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Abstract: This paper presents an interval based robust chance constrained (IBRCC) optimization model for allocating 
demand response program (DRP) to effective buses of the power systems considering wind uncertainty and equipment 
failures. In the proposed formulation, an interval based robust approach is applied to evaluate the highest uncertainty 
spectrum of the wind power generation that the power system can tolerate. Accordingly, to cope with the uncertainty 
sources, chance based constraints are implemented. In the proposed IBRCC optimization framework, the level of the 
optimal solutions robustness is probabilistically maximized subject to a set of operational constraints. Besides, to facilitate 
the massive integration of uncertain wind generation and to mitigate congestion in the transmission grid, an efficient 
allocation and scheduling scheme of demand response programs is proposed. The proposed model is evaluated on the IEEE 
24 bus system. 
Index Terms— Demand response, wind uncertainty, robust chance constrained optimization. 
 

1. Nomenclature 
– Indices  

( )
   Variable related to continuous (  ) and 

discrete ( ) uncertainties. 
  Discrete uncertainty, random unit/line 

outage. 
  Continuous uncertainty, ‘–’ and ‘+’ related 

to the lower and upper limits of CU, 

respectively. 
g/w  Index for generating unit and wind farm. 

, ,nmb   Indices of buses. 
k   Index of  transmission lines . 
,t t    Indices of time. 

t   Index of peak time 
   Given variables. 
All variables and constants include subscript   and  t refer to 

scenario   and hour t. 
 

– Parameters 
max min/g gP P  max/min  power generation of unit g. 

/g gC C   Cost of base case /uncertainty condition of 

  unit g. 
/n nC C   Cost of DRP for base case /uncertainty 

  condition of demand n. 
C    Cost threshold related to the response 
  uncertainties. 

   Probability of scenario  of DU. 

lol
nC    Value of lost load for demand n. 

,f wtP    Wind power forecast for wind farm w. 
 
 

,k bSF   Shift factors for line k due to bus b. 

bSFI    Shift factors index. 
nmB   Susceptance of line k (n, m). 

   Number of buses to DRP.  
DU   Number of DU. 
/    Max/min radius of continues uncertainty. 
/g gR R   Up/down ramping limit of unit g. 

f
ntD     Load forecast at bus n. 

/nt ntDR DR   Max/min demand response of demand n. 
/n nR R    Up/down ramping limit of demand n. 

nE   Maximum energy adjustment of demand n 

in the operating horizon. 
, ,/g kuc uc    Contingency state of (unit g)/(line k). 

nLC    Maximum involuntarily load curtailment 
/nt ntD D    Max/min load changed by DRP. 

n   Max limit for angle bus n. 
kP     Max limit for power flow of line k. 

/g gUT DT   Minimum on/off hours of a thermal unit g 
   Risk tolerance level. 
M    A large number. 
 

– Variables 
z     Binary variable that indicates constraint 

related to scenario   if it is imposed or not. 
     Radius of continue uncertainty (%). 
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/gt gtv w   Startup/shutdown binary variable for 

thermal unit g at the time period t. 
gtu    Unit status. 
( )
nt    Phase angle of bus n . 
ktP   Power flow in line k. 

,wtP
   Uncertain wind power generation w. 
( )

gtP    Power generation of unit g . 
/nt ntR R   Pick up/ drop down rate of DRP for  

  demand n. 
, ,/gt gtr r 
    Up/down  spinning reserve by unit g. 
, ,/nt ntr r 
     Up/down spinning reserve by DRP for 

  demand n. 
,ntLC

   Involuntarily load curtailment of demand 

  n. 
ntD   Load scheduled by DRP for demand n. 

ntDR   DRP for demand n. 
( )
( )

   Slack variable. 

( )
( )

    Power mismatch in subproblem I and II. 

( )
( ) 
   Dual variables. 

2. Introduction 

Integration of wind energy generation (WEG) resource will 
increase the intermittency and uncertainty of power system 
operations. Due to massive penetrations of WEGs, the 
uncertain operation of power systems would necessitate 
more ramping and flexibility capabilities for the system to 
continuously keep balance between supply and demand. In 
this condition, the commitment of expensive generation 
units for providing more system ramping capability are also 
likely to be increased, which will impose economic and 
technical dilemmas for the power system operations 
particularly in congested transmission grids. Accordingly, 
the wind uncertainty and transmission congestion are the 
main challenges in the power system operations. To cope 
with these challenges, extra flexibility resources are needed 
in the power systems.  
One of the promising economic solutions is demand 
response program (DRP) in power systems that can facilitate 
massive integration of WEGs. The main aim of DRP is to 
encourage the customers for participation in some programs 
that lead to modify the demand curves’ pattern. 
Accordingly, the customers who participate in DRP can play 
an important role in reducing the effect of wind uncertainty 
on power system operations [1]. The DRPs are applied 
based on the various policies. Usually they have been 
deployed to cover the uncertainty of high penetration of 
renewable energy sources [1] and [2]. Nevertheless, with the 
recent attentions to the DRP [2], [3] and [4], the flexible 
demands can smooth the integration of WEGs.  
A common approach to managing the uncertain WEGs is to 
concurrently incorporate both the flexible supply (ramping 
capability) and demand (DRP) sides [5]. Consequently, the 
DRPs will reduce demand at the peak hours (and low wind 
generation periods) and/or shift demand to off peak hours 
(and high wind generation periods) leading to the decrease 
in generation’s costs and accordingly relieve the network 
congestion [6]. The DRPs have a high capability to facilitate 
congestion management and consequently make the grid 
side flexibility available [7].  

