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Abstract--In this study, a novel direct load control (DLC) planning 
based on providing free energy credits to residential end-users for their 
heating, ventilation and air conditioning (HVAC) load during demand 
response (DR) events is proposed. The obtained credit can then be 
used by the end-users during relatively higher price periods free-of-
cost to enable the end-users to lower their energy procurement costs. 
Furthermore, the resulting reduction in the total household energy 
consumption considerably decreases the critical load demands in 
power systems, which is of vital importance for load serving entities 
(LSEs) in maintaining the balance between supply and demand during 
peak load periods. In this regard, the aforementioned energy credits-
based incentive mechanism is proposed for end-users enrolled in the 
DLC-based DR program, as a new contribution to existing literature, 
testing it in a stochastic day-ahead planning context. 
 

Index Terms--Demand response (DR); direct load control (DLC); 
energy credit; smart household; heating, ventilation and air 
conditioning (HVAC); thermostatically controllable loads (TCLs). 

NOMENCLATURE 
The sets, parameters and decision variables that are used in this 

paper are alphabetically listed below. Other symbols and 
abbreviations are defined where they first appear.  
A. Sets ℎ Set of households. ݅ Set of structural elements. ݐ Set of time periods. 
ω Set of scenarios. 

B. Parameters and Constants ܣ௜,௛   Element area for household ℎ [m2]. cୟ   Thermal capacity of the air [kJ/kg·K].ܱܥ ௛ܲ HVAC coefficient-of-performance in 
household ℎ. ݈௜,௛ Thickness value of element ݅ for household ℎ
[m]. ܺܮ௛ Length, width and height of household ℎ, 
where X = {1,2,3} [m]. ܯ௛   Mass of air in household ℎ [kg]. ܰ Sufficiently large positive constant. ௛ܲ஺஼    Rated HVAC power in household ℎ [kW].௧ܲௗ௘௦ Desired reduction in power in period ݐ of the 
DR event [kW]. ௛ܲ,௧௟௢௔ௗ  Inflexible load demand of household ℎ in 
period ݐ [kW]. ௛ܲ,௧,ఠ஺஼,௥௘௙ Reference HVAC power consumption of 
household ℎ in period ݐ in scenario ߱ [kW].
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ܴ௘௤,௛ Equivalent thermal resistance of household ℎ
[K/W]. ௧ܶ,ఠ௔ Ambient temperature in period ݐ in scenario ߱
[℃]. ௛ܶ,௧ௗ௘௖,௠௔௫  Maximum allowed temperature set-point 
decrease from the desired level of household ℎ 
during the DR event [℃]. ௛ܶ,௧ௗ௘௦ Desired temperature level of household ℎ in 
period ݐ [℃]. ௛ܶ஽஻ HVAC dead-band temperature of household ℎ
[℃]. ௛ܶ,௧௜௡௖,௠௔௫ Maximum allowed temperature set-point 
increase from the desired level of household ℎ 
during the DR period [℃]. ݐଵ DR event starting time.  ݐଶ DR event ending time. ݐଷ Starting period of the peak price horizon.ݐସ Ending period of the peak price horizon.௛ܸ Volume of household ℎ [m3]. ∆ܶ Time interval [h]. ߜ௔௜௥ Density of air [kg/m3]. ߪ௜,௛ Element ݅ thermal coefficient for household ℎ
[ܹ/(݉ ∙ ௛ߚ .[(ܭ Roof angle of household ℎ [deg].ߣ௧ Electricity price in period ݐ [€/kWh].ߨఠ Probability of occurrence of scenario ߱.

C. Variables ݐݏ݋ܥ௛ Energy cost of household ℎ [€].ܥ ௛ܸ,ఠ Comfort violation of household ℎ in scenario ߱ [℃ ∙ h].ܧ௛,ఠ௖௥௘ௗ௜௧  Energy credit earned by household ℎ during 
the DR event in scenario ߱ [kWh]. ݌௛,௧,ఠ஺஼  Actual HVAC power consumption of 
household ℎ in period ݐ in scenario ߱ [kW]. ௛ܲ,௧,ఠ௖௥௘ௗ௜௧  Power credit earned by household ℎ in period ݐ during the DR event in scenario ߱ [kW]. ௛ܲ,௧ி  The power that household ℎ can use free-of-
charge in period ݐ [kW]. ௛ܶ,௧,ఠௗ௡  Indoor temperature decrease with respect to 
the desired temperature for household ℎ in 
period ݐ in scenario ߱ [℃]. ௛ܶ,௧,ఠ௜௡  Indoor temperature of household ℎ in period ݐ in scenario ߱ [℃]. 
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 ௛ܶ,௧,ఠ௦௘௧  Thermostat set-point of household ℎ in 
period ݐ in scenario ߱ by LSE [℃]. ௛ܶ,௧,ఠ௨௣  Indoor temperature increase with respect to 
the desired temperature for household ℎ in 
period ݐ in scenario ߱ [℃]. ݑ௛,௧,ఠ௔௖  Binary variable showing the HVAC status in
household ℎ in period ݐ in scenario ߱  (1=ON, 
0=OFF) 

I.  INTRODUCTION 
A.  Motivation  
N alignment with the technological advances during the last 
decades, the structure of the traditional electric power system 
has evolved from a top-down and relatively static structure to 

an increasingly active one, driven by the integration of small-scale, 
non-dispatchable renewable energy systems (RES) and the 
identification of the capability of several types of load to be 
managed. In this context, the operation of the power system has 
become more complex and improved operational strategies have 
been proposed and implemented under the vision for a smarter grid 
aiming at enhancing the economic performance and the reliability 
of the power system [1], [2].  

