prices of other players. But, modelling the market as an oligopoly504

environment enables it to affect the market prices. As it can be seen, although the oligopoly behaviour of the aggregator reduces505

the price of the energy market in many hours, it can increase the price of the SR market during most of the hours.506

"See Fig. 12 at the end of the manuscript".507

From another point of view, Figs. 12 and 13 illustrate the effects of transforming the EV aggregator from a price taker market508

participant to a price maker one. It should be noted that, formerly, it was expected that participation of EVs could decrease the509

prices of SR market. However, transforming the EV aggregator to a price maker player can increase the prices in comparison510

with a perfectly competitive market.511

"See Fig. 13 at the end of the manuscript".512

The effect of modelling the oligopoly behaviour of market players on network loss has been indicated in Fig. 14. As it can be513

seen, modelling the market as an oligopoly environment enables the EV aggregator to affect the network loss. This effect is514

because of transforming the EV aggregator from a price taker participant to a price maker one, and consequently the market515

participant can affect both generation and load. According to Fig. 14, in hours that the EV aggregator increases the purchase of516

energy in order to charge their EVs (e.g. hours 6 to 8), the network loss increases. On the contrary, in hours that the EV injects517
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energy back to the grid (e.g. hours 9 to 11, 23 and 24), the network loss decreases. By modelling the oligopoly behaviour of518

market players, the daily network loss has been decreased from 4.56 MWh to 4.44 MWh, which indicates about 2.5% reduction.519

It should be mentioned that, the optimal performance of an EV aggregator as an energy storage system is to charge its batteries520

in off-peak period and inject a part of the stored energy back to the grid in the peak period. This behaviour increases the demand521

in off-peak and decreases the generation in the peak period, subsequently reducing the network loss. On this basis, it can be522

concluded from the 2.5% reduction in network loss that a price maker EV aggregator can behave more like an optimal energy523

storage system than the one in the price taking mode.524

"See Fig. 14 at the end of the manuscript".525

6.2. Impact of the Proposed Owners’ Satisfaction Model526

The effect of the reserve and charging prices on the participation of EV owners (the final number of aggregator’s customers)527

is illustrated in Fig. 15. An increase in the customer’s profit (i.e. a decrease in the charging price or an increase in the reserve528

price) causes an increase in the number of aggregator’s customers. It should be noted that, although the axis of energy price has529

not been indicated in Fig. 15, the effect of prices on customer’s number has also been considered.530

"See Fig. 15 at the end of the manuscript".531

Fig. 16 shows the effect of owners’ expected annual profit on the number of customers in each month. As can be seen, if the532

aggregator changes the contracts with the owners and increases their profit, the number of its customers will increase.533

"See Fig. 16 at the end of the manuscript".534

The more customers’ profit increases, the faster it is to attract owners. It should be noted that the highest participation535

sensitivity regarding customer’s profits occurs around $1000, which is equal to the considered owners’ annual profit from a536

contract with other competitors ( *
yrProfit ).537

The effect of various types of contract on the aggregator’s annual profit is illustrated in Fig. 17. The best price area for the538

aggregator’s contract with EV owners is around 40 and 80 $/MWh for charging and reserve prices, respectively. Although by539

increasing the reserve price or decreasing the charging price the number of customers will be increased, in this situation the540

aggregator’s profit will be dramatically decreased because of imposed prices by market players.541

"See Fig. 17 at the end of the manuscript".542

The aggregator’s annual profit has been compared by taking into account the results of simplified models. The details of the543

additional case studies are presented in Table 2.544

"See Table 2 at the end of the manuscript".545

In case 1, the conventional model of EV aggregator has been considered. The power market is modelled as a perfect546

competitive market and the contract effect on the owners’ motivation is neglected. In case 2, the effect of the behaviour of547
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market players has been modelled. As can be seen in Fig. 18, considering the oligopoly behaviour of the electricity market548

increases the aggregator’s profit. In case 3, the proposed model has been applied. Accordingly, in addition to modelling the549

oligopoly market, the effect of motivating contracts with EV owners on the long-term profit of the aggregator has been550

considered. Similarly, as can be seen in Fig. 18, the proposed model increases the aggregator’s profit dramatically. It should be551

noted that the prices shown in Table 2 for case 3 have been obtained from implementing the proposed model to find the best552

type of contract. In addition, the annual profit of a typical EV owner with and without using the proposed model is shown in Fig.553