The DRP by moderating the system congestion has the 
capability to acquire further available transfer capability 
(ATC) to deliver more power generation from wind farms to 
meet the customers’ demands. Besides in [8] and [9], the 
effects of DRPs on the load curve’s characteristics 
improvement and CM have been studied. It should be noted 
that in [8] and [9], the wind uncertainty has not been taken 
into account and, DRP has not been considered as a tool for 
uncertainty management. However, the above mentioned 
goals (uncertainty and congestion management) could be 
achieved only if DRPs are well allocated in the effective 
buses of the system. Accordingly, the best locations 
(optimal buses) and scheduling for applying DRPs should be 
specified by independent power system operators.  
In this paper, a new technique to allocate DRPs has been 
developed which on the basis of the shift factors method 
(SFM), and DC power flow (DCPF). The SFM shows how 
power flow in the congested transmission lines will be 
changed if the injection at load buses are changed by one 
MW. Once that the SFM for all of the load buses based on a 
procedure is calculated, the effective buses for 
implementing DRPs will be specified. The proposed 
procedure will be explained in Section IV.  
In [10], the DRP is utilized to increase the available transfer 
capacity (ATC) in a power system to enhance the system 
ATC. However, in [10], the best location of the buses for 
DRP has not been determined.  
In the all above mentioned researches [1] [8], the DRP is 
implemented at all buses to manage transmission congestion 
and improve the load curve characteristics, managing wind 
uncertainty, or reduce operation cost.  
But, none of them has introduced a procedure for the 
implementing DRPs at effective buses to enhance the 
utilization of the existing power system in hosting 
significant uncertainty WEGs while satisfying the other 
aims, i.e., the cost reduction and reliability improvement. If 
DRP is not implemented in effective buses, it may worsen 
the congestion and consequently increase the generation 
costs. For instance, implementing DRP on the buses with 
positive values of shift factors will increase the costs.  
It is noteworthy that repeated implementations of DRP at all 
system’s load buses lead to adverse consequences on power 
system security and reliability and may necessitate more 
automated systems. That is, it is not allowed to frequently 
change some load buses. Accordingly, it is very essential to 
allocate DRPs to the effective buses. Finally, more 
investigations on the implementation of DRPs for 
uncertainties and congestion management have been studied 
in [5]. Nevertheless, in order to develop an advanced 
uncertainty management approach, different uncertainties 
can be classified as continuous uncertainties (CUs) and 
discrete uncertainties (DUs).  
The first category of uncertainties, CUs, belongs to the 
usually known continuous intervals, and occur in high 
frequency for the short time period. For instance, the 
uncertainty of WEG is a kind of CUs. In contrary, DUs are 
kind of low frequency and long term with a discrete nature. 
The outages of generating units and transmission lines fall 
into this category. 
The power system operations under CUs, with known upper 
and lower bounds of the uncertainty range, have been 
explored by means of some approaches like standard robust 
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optimization approach (SROA) [11] and our proposed 
interval based robust approach (IBRA) in this paper which 
relied on the uncertainty boundary instead of probability 
density function (PDF). The decision making in the interval 
based approaches is a kind of conservative strategy based on 
the worst cases realizations of the uncertainty sources. In 
[11], a two stage SROA based has been utilized for the day 
ahead scheduling problem. Also, in [12], security 
constrained unit commitment problem has been solved using 
a SROA while the short term uncertainty of wind power 
generation and load forecast as CUs have been included. 
Unlike the SROA [11]–[12] that requires to specify the 
uncertainty range, the proposed IBRA in this paper tries to 
find the highest possible unknown variation range of the 
CUs that the system can tolerate in a reasonable operational 
cost. That is, the optimal robust risk averse operation of the 
system based on the preferences of the operators and 
planners will specify the target variation range of the 
sources of CUs.  
On the other hand, implementing the proposed interval 
based robust approach for each optimization model is very 
simple and tractable, and also, does not add the complexity 
of the existing problem, but, implementing the standard 
robust optimization for each optimization model is very 
difficult and in some cases is intractable which is the main 
disadvantage of the standard robust optimization method.  
Obviously, to tolerate a wider target uncertainty range, it is 
required to adopt a more conservative design or operation of 
the system. The proposed IBRA is well suited for 
unstructured CUs while it needs less information about the 
uncertainty set. Undoubtedly, IBRA can be more applicable 
for structured CUs as well. The main disadvantage of IBRA 
is that it cannot characterize the DUs in power system 
operation while it is DUs are not kinds of interval based 
structure.  
The other methods for addressing the impacts of DUs on the 
power system operation are probabilistic approaches, e.g., 
stochastic approach (SA) [13] and chance constrained 
approach (CCA) [14]. The SA is mainly based on a set of 
generated scenarios to characterize the probable realizations 
of DUs. Usually, the SA needs to generate a higher number 
of scenarios to have a more precise characterization of the 
uncertainties which may lead to high computational time 
and costly solution [13]. Unlike SA, in the CCA, the 
constraints are satisfied based on the predefined probability 
levels. That is, based on this approach the constraints are 
kinds of deterministic constraints with respect to the 
scenario dependent constraints in SA [14]. Accordingly, the 
CCA is suitable for simulating DUs such as random outages 
of transmission lines and units.  
But, the main disadvantages of the CCA are as follows: (i) 
CCA is dependent on accurate PDF models, (ii) in CCA the 
PDF models of the CUs must be pre-determined (iii) to 
apply CCA for CUs, a rather large number of scenarios 
should be generated that results in high computational 
burden [14]. To deal with the above shortages of IBRA and 
CCA approaches, in this paper, an innovative approach is 
proposed based on integrated optimization framework of 
IBRA and CCA model called IBRCC approach to take 
advantages of both.  

Another approach in the literature to handle the uncertainty 
is distributionally-robust chance constrained (DRCC) 
optimization [15]—[20]. DRCC is employed to model the 
continuous uncertainty instead of the discrete uncertainty. In 
addition, the DRCC model can control the robustness and 
conservativeness using a coefficient. The model of DRCC is 
a convex programming problem which is efficient and can 
be solved very fast using available software. The DRCC 
approach in some cases is similar to our proposed IBRCC 
approach however, this approach needs the mean and 
variance of an uncertain parameter to model CUs by DRCC, 
while the proposed IBRCC requires more limited 
information about the uncertain parameter [17]. 

Considering the above addressed existing literature and 
identifying the state of art challenges, the novelties of the 
presented research are summarized as follow: 

(i) In this paper, the DRP model is constructed based on an 
integrated optimization structure of IBRA and CCA to 
facilitate the large scale wind energy integration. In the 
resulting robust scheme, the IBRA is implemented to 
maximize the variation range of wind uncertainty 
toleration for the system, while the CCA is applied to 
manage DUs (i.e., random outages of unit and line 
failures) according to CUs’ condition. 

