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Abstract—Among renewable power sources, wind energy is the 
most promising technology; however, the inter-temporal 
uncertainty of this source makes impossible its massive 
integration. Forecasting of wind generation is a key factor for 
the economical operation of the power system. Thus, the error 
related to this process is typically modeled by means of a 
determined probability distribution to be later incorporated to 
the unit scheduling and load dispatch optimization procedures. 
In this paper, wind power forecasting error has been modeled 
by using Weibull and Lévy α-stable probability distributions 
and incorporated to the economic dispatch problem in order to 
probabilistically describe power production and generating cost. 
The proposed methodology is illustrated by analyzing a case 
study composed by 13 conventional generators; the obtained 
results are compared with Monte Carlo Simulation approach for 
evaluating and testing the capabilities of the proposed model, 
observing reasonable accuracy on the estimated results. 

Index Terms— Economic dispatch, Forecasting error, Lévy α-

stable distribution, Weibull distribution, Wind power. 

I. INTRODUCTION 

Nowadays, sustainability of human activities and 
economic growth is a preoccupying and widely discussed 
topic. Thus, availability of energetic resources, environmental 
issues, and socio-economic development are going to define 
the power-generation mix in the future. As a representative 
example, it is expected that in United States more than 60% of 
power requirements being supplied by means of natural gas 
between 2025 and 2040, while most of the remainder is going 
to be supplied by renewable sources [1], hence optimal 
operation of power systems provided of renewable resources 
becomes a relevant problem for research purposes [2]. 

Currently, representation of stochastic behavior of 
renewable generation using probability theory has become a 
widely suggested technique to deal with uncertainty 
incorporated by renewable generation on load dispatch and 
unit scheduling problems. Specifically, two trends have been 
suggested in the literature: one based on stochastic analysis 
using synthetic scenario generation, and another one based on 
the incorporation of renewable power through a probability 
distribution on the operation problem. Results obtained from 
the first trend strongly depends on the scenarios under analysis 
and the technique used to generate and reduce them [3]; 
besides of this, only a limited number of situations can be 
considered due to the increment of the computational burden 
as the number of scenarios increases.  

Regarding the second trend, many of the methodologies 
proposed under this framework have not been tested and 
proved, so that the obtained results are not provided of enough 
reliability to be implemented in realistic situations. Actually, 
this is a topic under development and several approaches have 
been presented in the literature; in [4], an economic load 
dispatch model able to consider wind generation as the 
combination of a Weibull distribution and a simplified power 
curve for the wind farm was proposed. In the optimization 
problem, overestimation and underestimation of forecasted 
wind power generation thorough penalty costs and spinning 
reserve provision were considered. Dependence of optimal 
power dispatch as a function of wind speed distribution 
factors, penalty factors, and reserve costs were analyzed by 
means of numerical analysis.  

In [5] and [6], two different optimization models were 
developed based on here-and-now and wait-and-see concepts. 
Methodology used is similar to that presented in [4]; however, 
its stochastic model was expressed as a constraint in the 
optimization problem. Considering similar assumptions;  
in [7], a closed-form solution of load dispatch problem 
expressed through incomplete gamma function was derived 
and used to evaluate the impact of wind generation on oxides 
of nitrogen (NOx) emissions. Alternatively, forecasting error 
of wind generation could be modeled by using a Beta 
distribution. Thus, following a similar methodology as that 
presented in [5-7], a dispatch model that incorporates wind 
generation as a Beta distribution in order to mitigate the 
effects of greenhouse gas emissions was presented in [8] and 
other recent method based on Beta distribution is shown in 
[9], respectively. To avoid the complexity of stochastic 
models; in [10], load dispatch was analyzed during a short 
time interval; hence, wind generation is represented through 
the mean wind speed and turbulence intensity.  

This paper focus on developing a technique to solve load 
dispatch problem considering wind generation as a probability 
distribution in order to describe output power of conventional 
generators, wind power production, and generating costs from 
a probabilistic viewpoint. A pair of different probability 
distributions to represent forecasting error such as Weibull and 
Lévy α-stable is incorporated to probabilistic load dispatch 
optimization model. The paper is organized as follow: Section 
II describes representation of forecasting error and solution of 
load dispatch problem, while Section III briefly illustrates the 
performance of the proposed methodology through the 
analysis of a case study; and then, final conclusions and 
remarks are presented in Section IV. 



II. PROBABILISTIC LOAD DISPATCH 

In this section, the methodology employed to model wind 
power forecasting error as a discretized probability 
distribution and its corresponding inclusion on probabilistic 
load dispatch problem are briefly described.  