One of the pillars of the Smart Grid concept is the augmentation 
of the RES hosting capacity of the existing power system structure 
by exploiting the operational flexibility that may be procured from 
resources other than conventional generation, potentially located at 
the edges of the grid [3]. One example of such a source of flexibility 
is the deployment of energy storage units at different scales, which 
is a conceptually mature idea, albeit economically constrained by 
significant operational and investment costs [4]. An alternative to 
investing in energy storage is to exploit the flexibility embedded in 
various types of existing loads through the development of demand 
response (DR) strategies suitable for the engagement of different 
types of end-users [5], [6].  

There are two main categories of DR mechanisms: indirect load 
control (ILC) and direct load control (DLC) [7]. On the one hand, 
ILC solutions depend on pricing mechanisms and are not generally 
demanding in terms of infrastructure investments. However, there 
are factors – mostly sociological – affecting the performance of 
such solutions with respect to the desired operational objectives, 
since the response of the end-users to the applied pricing 
mechanisms does not necessarily assert the assumption of economic 
rationality. On the other hand, DLC solutions provide the system 
operator (SO) with direct access to controlling specific loads or 
even managing the whole demand of an end-user, in return of 
incentives offered on the basis of being enrolled in the DLC 
oriented DR program. As a result, DLC is considered a more 
effective way of procuring ancillary services such as frequency 
regulation, peak clipping, valley filling, etc., during critical system 
conditions [7]-[9]. For this reason, the implementation of DLC-
based DR programs addressed to residential end-users that are 
responsible for around 40% of electrical energy consumption 
worldwide has attracted significant interest.  

Thermostatically controllable loads (TCLs) such as heating, 
ventilation and air conditioning (HVAC) units, electric water 
heaters (EWHs) and refrigerators in residential premises present a 
promising potential on the grounds of the advantage of thermal 
inertia, which allows interrupting their operation without having a 
direct impact on the comfort of end-users.  
B.  Literature Overview 

There are several studies in the literature dealing with the use of 
TCLs in residential areas for DR purposes. The aggregate modeling 
and control of a collection of heterogeneous TCLs was studied in 
[10]. Similarly, an approach based on formal abstractions was 
presented in [11] in order to generate a dynamical stochastic model 
as an aggregation of the continuous temperature dynamics of a 
certain number of TCLs.  

An energy management approach taking into account various 
criteria such as appliance power values, end-user preferences, 
electricity price and expected residential renewable power 
generation in the decision process was proposed in [12]. A two-
layer distributed DLC method based on average consensus 
algorithm was introduced in [13] for large-scale residential DR 
implementations. Besides, various DR-enabled TCL models at the 
appliance level were proposed in [14] by considering the 
operational and physical characteristics of different loads.  

In order to leverage the high thermal inertia of EWHs in 
residential implementations, several studies have focused on the use 
of this type of TCLs. For instance, a dual-element EWH model was 
presented in [7] and a DLC algorithm was proposed to aggregate 
the EWH load with the objective of providing regulation services. 
The potential benefits of these units at both premise and substation 
levels were investigated in a field experiment in [15]. Balancing 
services procurement in terms of managing EWH loads through bi-
directional signals from load serving entities (LSE) was also 
discussed in [16]. The effectiveness of an analytical approach, 
which has been previously developed for making use of TCLs to 
provide sporadic reserve capacity, was examined in [17] for a large 
number of EWHs. The capabilities of aggregated EWHs for load 
shifting and balancing reserve at the presence of wind penetration 
were examined in [18].    

The potential of refrigerators, which are another widely-used 
type of TCLs, was studied in [19] and [20] in terms of their benefits 
when used for frequency regulation services in power grids. Aunedi 
et al. [8] considered the same problem in the case of high wind 
power penetration and presented various results showing the 
environmental and the economic benefits of deploying refrigerators 
for frequency regulation. A switching-rate actuation strategy for 
managing the power consumption of a collection of refrigerators 
was presented in [21] in order to enable these loads to participate in 
large-scale DLC applications. 

Among the different TCLs that are found in typical households, 
HVAC units have a relatively high energy consumption and are 
related to system stress conditions through their contribution to the 
summer peak load demand [22], [23]. With the objective of using 
in DR applications, the aggregated behavior of HVAC units was 
studied by modeling the HVAC dynamics in [23] and by assessing 
the importance of the distributions of different HVAC physical 
parameters in [22]. In order to provide primary reserves by taking 
advantage of the mentioned peculiarities of HVACs, a DLC 
approach that can be used for the control of these units was 
proposed in [24]. Again for supporting the provision regulation 
services with the use of HVACs, Zhang et al. [25] presented an 
approach based on a second-order equivalent thermal parameter 
model, Hao et al. [26] proposed a feedforward algorithm to control 
fans in HVAC units, and, Goddard et al. [27] put forward a HVAC 
model including a small number of parameters that are determined 
using system identification.  