(ii) Here, a new technique based on SFM and DC power 
flow is proposed for determining the effective buses to 
allocate the DRPs. Also, the effects of DRPs on the 
largest variation range of wind uncertainty are 
investigated. 

3. Problem Formulation 

3.1. Assumptions 
For the sake of clarity, the main modeling assumptions have 
been summarized as follows: 
– Continues uncertainty pertains solely to wind generation 

and discrete uncertainty relates to unit and line failures. 
However, the proposed model is capable of considering 
demand uncertainty as well. The discrete uncertainty of 
equipment failure is characterized by a set of possible 
scenarios according to known forced outage rates (FOR). 

– Linear cost and utility functions of generating units and 
DRPs are considered, respectively. 

– The power factor of all wind farms is considered to be 1. 
– A DC power flow model is used. 

3.2. The Basic Mathematical Formulation 
The original DRP allocation problem of the 24 hour 
scheduling period is a kind of two stage optimization to 
minimize a cost objective function. 
The first stage part, i.e., here and now, refers to the offered 
generation cost plus start up cost and the utility function of 
the DRP at the base case, i.e., ,b tC . While, the second stage 
part, i.e., wait and see, pertains to the cost of power 
amendments for generation units and DRP and involuntary 
load curtailment in response to the different uncertainty 
sources.  
The objective function and first stage constraints are as 
follows: 
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C
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

  


  





  

 

 
 
        
 
   
 

        
      

           

 



  








 (1) 

,
( ) ( ) ( , ) ( , )

gt f wt kt kt nt
g n w n k n m k m n

P P P P D        (2) 

 kt nm nt mtP B      (3) 

k kt kP P P    (4) 

n nt n      (5) 
, , , , 1g t g t g t g tv w u u     (6) 

 , ,
1

, , ,...,
g

t

g t g t g
t t UT

v u g t UT T
  

    (7) 

 , ,
1

1 , , ,...,
g

t

g t g t g
t t DT

w u g t DT T
  

     (8) 

gt gt gt gt gtP u P P u     (9) 
, , 1g g t g t gR P P R    (10) 

f
nt nt nt

nt nt nt

D D DR
D D D

  


 
 (11) 

nt nt nt nt ntDR ud DR DR ud     (12) 

nt nt ntR R DR    (13) 
, , 1n n t n t nR DR DR R    (14) 

 ,n t n
t

DR E  (15) 

 nt
n

ud t t    (16) 
In the above DRP allocation problem, the total cost (TC) 

of the power system as the objective function (1) is 
minimized over the operation horizon. The TC in (1) 
includes two main cost terms: first stage and second stage 
cost functions. Besides, main first stage constraints include 
the power balance at each bus prior to CUs and DUs 
realization (2), the power flow of each line as a function of 
the angle difference of the interconnected buses (3), line 
flow and voltage angle limits (4) and (5), startup and 
shutdown binary constraint (6), minimum on/off time limits 
(7) and (8), min/max limits of generating units, (9), hourly 
ramping up and down limits of generating units (10). To 
manage the uncertainties, the DRPs can be utilized through 
a couple of programs, vis., load reduction (LR) and load 
shifting (LS). In the LR program, the DRP would curtail the 
load in different hours of the operation horizon without 
shifting its consumption to other hours, i.e., 0ntDR  . 
However, in the LS program, the load demand is shifted 
from peak hours to off peak hours, i.e., 0ntDR  . In (11), 
both kinds of DRPs can be taken place. Noted that, the DRnt 
can take a negative or positive values during the whole 
operation horizon. The DRnt is positive when the load is 
shifted out from bus n at time t, and negative when the load 
is shifted to the bus n at time t. Also, limits on demand 
schedule are given in this constraint. Limits on DRP is given 
in (12). The binary variable ntud  represents the status of 
DRP schedule. In (13), the absolute value of ntDR (or ntDR ) 

has been denoted with two positive variables ntR  and ntR  
to evaluate the cost of DRP in TC, (1).  

Pick up/drop down rate limits of DRP have been modeled 
for the first stage condition in (14). The limit on the 
acceptable energy changes of the load during the system 
operation is imposed by (15). In this paper, to determine the 
number of effective load buses for implementing DRPs, two 
main approaches have been recommended. The first one is 
to determine these buses by pre specified value,  , as 
shown in (16).  
The second approach is to apply the SFM as discussed later 
in Section IV. Alternatively, the number of load buses for 
implementing DRPs in a real power system must be 
restricted due to the technical and security considerations of 
power systems. Therefore, the maximum number of 
effective load buses at peak time has been determined by 
(16). It should be noted that, the transmission congestion is 
mostly occurred in peak hours, accordingly, the effective 
load buses for the 24 hour scheduling horizon is determined 
by (16), i.e., t . 
The second stage constraints are associated with the 
operation conditions in the real time as follows:   

, , , ,
( ) ( ) ( , )

, , ,
( , )

gt wt kt k
g n w n k n m

kt k nt nt
k m n

P P P uc

P uc D LC

   

  

 

 

  

   

  


 (17) 

, , ,( )kt nm nt mtP B        (18) 
,k kt kP P P
    (19) 
,n nt n      (20) 

 , , , ,

,

gt gt gt gt g

gt gt gt gt gt

P P r r uc

P u P P u
   



  



      


   
 (21) 

, , ,

,

nt nt nt nt

nt nt nt

D D r r

D D D
  



  



     


 
 (22) 

,0 nt nLC LC
   (23) 
, ,0 / /nt nt nt nt nt ntr r R ud R ud 
          (24) 
, , , ,0 / /gt gt g g gt g g gtr r R uc u R uc u   
          (25) 