A. Discretized Forecasting Error Distribution 

Many probability distributions have been suggested in the 
literature to accurately representing wind power forecasting 
error for a wide range of power production. In general sense, 
probability distributions for wind power forecasting error are 
fitted by considering persistent forecast method. In [11], after 
applying a statistical methodology based on the kurtosis as the 
reference parameter, several one-year time series obtained 
from two different locations, measured with time intervals of 
10 and 15 minutes were analyzed, showing the capabilities of 
Beta distribution.  

In [12], information obtained from Electric Reliability 
Council of Texas of the year 2009, measurements in ten 
different wind farms were analyzed demonstrating the 
capabilities of Cauchy-Lorentz distribution to probabilistically 
represent forecasting error. Motivated by the effects of 
forecasting error on trading energy in electricity markets; 
in [13], using Western Wind Resources data sets with a time 
interval of 10 minutes, mixed probability distribution was 
suggested. Versatile distribution was proposed in [14], due to 
its flexibility to represent forecasting error at different time 
scales and error magnitudes; as well as, its capability to be 
analytically represented in terms of density and cumulative 
distribution functions. Recently, from the analysis of data 
provided by Belgian Transmission System Operator for the 
years 2012 and 2013, Lévy α-stable distribution has been 
suggested in [15].  

As an effort to improve the proposed probabilistic 
optimization model presented in [9], Weibull and  
Lévy α-stable distributions have been incorporated to load 
dispatch problem; for this purpose, a discretization process of 
probability distribution under analysis is required; thus, the 
methodology used in this paper was initially proposed by 
Barbiero [16]. In this methodology, probability distribution of 
interest is discretized in several intervals selected in 
accordance with the accuracy level required; using a Gaussian 
distribution as a reference, and discretization of the interval  
(−𝜏, 𝜏) is carried out by means of (1), 

Ø𝑙 = −𝜏 −
2𝜏

𝐿 − 1
+ (

2𝜏

𝐿 − 1
) 𝑙;    𝑙 = 1, … , 𝐿,            (1) 

where 𝑙 is the index for each discretization interval, 𝐿 is the 
maximum number of intervals, 𝜏 is a parameter to define 
extreme values of reference probability distribution, and Ø𝑙 is 
the value of corresponding discretization interval of reference 
distribution. In order to obtain the value of each interval that 
corresponds to the probability distribution to be discretized, in 
this study Weibull and Lévy α-stable distributions, a 
transformation process presented in (2) and (3) is applied, 

𝜑𝑙 = 𝐹𝐺(Ø𝑙);     𝑙 = 1, … , 𝐿,                         (2) 

𝐷𝐹𝐸𝑙
𝑡 = 𝐹𝐸

−1(𝜑𝑙);     𝑙 = 1, … , 𝐿,                      (3) 

where 𝐹𝐺(·) is the cumulative distribution function (CDF) of a 
normalized Gaussian distribution, 𝜑𝑙 is an intermediate 
variable with uniform probability distribution function (PDF). 

Furthermore, DFEl
t is the interval l of discretized 

forecasting error at time t, and FE
−1(·) is the inverse CDF of 

the probabilistic variable to be discretized (Weibull and  
Lévy α-stable distributions). During the probabilistic 
transformation, cumulative probabilities estimated in (2) are 
evaluated in the inverse CDF of the probability distribution to 
be discretized for each interval (l) and time step (t). Then, the 
central value of each L − 1 disjoint (ωl) are estimated by 
using (4), 

𝜔𝑙 =
𝐷𝐹𝐸𝑙

𝑡 + 𝐷𝐹𝐸𝑙+1
𝑡

2
;     𝑙 = 1, … , 𝐿 − 1.            (4) 

Finally, the corresponding probabilities of each discretized 
interval are estimated according to (5)-(7), 

𝑃𝑟{𝐹𝐸𝑡 = 𝐷𝐹𝐸1
𝑡} = 𝐹𝐸(𝜔1);     𝑙 = 1,                (5) 

𝑃𝑟{𝐹𝐸𝑡 = 𝐷𝐹𝐸𝑙
𝑡} = 𝐹𝐸(𝜔𝑙) − 𝐹𝐸(𝜔𝑙−1);  𝑙 = 2, … , 𝐿 − 1, (6) 

𝑃𝑟{𝐹𝐸𝑡 = 𝐷𝐹𝐸𝑙
𝑡} = 1 − 𝐹𝐸(𝜔𝐿−1);    𝑙 = 𝐿,          (7) 

where Pr{·} is the probability of occurrence of a determined 
event, in our case FEt = DFEl

t; whereas, FEt is the 
probabilistic variable to represent forecasting error. Equations 
(5)-(7) describe the probability that forecasted power, 
represented by the variable FEt be equal to the corresponding 
discretized value DFEl

t;  l = 1, … , L.  