18. The results clearly show that by using the proposed model, not only the profits of the EV aggregator and its customers can554

be increased, but also there are opportunities to enhance the encouragement of other owners to contract with the aggregator555

instead of the retailers in the long-term.556

"See Fig. 18 at the end of the manuscript".557

It is noteworthy that, modelling the type of contract gives the aggregator the flexibility which makes it a powerful market558

player who is able to change its revenue and cost functions. On this basis, the flexibility can carry more weight than the559

offering/bidding strategy in competition space. In the other words, although the dynamics of customers’ behaviour make the560

impact of changing the contracts become time consuming, the competition for customers has more effect on the EV aggregator’s561

profit than competition for prices of the wholesale market.562

The computation time of the mentioned cases has been presented in Table 3. The platform that has been utilized to assess the563

proposed model is a 64-bit Workstation, having two Xeon E5-2687W 8C 3.10 GHz processors with 256 GB of RAM and an564

interface of MATLAB R2013b (8.2.0.701) and GAMS 24.0.2 has been employed.565

"See Table 3 at the end of the manuscript".566

In order to investigate the effect of uncertain variables on the optimal tariffs, some different scenarios have been studied. The567

scenarios are considered to be in two main categories: first, the scenarios to study the impact of the electricity market, and568

second, the scenarios to analyse the effect of EV owners’ behaviour. It should be mentioned that, for the sake of a precise569

comparison, in the first category the expected value of EV owners’ behaviour has been considered. Similarly, in the second570

category, the expected value of market behaviour that is obtained from the first stage of the optimization problem has been taken571

into account. These two scenario categories have been expressed as follows:572

1) Scenarios to study the effect of market behaviour573

Two scenarios have been considered to study the market behaviour by using different Gencos’ costs. In scenario A, the574

market behaviour is considered based on the minimum operation cost of all Gencos. To this end, the coefficients of Gencos’ cost575

function (i.e. ,ia  , ,ib  , ,ic  , ,
up
i  and ,

down
i  ) are set to the minimum values. On the contrary, the maximum cost of all Gencos is576

considered in scenario B. On this basis, the coefficients of the Gencos’ cost function are considered to be equal to the maximum577
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values. As it has been expressed in section 2.3, the value of the coefficients of the Gencos’ cost function is considered by using578

Normal distribution parameters (i.e. the mean and standard deviation). The details of the parameters are presented in Table A.1.579

2) Scenarios to study the effect of EV behaviour580

Three scenarios have been considered to investigate the impact of EV behaviour. On this basis, three different scenarios of581

available EVs indicated in Fig. 8 and Fig. 9 have been studied. In scenario C, the highest hourly number of available EVs is582

considered, while scenario D is associated to the lowest hourly number of available EVs, as well as the least accurate one.583

Scenario E reflects the most accurate hourly number of available EVs. The accuracy is measured by the Mean Absolute Error584

(MAE) of each scenario tree of available EVs for 24 hours. The considered scenarios for day-ahead and real-time sessions have585

been indicated in Fig. 19 and Fig. 20, respectively.586

"See Fig. 19 at the end of the manuscript".587

"See Fig. 20 at the end of the manuscript".588

The results of the mentioned scenarios have been compared in Table 4. By comparing the results of scenario A, scenario B589

and the expected values, it can be observed that by increasing the cost of the Gencos the EV aggregator intends to increase the590

tariff of reserve contract with its customers. The reason of this intention is that the increase of Gencos’ costs raises the reserve591

market prices and consequently the EV aggregator can suggest the higher reserve tariffs to attract more customers. Although the592

V2G tariff in scenario B is 4.9% higher than the one in the expected case, it is significantly lower than the increase of the reserve593

tariff (i.e. 18.3%). It shows that by increasing the Gencos’ cost, the EV aggregator prefers to take part in the reserve market594

more than the energy one. The reason is that the EV aggregator has to purchase the energy with higher prices to charge its595

consumers’ batteries, while it cannot significantly increase the charging tariff due to the competition with the retailers that their596

revenue functions are not supposed to be changed. Furthermore, it can be observed that by increasing the Gencos’ costs, and597

accordingly the market prices, the profit of both the EV aggregator and its customers is improved.598

By comparing the results of scenario C, scenario D and the expected values, it can be seen that an increase in the number of599

available EVs can raise the reserve market prices and consequently the profit of the EV aggregator; because, the aggregator600

achieves more market power in the reserve market. However, in the energy market the aggregator does not have enough market601

power to increase the prices. On the other hand, since by increasing the number of available EVs the EV aggregator can sell602

back more energy to the grid, the energy prices can be reduced.603

The comparison between the results of scenario D, scenario E and the expected values indicates that the less accurate604

prediction of EV owners’ behaviour enforces the EV aggregator to purchase both the reserve and energy from the EV owners in605

the lower tariffs. In addition, the EV aggregator increases the tariff of G2V to cover the imbalance penalties. Therefore, scenario606
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D is the worst scenario from the owner’s point of view. It should be noted that, although an inaccurate forecast of EV behaviour607

decreases just 0.7% the profit of the EV aggregator, it can reduce significantly (46%) the profit of EV owners.608