In constraints (17) – (25), the signs ‘±’ relate to CUs, i.e., 
wind uncertainty while ‘–’ and ‘+’ refer to the lower and 
upper limits of the uncertainty range of wind generation, 
respectively, and   refers to the possible realization 
scenarios of DUs, i.e., outage units/lines. Constraint (17) 
indicates nodal balance at the second stage, wherein the 
spinning reserves, provided by generation units and DRP, 
and involuntary load curtailments (LCs) will compensate 
both CUs and DUs.  
Constraints (18) – (20) represent the response of equations 
(3) – (5) to CUs (  ) and DUs (  ). The output of 
generating units and the actual loads at the uncertainty 
conditions are defined by (21) and (22), respectively. 
Besides, limits on power generating units and demand 
schedule in uncertainty conditions are given in (21) and 
(22), respectively. The LC limit is applied by (23). 
Constraints (24) and (25) stand for the maximum up and 
down spinning reserves provided by DRPs and generating 
units, respectively. 
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3.3. Proposed Interval based Robust Formulation 
As mentioned, in the DRP allocation problem, the core idea 
behind the IBRA is to deal with the CUs of wind 
generations by means of maximizing their highest tolerable 
variation range while taking system technical considerations 
into account. Accordingly, the IBRA model is written as 
follows: 
max   (26) 

 , ,1 , ,wt f wtP P             (27) 

, ,TC C         (28) 
(2) (25)  (29) 
The objective function (26) should maximize the variation 
range of the CU of wind generation subject to the sets of 
constraints (27) – (29). In (27),   ,1 f wtP   and 
  ,1 f wtP   are related to the upper and lower variation 
range of WPG, respectively. Constraint (28) indicates the 
maximum pre specified threshold, C , of the total cost (TC). 
Constraint (27) includes the DRP allocation constraints (2) – 
(25) in the IBRA model that should be satisfied for the 
whole range of ,    . 

Noted that, at first, the model (1) to (16) is solved for the 
forecasted wind power generation to obtain the minimum 
cost threshold C , then the objective function (26) should 
maximize the size of the variation range of CUs. The cost 
threshold C , is used in constraint (28). The C  in equation 
(28) indicates that the cost of the power system operation 
must not exceed the cost threshold for any realization of 
uncertainty. The choice of the cost threshold depends on 
decision makers' conservation level. Compared to a risk-
taker, a risk-averse decision maker would be willing to pay 
more in order to keep system remain reliable with respect to 
large disturbance, so his cost threshold would be higher. 

3.4. Interval based Robust Chance Constrained 
Model 

While in the IBRA model, (random outages of units and 
transmission lines) cannot be handled, the constraints (27) 
and (28) should be enforced to the optimization problem for 
each realization of DUs. Nevertheless, this condition could 
be too restrictive, as a result, they are permitted to be 
violated under some intolerable extreme conditions. 
Therefore, in this paper an interval based robust chance 
constrained (IBRCC) model is proposed to probabilistically 
satisfy the constraints (27) and (28) by a pre-defined 
probability. Consequently, the IBRA formulation should be 
amended as follows: 

 , ,1
Pr 1wt f wtP P

TC C
 


      
  

 (30) 

The constraint (30) namely is a chance constraint, which 
implies that the constraints (27) and (28) should be satisfied 
with a probability larger than or equal to 1  , and   
indicates the risk acceptance level. Indeed, the chance 
constraint (30) relaxes the optimization problem to mitigate 
the infeasibility resulting from a set of constraints and 
numerous DUs. That is, this approach considers a set of 
probable scenarios,  

1 1 1 1 2 2, , , ,, , , , ,
n n n n n ng g k kuc uc uc uc     

  K K , for 

DUs’ realizations. Subsequently, the optimization problem 
can be formulated using a novel bilinear model of the 
chance constrained approach. All in all, the formulation of 
IBRA can be rewritten as the following formulation of 
IBRCC: 
max   (31) 

  , ,1 0wt f wtP P z        (32) 

  0TC C z    (33) 

 1 z 


     (34) 

(2) (25)  (35) 
Chance constraint (30) is substituted by the nonlinear 
constraint (32) and (33). The binary variable z  is applied to 
specify the constraints (32) and (33) for the scenario   is 
satisfied or not. Once 0z  , constraints (32) and (33) is 
ignored. Otherwise, the whole constraints that are related to 
scenario   must be satisfied. To limit the number of 
partially satisfied scenarios, their aggregate probability has 
been constrained by (34), wherein the probability of 
scenario  is denoted by  .  

3.5. Linearization of IBRCC Formulation 
It should be noted that (32) and (33) are nonlinear 
constraints since they have multiplications of z  and , wtP

 , 
  and TC , accordingly, (30) – (35) is in a mixed integer 
nonlinear programming (MINLP) form. Solving such a 
problem, within the available timeframe, is beyond existing 
computational capabilities. To overcome the nonlinearity of 
these constraints, here, a “big M” technique is used. 
Consequently, the IBRCC model can be formulated with a 
set of linear constraints as follows: 

    
    

, ,

, ,

1 1

1 1

f wt wt

f wt wt

M z P P

M z P P

 

 









      


    
 (36) 

 1 0TC C M z      (37) 
 
where, M is a sufficiently large number. The constraints (32) 
and (33) can be substituted by the linear constraints of (36) 
and (37) that are controlled by z . Once 1z  , these 
constraints must be satisfied. Once 0z  , they can be 
ignored due to the big M. 

4. Solution Approach 
To solve the proposed DRP allocation problem based on 
IBRCC approach, a procedure is presented as follows. 
Firstly, to allocate DRPs to the effective buses, a technique 
based on the SFM is presented. Then, a decomposition 
algorithm is presented to solve the optimization problem of 
the DRP allocation.  

4.1. Determining effective buses for DRP 
The number of load buses to applying DRP for a large scale 
power system in the real world is limited due to reliability 
issues and computational burden (resulting from binary 
variables). Consequently, to specify the candidate buses, the 
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SFM can be implemented in the proposed DRP allocation 
problem. According to the SFM method, the sensitivities of 
the congested line flows (e.g., lines with loading over 98% 
of their nominal rating) to the changes of power injection in 
the load buses. The DRP at these buses is capable of 
increasing the contribution of low cost generating units, e.g., 
WEGs, by releasing the ATC of the congested lines. Indeed, 
the SFM demonstrates how the power flow through the line 
will change if the injection at the bus is changed by one 
MW. Based on this definition, suppose that we want to 
calculate the shift factor for line k (m, n) due to one MW 
injection at bus b.  Accordingly, the SFM is calculated as 
follows: 

1
nn nm n

mn mm m

n B B
b
m B B





      
           
          

M L
M O M M

M L
 (38) 

 
By solving (38), we get n  and m  . Then based on (39), we 
calculate the ,k bSF . 