B. Probabilistic Economic Dispatch 

Ramp constraints of conventional generators are important 
limitation for integration of wind generation, because these 
restrictions reduce the flexibility of the power system to 
accommodate wind generation. These constraints combined to 
the inter-temporal correlation of wind speed and wind power 
directly influences economic dispatch problem. Typically, this 
characteristic is incorporated by simulating correlated 
scenarios of wind power, which makes the solution obtained 
dependent on the scenarios employed. To avoid this 
inconvenient, in this paper has used an analytical formulation 
based on discrete probability theory. The approach used 
considers the changes on output power of each generator 
between the previous time instant t − 1 and the current 
moment t. In this work, power generation of thermal units is 
modeled as discretized probability distributions for all 
generators at any time step t; in this sense, discretized PDF of 
power production of thermal generators at time t − 1 is 
assumed to be known.  

It is important to note that computational complexity 
related to the incorporation of discretized PDF on dispatch 
problem depends on the number of units and the number of 
intervals of discretized distribution according to a potential 
law; in other words, the number of combinations to be 
analyzed equals the number of generators elevated to the 
number of bins used to discretize PDF of thermal power 
production, which makes the problem mathematically 
intractable. In order to avoid this problem, a limited amount of 
cases for power production is considered each other 
determined by using the quantile concept. For a determined 
generator k (k = 1, … , K); let FP,k

−1(•) be inverse CDF of 

power generation at t − 1 for unit k; then, it is defined  
ηm (m = 1, … , M) as a value in the interval [ηmin, ηmax] with 
ηmin = ξ and ηmax = 1 − ξ, being ξ significance level; so that, 
the corresponding power generation at 𝑡 − 1 to be considered 
in load dispatch model and estimated by using (8): 



𝑃𝑘,𝑚
𝑡−1 = 𝐹𝑃,𝑘

−1(𝜂𝑚);    𝑚 = 1, … , 𝑀;    𝑘 = 1, … , 𝐾,            (8) 

where variable m is the index for the combination of power 
production at 𝑡 − 1 being considered, and 𝑀 is the amount of 
combinations, which is arbitrarily determined. It could be 
understood by analyzing an small example, assuming 𝑀 = 3 
and 𝜉 = 0.01; then, 𝜂𝑚𝑖𝑛 = 0.01 and 𝜂𝑚𝑎𝑥 = 0.99. Hence, 
this interval is swept by using and step equal to 0.49 obtaining 
𝜂1 = 0.01, 𝜂2 = 0.5, and 𝜂3 = 0.99. Finally, power values to 
be considered on the optimization process is defined as 
𝑃𝑘,1

𝑡−1 = 𝐹𝑃,𝑘
−1(0.01), 𝑃𝑘,2

𝑡−1 = 𝐹𝑃,𝑘
−1(0.5), and 𝑃𝑘,3

𝑡−1 = 𝐹𝑃,𝑘
−1(0.99).  

For the computational implementation, all this information 
could be stored in a table with 𝐾 rows, being 𝐾 the amount of 
generators, and 𝑀 columns; then, each column is considered 
as a possible starting point for each unit at 𝑡 − 1. As this is a 
probabilistically based simplification, a weighting factor (𝛺𝑚) 
is associated with each column of the aforementioned table by 
means of (9), 

𝛺𝑚 =
∏ (𝑃𝑟{𝑃𝑘

𝑡−1 = 𝑃𝑘,𝑚
𝑡−1})𝑘

∑ ∏ (𝑃𝑟{𝑃𝑘
𝑡−1 = 𝑃𝑘,𝑚

𝑡−1})𝑘𝑚

;    𝑚 = 1, … , 𝑀.        (9) 

Once the generating conditions at t − 1 have been defined, 
probabilistic load dispatch described in (10)-(15) can be 
solved. For each combination of indices l and m, optimization 
problem is solved; then, discretized probability distributions of 
conventional power generation, wind power curtailment, and 
generating cost can be built by considering power production 
at 𝑡 − 1 and wind generation as mutually exclusive events; so 
that, weighting factors of power production and discretized 
probabilities of forecasting error can be multiplied [9].  

