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Abstract—Optimal dispatch of modern power systems often
entails efficiently solving large-scale optimization problems, es-
pecially when generators have to respond to the fast fluctuation of
renewable generation. This paper develops a method to learn the
optimal strategy from a mixed-integer quadratic program with
time-varying parameters, which can model many power system
operation problems such as unit commitment and optimal power
flow. Different from existing machine learning methods that learn
a map from the parameter to the optimal action, the proposed
method learns the map from the parameter to the optimal integer
solution and the optimal basis, forming a discrete pattern. Such
a framework naturally gives rise to a classification problem: the
parameter set is partitioned into polyhedral regions; in each
region, the optimal 0-1 variable and the set of active constraints
remain unchanged, and the optimal continuous variables are
affine functions in the parameter. The outcome of classification is
compared with analytical results derived from multi-parametric
programming theory, showing interesting connections between
traditional mathematical programming theory and the inter-
pretability of the learning-based method. Tests on a small-scale
problem demonstrate the partition of the parameter set learned
from data meets the theoretical outcome. More tests on the IEEE
57-bus system and a real-world 1881-bus system validate the
performance of the proposed method with a high-dimensional
parameter for which the analytical method is intractable.

Index Terms—power system operation, interpretability, ma-
chine learning, renewable generation, uncertainty

I. INTRODUCTION

As modern power systems continue to expand, some large-
scale systems can possess thousands of buses and generators
[1]. The optimal operation of power systems often entails
solving a large mixed-integer optimization problem, which
is a challenging task. Meanwhile, the increasing penetration
of volatile renewable resources brings notable uncertainty in
system operation, and generators must rapidly respond to the
fluctuation of renewable power and load in real-time, requiring
high computational efficiency.
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For the optimal power flow (OPF) and economic dispatch
(ED) problems, some online algorithms have been proposed,
such as the quasi-Newton method [2], dynamic alternating
direction method of multipliers based on suitable linearization
[3], and hierarchical decentralized algorithm [4]. However,
these methods can only handle continuous variables. Opti-
mization problems with integer variables are also of great
importance in power system operation, such as in unit com-
mitment (UC) and transmission switching. Although mixed-
integer programming solvers have been significantly improved
during the past decades, solving a large-scale mixed-integer
program may still be time-consuming due to non-convexity.

With the quick development of artificial intelligence, ma-
chine learning (ML) methods are increasingly popular in
power system problems. One of the main applications is
renewable generation forecast. For wind generation, ref. [5]
applies deep Boltzmann machine to wind speed forecast,
extracting high-level features of data that are informative
for inference. Ref. [6] predicts wind speed intervals with an
ensemble model composed of gated recurrent unit, variational
mode decomposition, and error correction. Refs. [7] and [8]
combine the convolutional neural network (CNN) and long
short-term memory (LSTM) to predict wind speed, where C-
NN extracts the spatial features and LSTM learns the temporal
information. Ref. [9] combines a bagging neural network with
K-means clustering method for wind power forecast. For solar
generation, ref. [10] adopts unsupervised clustering methods
and support vector machine for solar power forecast. Refs. [11]
and [12] ensemble several ML methods for solar output fore-
cast. Ref. [13] tackles probabilistic solar irradiance forecasting
using convolutional graph autoencoder, which can effectively
estimate the distribution of future irradiance given historical
data. Ref. [14] employs Generative Adversarial Networks for
the imputation of solar data.

In the field of power system operation, several learning-
assisted optimization methods have also been found. The
majority of them employ surrogate models, i.e., the optimal so-
lution is directly predicted from ML models. Ref. [15] applies
the stacked extreme learning machine method to the OPF prob-
lem. The mapping from load demands to optimal generation
schedules is divided into several sequential learning tasks. Ref.
[16] combines artificial neural network (ANN) and simulated
annealing algorithm for the UC problem; ANN predicts the
on-off status of generators, and simulated annealing optimizes
the generator output. Ref. [17] applies enhanced augmented
Lagrange Hopfield network to the ED problem. The network
is trained by regarding augmented Lagrangian function as the
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energy function. Ref. [18] uses a Gaussian-process-emulator as
a nonparametric surrogate model for the stochastic economic
dispatch with wind penetration, where Isomap, a manifold
learning method, is utilized for reducing the dimension and
improving the efficiency of gaussian-process-emulator.