 , , ( , )k b nm n mSF B k n m       (39) 
 
Finally, to evaluate the influence of injection at the bus b on 
the congested line flows, an bSFI  index, (40), is considered. 

*
,b k b

k K

SFI SF


   (40) 

 
The set of congested lines are shown by K* in (40) 
comprising all fully congested and nearly congested lines. 
The set  *,bSFI b B  which includes load bus candidates 
are ranked ascendingly. Noted that if the value of SFIb index 
is comparatively low (with a negative value), it shows that 
the changing the power at load bus b can efficiently reduce 
the power flow in the congested line k for *k K . 
Consequently, this load bus can be considered as an 
appropriate choice for the DRP. 

4.2. Decomposition algorithm  
The MILP formulation presented for IBRCC model costs 
high computational burden to solve even in small size test 
systems with the reduced number of scenarios to 
characterize DUs. To accelerate the solution algorithm, a 
decomposition approach is adopted to solve the proposed 
IBRCC optimization problem. The implemented 
decomposition procedure includes a master problem (MP) 
and two subproblems I and II, named SP I and II, 
respectively, as detailed in the following subsections. 

MP: The MP is to maximize the objective function (31) 
with respect to the constraints (6) – (16), (21) – (25), (34), 
(36) – (37), (41) – (42) and feasibility cuts, without the grid 
security constraints.  

,gt f wt nt
g w n

P P D     (41) 

 , , , ,gt wt nt nt
g w n

P P D LC   
         (42) 

 
SP I: According to the optimal solution in MP, the grid 

feasibility check for each hour in the base case (without 
contingencies) is executed by minimizing the objective 
function (43) subject to the constraints (44) to (46). 

 1, 2,t nt nt
n

     (43) 

,
( ) ( ) ( , ) ( , )

1, 2,

ˆ

ˆ

gt f wt kt kt
g n w n k n m k m n

f
nt nt nt nt

P P P P

D DR

  

   

   
 (44) 

1, 2, 3,
ˆ ˆˆ: , : , :gt gt gt gt gt gt nt nt ntP P u u DR DR      (45) 

(2) (5)  (46) 
 

where 1,nt and 2,nt  are surplus and deficit dummy 
variables of bus power mismatch in the constraint (44), 
respectively. In constraint (45), the values of some decision 
variables are fixed according to the results of the MP. 
Besides, the dual variables of the complicating variables 
 , ,gt gt ntP u DR  are defined by  1, 2, 3,, ,gt gt nt   , 
respectively. Constraint (46) includes additional constraints 
of the base case. In (44), the power mismatch should be 
minimized. According to the value of the power mismatch in 
(44), in the case of alleviating the pre specified threshold, a 
related feasibility cut (47) is performed and augmented in 
the MP. 

    
 
1, 2,

3,

ˆ ˆ ˆ

ˆ 0

t gt gt gt gt gt gt
g

nt nt nt
g

P P u u

DR DR

 



      

   




 (47) 

SP II: The SP II for CUs,  , and DU,  , and time interval 
t is formulated as follows: 

 , 1, , 2, ,t nt nt
n

  
       (48) 

  , , , ,
( ) ( ) ( , )

, , , 1, , 2, ,
( , )

ˆ1gt f wt kt k
g n w n k n m

kt k nt nt nt nt
k m n

P P P uc

P uc D LC

  

    



   

    

     

  


 (49) 

1, , 2, ,

3, , 4,

ˆ ˆ: , :
ˆˆ : , :

gt gt gt gt gt gt

nt nt nt

P P u u

DR DR
 

 

 

   

 

 

  


 
 (50) 

(18) (25)  (51) 

    
     

, 1, , 2, ,

3, , 4,

ˆ ˆ ˆ

ˆˆ 1 0

t gt gt gt gt gt gt
g

nt nt nt
g g

P P u u

DR DR M z

   

    

  

     

  

 

       

         



 
 (52) 

The objective function (48) checks possible violations of the 
MP solution for the CUs and DUs. Constraint (49) is similar 
to (44). The values of the complicating variables in (50) are 
fixed to the values achieved by the MP. Constraint (51) 
refers to the additional constraints of the second stage 
formulations. Finally, a feasibility cut (52) will be generated 
and augmented in the MP for the cases with the larger 
values for the objective function (48) with respect to the pre 
specified threshold. In the feasibility cut (52), z  is the 
same binary variable defined in (36) – (37). Unlike the 
feasibility cuts in SP I, the binary indicator variable z  is 
modulated in the feasibility cuts of SP II. Once 1z  , the 
feasibility cut (52) is converted to a trivial constraint, that is, 
this constraint is deactivated in the MP for the scenario . 
But, once 0z  , it is enforced to the MP. Finally, as 
illustrated in Fig. 1, the proposed solution algorithm is as 
following steps: 
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Step I: The proposed DRP problem based on IBRCC 
approach with 0ntud   and IT=0 (IT is a dummy numerator) 
is solved by the decomposition algorithm to find the set K* 
consisting of all congested lines. 

Step II: Equation (38) – (40) is solved to obtain set *B  or 
priority list based on the ranking of the bSFI  index, (40), 
that is, the priority list consisting of all load buses with their 
ranking values is specified to be employed for DRP. 
Accordingly, the binary variables ntud  for effective buses 

*n B  with the higher values of nSFI  are fixed to one and 
other buses with low value fixed to zero. Besides, after 
solving this step, the IT is set to 1 to stop the Step II. 

 

 If ,
th 0

pr
en 1, else

iority list

nt nt

n
ud ud


 

0
0

iterationAt firt
set IT

ntud 



 
Fig. 1. Flowchart of the proposed solution strategy. 

 

Step III: The proposed DRP allocation problem considering 
the candidate effective load buses is solved by the proposed 
decomposition approach to find the optimal   value and  
the scheduling of the generating units. Then the process will 
be stopped. 