"See Table 4 at the end of the manuscript".609

7. Conclusion610

In this paper, the long-term behaviour of market participants and EV owners was modelled and optimized from the aggregator’s611

point of view. A bi-level optimization algorithm based on multi-agent systems and dynamic game theory was developed to612

model the oligopoly energy and reserve markets. The probabilistic formulation of EV aggregator entailed the minimum charge613

of batteries, the minimum connection duration, and other EV constraints. The model optimized the self-scheduling program and614

submitted the best bidding/offering strategies to the day-ahead and real-time electricity markets. Several uncertainties were615

considered, such as calling the aggregator by ISO for power generation and behaviour of market players. In order to model the616

uncertainties a two-stage stochastic programming was utilized. The competition with market players to attract the customers was617

also modelled. In addition, a new approach was developed to calculate the motivation of EV owners to participate in the618

electricity market by selecting the contract. It is possible to conclude that the proposed model was proficient in significantly619

improving the short- and long-term behaviour of the aggregator. Besides optimizing the offering/bidding strategy, the model620

could also attain the optimal tariffs to motivate EV owners to connect to the aggregator. The significant increase in aggregator’s621

profit resulted from modelling the oligopoly market and improving the customers’ satisfaction.622

623

Nomenclature624

Indices

i
index of Gencos

j
index of retailers

t index of hours

v index of EV owners

yr index of years

 index of scenarios

Parameters

dC degradation cost because of  utilizing V2G.

EV
vC battery capacity of EV v.
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AggFOR aggregator’s unavailability for generating.

,
del

tP  probability of being called to generate

EnergyP EV’s power limit for energy trade.

ResP EV’s power limit for supplying spinning reserve.

totPEV number of connected aggregator’s customers.

,i iRU RD ramp up and down constraints.

tr
 , tr

 positive and negative imbalance ratios.

ini
yrrate initial grow rates of customers.

 factor of grow rate.

,C D
v v  charging and discharging efficiencies.

sys round-trip efficiency.

,t  occurrence probability of scenario ω.

Variables

,
Res

tAct  quantity of reserve activated by ISO.

, ,
DA
j tD  , , ,

RT
j tD  day-ahead and real-time bids of retailer j.

E expected value obtained from set of scenario Ω.

, , , ,, cg
t k t kF F  branch flow in normal and contingency states.

, ,i tI  variable of commitment of unit i.

cust
yrN number of aggregator’s customers.

tot
yrN total number of EVs.

,
Res

tOffer  , ,
NRes

tOffer  spinning and non-spinning reserve offers.

,
En

tOffer  offer to participate in energy market.

, ,
DA

i tP  , , .
RT

i tP  day-ahead and real-time generation offers of unit i.

, , , ,,Res NRes
i t i tP P  spinning and non-spinning reserves of unit i.
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2
, ,

G V
v tP  energy of grid injected to EV v.

2
, ,

V G
v tP  energy of EV v injected to grid.

cust
yrProfit EV owner’s annual profit.

*
yrProfit owner’s profit from contract with other competitors.

, ,v tSOC  state of charge of EV v at time t.

, ,
Disconnect

v tSOC  state of charge when disconnecting.

,ia  , ,ib  , ,ic  estimated coefficients of cost function.

,je  , ,jf  estimated coefficients of revenue function.

, ,
charge

v tr  , , ,
discharge

v tr  rate of charge and discharge of EV v.

yrrate annual grow rates of customers.

( , )Connect vt  time of connection EV v to aggregator.

( , )Full vt  time of obtaining full charge of EV.

Charget duration of charging.

Energyt
, Reservet duration of participation in energy and reserve markets.

, , , ,,i t i ty z  variables of starting-up and shutting-down.

, ,v t  binary variable of charging or discharging of EV v.

2
ContEn

V G tariff for purchasing energy.

2
ContEn
G V , ContRes tariffs for participating in the energy and reserve markets

, ,,DA RT
t t   day-ahead and real-time energy market prices.

, ,,Res NRes
t t   price of spinning reserve market.

,
up
i  , ,

down
i  estimated start-up and shut-down costs.

,t  total deviation of balance market.

,t 
 , ,t 

 positive and negative deviations of balance market.

