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Abstract—The issue of climate change has received considerable attention in recent 

decades. Therefore, renewable energies and especially wind units have become a 
central point of attention. The stochastic nature of wind power production is modeled 
by means of a scenario-based method to show the possible events in the real-time. 
Based on the Monte-Carlo Simulation (MCS) method and employing constructed 
Rayleigh probability distribution function (PDF), several scenarios that demonstrate 
the behavior of wind farms in real time are generated. To this end, a uniform random 
variable is generated and assigned to the mentioned PDF. Afterwards, a wind speed 
with a probability is achieved followed by the amount of wind power generation. Also, 
with a scenario reduction method (forward method), the desired number of scenarios 
can be obtained. To cope with the uncertainties of wind power generation, resulting 
from the intermittent nature of this kind of energy, this paper proposes a Demand 
Response (DR) based operation approach. In other words, unlike the previous models 
in the literature that considered a supplementary role for the DR, this paper introduces 
the main role for the DR in the operation of future electricity markets. This approach 
focuses on a comprehensive modeling of the Demand Response Programs (DRPs) for 
the operational scheduling of electricity markets, considering the uncertainties of the 
generation of wind turbines, aiming at increasing the network security and decreasing 
the operation cost. The incorporation of market-based DRPs such as Demand Bidding 
(DB) and Ancillary Service Demand Response (ASDR) is also considered. Two novel 
quantitative indices are introduced to analyze the success of DRPs regarding efficiency 
and wind integration. Numerical results obtained on two IEEE test systems indicate 
the effectiveness of the proposed model.  

Index Terms—Demand response, DR-based operation model, electricity market, 
quantitative index, renewable energy, stochastic programming. 

NOMENCLATURE 
A. Sets and Indices 

b, bꞌ (NB) Index (set) of system buses. 
d (ND) Index (set) of stepwise demand bidding. 
K(NK) Index (set) of stepwise for ASDR. 
i (NG) Index (set) of generation unit. 
j (NJ) Index (set) of load. 
m (NM) Index (set) of segments of the piece-wise linear cost

functions.  
t, tꞌ (NT) Index (set) of hours.  
w (NW) Index (set) of wind scenario.  
wf (WF) Index (set) of wind farm. 
B. Parameters 
At Incentive payments to customers at hour t [$/MWh].
ASm,t Slope of segment m in linearized total incentive curve in

hour t [MWh]. 
_

,
G Eng
i mC  Slope of cost function for unit i in segment m of the 

piece-wise linear cost function [$/MWh]. 
_

,
G DC
i tC  Down-reserve offered price of unit i at hour t [$/MWh].

_
,
G UC
i tC  Up-reserve offered price of unit i at hour t [$/MWh].

_
,
G DE
i tC  Offered price for down-employed reserves of unit i at 

hour t [$/MWh]. 
_

,
G UE
i tC  Offered price for up-employed reserves of unit i at hour

t [$/MWh]. 
max
,b bF ′

 Maximum capacity of branch between buses b and b′
[MVA]. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

MDTi Minimum down-time of unit i [h]. 
MUTi  Minimum up-time of unit i [h]. 
MPCi Minimum production cost (no-load cost) of unit i [$].

max min,i iP P Maximum/minimum capacity of unit i [MW].
Plt Value of loss of load at hour t [$/MWh].
RUi Ramp-up of unit i [MW/h]. 
RDi Ramp-down of unit i [MW/h]. 
SCi Startup cost of unit i [$/each switching].
SURi Startup ramp rate of unit i [$]. 
SDRi Shutdown ramp rate of unit i [$]. 

,b bX ′  Reactance of branch between buses b and b′  [ Ω ]. 
ρ0 Initial electricity price [$/MWh]. 
ρw Probability of wind power scenario w.
C.Variables 
CEDRP Cost of customer’s participation in EDRP [$].

0
, ,bb tF ′  Expected power flow of line l at hour t [MVA].

, , ,bb wtF ′ Power flow of line l at hour t in scenario w [MVA].

, ,b t wLShed Load shedding of bus b at hour t in scenario w [MWh].

 
Power of unit i at hour t in segment m of the piece-wise 
linear cost function [MWh]. 

,
,

WP S
wf tP  Scheduled generation of wind farm wf at hour t for day-

ahead market [MWh]. 
,max

,
WP
wf tP  Expected wind generation of wind farm wf at hour t

[MWh].

, ,
W

wf w tP  Realized wind generation of wind farm wf at hour t in 
scenario w [MWh]. 

 
Real-time down-used reserves of unit i at hour t in 
scenario w [MWh].

 
Real-time up-used reserves of unit i at hour t in scenario 
w [MWh].
Scheduled down-reserve of unit i at hour t [MWh].

Scheduled up-reserve of unit i at hour t [MWh].

,i tSUC  Startup cost of unit i at hour t [$]. 

,i t
U  Binary status indicator of unit i at hour t. 

0
,b tδ  Expected voltage angle of bus b at hour t [rad].

, ,b w tδ  Voltage angle of bus b at hour t in scenario w [rad].

ʋm,t Award of segment m in linearized total incentive curve 
in hour t [$/MWh].