In recent years, reinforcement learning (RL) becomes a
flourishing method for power system operation and control.
Refs. [19]–[21] use RL to solve large-scale OPF and ED
problems. These RL models are trained with the rewards
defined as the objective function with Lagrangian penalty
terms, while decision variables such as generator outputs are
discretized to present discrete actions. Ref. [22] applies the Q-
learning method to UC problems with renewables; the actions
are the startup/shutdown behaviors of generators; the Q values
are defined as generation costs and are approximated by a
linear ANN. Ref. [23] integrates particle swarm algorithm
with RL to solve UC problems under uncertainties, where
RL is used to avoid local convergence of the meta-heuristic
algorithm. Ref. [24] learns the multi-agent trading policy
of renewable energy via Q-learning. Ref. [25] solves the
automatic generation control problem with the Deep Double
Q-Network algorithm. Ref. [26] uses a state-action-reward-
state-action algorithm to schedule electric vehicle charging
stations. A linear function is used to approximate the function
between features and rewards, and the weights in the linear
function are regarded as the training target.

The aforementioned ML methods can improve the efficiency
of solving large-scale optimization problems, but there are
also some shortcomings. First, unlike traditional mathematical
programming model that explicitly cope with constraints, ML
models usually treat constraint violation as a penalty; it is
sometimes difficult to find the exact security boundary due to
the lack of data. So security may become an issue because
the loss for deploying an infeasible strategy is unaffordable.
Second, some ML methods, such as neural network, lack
interpretability and resemble a black box. The decision maker
can hardly know why such a strategy is found and how large
the optimality gap is. Third, ML methods are typically model-
free, which is attractive in tasks like computer vision and
natural language processing. However, the classic models of
the power system contain important information for making a
dispatch decision, but are not fully utilized.

In view of the ability of ML techniques and its potential
in helping power system operators making quick decisions to
tackle uncertainty, such as in the online and rolling-horizon
optimization problems, this paper aims to develop a method to
learn the optimal solution of UC, ED, and OPF problems with
time-varying parameters, which are mathematically modeled
as a quadratic program or a mixed-integer quadratic program
(MIQP). The contributions are twofold:

1) A model-based ML method for power system operation
problems that are formulated as MIQPs. Unlike existing
ML methods that learn a map from parameters to the
optimal strategy, the proposed method learns the map
from parameters to the optimal pattern, including the
integer solution and the set of active constraints. The
optimal pattern is naturally discrete and the learning task
gives rise to a classification problem. The outcome is a

polyhedral partition of the parameter set. In each region,
the optimal integer variables and the set of active con-
straints remain unchanged, and the optimal continuous
variables are affine functions in the parameters. Such a
framework has two advantages. First, it makes full use
of the power system model and explicitly accounts for
security constraints. Second, the computational burden
is encapsulated in the offline training process. During
the online stage, no optimization problem is solved;
only algebraic operation is needed, saving computational
resources. This means the commercial solver does not
need to be integrated with the dispatch platform, and
there is no need to transfer real-time data between the
energy management system and the commercial solver,
simplifying the architecture of the energy management
system. We notice the same idea in a recent literature
[27]. Nevertheless, the intrinsic structure of the optimal
solution as well as the interpretability is not discussed.

2) A method to interpret the machine learning results. The
classification can be implemented via either a neural
network or a classification tree. When the tree method is
used for classification, the result naturally interprets how
and why the decision is made. It is shown that both neu-
ral networks and classification trees provide consistent
partition. We reveal interesting connections between the
machine learning results and multi-parametric program-
ming theory. It is found that the criteria of classification
coincide with the boundary of critical regions which can
be analytically derived if the dimension of parameters is
low. Such discussions bridge the traditional optimization
theory and ML methods. On the one hand, parametric
MIQP provides a unique perspective to explain and
validate the ML method; on the other hand, as it is rather
difficult to analytically solve a parametric MIQP with
a high-dimensional parameter vector, the ML method
can procure at least an approximate solution which
contains structured information of power system optimal
operation policy.