𝜃𝑙
𝑚 = ∑ {𝜆𝑘 + 𝜇𝑘(𝑃𝑘,𝑚

𝑡 ) + 𝜎𝑘(𝑃𝑘,𝑚
𝑡 )

2
}

𝑘

+ 𝑉𝑂𝐿𝐿(𝐸𝑁𝑆𝑚
𝑡 ),     (10) 

∑ 𝑃𝑘,𝑚
𝑡

𝑘

+ 𝑊𝐺𝑙
𝑡 = 𝐿𝑡 ,                               (11) 

𝑃𝑘,𝑚
𝑡 − 𝑃𝑘,𝑚

𝑡−1 ≤ 𝑅𝑈𝑘 ,                                (12) 

𝑃𝑘,𝑚
𝑡−1 − 𝑃𝑘,𝑚

𝑡 ≤ 𝑅𝐷𝑘 ,                                (13) 

𝑃𝑘
𝑚𝑖𝑛 ≤ 𝑃𝑘

𝑡 ≤ 𝑃𝑘
𝑚𝑎𝑥 ,                                 (14) 

0 ≤ 𝑊𝐺𝑙
𝑡 ≤ 𝐷𝐹𝐸𝑙

𝑡 .                                  (15) 

In the optimization problem, 𝜆𝑘, μk, and 𝜎𝑘 are parameters 
to describe fuel consumption cost, 𝑉𝑂𝐿𝐿 is value of lost load, 
𝐸𝑁𝑆𝑚

𝑡  is the energy not supplied obtained from the analysis of 
the interval 𝑚, 𝑊𝐺𝑙

𝑡 is wind power generation consumed by 
the system when the value of forecasted generation (𝐷𝐹𝐸𝑙

𝑡) of 
interval 𝑙 occurs; 𝑅𝑈𝑘 and 𝑅𝐷𝑘 are ramp-up and ramp-down 

limits of unit 𝑘, respectively; while, 𝑃𝑘
𝑚𝑖𝑛 and 𝑃𝑘

𝑚𝑎𝑥 are 
minimum and maximum output power, respectively; while 𝐿𝑡 
is the load demand at time 𝑡. 

III. CASE STUDY 

The methodology described in Section II is illustrated by 
analyzing a case study of 13 thermal units (𝐾 = 13), whose 
data have been taken from [17] without valve point. As stated 
before, Weibull and Lévy α-stable distributions to model 
forecasting error have been considered, and the obtained 
results were compared with Monte Carlo Simulation (MCS) 
approach. Discretized PDF of each unit 𝑘 at 𝑡 − 1 was 
obtained by MCS approach; thus, three time steps, namely, 
𝑡 − 2, 𝑡 − 1, and 𝑡 were considered.  

Then, power production of each unit at 𝑡 − 2 was assumed to 
be deterministic; while at 𝑡 − 1 and 𝑡 − 2, discretized PDF of 
power generation were obtained by considering random values 
of wind power generation. Finally, results obtained at 𝑡 − 1 
were used as input to the proposed methodology (probabilistic 
variable 𝐹𝑃,𝑘) and results at t were used as a comparison point. 

Load demand to be supplied is assumed to be 2600 MW. 
The number of combinations of power generation at 𝑡 − 1 of 
thermal generators considered was adjusted to 3 (𝑀 = 3) in 
order to reduce the computational burden. Significance level 
of probabilistic analysis was adjusted to 0.01 (𝜉 = 0.01). 
MCS method and proposed approach were both implemented 
in MATLAB language.  

A. Weibull distribution 

In this sub-section Weibull distribution is analyzed by 
applying the methodology aforementioned in Section II, in 
order to determine load dispatch under uncertain conditions 
related to wind power forecasting error. This distribution is 
characterized by means of two parameters: scale (𝜌) and shape 
(𝜀) factors, respectively [5-7]. In this case study, 
𝜌 = 350 MW and 𝜀 = 2.5 have been considered.  

Regarding the discretization process described in Sub-
section II-A, it was carried out by considering power values 
between 0 MW and 800 MW divided in 150 intervals; while, 
discretized PDF of dispatched wind power generation (𝑊𝐺𝑡) 
was built by considering 200 intervals. As stated before, MCS 
approach was used as a comparison point with 2500 trials.  

Fig. 1 shows discretized PDF obtained from the proposed 
and MCS approaches for power production of unit 9. As can 
be observed, variations on wind generation as a consequence 
of forecasting error results are compensated by this generator 
in order to operate the system at minimum generating cost. 
Besides of this, a reasonable performance of the proposed 
method is appreciated.  