I. INTRODUCTION 
A. Motivations 

ENEWABLE energies are boosting substantially to resolve the 
environmental issues such as the global emission of carbon 

dioxide and the high consumption of fossil fuels [1]. However, the 
balancing between supply and demand in power system runs into one 
of the serious and major difficulties due to expanding renewable 
energies. Demand Response Programs (DRPs) are a worthy and 
suitable choice to cope with the intermittent nature of renewable 
energies [2]. This paper proposes a Demand Response (DR) based 
operation model of the electricity market considering various types 
of DRPs, such as Demand Bidding (DB), which is one of the most 
efficient mechanisms to smooth the demand side curve and to 
compensate the renewable energy fluctuations in the power system 
[3], [4]. 
B. Literature Review 

In [1], the offering strategy of a wind power producer is studied in 
the presence of DR, while, the objective function is to maximize the 
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profit of the wind power unit. In [2], the role of retailing entity in the 
wholesale and retail markets is modeled. A robust DC optimal power 
flow has been presented in [5] for power systems with high 
penetration of wind power which is able to mitigate the potential 
variability of wind generation. In [6], a self-decision making method 
has been developed for load management using the multi-agent 
system considering distributed generation and DR resources. The 
location and capacity of renewable generations and electric vehicle 
charging stations are simultaneously determined using a multi-
objective model in [7]. The implementation of DRPs in a power 
system considering renewable energy is proposed in [8] and [9] to 
illustrate the need for these kinds of economic models of responsive 
loads to provide protection against an inflexible load profile. 
Nevertheless, these references only focused on one DR program. The 
Incentive-Based Demand Response (IBDR) model is introduced and 
utilized in [8] while the Real-Time Pricing (RTP) model is presented 
and used in [9]. On the contrary, both categories of DRPs are 
formulated in this paper. 

In [10] and [11], a planning tool has been presented to determine 
the optimal location and size of Renewable Energy Resources 
(RERs) and Energy Storage Systems (ESS) under Price-Based 
Demand Response (PBDR) programs. Also, the impacts of DR and 
ESS on social welfare are analyzed in [10] and [11]. Moreover, a 
robust optimization scheduling framework to derive an optimal unit 
commitment decision in systems with high penetration of wind 
power incorporating DRPs as well as bulk ESS in co-optimized 
energy and reserve markets has been proposed in [12]. In [13], a two-
stage Stochastic Programming (SP) approach is introduced for 
optimal day-ahead power procurement with RER and DR. In [13], 
the authors focus on reducing the energy cost in demand side. In [14], 
a bi-level distribution expansion planning model considering RERs 
and a time-varying DR model is presented. In [15], the concept of 
online DR is used to minimize the operational cost and two online 
DR strategies have been introduced  to minimize the operation cost 
considering non-deferrable loads. In [16], a stochastic Security 
Constrained Unit Commitment (SCUC) is presented considering 
DRPs under the uncertainty of wind power productions. In [17], the 
new Demand Response eXchange (DRX) market is employed to help 
the operation of energy market in the presence of RERs. The authors 
of [18] have focused on the minimization of end-users electricity bills 
and maximization of their satisfaction, enabling the problem to 
become a convex problem. To obtain the optimal results. To motivate 
the customers to be responsive to price changes, financial incentives 
are considered in [19]. This publication also employed smart 
appliances for load shifting to increase the participation of customers 
in DRPs. The day-ahead electricity market condition would be more 
complicated in the presence of renewable generation and DRPs. 
C. Aims and Contributions 

Although many research works have studied the operation of 
power systems in the presence of DR and renewable resources, a DR-
based operation of energy and reserve markets in the wind integrated 
systems has not been addressed. In other words, the previous works 
in the literature have focused on the supplementary role for DR in the 
energy and reserve markets, while this paper aims at introducing the 
main role for DR in the operation of future electricity markets. 
Particularly, the presented models of ISO in the literature do not 
consider that some DR programs such as Time-of-Use (TOU) and 
Critical Peak Pricing (CPP) should be designed for a day-ahead 
market, while some other DR programs such as ancillary service 
demand response (ASDR) should be provided for real-time markets. 
This important issue has not been addressed in the models of ISO in 
the presence of DR; hence, in those models, DR programs have not 
been categorized in terms of the market session. Therefore, in those 
ISO’s models, different DR programs have not been placed in a 
multi-stage model. The contribution of this work is not only to 
include all possible DR programs in a comprehensive model, but also 
to design the model to consider the inherent feature of each DR 
program in terms of the market session.  

To this end, a comprehensive model including various types of 
DRPs is developed for the operational scheduling of electricity 
markets, considering the uncertainties of the generation of wind 
turbines through a two-stage SP model. The proposed DR-based 
operation approach aims at increasing the network security and 
decreasing the operation cost. Unlike the previous works, the 
incorporation of market-based DRPs such as Demand Bidding (DB) 
and ASDR is considered in the proposed model to enhance the 
substantial role of active customers in the power exchanges of the 
electricity markets. In order to quantify the effectiveness of the 
proposed approach, two new indices have also been proposed.  

The contributions of this paper can be summarized as follows. 
- Developing a DR-based operation model in the electricity 

markets with high penetration of RERs. 
- Proposing a comprehensive operation model to incorporate 

different types of DRPs including DB and ASDR in day-ahead 
and real-time market sessions.    

- Introducing two new indices to quantify the impact of DR on the 
wind integrated power systems.      

D. Paper Organization 
The remainder of the current paper is structured as follows. The 

proposed model is introduced in Section II, and its mathematical 
equations and constraints in Section III. Novel indices for calculating 
the value of the implemented DR programs with wind integration are 
introduced in Section IV. The numerical results of the model are 
presented in Section V, and the final section is the conclusion. 