Controlling HVAC systems has been also widely used for 
different power system operations effectively in the literature. Their 
benefits for various services such as load balancing, load shifting 
and peak load shaving were evaluated in [28] and [29] where design 
considerations for a centralized HVAC controller were presented. 
In [30], a market-based control method was considered for TCLs 
under transactive control paradigm to participate in real-time retail 
electricity markets. Besides, in order to alleviate the non-renewable 
power induced demand variations, a Lyapunov optimization-based 
DR method that controls the HVAC on/off states was presented in 
[31]. Similarly, for the purpose of matching the aggregated HVAC 
load demand with the wind power generation, a sliding mode 
controller based on Lyapunov theory to design a sliding mode 
controller was proposed in [32], and a distributed pinning control 
method was presented to coordinate the operation of a population 
of HVAC units in [33]. 

 

I 
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TABLE I. TAXONOMY OF THE PROPOSED CONCEPT COMPARED TO REPRESENTATIVE LITERATURE STUDIES CONSIDERING SPECIFICALLY THE ROLE OF TCLS 

FOR DEMAND SIDE FLEXIBILITY 

Ref. 

DR Strategy Consideration of thermal comfort  End-user type TCL type Point of view

ILC DLC Simply by 
boundaries 

Advanced by 
index 

definitions, etc. 
Res. Com. Ind. HVAC EWH Refrigerator 

Other 
(heat 

pump, 
etc.)

LSE End-
user 

[7] - √ √ - √ √ - - √ - - √ -
[8] - √ - - √ - - - - √ - √ -
[10] - √ √ - √ - - √ - - - √ -
[11] - √ - - √ - - √ - - - √ -
[15] - √ - - √ - - - √ - - √ -
[16] - √ √ - √ - - √ - - - √ -
[17] - √ √ √ √ - - - √ - - √ -
[18] √ √ √ - √ - - - √ - - √ -
[19] - √ - - √ - - - - √ - √ -
[36] - √ √ √ √ - - √ √ - √ √ -
[37] - √ √ √ √ - - √ - - - √ -
[41] √ - √ √ - √ - √ - - - - √
[42] √ - √ - √ - - - √ - √ - √
[43] - √ √ - √ - - √ - - - √ -
[44] - √ √ - √ - - - - √ - √ -
[45] - √ - - - √ - - - - - √ -
[46] - √ √ √ √ - - - - - √ √ -
[47] - √ - - √ - - - - √ - √ -
This 
paper √ √ √ √ √ - - √ - - - √ √ 

*Res.=Residential, Com.=Commercial, Ind.=Industrial 

 
Regardless of its applications in power systems, several studies 

in the literature have focused on developing new control 
approaches that can be used for HVAC units. A stochastic method 
was proposed in [34] for controlling the aggregated power 
consumption of a high number of HVACs in a decentralized 
manner. Also, in order to take advantage of two widely-used direct 
HVAC demand control methods, namely the direct compressor 
control mechanism (DCCM) and the thermostat set-point control 
mechanism (TSCM), a combined control approach was presented 
in [35].    

The literature studies that are discussed above have generally 
considered the DR problem from the perspective of LSEs and 
aggregators; however, the effectiveness of all the residential-based 
DR programs depends on the willingness of the end-users to a great 
extent and therefore, the concerns of the end-users and the potential 
benefits to be provided to them should be also taken into account 
for achieving the desired objectives in the applications at 
residential levels. With such an objective, Koutitas et al. [36] 
introduced the fairness concept between the end-users in a DLC 
program in terms of economic benefits; however, the fairness in the 
consumer comfort violation was not considered in this study. 
Erdinc et al. [37] developed a fairness-oriented approach to 
improve the satisfaction of the comfort level of end-users enrolled 
in a HVAC aggregation DLC program.  

Besides, a robust optimization algorithm was presented in [38] 
to schedule the HVAC consumption for decreasing the electricity 
costs while taking into account the electricity price and the number 
of deviations from the comfortable temperature zone. A response 
fatigue index was introduced in [39] and this index was used in a 
stochastic model for the purpose of minimizing the electricity costs 
of consumers while maintaining their comfort level. In a recent 
study, Erdinc et al. [40] proposed the concept of offering energy 
credits to residential end-users while neglecting the impacts of 
different levels of desired peak load reduction ratios on the benefits 
of enrolled end-users in the DR program. However in [40], the 
scalability of the proposed energy credit approach was not 
discussed. There are also many studies considering the role of 
TCLs for providing demand side flexibility and a few of them can 
be found in [41]-[47].  
C.  Content and Contributions 

The comprehensive review on the most recent literature shows 
that the majority of studies on DLC-based DR programs generally 
focus on the modelling of TCLs and/or employing these models for 
improved power system operations. These studies, however, have 
also reported that the potential benefits of DLC-based DR 
programs are substantially influenced by the number of end-users 

enrolled in DR programs and thus by their willingness to participate 
in these programs.  