5. Case Studies and Discussion 
The proposed DRP allocation problem using IBRCC 

approach has been tested on the single area IEEE Reliability 

Test System (RTS) [21]. The RTS system contains 24 buses, 

32 generators, 3 wind farms and 38 transmission lines [21]. 
There are 3 geographically dispersed wind farms, at buses 7, 
11 and 24. The wind power output profile of the wind farms 

located at buses 7, 11 and 24 follows the similar patterns for 

the forecasted wind generation depicted in Fig. 2, which are 

scaled by factors of 2.5, 1 and 2, respectively. Also, the total 

daily load forecast has been given in Fig. 2. Besides, to have 

better elaborations of the results, some characteristics of the 

RTS system have been changed as detailed in [22].  

Using the modified test system is a common action in 

previous studies [1] and [5]. In addition, the capacity limits of 

some transmission lines have been reduced to 175 MW to 

impose congestion in the grid for simulation purposes.  
In this paper CPLEX 12.3 in GAMS 25 software has been 

used to solve the proposed formulations. The proposed model 

is executed on a Windows based personal computer with Intel 

Core i7 7700k 4.20 GHz and 16 GB RAM.  
 

 
Fig. 2. Daily system’s wind power and load curve 

 
The following 3 cases are investigated on this test system: 
 
A. Performance Evaluation of IBRCC: To better illustrate 
the operation results of the IBRCC problem, i.e., (1) (25), 
firstly, both uncertainty sources, CUs and DUs, have been 
ignored in the problem by setting λ = 0, that resulted in TC = 
$5425087 which determines the desired cost threshold level 
for the IBRCC computation. The optimal scheduling of the 
generating units, in the base case by solving the problem (1) 
(25) is given in Table I. Noted that this scheduling of units is 
taken as a reference for the purpose of comparison. Here, for 
the IBRCC without DRP, the parameters are set by risk 
tolerance level η = 0.05 and the number of buses that are 
allowed to participate in the DRPs is λ = 0. Also, the cost 
threshold limit is set as C = $5425087 × 1.2. Accordingly, 
the robustness level ( β ) has been maximized by the IBRCC 
model without DRP for different number of DUs (or ΘDU) as 
reported in Table II. As shown in this table, the β value 
without DUs, ΘDU  = 0, is 0.062, which is taken as a baseline 
for the comparison. At this condition, the power flows of 
transmission lines 7 (3-24), 11 (7-8) and 38 (21-22) reach to 
their capacity limits. It is noted that the transmission 
congestion can be worsened when the wind uncertainty is 
high and consequently the wind power generation may not 
be fully absorbed by the system. For example, with the 
higher generated power by the wind farm installed in bus 7, 
the power flow of the connected line to bus 7 is increased, 
i.e., line 11 (7-8). Accordingly, the power flowing through 
line 11 is reached to its limit, consequently, the power grid 
cannot fully absorb the generation. To decrease the power 
flow of this line, one possible option is to turn off the 
available online units 10 and 11 at this bus. As seen in Table 
I, units 10 and 11 in off peak hour (h4) have been turned off. 
Another issue, the transmission system congestion can be 
worsened when DUs and critical CUs occur simultaneously. 
In this situation, to enhance the wind generation absorption 
and increase β value, two options are available: starting new 
fast ramping units as a technical solution and/or relaxing 
some critical DUs in the computational side with some risks. 
In this regard, as shown in Table I, at (off ) peak hours the 
hydro units 24 29 (with high power ramp rate) are 
committed to cover more wind uncertainty and increase the 
robustness level with the same β value. Furthermore, as 
described before, some of DUs in the proposed IBRA 
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problem may tighten the feasible region of the optimization 
solution space and increase the probability of the problem 
infeasibility. Here, these kinds of DUs are named critical 
DUs. To overcome this issue, the constraints pertained to 
DUs have been modeled as the chance constraints to relax 
the critical DUs in the solution procedure. This fact has been 
shown in Table II, as the number of DUs, ΘDU, in IBRA 
problem is increased, the β value decreases and 
consequently the problem solution become infeasible, i.e., 
for ΘDU = 12. But, as can be seen in Table II, the IBRCC 
approach for ΘDU = 20 is feasible and the β value is 0.039. 
This is because of the fact that the critical DUs are not 
relaxed in IBRA, as a result, it imposes more limitations on 
some constraints, i.e., (27) and (28). Moreover, as shown in 
Fig. 3, the β value for the IBRCC approach without 
implementing DRP (λ = 0 and η = 0.12) is 0.028. That is that 
for β > 0.028, the IBRCC approach without DRP becomes 
infeasible.  

TABLE I:  Optimal power schedule of generation units in different cases 
(in p.u). 

 
Unit 

Base case 
(β=0 ,η=0 ,λ=0) 

IBRCC  
(β=0.0057 ,η=0.05,λ=0) 

IBRCC 
(β=0.071 ,η=0.05,λ=1) 

Off  
peak 
 (h4) 

Peak 
 (h21) 

Off 
Peak 
(h4) 

Peak  
(h21) 

Off  
peak 
(h4) 

Peak  
(h21) 