The rest of this paper is organized as follows. Section II
introduces the properties of MIQPs and the proposed method.
Section III reveals the connection between the classification
results and multi-parametric programming theory. Section IV
discusses the special case in which the objective function is
linear and the application on locational marginal price (LMP)
calculation. Section V presents case studies on the IEEE 57-
bus system and a real-world 1881-bus system. Finally, Section
VI summarizes the conclusion.

II. PROPOSED METHOD

The motivation of the ML method is presented first, and
then the method is formalized via a classification problem.

A. Motivation of the Learning Method
The canonical form of an MIQP can be expressed as:

min x>Qx/2 + c>1 x+ c>2 y

s.t. Ax+ Ey ≤ b+Bθ

x ∈ Rnc , y ∈ {0, 1}nb

(1)

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 16,2021 at 13:47:27 UTC from IEEE Xplore.  Restrictions apply. 



1949-3029 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2021.3088951, IEEE
Transactions on Sustainable Energy

3

where x and y represent continuous and binary variables,
respectively; Q is a positive semidefinite matrix; A, B, E, c1,
c2, and b are constant coefficients with compatible dimensions.
We assume Q = Q>, otherwise, replacing Q with a symmetric
matrix (Q+Q>)/2 does not alter the objective function. θ is
the parameter representing renewable generation. For instance,
Formulation (1) encompasses several power system operation
problems, such as OPF with nb = 0 and UC with nb > 0.

Given the value of θ, MIQP (1) can be solved by com-
mercial solvers. Due to the existence of binary variables, the
computation can take some time, depending on the problem
size. As the renewable generation is volatile, the value of
θ changes rapidly. To maintain power system security and
achieve an economic operation, a straightforward mean is to
solve problem (1) more frequently with the latest update or
forecast of θ, such as the rolling horizon scheme [28]–[30] and
the online operation scheme [2]–[4], putting forward the need
of highly efficient methods to solve a single instance of MIQP
(1) with a fixed θ. ML technique encapsulates computational
efforts in the offline training process and is able to provide
quick decisions within moderate time in the online stage.
The task comes down to learning the optimal value v(θ) and
optimal solution (x(θ), y(θ)) as functions in the parameter θ.
However, model-free learning methods do not fully utilize the
mathematical model (1) and its specific solution structure.

When the parameter θ changes in a certain region, the
number of optimal integer variables and active constraints
are typically much fewer than the number of possible can-
didates. Take the UC problem for an example. Many units
are always on because of lower costs; some constraints are
always active while some others never becomes binding. The
above observations motivates learning the map from θ to the
optimal binary variables and active constraints, constituting
an optimal pattern which is discrete. Fixing the optimal integer
variable y? and set of active constraints, MIQP (1) reduces to

min x>Qx/2 + c>1 x

s.t. Ax ≤ b− Ey? +Bθ
(2)

As the set of active constraints have been learned, the optimal
continuous variable x? can be determined from the following
Karush-Kuhn-Tucker (KKT) optimality condition

Qx? + c1 + Ā>µ = 0

Āx? + Ēy? − B̄θ = b̄
(3)

where Ā, B̄, Ē, and b̄ are sub-matrices corresponding to
the active constraints; µ is the dual variable corresponding
to the active constraints. A momentous observation is that
when θ varies in some certain set, the optimal pattern remains
unchanged. If we regard (3) as a set of linear equations
with (x?, µ) being the variable and θ the observed parameter,
the optimal continuous variable and dual variable can be
easily obtained by solving a linear equation set which is very
efficient, as optimization is no longer required. Therefore, to
learn the optimal value function v(θ) and optimal solution
function (x(θ), y(θ)), we have to identify all the optimal
patterns and their corresponding invariant set of parameter θ.

B. Learn to Solve MIQP via Classification

Now, the core of the learning method is to identify the
mapping from the parameter θ to an optimal pattern. The ML
method consists of two main parts: offline learning and online
prediction, as detailed in the following.

1) Offline Learning: Offline learning mainly includes learn-
ing the mapping from the parameter to the optimal patterns and
storing the coefficient matrices associated with each pattern.
The procedures are as follows.

(a) Problem setup: Formulate the problem as the canonical
form stand form (1), and store the coefficient matrices.
Retrieve the lower and upper bounds of parameters θmin
and θmax, and define the parameter set Θ = {θ|θmin ≤
θ ≤ θmax}. Initialize optimal pattern set S = ∅.