Considering this fact, a novel incentive mechanism is proposed 
in this paper in order to motivate the owners of residential HVAC 
units to engage in DLC DR programs. The proposed mechanism 
relies on providing energy credits to the end-users on the basis of 
their contribution during a DR event, which in turn can be used in 
periods outside the time span of a DR event in order to reduce their 
energy procurement cost.  

The contributions of the study are as follows: 
• An energy credit-based incentive structure is proposed for DLC 

applications for the purpose of providing the end-users with the 
opportunity of managing the trade-off between decreasing their 
energy costs and maintaining their comfort level.  

• The proposed approach is tested in a stochastic day-ahead 
planning context by taking the uncertainty of the ambient 
temperature variations into account. 

• The benefits of the end-user from the proposed incentive 
structure are analyzed in terms of operational cost reduction.  

• The scalability of the approach and the impact of different 
demand side load reduction levels have been investigated via 
case studies. 
The taxonomy of the proposed concept compared to 

representative studies on similar topics is given in Table I from 
which it can be seen that the current study clearly differs from the 
existing literature, especially by considering both DLC approach 
and consumer side ILC approach in a cause-effect relation taking 
both LSE and consumer sides into account. 
D.  Organization of the paper 

The remainder of this paper is organized as follows: the 
proposed methodology is described in detail in Section II. The 
results are presented and extensively discussed in Section III. 
Finally, the conclusions and possible directions for future studies 
are summarized in Section IV. 

II.  METHODOLOGY 
The concept proposed in this study is visualized in Fig. 1.  

It is assumed that the SO has the capability of communicating with 
the households and controlling their HVAC units during contracted 
DR events. The main objective of the SO is to reduce the peak load 
by limiting the use of residential HVAC units that have accepted to 
react during the DR event. It is to be noted that all the residential 
HVACs are considered to be available for the DR events in this 
study; nevertheless, this case can be easily extended to account for 
uncertainty in the availability of HVACs, e.g., due to 
communication failure or for consumer opt-out options.  
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Figure 1. Overview of the proposed credit-based incentive mechanism. 
 

During the DR periods, the end-users gain energy credits 
according to the reduction level in their HVAC units. In other 
words, the higher the reduction in the HVAC energy consumption, 
the more credits the end-users will obtain, as shown in Fig. 1. The 
credits, therefore, can be used in the periods with higher energy 
prices to induce cost savings. 
A.  Optimal procurement of HVAC load reduction during DR 

The optimization problem that must be solved by the LSE in 
order to determine the optimal procurement of HVAC load 
reductions is represented by (1)-(12). ݁ݖ݅݉݅݊݅ܯ	Total	Credit =෍ߨఠ ∙෍ܧ௛,ఠ௖௥௘ௗ௜௧௛ఠ      (1) 

subject to: ௛ܶ,௧ௗ௘௦ − ௛ܶ,௧ௗ௘௖,௠௔௫ ≤ ௛ܶ,௧,ఠ௦௘௧ ≤ ௛ܶ,௧ௗ௘௦ + ௛ܶ,௧௜௡௖,௠௔௫, ∀h, t ∈ ሾtଵ, tଶሿ, ߱    (2) 

௛ܶ,௧,ఠ௦௘௧ − ௛ܶ஽஻ ≤ ௛ܶ,௧,ఠ௜௡ ≤ ௛ܶ,௧,ఠ௦௘௧ + ௛ܶ஽஻, ∀ℎ, ,ݐ ߱   (3) ௛ܶ,௧,ఠ௜௡ = ௛ܶ,௧ௗ௘௦ + ௛ܶ,௧,ఠ௨௣ − ௛ܶ,௧,ఠௗ௡ , ∀ℎ, ,ݐ ߱  (4)௛ܶ,௧,ఠ௨௣ ≤ ܰ ∙ ௛,௧,ఠ௔௖ݑ , ∀ℎ, ,ݐ ߱ (5)௛ܶ,௧,ఠௗ௡ ≤ ܰ ∙ ൫1 − ௛,௧,ఠ௔௖ݑ ൯, ∀ℎ, ,ݐ ߱ (6)

௛ܶ,௧,ఠ௜௡ = ቆ1 − 1000ߒ߂ ∙ ௛ܯ ∙ ܿ௔ ∙ ܴ௘௤,௛ቇ ∙ ௛ܶ,(௧ିଵ),ఠ௜௡
+ 1000ߒ߂ ∙ ௛ܯ ∙ ܿ௔ ∙ ܴ௘௤,௛ ∙ ௧ܶିଵ,ఠ௔
− ܱܥ ௛ܲ ∙ ௛ܲ஺஼ ∙ 0.000277ߒ߂ ∙ ௛ܯ ∙ ܿ௔ ∙ ௛,௧,ఠ௔௖ݑ 	, ∀ℎ, ݐ ൐ 1, ߱

(7) 