II.    MODELING OF THE PROBLEM 

In this paper, both priced-based and incentive-based categories are 
considered as DR programs. The colored boxes in Fig. 1 [20] refer to 
the DR programs included in the proposed model.  
A. PBDRs model 

Economists believe that informing consumers from real electricity 
prices will increase efficiency [21]. On the other hand, PBDR or 
time-varying tariffs applied in the restructured power system 
improve the demand curve and reduce the load during peak hours. 
Due to the changes in electricity prices, consumers are encouraged to 
participate in DRPs. It should be mentioned that the considered 
electricity market is based on the uniform pricing due to two main 
reasons. Firstly, most of the well-known electricity markets such as 
PJM, NYISO, ISO-NE and MISO have uniform price auctions. 
Secondly, it has been proven that the uniform price auctions achieve 
the most efficient results in both the short run and long run [22]. As 
indicated in Fig. 1, PBDR programs in this paper include TOU, CPP, 
and RTP. In these programs, the electricity tariff varies according to 
the cost of energy in each time slot. Besides, by applying time-
varying tariffs with higher rates at peak hours, consumers are 
encouraged to reduce their electricity consumption during peak 
hours. More details about these DR programs can be found in [23]. 
The amount of demand-side consumption related to customers 
participating in PBDR programs in a day-ahead market is given in 
(1) [23].  
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 
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where 0
td  and td  are the electricity demand before and after 

applying the PBDR program; 0
tρ ′  and tρ ′  are the electricity tariffs  

before and after applying the PBDR program; ,t tE ′  represents the 
elasticity of demand pertaining to hours t and t'. It should be noted 
that the elasticity of demand can be calculated by various methods 
based on the analysis of real data and customers’ surveys [24]. 
Equation (1) presents an exhaustive PBDR model based on the “self-
elasticity” and “cross-elasticity” concepts of demand to model a 
plunge in load through the participation of customers in price-based 
DRPs [23]. Note that, the load reduction and load recovery processes 
in DRPs implementation have been modeled through price elasticity 
of demand concept, simultaneously. 
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Fig. 1.  The highlighted boxes refer to our model DRPs implemented to cover the 
uncertainty of wind power generation. 

 
B. IBDRs model 

In these kinds of programs, an incentive fee is offered to customers 
participating in DRPs. The incentive amount is separate from the cost 
paid by customers for electricity consumption. The amount of power 
consumption incentive may be just credit, payments on preset 
contracts, or proportional to the amount of reduced load [23]. 
Customers’ participation in IBDR programs is often optional.  

However, in some DRPs, a fine of some amount will be considered 
for consumers who state that they will participate in the program but 
do not reduce their loads in the relevant time. In these programs, a 
series of incentives is used to encourage consumers to participate in 
DRPs. Unlike PBDR programs, the response rates in these programs 
are not related to the customer reaction to price changes and even 
other effective parameters such as weather conditions. Therefore, it 
is not difficult to predict their effectiveness. In order to measure the 
amount of load reduction to determine the amount of payments to 
customers, DRPs employ methods for the determination of normal 
consumption versus their reduced load. These types of programs 
unlike price-based DRPs (in which predicting and measuring the 
amount of consumption reduction are difficult), are employed as a 
useful tool for estimating production costs and also satisfying a target 
reliability level by Independent System Operators (ISOs) [25]. 

The IBDRs in this paper include DB, ASDR, and Emergency 
Demand Response Program (EDRP). In the DR method (also called 
Buyback), the major customers submit a load reduction bid to the 
ISO. If the bid is accepted after-market clearing, the customer will be 
obliged to execute the contract; otherwise, penalties will be imposed. 
These programs are employed as the solutions to avoid increasing the 
market price. These programs are attractive for many consumers as 
they keep the electricity prices fixed for customers. These programs 
are implemented by encouraging large consumers to bid for their 
purchased energy with self-offers or by encouraging consumers to 
determine the amount by which they are willing to reduce their 
consumption in response to the market price.  
1) EDRP Model 

In the EDRP, participants receive an incentive reward for dropping 
their load when the system reliability seems to be in doubt. This 
incentive amount is announced in advance. In such programs, 
reducing the load is optional, and there is no penalty for consumers 
who do not participate in the program. So after the announcement of 
the need to reduce the burden, consumers can ignore the incentive 
fee and not reduce their consumption. Equation (2) illustrates how 
the incentive-based economic load model is obtained [23]:  
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Implementation of IBDR pushes some costs up to the ISO. These 
costs include the incentive payments per hour to customers for 

reducing their load at peak hours. Equation (3) is formulated to state 
this cost function. 

0C ( )EDRP
t t t tA d d= −  (3) 

Equation (2) is substituted in (3) until the cost of the customer’s 
participation in EDRP from the ISO point of view can be calculated 
through (4): 
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From (4), EDRP
tC  can be accurately approximated by a piecewise 

linear model, which is as given in (5): 
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2) ASDR Model 
The ASDR model works as a reserve source. The customer can 

submit a bid for load curtailment to the ISO as an operating reserve, 
and if accepted, ISO will pay the customer for committing as a 
standby reserve capacity. 

If the costumer’s reserve capacity is needed, the ISO calls them 
with the spot market price.  

The ASDR model is shown in Fig. 2 as a stepwise curve at bus b 
at hour t as given in (6).  

 
Fig. 2.  ASDR demand price. 

0 0
, , , , ,

1

K
k k

t b t b t b t b t b
k

ASDR qb u d uλ
=

= +  (6-a) 

0 0 0
, , , , , , ,

1

K
ASDR k k k
t b t b t b t b t b t b t b

k

C cpi qb u cpi d uλ
=

= +  (6-b) 

1
, , ,
k k k

t b t b t bd qb qbλ −= −  (6-c) 

In this model, ,
k

b tqb and ,
k

t bcpi denotes the DR quantity and DR price 
respectively at bus b at hour t in block k; ,

k
t bdλ  denotes the difference 

between the DR quantity in two adjacent blocks; and  ,
k
t bu  is a binary 

variable indicating the selection status of each block by the program. 