(b) Sampling: Get historical observations of θ and optimal
binary variable; if unavailable, generate samples θ1, θ2,
· · · from parameter set Θ that are likely to appear. For
each sample, solve MIQP (1) under parameters θi, and
record the optimal binary solution and active constraints
in pattern si; If si /∈ S, update S ← S ∪ si. With
a proper sampling set, the set S basically covers all
possible patterns that are likely to appear in practice.
More details about the sampling procedure are provided
in the discussion.

(c) Matrix Storage: For each pattern si, Record the coef-
ficients of KKT condition (3), i.e., the optimal binary
variable y? and coefficient matrices Ā, B̄, Ē, and b̄ of
active constraints.

(d) Training: Learning the mapping from parameters to the
optimal patterns comes down to a multi-class classifi-
cation problem. The input is the sampled parameters,
and the output is the label of the corresponding pattern.
Samples are divided into a training set and a testing set.
The classification model is trained on the training set.

Some technical details are provided as follows.
1. The number of samples should be sufficiently large, such

that most optimal patterns have been explored. A method
called the Good-Turing estimator was provided in [31] to
determine the proper number of samples through estimating
the probability for the non-existence of undiscovered patterns.
Let N be the current number of samples, and N1 the number
of samples corresponding to the patterns appeared only once.
Then the probability p0 of there still existing undiscovered
patterns with a confidence level of δ is bounded by

p0 ≤
N1

N
+ (2
√

2 +
√

3)

√
1

N
ln

(
3

1− δ

)
(4)

Equation (4) provides an upper bound of p0. In order to
ensure that p0 is below a certain threshold α, we can let the
probability be less than a threshold, namely

N1

N
+ (2
√

2 +
√

3)

√
1

N
ln

(
3

1− δ

)
≤ α (5)

If we have enough data so that N1 eventually approaches 0,
then from (5) we have

N >
20.8

α2
ln

(
3

1− δ

)
(6)
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In practice, when the classification model is trained with more
data, both N and N1 grows. We can terminate the training
algorithm once (5) is met. Assuming δ = 0.99, α = 0.05,
which means p0 is guaranteed to be less than 0.05 with a
confidence level of 0.99, then the stopping criterion is

0.0025N2− 118.6N − 0.1N1N +N2
1 ≥ 0, N1 ≤ 0.05N (7)

Although the above Good-Turing estimator only provides a
probabilistic guarantee, it works well in practice, which can
be seen from the case studies in Section V.

2. Two methods can implement the classification: ANN and
oblique decision trees (ODT) [32]. We will demonstrate that
both of them are capable of learning the optimal patterns. From
the application perspective, ANN has better computational
performance thus can effectively handle complicated prob-
lems, while ODT prevails in interpretability which helps the
system operator better understand how the decision is made.
Nevertheless, the classification can be implemented by other
approaches, e.g. SVM and gradient boosting trees, depending
on the specific need.

For the ANN method, we choose the 3-layer structure with
ReLU activation, and the output layer is activated by softmax
so that the probability of each class can be estimated, as shown
in Fig. 1(a). Such a structure strikes a proper balance between
representation capability and ease of training. 2-layer ANN
with 1 hidden layer requires a significant number of neurons to
maintain the representation performance, while the ANN with
more than 3 layers is unnecessary for the simple classification
task. For the ODT method, a binary tree is applied where each
node is split by a multivariate linear expression, as shown in
Fig. 1(b). Coefficients ai,bi are iteratively optimized via a
heuristic algorithm [32], ensuring that the tree is optimal or
near-optimal.

2) Online Prediction: The online prediction procedure for
the two classification methods will be introduced separately.

The online algorithm for ODT is as follows:
(a) Retrieving the optimizer: The label of the optimal pattern

is predicted by ODT, thus the optimal binary variable y?

and the set of active constraints are clear. The optimal
continuous variable is optimal in problem (2), and is
retrieved by solving linear equation set (3).