௛,௧,ఠ஺஼݌ = ௛ܲ஺஼ ∙ ௛,௧,ఠ௔௖ݑ , ∀ℎ, ,ݐ ߱ (8) ௛ܲ,௧,ఠ௖௥௘ௗ௜௧ = ௛ܲ,௧,ఠ஺஼,௥௘௙ ௛,௧,ఠ஺஼݌	− , ∀ℎ, ݐ ∈ ሾݐଵ, ,ଶሿݐ ௧ௗ௘௦݌ (9) ߱ ≤ ෍ ௛ܲ,௧,ఠ௖௥௘ௗ௜௧௛ , ݐ∀ ∈ ሾݐଵ, ,ଶሿݐ ߱,	 ݂݅	෍ ௛ܲ,௧,ఠ஺஼,௥௘௙௛ ് 0  
(10) 

௛,௧,ఠ஺஼݌ = 0, ∀ℎ, ݐ ∈ ሾݐଵ, ,ଶሿݐ ߱	݂݅	 ௛ܲ,௧,ఠ஺஼,௥௘௙ = ௛,ఠ௖௥௘ௗ௜௧ܧ (11) 0 = ෍ ௛ܲ,௧,ఠ௖௥௘ௗ௜௧ ∙ ∆ܶ௧మ
ఛୀ௧భ 	 , ∀ℎ, ߱ (12) 

The objective function stands for the minimization of the 
expected total free-of-cost energy credits awarded to the consumers 
over the horizon, on the basis of the load reductions procured 
through the DLC DR program. In this study, the TSCM is adopted, 
considering that the LSE directly manipulates the thermostat 
temperature set-point ௛ܶ,௧,ఠ௦௘௧ . Thus, the main decision variable for 
the operation of the proposed methodology is ௛ܶ,௧,ఠ௦௘௧ . This approach 
is considered more suitable for peak load reduction compared to 
DCCM. The temperature set-point ܶ ௛,௧,ఠ௦௘௧  can be changed during DR 
event horizon within the limits defined in the contract between the 
end-user and the LSE as expressed by (2).  

The indoor temperature limits are defined by (3), where ௛ܶ஽஻ 
stands for the dead-band control parameter. In order to estimate the 
end-users’ comfort violation the indoor temperature is decomposed 
based on (4), while (5) and (6) enforce the fact that an upward and 
a downward temperature deviation with respect to the user’s 
desired temperature set-point cannot have non-zero values 
simultaneously. Regarding the indoor temperature, a model based 
on the equivalent thermal resistance of the household is used in this 
study, as represented by (7) considering solely the cooling 
operation, while the model for heating mode can also be trivially 
derived. Considering a rectangular geometry and an inclination of 
the roof of β°, the equivalent thermal resistance of the houses and 
the air mass inside them can be calculated using (13)-(15).  ܴ௘௤,௛ = 1ܰ݁ ෍ ݈݅,ℎ݅ߪ,ℎ ∙ ℎ,݅޿ , ∀݅, ℎ݅  (13)

௛ܸ = 1௛ܮ ∙ 2௛ܮ ∙ 3௛ܮ + (௛ߚ)݊ܽݐ ∙ 1௛ܮ ∙ ,2௛ܮ ∀ℎ ௛ܯ(14) = ௛ܸ ∙ ,௔௜௥ߜ ∀ℎ (15)

It should be noted that the interaction of air mass and building 
envelop mass, the influence of solar radiation, and natural air 
exchange are not taken into account in the study. Moreover, 
without loss of generality, the HVAC system is acting as an air 
conditioning unit in the proposed formulation. 

The HVAC power consumption of each household ℎ in period ݐ in scenario ߱ follows (8). The reduced power value for each 
household compared to reference HVAC operation pattern that will 
be added as a credit to each household during the DR event is 
calculated by (9). The stochasticity in the reference HVAC 
operating pattern is related to the uncertainty of the ambient 
temperature variations during the DR event apart from the physical 
structure of the households. The total of the power values added to 
household credits should be equal or greater than the  
desired load reduction by LSE if the total of the reference HVAC 
consumption patterns of households is non-zero as in (10).  

The household HVAC power is restricted to be zero by (11) if 
the reference HVAC power consumption pattern of this household 
is already zero in period ݐ in scenario ω. Besides, the baseline of 
HVAC load is calculated based on the power that would have been 
consumed if a DR event had not taken place. The total obtained 
energy credit per household during the DR event to be further used 
in the subsequent periods to achieve economic benefits is 
calculated by (12). To clarify the concept behind the proposed 
approach, first of all, it should be noted that high prices for the 
residential end-users regardless of the type of varying pricing 
scheme (Time-of-Use pricing, dynamic pricing, etc.) coincide with 
peak demand periods of residential end-users (generally between 6 
pm and 10 pm). However in reality, the system peak in most 
countries occurs around the noon on hot summer days. Therefore, 
many real-life DR programs, including residential end-user load 
aggregation oriented programs, target noon hours of very hot 
summer days to incentivize end-users to aid reducing the overall 
system peak loading conditions. As it can also be followed from 
the practical evidence (e.g., see the residential DR practice in 
Australia given in Ref. [41]), the residential end-users are 
incentivized for their energy reduction in noon times which are 
generally off-peak hours for residential premises.  
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Therefore, a different way incentivizing the residential end-

users rather than flat payments is offered in this study to gain more, 
proportionally to the discomfort they are subjected to. Thus, the 
incentivized time from the LSE side and normal benefit time from 
end-user side are not contradictory, and the concept proposed in 
this study shows a structure compatible with the way of 
implementing DR in real-world applications. 