1 0.20 0.20 0.00 0.20 0.00 0.20 
2 0.20 0.20 0.00 0.20 0.00 0.20 
3 0.00 0.76 0.30 0.76 0.45 0.76 
4 0.15 0.76 0.15 0.76 0.15 0.76 
5 0.20 0.20 0.00 0.20 0.00 0.20 
6 0.20 0.20 0.00 0.20 0.00 0.20 
7 0.00 0.76 0.15 0.76 0.47 0.76 
8 0.00 0.76 0.76 0.76 0.15 0.76 
9 0.00 0.00 0.25 0.00 0.00 0.00 
10 1.00 0.00 0.00 0.00 0.00 0.00 
11 0.37 1.00 0.00 1.00 0.00 0.87 
12 1.97 1.97 0.00 1.97 0.00 1.97 
13 1.57 1.97 0.69 1.97 0.00 1.97 
14 1.97 1.97 0.00 1.97 0.69 1.97 
15 0.12 0.12 0.00 0.00 0.00 0.00 
16 0.12 0.12 0.00 0.00 0.00 0.00 
17 0.12 0.12 0.00 0.00 0.00 0.00 
18 0.12 0.12 0.00 0.00 0.00 0.00 
19 0.12 0.12 0.00 0.00 0.00 0.00 
20 0.54 1.55 0.00 0.00 0.00 0.54 
21 0.54 1.55 0.00 0.00 0.00 0.00 
22 0.00 0.00 0.00 0.00 0.00 0.00 
23 0.00 3.23 1.74 3.93 2.12 3.52 
24 0.00 0.00 0.50 0.50 0.50 0.50 
25 0.00 0.00 0.50 0.50 0.50 0.50 
26 0.00 0.00 0.50 0.50 0.50 0.50 
27 0.00 0.00 0.50 0.50 0.50 0.50 
28 0.00 0.00 0.50 0.50 0.50 0.50 
29 0.00 0.00 0.50 0.50 0.50 0.50 
30 0.00 1.55 0.54 1.55 0.54 1.55 
31 0.00 1.55 0.54 1.55 0.54 1.55 
32 0.00 3.50 1.40 3.50 1.40 3.50 

 
TABLE II: Results of IBRCC 

ΘDU 
IBRCC IBRA  

β Time [sec] β Time [sec] 
0 0.062 5 0.062 5 
3 0.054 9 0.025 10 
6 0.051 10 0.0032 40 
12 0.044 16 infeasible >500 
20 0.039 24 infeasible >500 

 

 
Fig. 3. The β value in IBRCC approach under different λ value. 

 
Also, for β > 0.028, the security constraints have some 
limitations on power flowing through lines 7, 11 and 38 (in 
particular, through the line 11 connected to the bus 7). In 
this condition, by implementing the DRP at bus 7, as 
expected the power flowing through line 11 is improved, 
because DRP can manage wind power injection at bus 7 and 
reduce power flow through line 7 by reducing the load at 
peak hours. Similarly, the implementation of DRP will 
result in an analogous behavior at peak load (hour 21), 
however, the power dispatch of unit 11 located at bus 7 is 
decreased by 13%. Therefore, the β value has been 
improved by 83.92%, (improved from 0.028 to 0.112), as 
observed in Fig. 3. Furthermore, it can be inferred from Fig. 
3 that increasing the number of candidates for effective 
buses, λ, to implement DRP, will increase the β value, but 
their impact would be diminished. Moreover, the following 
observations can be concluded from Fig. 3: 
– Selecting one effective bus (λ = 1) for implementing 

DRP has more impact on the increase of β value than 
selecting two or more candidate buses for DRP. 

– The β value is increased as η changed from 0.04 to 0.2, 
indicating higher robustness against CUs. However, the 
rate of increment is decreased in the IBRCC approach 
with (without) DRP. This statement approves that a 
higher value of η causes a more relaxation over DUs, 
thus, transmission system congestion can be much more 
reduced leading to more possibility for finding operation 
solution to handle the short term wind uncertainty or to 
increase β value more.  

– Increasing the value of η will result in widening the 
budget limit. That is, the critical DUs will increase the 
probability of violating the budget limit in this condition. 
Accordingly, more operational constraints related to 
critical DUs can be ignored in our IBRCC approach with 
(without) DRP, which allows us to allocate more 
resources to maximize our capacity in handling the wind 
uncertainty. For example, when η (for λ = 8) is higher 
than 0.04, all of the critical DUs are relaxed in the 
problem, that is, there is no transmission congestion, 
thus, the β value remains at 0.236. This intuition is 
confirmed by the illustrated numerical results in Fig. 3. 
 

B. Comparison performance of IBRCC and IBRA: Here, we 
set λ = 0 and η = 0.05 to compare the performances of IBRA 
and IBRCC models under a different number of DUs 
settings, i.e., ΘDU. The results of this comparison can be 
found in Table II. From Table II, the following remarks can 
be inferred: 
– First, it is observed that once ΘDU = 0, the obtained β 

value by the IBRA and IBRCC are the same, i.e., β = 
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0.062. This is rational because when ΘDU = 0, the chance 
constraint in IBRCC is discarded. However, for ΘDU = 3, 
the IBRA is feasible and the β value for this approach is 
0.025. But, the β value for IBRA has been reduced more 
with respect to IBRCC approach, while in the IBRCC, 
the critical DUs have been relaxed. Moreover, as ΘDU 
increases, the β value for these two approaches decreases 
and for IBRA this value has much more change. 

– The solution of the IBRCC approach is always feasible 
under different ΘDU, but for IBRA is not. For example, 
for ΘDU > 6, the IBRA solution become infeasible. This 
is because in the IBRA, the security constraints related to 
critical DUs cannot be relaxed in the solution process.  

– As the number of ΘDU increases, the solution time in 
both approaches is increased. But, in IBRA, the 
computational time increases significantly once the 
number of ΘDU increases, i.e., especially for ΘDU > 6. 
Nevertheless, when ΘDU > 10, the IBRA fails to be 
feasible. In contrast, the IBRCC approach reveals an 
incredible capability to solve the problem successfully in 
a reasonable solution time, i.e., 16 Sec, compared to 
IBRA, i.e., more than 500 Sec.  

These results verify that the proposed IBRCC approach have 
a computational efficiency to effectively handle the critical 
DUs as compared to the IBRA, particularly once the number 
of DUs (or ΘDU value) is high. 
 