,t bASDR is total amount of DR reserve in day-ahead market and 

,
ASDR

t bC is the capacity cost of ASDR deployment in day-ahead 
market. 
3) DB model 

The bidding strategy in DRPs could have the same formulation as 
in day-ahead and real-time markets. In the day-ahead market, 
participants in these DRPs can bid the amount of energy reduction 
on the preceding day and can be involved in optimum operational 
planning. If their bids are accepted in this market, the participants are 
obliged to reduce their daily consumption. If they do not reduce their 
consumption, they will be charged by heavy penalties. A similar DB 
program is running in the New York Independent System Operator 
(NYISO). In another approach, the participants are asked to reduce 
their consumption, and if they drop their electricity usage, they will 
be paid at the market clearing price as in the model used in NYISO 
[26]. In the DB method, customers identify how much and at what 
price they would like to curtail their load. To deal with the DB 
program, a new modeling technique is proposed in this paper. In fact, 
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in this model, customers submit bids for the desired demand to be 
served and accordingly the ISO will decide how much load should 
not be served. Based on this, the formulation below is introduced to 
deal with the DB. 

, , , ,
1 1 1

 ( )
NT NB ND

b t d b t d
t b d

Demand bidding Bid Loadsch
= = =

=  (7) 

where , ,b t dBid  is a parameter which indicates proposed price steps 
(d) for demand by customers and , ,b t dLoadsch  is a variable which 
represents the accepted amount of demand for each step by ISO. 

,b tBid has a stepwise curve which dedicates, for example, 4 price 
steps for demand. Based on the proposed price steps, , ,b t dLoadsch is 
scheduled in the program for the accepted amount of load that should 
be supplied at each bus and hour. Meanwhile, , ,b t dLoadsch should be 
lower than a percentage of total forecasted loads. Additionally, 

,b tDisL  is the summation of load steps, which should be lower than 
total forecasted load demand. The bidding mechanism for customers 
in this method is illustrated in Fig. 3. The unserved load in the 
proposed DB model is calculated through (8):  

, , , ,
1

( )     ,
ND

b t d b t b t b
d

Loadsch L DBP t b NJ
=

= − ∀ ∈  (8) 

where ,b tDBP  indicates the loads that are not supplied at bus b and 
hour t based on the price that customers proposed for their loads. ,b tL
denotes the load at bus b and hour t.  
The customers’ bidding is effective on choosing which hours 
customers should be supplied or curtailed. In other words, customers’ 
bidding in peak hours and off-peak hours determines that some 
consumptions in peak hours should be shifted and covered in off-
peak hours to reduce the operation cost. 

It should be noted that there are several obstacles that prevent full 
DR implementation in real-life. The main obstacles to effective DR 
implementation are recognized to be the inelasticity of demand and 
low level of participation due to asymmetries in information. In 
addition, slow deployment of the technical infrastructures, such as 
smart metering and required telecommunication platforms, is another 
difficulty in full DR implementation. 
 

III. MATHEMATICAL EQUATIONS AND FORMULATION 

In the proposed model, the objective function maximizes the 
Social Welfare (SW) which is the customers’ surplus minus the 
suppliers’ cost (presented in (9)), subject to relative constraints from 
the ISO’s point of view.  
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Indeed, in (9), the first term is the customers’ surplus declared by 
the demand bidding  and all other parts are the operation cost 
presented by the two-stage stochastic model. In the two-stage 
stochastic model, the first stage represents the day-ahead session and 
the second stage represents the real-time session. The schematic 
diagram of the proposed strategy is illustrated in Fig 4. In fact, a 
conceptual diagram besides an appropriate flowchart to state the 
solution method and decision variables are presented in Fig. 4. 

2dB id

3dB id

1dB id

1dLoadsch 2dLoadsch
3dLoadsch

 
Fig. 3.  Demand bidding curve. 

 

 

(a) Conceptual diagram 

 

(b) Solution method flowchart 
 
Fig. 4.  Schematic diagram of the proposed strategy. 
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In (9), the first summation represents the total surplus for 

customers for serving their loads by ISO. In fact, the operators decide 
which load bids should be selected by proposed prices. In this 
program, ,b tBid is fixed and ,b tDisL is decision variable. The second 

summation is the generation cost of thermal units.  
Decision variables of the second summation are ,i tSUC , ,i tU  and

, ,
e

i t mP . The offered prices of units for up/down reserve capacities are 
given in the third summation of (9) where _

,
G UC
i tR and _

,
G DC
i tR are 

decision variables. The fourth summation is related to the capacity 
cost of ASDR deployment in day-ahead market which is variable and 
obtained from (6-b). The fifth summation corresponds to EDRP cost 
which is a decision variable and obtained from (5). The sixth 
summation is associated with the scenarios consideration which 
includes prices relative to the pre-planned delivered up/down 
reserves through generating units, energy cost of ASDR deployment 
in balancing market, and load shedding cost. In this summation, 
decision variables include _

, ,
G up

i t wr , _
, ,
G dn

i t wr , , ,
ASDR
t w bE  and , ,t w bLShed . The 

objective function is maximized subject to the following equality and 
inequality constraints. 
A. Day-ahead equations 

The balance between demand and supply is guaranteed through 
(10). The branch flow based on DC network modeling is given in 
(11). Besides, branch flow limitations are formulated in (12). The 
scheduled generations of wind farms in day-ahead market are limited 
between zero and their expected available generations in (13). 
Equation (14) represents the power of a thermal unit based on the 
powers of the segments of the linearized cost function.  