It is worth mentioning that the LSE aims at maintaining the 
supply and demand balance by reducing the demand. However, the 
LSE should not be willing to maximize the credit to be given to the 
end-users. On the contrary, as the satisfaction of the reduction of 
required levels of power compared to the reference conditions 
provided by scenarios is already ensured by constraint (10), the 
LSE would be willing to give minimum credits to the end-users in 
case of a DR event. Besides, the objective function requests that 
the minimum amount of credits is given such that the required load 
reduction is achieved. Giving more credits after having satisfied the 
load reduction is not economically beneficial for the LSE as these 
extra credits will unnecessarily lower the income of the LSE in 
peak price periods. Therefore, the ultimate purpose of the LSE is 
the minimization of credit costs that are required to level supply 
and demand by demand side power reduction via the applied DR 
program. The comfort violation of household ℎ in scenario ߱ is 
calculated in 0C.h using (16), in which the upward and downward 
deviations from the desired temperature set-point is considered. ܥ ௛ܸ,ఠ = ෍൫ ௛ܶ,௧,ఠ௨௣ + ௛ܶ,௧,ఠௗ௡ ൯ ∙ ∆ܶ௧మ

ఛୀ௧భ , ∀ℎ, ߱ (16)

It should be noted that the comfort of end-users depends on 
many physical factors such as the occupancy of a room, their 
activities, the type of clothing, etc. rather than solely on the indoor 
temperature. However, modeling these factors is complex, while an 
attempt of SOs to gather such information could violate the privacy 
of the end-users. On the contrary, this study is based on the 
assumption that the end-users have already conveyed their 
preferences by limiting the maximum and minimum permitted 
indoor temperature values to the SO. Regarding the output (see 
Section III.A), the model gives the optimal schedule for each 
household’s HVAC unit in each scenario and the corresponding 
credits the household owners gain proportionally to the comfort 
violation they experience during the DR event. 
B.  Evaluation of Performance 

To evaluate the performance of the proposed DLC-DR scheme, 
the impacts on the daily operational cost and the extent of end-
users’ comfort violation during the DR event are considered. First, 
the maximum energy procurement cost reduction for each 
household is calculated by solving the optimization problem 
described by (17)-(19). Equality (17) stands for the minimization 
of the energy cost. As regards the utilization of the free-of-cost 
energy credits, they can only be used once the DR event is over, as 
expressed by (18). Finally, (19) constrains the activation of credits 
to the amount earned during the DR event. ݁ݖ݅݉݅݊݅ܯ	ݐݏ݋ܥ௛ = ෍ൣ൫ ௛ܲ,௧௟௢௔ௗ − ௛ܲ,௧ி ൯ ∙ ∆ܶ ∙ ௧൧௧ߣ , ∀ℎ (17) 

subject to: ෍൫ ௛ܲ,௧ி ∙ ∆ܶ൯ఁ
ఛୀ௧య 	≤෍ߨఠ ∙ఠ ௛௖௥௘ௗ௜௧ܧ , ∀ℎ, ݐ ∈ ሾݐଷ,  ସሿ (18)ݐ

௛ܲ,௧ி ≤ ௛ܲ,௧௟௢௔ௗ, ∀ℎ, ݐ ∈ ሾݐଷ,  ସሿ (19)ݐ

III.  TESTS AND RESULTS 
A.  Input Data 

In order to demonstrate the use of the proposed concept, 40 
identical households having the structural parameters shown in 
Table II are considered for simplicity while discussing the results, 
as in [37].  

The air density and thermal capacity are considered constant 
and equal to ߜ௔௜௥ = 1.225	kg/m3 and ܿ௔ = 1.01 kJ/kg·K for 
standard conditions. Besides, it is assumed that all the households 
have identical HVAC units with a power rating of 3 kW and a 
coefficient-of-performance of 2. Besides, a peak-reduction DR 
event is assumed to be activated between 1 pm and 3 pm on the 
considered day. The initial room temperatures of households are 
randomly allocated between 19.10C and 20.90C.  

Other temperature related parameters for households are 
provided in Table III. Moreover, 10 equiprobable scenarios for the 
ambient temperature variation during the considered DR event 
period are randomly generated considering a variation band around 
the real measured temperature data.  

The scenarios are shown in Fig. 2. A time granularity of 5 min 
(0.0833h) is adopted in the model and GAMS 24.0.2 with the solver 
CPLEX 12 is used for solving the optimization problem. 