Figs. 2 and 3 show the behavior of generating cost and 
dispatched wind generation, respectively. In Fig. 3, it is 
possible observe how all available wind generation is 
consumed by the system, which clearly influences the PDF of 
generating cost (Fig. 2). Moreover a reasonable agreement 
between PDF obtained from proposed method and MCS 
approach is observed. Finally, Table I shows the comparison 
of expected value obtained from MCS approach and proposed 
methodology of power production and generating cost. As can 
be observed, results offered by proposed method have good 
accuracy. 

 
Figure 1.  PDF of power production of unit 9 (Weibull PDF). 
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Figure 2.  PDF of generating cost (Weibull PDF). 

 

 
Figure 3.  PDF of wind generation (Weibull PDF). 

TABLE I.  POWER GENERATION AND COST (WEIBULL PDF) 

k MCS Proposed 

1 669.102819 668.479624 

2 345.915705 345.217516 

3 345.911409 345.215761 

4 123.852886 123.600089 

5 123.857181 123.600041 

6 123.857181 123.606209 
7 123.857181 123.619028 

8 123.857181 123.611949 

9 123.859329 123.634523 

10 37.583893 37.583898 

11 37.583893 37.583898 

12 53.691275 53.691275 

13 53.691275 53.691275 
E{WG

t
} 307.307383 310.516006 

E{θ
t
} 22097.003651 22068.248662 

 

B. Lévy α-stable Distribution 

In this Sub-section, incorporation of Lévy α-stable 
distribution on load dispatch problem is analyzed. This 
distribution is mathematically represented by using four 
parameters: index of stability (𝛼), skewness factor (𝛽), scale 
factor (𝛾), and location factor (𝛿), respectively [15]. 
Specifically, in this case study are considered 𝛼 = 1.5, 
𝛽 = 0.8, 𝛾 = 10, and 𝛿 = 350 to model forecasting error. 
MCS approach was carried out by considering 10000 trials, 
while parameters related to discretization process were 
adjusted by assuming power values between 0 MW and  
1000 MW divided in 150 intervals.  

Furthermore, discretized PDF of dispatched wind power 
generation (𝑊𝐺𝑡) was built by considering 200 intervals.  
Fig. 4 shows discretized PDF of output power of generators 3. 
As wind generation has important uncertainty degree, it is 
possible observing how these units respond with accordance to 
forecasting error PDF. Besides of this, good agreement 
between both methods is observed. Figs. 5 and 6 and 7 present 
discretized PDF of generating cost and wind generation, 
respectively. From these results, it is possible observe how 
PDF of wind power forecasting error directly influences PDF 
of generating cost.  

 
Figure 4.  PDF of power production of unit 3 (Lévy α-stable PDF). 

 

 
Figure 5.  PDF of power production of unit 9 (Lévy α-stable PDF). 

 

 
Figure 6.  PDF of generating cost (Lévy α-stable PDF). 
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Figure 7.  PDF of wind generation (Lévy α-stable PDF). 

In Table II, is presented the corresponding comparison of 
expected value between both methods, where the accuracy 
level of the obtained results can be easily evaluated; observing 
the reasonable good capabilities of the proposed methodology.  

TABLE II.  POWER GENERATION AND COST (LÉVY ALPHA-STABLE) 

k MCS Proposed 

1 676.110738 675.902543 

2 345.322819 345.267810 

3 345.322819 345.267810 

4 114.089262 114.060298 

5 114.091275 114.062163 

6 114.089933 114.062163 
7 114.091275 114.062163 

8 114.089262 114.060298 

9 114.089933 114.060298 

10 40.276510 40.268456 

11 40.276510 40.268456 

12 53.697987 53.691275 

13 53.697987 53.691275 

E{WG
t
} 349.367785 350.287439 

E{θ
t
} 21731.134779 21726.008146 

IV. CONCLUSIONS 

Motivated by the growing integration of wind power 
generation for power production, probabilistic approaches for 
optimal load dispatch are becoming a necessity in order to 
operate power systems in an economical and reasonable way. 
In this sense, this paper introduced a probabilistic approach to 
determine PDF of power generation and total cost using 
discrete probability theory. In the proposed approach, Weibull 
and Lévy α-stable distributions to model wind power 
forecasting error have been analyzed by comparison with 
MCS approach, observing good agreement between both 
methodologies.  
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