0
, ,

,
, ,,

,
  ,b b t

b b b

WP S
i t j twf t

i NG wf WF j NJ b b NB
P P L F b t′

′∈ ∈ ∈ ∈
+ − = ∀    (10) 

( )0 0 0
, , , , , (.... , ),b b t b t b t b bF X b b tδ δ′ ′ ′ ′= − ∀  (11) 

max 0 max
, , , , ( ,... ),.b b b b t b bF F F b b t′ ′ ′ ′− ≤ ≤ ∀  (12) 

, ,max
, , ...0 . ,WP S WP

wf t wf tP P wf t≤ ≤ ∀
 

(13) 

max
, , , , , ,

1

.., 0 .. ,
NM

e e
i t i t m i t m i m

m

P P P P i t
=

= ≤ ≤ ∀
 

(14) 

The rest of day-ahead constraints are presented in Appendix.  
B. Real-time equations 

The second-stage constraints pertaining to the scenarios are 
presented in this section. In this paper, since there are wind 
generators, the uncertain nature of their generations has been 
modeled through a scenario-based method to represent the possible 
events in the real-time operation. Wind speed profile in one area is 
conformed approximately to the Rayleigh PDF [27]. The parameters 
of the relative PDF would be calculated from processing of the given 
historical data [28], [29]. To convert wind speed to electric power a 
linear equation extracted from [29] is employed. Using MCS and 
constructed Rayleigh PDF, a sufficient number of scenarios are 
generated. Afterward, through applying a scenario reduction method 
(forward method), the desired amount of scenarios can be obtained. 
Constraints and equations for ASDR in the second stage are indicated 
in the equations (15) where ,

k
t bepi  is the energy price for each DR 

block and ,
k
t buk  is the selection state of each block by the program in 

the second stage. , ,
ASDR
t w bE is the energy cost of ASDR and , ,t b wasdr is 

the total amount of ASDR, both in the real-time market. 

, , ,0 t b w t basdr ASDR≤ ≤  (15-a) 

0 0
, , , , , , , ,

1

K
k k

t b w t b t b w t b t b w
k

asdr qb uk d ukλ
=

= +  (15-b) 

0 0 0
, , , , , , , , , ,

1

K
ASDR k k k
t w b t b t b t b w t b t b t b w

k

E epi qb uk epi d ukλ
=

= +  (15-c) 

The rest of real-time constraints are presented in Appendix. 
 

IV. THE PROPOSED INDICES 

Uncertainties are the key elements that can affect the expected 
schedules and system regulation. To verify the implemented model 
and investigate the impacts of different DR programs on promoting 
grid integration of wind power, this paper introduces some novel 
metrics and measures based on load changes. To represent the impact 
of DRPs, the rate of wind generation is considered constant in its total 
power production capacity while different kinds of DRPs are 
implemented. The average Demand Response Program Benefit 
(DRPB) shows how much the social welfare increases due to 
participation of 1 MW load in a specific DR program. For an ISO 
that aims at maximizing the social welfare, it is very important to 
know the value of this index, since it can be a good measure of the 
effectiveness of different DR programs and consequently to make a 
decision on the investment in the useful DR programs. 

The results are illustrated in the following section. This index 
illustrates a more useful program to overcome the uncertainty of the 
wind. The index is represented by (16).  

24

1

1

24

DR NoDR
t t

DR
t t

SW SW
DRPB

MAX Load=

−
=

×  (16) 

where DRMAX  is the percentage of consumers who are responsive 
demand and in this current paper it is assumed to be 20%.  

It is noteworthy that besides implementation of DR, there are 
many other options for an ISO to improve the system social welfare, 
such as making new rules and regulations, changing the market 
structure and adding new market players. On this basis, the ISO must 
select the best option among the different options; hence, a measure 
to reveal the effectiveness of DR implementation is crucial. 

Load changes resulting from the implementation of DR programs 
critically affect wind power activities; thus, introducing an index is 
necessary to investigate the effect of different DR programs on the 
grid integration of wind power. This index, which is called Demand 
Response Benefits for Social Welfare (DRSW), indicates the impact 
of the proposed DR scheduling model on social welfare in the 
presence of wind power generation. In other words, it presents an 
increase in social welfare as a result of the integration of 1 MWh of 
extra wind power. In fact, the DRSW index is introduced to measure 
the effectiveness of implementing a specific DR program as a result 
of the injection of an extra 1 MW wind power on the average increase 
of social welfare. This index is formulated by (17). 

24

1 , ,

1

24 .

DR NoDR
t t

W
t w wf w t

w

SW SW
DRSW

Pρ=

−
=  

 

(17) 

DRSW is created to analyze the impact on the social welfare as a 
result of the penetration of wind units when implementing a variety 
range of DRPs when the amount of power generated by the system is 
increased by the injection of an additional 1 MWh of wind power. In 
the numerical result section, the effect of the different percentages of 
wind penetration associated with the wide range of variant DRPs is 
investigated. In the next section, the quoted indices are employed to 
evaluate the results more accurately and precisely. 

The main purpose of this paper is to investigate the impact of the 
variety of IBDR and PBDR programs in a market-based power 
system in detail through an SCUC. To comprehensively assess the 
model, it is implemented on two different power systems, and the 
results are illustrated and discussed. Numerical results have been 
obtained to demonstrate the abilities of the presented model. 