B.  Simulation and Results 
The desired load reduction during an actual DR event when the 

reference HVAC power is non-zero is initially assumed to be 12 
kW from the total of the 40 households, which is 10% of maximum 
dispatchable total HVAC power for the considered households 
with the given HVAC rated power values. It should be noted that 
if the reference HVAC power is zero, the constraint for ௗܲ௘௦,௧ is the 
not enforced for these intra-hour periods since no actual reduction 
from zero is possible.  

Figures 3-5 depict the actual reference HVAC power and the 
HVAC power consumption for Scenarios 1-3. It is clear that for all 
non-zero reference HVAC power periods, the system deploys 
sufficient HVAC units to reduce the HVAC load demand by the 
desired amount. As the methodology should satisfy the desired load 
reduction in all scenarios, results regarding the other scenarios are 
not provided here.  

The comfort violation index value for individual households 
during DR event is presented in Fig. 6. For the sake of simplicity, 
the mean value of the comfort violation index values among the 
scenarios is portrayed for each household. The individual comfort 
violation among the enrolled end-users varies considerably; 
however, as the households gain more free-of-cost energy credits 
when their comfort violation increases, no more constraints 
regarding fairly allocation of comfort violation among the enrolled 
end-users as in [37] are enforced in this study.  

The mean free-of-cost energy credit values are shown in Fig. 7. 
Similar to Fig. 6, the mean value of energy credit values is given 
for each household. The free-of-cost energy credit value generally 
increases with the increase of comfort violation as can be observed 
by comparing Figs. 6 and 7, thus the individual end-users facing 
more discomfort during the DR event will generally have more 
chance to reduce their electricity costs with the use of the obtained 
free-of-cost energy credits.  

The impacts of increasing the desired load reduction during 
non-zero HVAC reference power periods from 12 kW to 24 kW 
(20% of the dispatchable total contracted HVAC loads) are shown 
in Figs. 8 and 9 in terms of comfort violation and free-of-cost 
energy credits.  

 
TABLE II. PHYSICAL PARAMETERS OF THE HOUSEHOLDS 

Parameter Value Unit Parameter Value Unit
House 
length (ܮଵ) 30 m Area of 

windows 1 m2 

House 
width (ܮଶ) 10 m Wall thermal 

coefficient 0.038 ܹ/(݉ ∙  (ܭ
House 
height (ܮଷ) 4 m 

Window 
thermal 
coefficient 

0.781 ܹ/(݉ ∙  (ܭ
Roof angle 
 (ߚ)

40 deg Windows 
thickness 

0.05 m

Window
numbers 

6 - Wall thickness 0.15 m
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The increase in the desired load reduction value increases the 

comfort violation as the SO should intervene with the use of more 
HVAC loads via manipulating the temperature set-points. 
However, as a result, the free-of-cost energy credit values increase 
as well as the comfort violation among the contracted end-users. 

TABLE III. TEMPERATURE-RELATED PARAMETERS OF THE HOUSEHOLDS 
Parameter Value Unit ௗܶ௘௦,௛ 20 0C ௗܶ௘௖_௔௟௟௢௪௘ௗ,௛ 4 0C ௜ܶ௡௖_௔௟௟௢௪௘ௗ,௛ 4 0C ௛ܶௗ 1 0C ௛ܶ௨ 1 0C 

 

 
Figure 2. Scenarios for ambient temperature variation. 

 
Figure 3. HVAC power consumption during the DR event for Scenario 1. 

  
Figure 4. HVAC power consumption during the DR event for Scenario 2.  

 
Figure 5. HVAC power consumption during the DR event for Scenario 3.  

 
Figure 6. The comfort violation index value of end-users experienced during DR 
event. 

 
Figure 7. The free-of-cost energy value of end-users gained during DR event. 

 
Figure 8. The comfort violation index value of end-users experienced during DR 
event if the desired power reduction is increased to 24 kW. 

 
Figure 9. The free-of-cost energy value of end-users gained during DR event if the 
desired power reduction is increased to 24 kW. 

Results regarding the load reduction performance of the 
proposed concept if the desired power reduction is increased to 24 
kW are shown in Figs. 10-12. The increased load reduction 
requirement is still satisfied for non-zero HVAC power reference 
periods. In order to present the economic benefits of the end-users 
from the obtained energy credits, a test case is provided for selected 
households that gained 0.7747 kWh and 0.9996 kWh free-of-cost 
energy credits during the DR cases of 12 kW and 24 kW desired 
load reduction levels, respectively.  

This energy credit can be used by the end-user during the peak 
price period between 6 pm and 9 pm of the price variation shown 
in Fig. 13 [30]. The inflexible power demand of a 4-member 
household including several loads is presented in Fig. 14 [12] for 
the mentioned peak-price period. The cost reduction oriented 
residential household energy management system allocates a free-
of-cost power variation from the grid as shown in Figs. 15 and 16 
for 0.7747 kWh and 0.9996 kWh free-of-cost energy credit values, 
respectively. As it can be seen, the free-of-cost power variation that 
is limited by the energy credit of the household is scheduled for the 
highest price period to enable purchasing less energy with cost for 
reducing the daily operational costs.  