(b) Feasibility Check: Substitute the optimal solution into
the remaining inequality constraints of the original prob-
lem (1). If the constraint violation is small, an alternative
pattern with a feasible solution needs to be picked out as
the predicted solution. It is likely that the prediction error
comes from only a few node splitting procedures, so we
can backtrack each parent node and iteratively examine
the patterns in the other branch until a feasible solution
is acquired. If the constraint violation is large, it means
no similar scenario has been explored in the training
process. A remedy is to first deploy a feasible strategy
that can be quickly found, and retrain the classification
once time permits. The feasible strategy is acquired
by traversing the existing patterns, which is efficient
because obtaining a solution under each pattern only
entails matrix operations. Thus a near-optimal solution
can be quickly found. Afterwards, the ODT should be

(a) ANN structure

(b) ODT structure

Fig. 1: Structures of ML methods

retrained to prevent infeasibility from occurring in the
future. Before retraining the model, new samples are
generated near the infeasible point in the parameter
space, the number of which can be approximated as
the average number of samples in the existing patterns.
For each new sample, the i-th parameter θi is randomly
picked within the interval [θ̂i − θui −θ

l
i

2m1/D , θ̂i +
θui −θ

l
i

2m1/D ],
where θ̂i is the i-th parameter of the infeasible point, θui
and θli represent the upper bound and lower bound of
the i-th parameter, m is the number of existing patterns,
and D is the dimension of the parameter space. The
above interval is determined based on the approximation
that the undiscovered critical region is centered at the
infeasible point and occupies a volume of V/m, where
V is the total volume of the parameter space which is
typically a hypercube. After the new samples are added
to the sample set, the ODT is modified by finding out
the leaf nodes which the new samples fall into, and
then training an additional branching for the ones with
false predictions using the new samples. As only minor
changes to the model are required, the above retraining
process is computationally efficient.

The online algorithm for ANN differs a little. As the output
layer of ANN provides the probability of each pattern rather
than a single optimal one. We can verify all the candidate
patterns in order to obtain the actual optimal one. The online
algorithm for ANN is as follows:

(a) Retrieving candidate optimizers: The possibilities of
each pattern being optimal are predicted by ANN. Find
out the first k candidate patterns with the highest possi-
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bilities, where k is pre-specified. Each candidate pattern
corresponds to a reduced problem in (2). Solve the linear
equation set (3) associated with each candidate pattern.

(b) Feasibility and Optimality Check: Check the feasibility
of each candidate solution by substituting them into the
remaining inequality constraints of the original problem
(1). Find out the feasible solution with the best objective
value, and accept it as the final optimizer. If no feasible
solution is found, the same strategy explained in the
ODT case is performed, i.e., new samples are generated
and the ANN is fine-tuned with these new samples. The
retraining procedure is also efficient because the current
weights provide a good initiation.

The flowchart of the proposed method is shown in Fig. 2.

Generate samples and set up the pattern set 
by varying parameter θ within Θ and solving 

corresponding MIQP problem (1). 
Terminate when stopping criterion (6) is met.

Offline Learning

Formulate mp-MIQP problem 
and define parameter space Θ 

Record the coefficients in KKT 
condition (3) for each pattern.

Learn the mapping from 
parameters to the optimal 
pattern using ODT or ANN.

Online Prediction

Predict top-k patterns (k=1 for ODT, 

k 1 for ANN), and acquire k 
candidiate solutions by solving KKT 

equations under each pattern. 

Is there any feasible solution among 
the k candidate solutions?

Regard the optimal 
one as the predicted 

solution.

Find a feasible solution by 
traversing the existing 

patterns. Then retrain the 
model.

Yes No

Fig. 2: Flowchart of the proposed method

By learning the optimal patterns offline, the task during
the online stage just entails solving linear equations, which
is easy to implement and efficient; no optimization problem is
solved, and thus the proposed method is very fast. As we will
show in the next section, ANN and ODT give very similar
predictions, and the mappings learned from the two methods
match the exact one which is analytically derived from multi-
parametric programming theory. On this account, the ODT
clearly explains why a solution is chosen. Such interpretability
is highly desired by the power system operator.

III. EXPLAINING THE RESULT

This section discusses the true mapping from the parameter
θ to the optimal solution (x?, y?). For small-scale problems,
such a mapping can be analytically computed and used to
validate the result of the learning method.