V.  RESULTS AND DISCUSSIONS 
In this paper, two case studies are taken into account. In case study 

1, IEEE 6-bus test system is used to analyze the proposed model, 
while in case study 2, more investigations are carried out by using 
the IEEE 14-bus test system. All the case studies have been solved 
using CPLEX solver 12.5.0 under General Algebraic Modeling 
System (GAMS) software. It is notable that, as our model is an MILP 
optimization, the CPLEX is a good choice for solving the large-scale 
MILP problems. 
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A. Case Study 1 
1) Data Sets  

The proposed model and indices formulations have been tested on 
the IEEE six-bus test system, with the presence of wind units.  

In addition to different types of TOU programs, RTP, CPP, and 
EDRP are studied. These programs are illustrated in detail in Table I 
and Table II. It is assumed that 20% of consumers are responsive 
demand. The RTP program prices are received according to the 
simulation of the energy market without considering the DRPs. The 
average of market prices is defined as energy tariff in all hours for 
the base case. For TOU and CPP programs, the mentioned tariff is 
defined as the tariff in the off-peak period. According to the Table I, 
TOU-1 and TOU-2 have three steps of tariffs, while TOU-3 has four 
steps. While an incentive fee equal to 30% of the tariff is defined in 
term of the amount of demand reduction, the tariffs of EDRP are the 
same as the base case prices. The self and cross elasticities are based 
on [23], [30].  
2) Numerical Results 

To explore the impacts of different types of DR programs on the 
behavior of market players, Figs. 5 and 6 respectively illustrate the 
influence of the implementation of DRP variants on the prices 
offered by Genco 1 in comparison with the effect of implementation 
of the same DRPs on Genco 1’s offered prices in the presence of wind 
units. As can be seen, different types of DRPs lead to differences in 
the prices offered by Genco 1 to the power system associated with 
the renewable energy. The presence of renewable energy in the 
electricity system has a profound effect on the prices offered by 
Genco 1, particularly during peak hours. On this basis, the offers of 
Genco 1 in the CPP-1 program in both cases are lower in the peak 
period compared to the other programs, but the presence of wind 
units causes the prices to plunge dramatically during peak hours. The 
reason for the lower amount of demand in this period is the injection 
of wind production into the power system. In fact, the impacts of 
different types of DRPs on bids submitted by Genco 1 with and 
without the presence of wind farm units are compared. According to 
Fig. 6, the prices offered by Genco 1 are affected by the load shift 
that arises from four types of DRPs tariffs in the presence of wind 
units. On this basis, the injection of wind electric power brings the 
prices down. Implementation of these four DRPs’ tariffs while taking 
into account the role of the wind power plants leads to a sharp drop 
in prices during peak hours specifically through the CPP program. 
From the perspective of clustering the DRPs, the implementation of 
the IBDR program, as shown in Fig. 6, leads to the same great effect 
but with more considerable and beneficial changes in the PBDR 
programs in the presence of wind units. Besides, a far-reaching 
reform in the curve and chart is depicted in Fig. 6. 

 
TABLE I 

TARIFFS/INCENTIVES OF CONSIDERED DRPS ($/MWH)  

Case Valley 
(1 to 8) 

Off-peak. 
(9-11,22-24) 

Peak. 
(12-14 ,19-21) 

Critical peak
(15 to 18)

Base case 
(fixed-rate) 63.2 63.2 63.2 63.2 

TOU-1 31.6 63.2 94.8 94.8
TOU-2 15.8 63.2 126.4 126.4
TOU-3 31.6 63.2 94.8 189.6
CPP-1 63.2 63.2 126.4 126.4
CPP-2 63.2 63.2 189.56 189.56

EDRP 63.2 63.2 63.2 63.2: tariff      
18.9: incentive 

 

 

TABLE II 
REAL TIME PRICES ($/MWH) 

Hour 1 2 3 4 5 6
Price 54.7 52.8 51.2 50.1 50.2 51.7
Hour 7 8 9 10 11 12
Price 54.4 57.7 60.7 63.0 65.2 66.7
Hour 13 14 15 16 17 18
Price 67.9 69.2 74.7 82.1 82.4 72.5
Hour 19 20 21 22 23 24
Price 71.6 66.9 66.9 64.9 59.8 59.0

Fig. 7 illustrates the tremendous influence of a variety of DRPs 
tariffs on the final demand load curve in the peak hours due to the 
implementation of these kinds of programs in the system. As shown 
in Fig. 7, the application of different types of DRPs brings down the 
load curve of customers on the demand side. It can be found in Fig. 7 
that the CPP-1 has the most impact on the curve. TOU-1 and EDRP 
have the second and third largest impacts, respectively.  

As it can be observed in Fig. 7, the CPP-1 has a significant impact 
on peak reduction whilst the TOU-1 mainly has led to load shifting 
from peak to valley period. For instance, CPP-1 and TOU-1 reduce 
the total daily energy consumption by 8.2% and 2.8%, separately.  

The impacts of different kinds of TOU programs on the efficiency 
of the energy market are presented in Figs. 8 and 9. These figures 
depict the market clearing price of the power system without and with 
the presence of wind farm units, respectively. These results 
demonstrate that the variant tariffs of the TOU program in the 
presence of wind farm units can have a greater influence on pushing 
down the market clearing prices principally in the peak period. Fig. 9 
shows the significant impact of TOU programs on the electricity 
market prices in the peak period, because of the decrease in the prices 
offered by the Gencos in the system while considering the role of 
wind power plants.  