 
Figure 10. The HVAC power consumption during the DR event for Scenario-1 if 
the desired power reduction is increased to 24 kW. 
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Figure 11. The HVAC power consumption during the DR event for Scenario-2 if 
the desired power reduction is increased to 24 kW. 

 
Figure 12. The HVCA power consumption during the DR event for Scenario-3 if 
the desired power reduction is increased to 24 kW. 

 
Figure 13. The daily dynamic pricing signal. 

 
Figure 14. The power demand of the household during peak-price period. 

 
The relevant results for the total operational costs during the 

peak price period with and without energy credits are summarized 
in Table IV. The proposed energy credits-based strategy enables 
around 10% of total cost reduction, which is a considerable benefit 
for the enrollment of the end-users for such DR programs. 

In order to analyze the scalability of the proposed approach, the 
same concept is applied to a collection of 250 households with the 
identical physical structure given above in Table II. In addition, the 
desired temperature levels of households are varied between 180C 
and 220C to enhance the complexity of the analysis from end-users’ 
preferences point of view. It is assumed in this analysis that the 
LSE requests a 50 kW of reduction during the DR event.  
The relevant results for HVAC power consumption for first three 
scenarios of 250 households are depicted in Figs. 17-19. As it can 
be observed, the required levels of load reduction are obtained in 
all scenarios from the LSE point of view. As the number of flexible 
resources increases compared to the case of 40 households, the LSE 
requests less amount of average comfort violation from the 
households, and in turn gives fewer amounts of average credits.  

Here, as an example, house 7 gains a credit that lowers the 
household consumption cost by 2% by its allowed comfort 
violation based HVAC operation. Here, it should be noted that the 
computational burden of increasing the scale of the problem is 
negligible (less than 1 second), therefore depicting the scalability 
of the approach.  

It should be mentioned that the uncertainty regarding the 
operation of the HVAC is not only related to the ambient 
temperature; however, dealing specifically with the uncertainty 
resources in HVAC operation was the subject of several studies in 
the literature (e.g. [48]), while the proposed concept can be readily 
extended by increasing the number of uncertainty sources in the 
stochastic formulation. 

 
Figure 15. The power decomposition for free-of-cost energy credit value of 0.7747 
kWh. 

 
Figure 16. The power decomposition for free-of-cost energy credit value of 0.9996 
kWh. 

TABLE IV. COMPARISON OF TOTAL COSTS WITH AND WITHOUT ENERGY 
CREDITS 

Energy credit value 
[kWh] 

Total cost during peak price period [Euro]

Without energy credit With energy credit

0.7747
0.344 

0.309 
0.9996 0.299 

 

 
Figure 17. HVAC power consumption during the DR event for Scenario 1 of 250 
households.  

 
Figure 18. HVAC power consumption during the DR event for Scenario 2 of 250 
households.  
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Figure 19. HVAC power consumption during the DR event for Scenario 3 of 250 
households.  

IV.  CONCLUSIONS AND FUTURE RESEARCH 
In this study, a novel DLC approach based on allocating energy 

credits was proposed in order to present end-users with an 
opportunity for reducing their electricity costs. With the objective 
of realizing this commitment without radically affecting the 
comfort level of end-users, free energy credits were provided to 
residential end-users enrolled in the DR program on the condition 
that intervention to their HVAC units during predefined DR events 
was allowed. The end-users can then use these credits during the 
periods with high energy prices for considerable cost savings. The 
effectiveness of the energy credits-based incentive strategy was 
thoroughly examined in a day-ahead planning context in terms of 
operational cost reduction, regarding also the uncertainty of 
ambient temperature variations, and the results showed that the 
proposed strategy accomplished a total cost reduction of around 
10%, which is very significant and can be pointed out as a decisive 
factor for increasing the participation ratio of end-users into the DR 
programs.  

The future directions of the study can be listed as follows: 
• The detailed investigation of the benefits of such reductions 

from the perspective of LSEs, including their contribution to 
the operational power system procedures such as peak load 
leveling and frequency regulation.  

• The implementation of the proposed credit-based strategy for 
different TCLs such as EWH and refrigerators, and also on 
the households with energy storage systems.  

• In this context, instead of individual storage systems, shared 
energy storage systems can be considered as these systems 
provide higher energy storage capacities with lower costs to 
each end-user, also taking into account the fairness in the 
allocation of these capacities.  

• The impact of other physical factors such as the number of 
users, their activities, their clothes, etc. rather than solely the 
indoor temperature variation on the comfort of end-users.  

• The power flow is neglected in this study as the considered 
area is considerably smaller (a common LV bus of a 
distribution system) that can be managed by a distributed 
approach e.g. by an aggregator rather than a centralized 
approach e.g. by a distribution system operator. If a wider area 
of the power network was considered, it would be vital to also 
consider multiple load aggregation areas and therefore the 
interaction of different system buses by network constraints.  

• The evaluation of the benefits of the proposed approach based 
on a robust optimization algorithm might decrease the 
unfavorable effects of the uncertainties that can appear in the 
system (e.g. by adding end-user opt-out preferences, by 
including different system components with stochastic 
characteristics, etc.). 
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