C. DRP Allocation based on SFM: The computational 

efficiently of the SFM to determine the candidate buses for 
implementing DRP is verified in comparison with DRP 
allocation problem using the simple strategy of per selection 
of λ for (16). For the base case, the lines with the numbers 7, 
11 and 38 are the congested lines at the hour 21. Therefore, 
the effective buses would be determined based on the 
sensitivity of all the congested line flows to the load buses 
injection are calculated as explained in Section IV. The 
candidate buses for different values of λ have been 
determined in Table III. These buses, in Table III, have the 
most negative amount of ,k bSF  at the critical hour (h21), 
that is, they have the most effects on decreasing the power 
flow in the congested lines, so, implementing DRP on these 
buses will increase the β value. In Table III, the SFM does 
not outperform the pre-selected λ in (16) from optimality 
point of view, i.e., β value. Indeed, finding best candidate 
buses based on the pre-selected λ value in (16) always 
reveals similar or better values for β. However, the 
difference between the obtained results of two approaches is 
negligible. When λ < 4, both approaches result in the same 
solution. The worst case occurs at λ = 8, where the 
difference is 0.02%. Also, in Table III, once λ < 2, both of 
them have the same results but SFM executes the problem 
so faster by 95.62% and once λ > 4, only SFM 
computational time. For instance, for λ = 8, the SFM and 
pre-selected λ approaches find the optimal solution in 15 and 
90 seconds, respectively. However, as the value of the λ is 

increased, the computational time of the DRP problem 

considerably increases, while the speed performance of the 

SFM is still reasonable. Indeed, this considerable increase in 

the computational burden of the pre-selected λ method is 

caused by the increased number of binary variables that 

should be handled by the DRP problem based on IBRCC 
approach. However in the SFM, these binary variables are 

pre-selected before the solution procedure based on the can 
reach to the optimal solution with a reasonable mentioned 

approach in Section IV. Accordingly, the SFM is capable of 

handling the large scale problems to explore the optimal 

solutions with the cost of reasonable computational burden. 

5.1. Modified IEEE 118-Bus system 
Case studies in a larger scale system are performed to show 

the effectiveness of the proposed IBRCC model and to 
validate the application of the proposed method in the real 
system operation. The modified IEEE-118 bus system has 
54 thermal units, 186 branches, and 91 load buses. The 
parameters of generators, transmission network, and load 
profiles are given in [23]. However, the line flow limits for a 
few lines are reduced to 100 MW to enforce the system 
congestion in the simulations. There are 3 geographically 
dispersed WPG at buses 30, 48, and 96. The WPG capacity 
is 1200 MW. The percentage of hourly load system is the 
same as the previous six-bus system where the peak demand 
is 3733.07 MW at hour 17. 

 
Table III: Solution performance of different approaches 

λ 
Proposed SFM Pre-selected λ for (16) 

Bus β time [sec] Bus β time [sec] 

1 7 0.074 

<15 

7 0.074 5 
2 7,14 0.147 7,14 0.147 10 
4 1,3,7,14 0.201 2,3,7,14 0.203 25 

8 1,2,6,7,8, 
10,13,14 0.202 1,3,6,7,8, 

10,13,14 0.203 90 

Table IV: Results of IBRCC in IEEE 118-Bus system 

ΘDU 
IBRCC IBRA  

β Time [sec] β Time [sec] 
0 0.093 20 0.093 20 
10 0.078 90 0.042 397 
20 0.052 150 infeasible >1000 
40 0.034 190 infeasible >1000 

 
Table V: Solution performance of different approaches in IEEE 118-Bus 
system 

λ 
Proposed SFM Pre-selected λ for (16) 

Bus β time [sec] Bus β time [sec] 

1 48 0.085 40 48 0.085 100 

5 17,46, 
48,82,96 0.123 55 17,46, 

48,82,96 0.124 220 

10 

17,18, 
46,48,  
49,80, 
82,96, 
94, 95, 

0.198 62 

17,45, 
46,  

48,80 
,82,96, 
93, 95, 

0.199 440 

 
The installed WPG is 32.14% of the system peak demand. 
The wind output profile of the WPG units follows the same 
pattern as that of the six-bus system. The robustness level 
(β) has been maximized by the IBRCC and IBRA models 
without DRP for different numbers of DUs (or ΘDU) as 
reported in Table IV. As shown in Table IV, the β value for 
both models is same in the case ΘDU = 0, because, in this 
situation, the IBRCC model and IBRA models are the same. 
Also, as shown in Table IV, by increasing ΘDU, the β value 
for both models have been decreased. Also, as shown in 
Table IV, when ΘDU in the IBRA problem is increased, the β 
value has been decreased and accordingly the problem 
solution has become infeasible, for instance in ΘDU = 18. 
However, the IBRCC approach for ΘDU = 20 is feasible and 
the β value is 0.052. On the other hand, as the number of 
ΘDU increases, the solution time in both approaches is 
increased. But, for the IBRA, the computational time 
increases significantly once the number of scenarios 
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increases specially for a number of scenarios above 10. 
Nevertheless, the IBRCC model reveals an incredible 
capability to solve the problem successfully in a reasonable 
solution time, i.e., 90 sec, compared to IBRA model with 
more than 397 sec to reach optimal result.  
As shown in Table V, similar to the pervious test system, 
when λ value are increased, the computational time of the 
DRP problem significantly increases, but the computational 
time of the SFM is still reasonable. For example, for λ = 10, 
the SFM and pre-selected λ approaches find the optimal 
solution in 20 and 440 seconds, respectively while the 
difference between the obtained results of two approaches is 
negligible. 

6. Conclusions 
In this paper, a DRP allocation problem based on an 

interval based robust chance constrained model was 
proposed to manage the CUs and DUs, simultaneously. This 
model was formulated by means of combining the interval 
based robust optimization and chance constrained 
optimization formulation to control the wind uncertainty and 
stochastic behavior of random outages of network 
equipment (generators and transmission lines) subject to the 
probabilistic system security constraints. The proposed 
IBRCC approach has taken the advantages of both robust 
and chance constrained uncertainty modeling mechanisms. 
Also, in this paper, the DRP allocation, as a powerful 
uncertainty management tool for CUs and DUs, has been 
implemented to determine most effective candidate load 
buses in the proposed model. Accordingly, a new approach 
was presented based on the SFM. In the proposed approach, 
the effective buses to apply DRPs were determined. By the 
proposed IBRCC approach, the robustness level of DRP 
problem and the value of β were increased significantly, and 
consequently the robustness performance was improved. 
The proposed IBRCC approach could be solved efficiently 
by our proposed decomposition strategy framework.  

Further work is underway to establish an uncertainty 
model that determines acceptable uncertainty variation 
range during different hours. Also, our proposed approach 
always faces the challenges on its over conservatism, due to 
its objective function of maximizing the worst-case 
uncertainty. To address this issue, we are going to apply the 
asymmetrical approach in our future work. 
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