Note that the presence of wind generation in the generation 
mixture can reduce the maximum market clearing price at peak hour 
(18:00), significantly. For instance, the market clearing price without 
the presence of wind generation at 18:00 in the base case is 82 
$/MWh, whilst it will be reduced by wind integration to 73$/MWh 
in a similar case study.  

 
 

 
Fig. 5. The impact of different types of DR programs on the offers of Genco 1 without 
the presence of wind farm. 

 
Fig. 6. The impact of different types of DR programs on the offers of Genco 1 with 
the presence of wind farm. 

 

 
Fig. 7. The impact of different types of DR programs after implementation on the final 
load curve. 
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Fig. 8. The impact of different types of DR programs on the market clearing price 
without the presence of wind farm. 
 

 
Fig. 9. The impact of different types of DR programs on the market clearing price with 
the presence of wind farm. 
 

As depicted in Fig. 9, the presence of renewable energy smoothed 
the base case price curve and shifted it downwards. 

By comparing Figs. 8 and 9, it can be found that there is no crucial 
difference between the implementation of TOU2 and TOU3 on the 
clearing price of the market.  

In the following, the variant DRPs have been compared by 
employing the proposed indices. Fig. 10 illustrates the impact of the 
varied amount of wind production along with the implementation of 
various DRPs tariffs. As can be observed, the more substantial the 
percentage of wind power production, the higher the DRSW index 
for all kinds of DRPs, in general. With the same amount of wind 
power in the power system, the DRSW index indicates that EDRP 
has the most profound effect on the efficiency of the market. 
Implementing the EDRP program with the same rate of wind power 
can have more influence on reducing the system operation cost. 
Similarly, TOU1 is one of the most effective DRPs. Furthermore, 
CPP1 and TOU2 have approximately identical impacts on the social 
welfare of power systems associated with renewable units. In Fig. 11, 
the second type of CPP program has the highest DRPB. Hence the 
program has the most effect on increasing the social welfare with a 
constant rate of wind power generation. The TOU3 program is 
followed by TOU2, and then TOU1 to have the higher DRPB index. 
The DRPB index illustrates that the EDRP program has the least 
impact on driving down the market price or pushing up the social 
welfare with a constant rate of the wind power generation compared 
with other DRPs. The other DR resources can be considered in future 
works. 
B. Case Study 2 
1) Data Sets 

The 14-bus IEEE power system is used as a second case study to 
investigate the ASDR and DB. The slack bus of the system is Node 1. 
Two wind farms are connected to the power system at Node 5 and 
Node 8. The capacity of each one is equal to 100 MW. Here are 
several scenarios that each trajectory is the sum of power production 
of two nodes. Accordingly, three states are considered for this case 
study including base case without DR, second with considering 
ASDR and third with considering DB. For base case and ASDR, the 
load bidding ,b tBid  is supposed to be a constant value of 60 $/MWh. 

However, for DB, load bidding is divided into 4 blocks (d) as , ,b t dBid  

which are as Table III. The width of each load block for each bus will 
be 38% of total bus load demand. For ASDR, price steps for capacity 
and energy reserve proposed by ISO are demonstrated in the Table 
IV. Based on this demonstration, 25 percent of each load can be 

eligible to participate in ASDR, and this percentage is divided into 4 
equal blocks as Table IV. 
2) Numerical Results 

Accordingly, the social welfare is supposed to be maximized, and 
comparisons between results are performed. First of all, the effect of 
ASDR and DB on load profile is demonstrated in Fig. 12. By running 
the proposed DB program, loads in peak and critical peak hours are 
declined, and the consumption is shifted automatically to the valley 
and off-peak night hours to increase the social welfare. Therefore, 
the proposed DB program helps to not only shave the peak load but 
also shift the demand to off-peak hours. The load curve for ASDR is 
total load minus the scheduled capacity of loads as a reserve for 
ASDR. In other words, this decrease may not happen unless it needs. 
As can be seen, most of these decreases for ASDR are taken place in 
peak hours. Hourly social welfare for each program is illustrated in 
Fig. 13. As can be expected, the hourly social welfare of ASDR and 
DB programs is higher than base case social welfare except for two 
hours of ASDR. In this term, DB program has a better situation to 
provide social welfare. To present a better vision what is happening 
inside these programs, total social security, total operation cost, 
security cost and reserve cost are listed in Table V. Based on Table 
V, it is clear that DB has placed in the best situation in terms of social 
welfare and total operation cost compared with ASDR and base case.  

Therefore, proposed DB algorithm can provide a better economic 
condition for both ISO and customers. For extracting the effect of 
wind power on this program, DRSW index is calculated, and the 
results for DB and ASDR are demonstrated in Fig. 14. In Fig. 14, the 
ASDR and DB have been compared using proposed DRSW index. 
DB program has the highest DRSW; therefore, the program has the 
most impact on increasing social welfare due to wind power 
generation. 
 

 

 
Fig. 10. The impact of variant types of DR programs considering the different 
percentage of the wind penetration on the proposed DRSW index. 
 

 
Fig. 11. The impact of variant types of DR programs on the proposed DRPB index. 
 