Appendix625

"See Table A.1 at the end of the manuscript".626
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"See Table A.2 at the end of the manuscript".627
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Figure captions710

Fig. 1. The competition space of the EV aggregator.711

Fig. 2. Distribution of battery capacity of EVs.712

Fig. 3. The proposed two-stage stochastic framework.713

Fig. 4. The proposed EV aggregator’s model to simulate the oligopoly behaviour of the electricity market.714

Fig. 5. The flowchart of the proposed oligopoly model.715

Fig. 6. Relationship between market share and product price.716

Fig. 7. EV aggregator’s model to consider customers’ satisfaction.717

Fig. 8. Considered scenarios for the normalized number of available EVs for day-ahead session (black dashed line: expected718

value, red line: actual value and blue crossed-mark points: scenarios).719

Fig. 9. Considered scenarios for the normalized number of available EVs for real-time session (black dashed line: expected720

value, red line: actual value and blue crossed-mark points: scenarios).721

Fig. 10. Considered scenarios for the normalized total aggregated SOC for day-ahead session (black dashed line: expected value,722

red line: actual value and blue crossed-mark points: scenarios).723

Fig. 11. Considered scenarios for the normalized total aggregated SOC for real-time session (black dashed line: expected value,724

red line: actual value and blue crossed-mark points: scenarios).725

Fig. 12. The effect of oligopoly model on expected energy market prices.726

Fig. 13. The effect of oligopoly model on expected SR market prices.727

Fig. 14. The effect of oligopoly model on hourly network loss.728

Fig. 15. The effect of diverse contracts on the final number of customers.729

Fig. 16. The effect of owners’ expected annual profit on their participation.730

Fig. 17. The effect of various contracts on the aggregator’s annual profit.731

Fig. 18. Annual profit of the EV aggregator and a typical 24 kWh EV owner.732

Fig. 19. The normalized number of available EVs for the scenarios C, D and E (The day-ahead session).733

Fig. 20. The normalized number of available EVs for the scenarios C, D and E (The real-time session).734
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Table captions735

Table 1. The considered data for the EV aggregator model736

Table 2. The details of the considered case studies737

Table 3. The computation time of different cases738

Table 4. Effect of different scenarios on the second stage optimization results739

Table A.1. Gencos’ data740

Table A.2. Retailers’ data741
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Fig. 1. The competition space of the EV aggregator.745
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Fig. 2. Distribution of battery capacity of EVs.748
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Fig. 3. The proposed two-stage stochastic framework.759
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Fig. 4. The proposed EV aggregator’s model to simulate the oligopoly behaviour of the electricity market.763
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Setting an initial day-ahead and real-time markets prices

Self-scheduling for the day-ahead and real-time markets

Calculating the SFE vectors for the day-ahead and real-time markets:
Equations (35)-(36)

P*, λ*

Solving the SCUC problem by using the SFE vectors of the day-ahead
market

Equation (37)

αSFE,βSFE

Pinitial, λinitial

EV aggregators:
Equation (6)

Gencos:
Equation (26)

Retailers:
Equation (34)

Offering/bidding for the real-time market

EV aggregators:
Equation (6)

Gencos:
Equation (26)

Retailers:
Equation (34)

Pt
DA, λt

DA, t=1 to 24

t=t1

Solving the SCED problem by using the SFE vectors of the real-time
market

Equation (38)

Calculating the SFE vectors for the real-time market:
Equations (35)-(36)
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Fig. 5. The flowchart of the proposed oligopoly model.767
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Fig. 6. Relationship between market share and product price.774
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Fig. 7. EV aggregator’s model to consider customers’ satisfaction.787
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794

795

796

Fig. 8. Considered scenarios for the normalized number of available EVs for day-ahead session (black dashed line: expected797

value, red line: actual value and blue crossed-mark points: scenarios).798
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Fig. 9. Considered scenarios for the normalized number of available EVs for real-time session (black dashed line: expected801

value, red line: actual value and blue crossed-mark points: scenarios).802
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809

810

811

Fig. 10. Considered scenarios for the normalized total aggregated SOC for day-ahead session (black dashed line: expected812

value, red line: actual value and blue crossed-mark points: scenarios).813

814

815

816

Fig. 11. Considered scenarios for the normalized total aggregated SOC for real-time session (black dashed line: expected value,817

red line: actual value and blue crossed-mark points: scenarios).818
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820

Fig. 12. The effect of oligopoly model on expected energy market prices.821

822

823

Fig. 13. The effect of oligopoly model on expected SR market prices.824
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826

Fig. 14. The effect of oligopoly model on hourly network loss.827
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830