TABLE III 
PROPOSAL PRICES BY CUSTOMERS FOR DB PROGRAM 

d 1 2 3 4 

, ,b t d
Bid  ($/MWh) 70 60 50 30 

 
TABLE IV 

PROPOSED PRICE STEPS FOR ASDR BY ISO 

k 0 1 2 3 

( )
k
t MWq  

25% of 
eligible loads 

25% of 
eligible loads  

25% of 
eligible loads 

25% of 
eligible loads 
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k
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k
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40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
ri

ce
 (

$/
M

W
h)

Time (h)

TOU-1

TOU-2

TOU-3

Base case

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
ri

ce
 (

$/
M

W
h)

Time (h)

TOU-1

TOU-2

TOU-3

Base case



1949-3029 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2018.2854868, IEEE
Transactions on Sustainable Energy 8 

 
TABLE V 

DIFFERENT TOTAL COSTS FOR DIFFERENT PROGRAMS (BASE CASE, ASDR, DB) 

 Total social 
welfare ($) 

Total operation 
cost ($) 

Security cost
($)

ASDR 231750,804 349529,20 5678,340 

DB 245011,748 341175,08 27167,464 

Base case 228440,572 352839,42 28243,072 

 

 
Fig. 12. Load profiles in three states including base case, with DB and with ASDR. 

 
Fig. 13. Hourly social welfare for the base case, ASDR, and DB. 

 
Fig. 14. Effect of different DR programs on the proposed index DRSW. 
 

Since considering DB in different buses leads to different impacts 
on social welfare and load profile, a comparison is performed to 
assess DB in different buses. In one case, DB is considered only in 
six buses 2, 5, 6, 9, 12, and 13. In another case, five other buses, 
which were not taken into account for DB in the previous case, 
including buses 3, 4, 10, 11, and 14, are considered for DB. The 
results of load profile after DR and social welfare are demonstrated 
in Fig. 15 and 16, respectively. Based on Fig. 15, considering five 
nodes causes a flat load profile and more load reductions in peak 
hours, although the number of shifted loads is not remarkable 
compared with considering all nodes and 6 nodes. On the other hand, 
the load pattern with considering six buses is almost similar to the 
case when all nodes are considered for DB; however, the number of 
shifted loads is still not comparable with considering all nodes. 
Moreover, hourly social welfare with considering five nodes is less 
than two other DB cases in peak hours. Nevertheless, at off-peak 
hours, including 3, 4 and 5, it is a bit more than even considering all 
nodes for DB. At other hours, hourly social welfare is the same for 
these three DB cases. 
C.  Results’ Implications for the Future Practice 

According to the numerical results, implications of the proposed 
model for the future practice are presented as: 

- To overcome the fluctuations of the wind power generation 
and its consequent effects on the stability of the power system 
the proposed DRPs’ models are applied.  

- Market regulatory board need to realize effective models to 
reduce the impact of wind injection into the network. 

- ISO and decision makers require an effective multi-purpose 
tool to mitigate the electricity market volatility. In this paper, 
we propose and implement a model of both DRPs categories 
as such mentioned tool. 

- Two indices are defined to compare the variant DRPs. By 
means of these helpful instruments, market operators can 
compare the impact of implementation of different DR 
programs. 

- Moreover, investment experts look for the effects of their 
decisions on the percentage amount of wind generation in the 
power system. DRSW index is calculated to help them and 
help ISO to make the wisest decision to increase the social 
welfare due to wind power generation. 

 
Fig. 15. Load after DB in different cases considering all nodes, 5 nodes, 6 nodes and 
base load 

 
Fig. 16. Hourly social welfare in different cases considering all nodes, 5 nodes, 6 nodes 
and base load 

VI. CONCLUSIONS 
In this paper, a DR-based operation approach empowered by a 

two-stage SP was proposed for operational scheduling of the 
electricity market in the presence of RERs. In order to prove the 
effectiveness of the proposed DR-based operation model of the 
electricity market, several numerical studies were carried out. The 
impacts of employing both IBDR and PBDR were thoroughly 
investigated through two high-profile case studies. In addition, two 
new indices were proposed to quantify the impact of a DRP on 
electricity market efficiency. The numerical results showed that the 
presence of both wind energy and DRP led to lower prices and 
provided price adjustment and market efficiency. The results of this 
model proved that employing appropriate types of DRPs made it 
possible to compensate for wind generators’ uncertainties and to 
maximize operator benefits, while inappropriate types of DRPs 
might decrease market efficiency. Particularly, the numerical results 
revealed that when the power system includes wind units, the PBDR 
programs have a more significant role compared to EDRP programs 
in reducing the Gencos’ offering prices and consequently market 
prices during peak hours. However, based on the DRSW index, 
EDRP has a better influence on improving social welfare in the 
presence of wind power units. According to the DRPB index, the 
CPP program provided the highest increase in the social welfare by 
participation of 1 MW load in this DR program. Employing other 
flexible options, such as electric vehicles and energy storage, which 
can contribute to flexibility provision in addition to DR resources, 
can be considered in future works. 

APPENDIX 
     The constraints of day-ahead and real-time sessions are presented 
as follows. 
A. Day-ahead Constraints 

Inequalities (A1) and (A2) restrict the power generation of thermal 
units. The up- and down-reserve limits are defined in (A3)-(A4). The 
inequality (A5) represents the startup constraint of thermal plants. 
The minimum up/down times of thermal power plants are modeled 
in (A6) and (A7), respectively. 
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B. Real-time Constraints 
The balance between demand and supply in real time is considered 

for the scenarios in (A8) through taking into account the changes of 
wind power. Inequalities (A9)-(A10) are almost similar to (11)-(12) 
with this difference that constraints (A9)-(A10) are considered for all 
the scenarios. In (A11) and (A12), the deployed up/down reserves in 
the scenarios are limited to the scheduled reserve capacities in the 
day-ahead market. Constraint (A13) represents the net production of 
thermal plants in real time, which is limited in (A14). Ramp up/down 
limit in real time is denoted in inequalities (A15)-(A16). 
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