831

832

Fig. 15. The effect of diverse contracts on the final number of customers.833
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Fig. 16. The effect of owners’ expected annual profit on their participation.838
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845

Fig. 17. The effect of various contracts on the aggregator’s annual profit.846
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Fig. 18. Annual profit of the EV aggregator and a typical 24 kWh EV owner.852
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859

Fig. 19. The normalized number of available EVs for the scenarios C, D and E (The day-ahead session).860

861
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864

Fig. 20. The normalized number of available EVs for the scenarios C, D and E (The real-time session).865
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873

874

Table 1. The considered data for the EV aggregator model875

Time

horizon

(month)

Ny

(year)

dr

(%)

D
i

(%)

C
i

(%)

CostWiring

($)

CostOn-board

($)

RampC/D

(pu/h)
γ

0

totN
MBC

(pu)
FORAgg SOCmin SOCmax

0.2 24 10 10 82 90 650 400 0.2 0.03 250,000 0.5 0.05 0.3 0.9

876

877

878

879

Table 2. The details of the considered case studies880

Case 1 Case 2 Case 3

The electricity market model
Perfect

competition

Proposed oligopoly

model

Proposed oligopoly

model

Modelling the owners’ satisfaction No Proposed model

ContRes ($/kWh) 0.150* 0.071**

2
ContEn
V G ($/kWh) 0.190* 0.097**

2
ContEn
G V ($/kWh) 0.225* 0.044**

* Prices quoted from [27].881

** Optimal prices obtained from the proposed model.882

883

884

885

886

887

888

889

890

891
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892

Table 3. The computation time of different cases893

Case 1 Case 2 Case 3

Computation time (sec) 23 1338 6927

894

895

896

Table 4. Effect of different scenarios on the second stage optimization results897

Scenarios ContRes
($/kWh)

2
ContEn
V G

($/kWh)
2

ContEn
G V

($/kWh)

EV aggregator’s annual

profit (million$)

Typical 24 kWh EV

owner’s annual profit ($)

M
ar

ke
t u

nc
er

ta
in

ty

Scenario A

(The minimum Gencos’ cost coefficients)
0.062 0.081 0.036 39.7 1616

Scenario B

(The maximum Gencos’ cost coefficients)
0.087 0.102 0.047 48.9 2440

E
V

un
ce

rt
ai

nt
y

Scenario C

(The highest hourly number of EVs)
0.078 0.094 0.052 47.2 1919

Scenario D

(The lowest and the least accurate hourly

number of EVs)

0.065 0.082 0.056 43.8 1248

Scenario E

(The most accurate hourly number of EVs)
0.072 0.100 0.042 44.5 1908

Expected 0.071 0.097 0.044 44.1 1823

898

899

900

901

902

903

904

905

906
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Table A.1. Gencos’ data907

Genco

Unit cost coefficients Start-up

cost

(MBtu)

Shut-down

cost

(MBtu)

Pmin

(MW)

Pmax

(MW)

Min

down

(h)

Min up

(h)

Ramp

rate

(MW/h)

a (MBtu

/MW2h)

b (MBtu

/MWh)
c (MBtu)

1
μ = 0.01 μ = 38 μ =190 μ =200 μ =120

50 110 4 4 20
σ = 2 σ = 2 σ = 2 σ = 2 σ = 2

2
μ = 0.01 μ = 40 μ = 160 μ = 250 μ = 180

50 110 4 4 20
σ = 2 σ = 2 σ = 2 σ = 2 σ = 2

3
μ = 0.03 μ = 40 μ = 200 μ = 140 μ = 100

15 50 4 4 20
σ = 0.5 σ = 0.5 σ = 0.5 σ = 0.5 σ = 0.5

4
μ = 0.03 μ = 42 μ = 170 μ = 160 μ = 110

15 50 4 4 20
σ = 0.5 σ = 0.5 σ = 0.5 σ = 0.5 σ = 0.5

5
μ = 0.04 μ = 38 μ = 150 μ = 100 μ = 70

10 50 3 2 30
σ = 1 σ = 1 σ = 1 σ = 1 σ = 1

6
μ = 0.04 μ = 37 μ = 120 μ = 120 μ = 90

10 50 3 2 30
σ = 1 σ = 1 σ = 1 σ = 1 σ = 1

908

909

Table A.2. Retailers’ data910

Retailer
Revenue coefficients

e ($) f ($/MWh)

1
μ = 380 μ = -0.10

σ = 2 σ = 2

2
μ = 390 μ = -0.15

σ = 1 σ = 1

3
μ = 370 μ = -0.12

σ = 0.5 σ = 0.5

911

912