Under a given binary variable y?, the optimal continuous
variable solves the following convex quadratic problem

min x>Qx/2 + c>1 x

s.t. Ax ≤ b? +Bθ
(8)

where b? = b− Ey?. How the value of θ influence x will be
investigated. For a given θ, suppose the set of active constraints
is Āx? = b̄?+B̄θ, then there must be a multiplier λ? satisfying

Qx? + c1 + Ā>λ? = 0

Āx? − b̄? − B̄θ = 0
(9)

The primal-dual pair (x?, λ?) can be expressed as[
x?

λ?

]
=

[
Q Ā>

Ā 0

]−1 [ −c1
b̄? + B̄θ

]
(10)

When the problem is non-degenerated, which is a mild condi-
tion, the inverse matrix exists [33]. Then, we can solve (x?)
and λ? from (10)

x? = Mθ +m

λ? = Nθ + n
(11)

where M , N , m, and n are constant coefficients. Although
(11) is derived based on a given θ, it helps understand how θ
affects x? and λ?. To this end, recall the remaining constraints

Âx? < b̂? + B̂θ (12)

where Â, B̂, and b̂ correspond to the inactive constraints. Their
corresponding dual variables must be 0 due to complementar-
ity and slackness condition. In addition,

λ? ≥ 0 (13)

must hold in the KKT condition of problem (8).
Substituting (11) into (12) and (13), we obtain a set

CR =

{
θ

∣∣∣∣∣ Nθ + n ≥ 0

(ÂM − B̂)θ ≤ b? − Âm

}
(14)

In the theory of multi-parametric programming [33], set CR
in (14) is called a critical region. When θ varies in CR, the set
of active constraints does not change, so the optimal solution
can always be recovered from (11), regardless of the value of
θ. Therefore, in a critical region, the optimal solution x? and
dual variable λ? are affine functions of θ. If θ steps outside
one critical region, the set of active constraints change, and
another critical region can be found. From (14) we can see
critical regions are polyhedral sets.

The solution properties of problem (8) under a given binary
variable y? are summarized below:
• The parameter set Θ is partitioned into critical regions

which are polyhedral sets.
• In each critical region, the optimal continuous variable
x? is an affine function in parameter θ

• The optimal objective is a quadratic function in θ
In the ODT method, each tree node is split by a hyperplane

aTi θ = bi. Such a hyperplane is the boundary of some critical
regions in (14). In this sense, the result of ODT is interpretable
and coincides with the theoretical analysis.

In order to show the interpretability more intuitively, we
apply both analytical methods and the proposed learning
method to the direct-current OPF problem

min
∑
i

aip
2
gi + bipgi (15a)

s.t. pgi + pwi − pdi =
∑
k∈Λi

δi − δk
Xik

,∀i (15b)

− PLmik ≤ pLik ≤ PLmik ,∀i,∀k ∈ Λi (15c)

P lgi ≤ pgi ≤ Pmgi ,∀i (15d)

− π ≤ δi ≤ π,∀i (15e)

Θ =
{
pw
∣∣pminw,i ≤ pw,i ≤ pmaxw,i

}
(15f)
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(a) Critical regions by (14) (b) Optimal value function

Fig. 3: Critical regions and the optimal value function

Decision variables are the generation outputs pg,i, bus angles
δi and line flows pLik. Parameters are the outputs of wind
farms pwi. Load demand pdi is assumed to be fixed for
ease of exhibition. ai, bi are the coefficients of generation
cost functions. Xik is the reactance of the branch connecting
buses i and k; PLmik is the power flow capacity. P lgi/P

m
gi

and pminw,i /p
max
w,i are the minimum/maximum output of thermal

units and wind power at bus i. The objective function (15a)
is to minimize the total fuel cost of thermal units. Constraint
(15b) is the nodal power balance equation, while the remaining
constraints in (15c)-(15f) define lower and upper bounds of
decision variables and parameters.

A test case is constructed based on a modified IEEE 30-bus
system with two wind farms connected at bus 26 and bus 29.
The output range of the two wind farms are the parameters and
vary in the interval [0, 150]MW. The critical regions obtained
from the theoretical analysis are displayed in Fig. 3, where
the grey area is the infeasible region, i.e., for any θ in this
region, the OPF problem (15) is infeasible. The hyperplane
expressions of boundaries in Fig. 3 are calculated by (14) and
summarized in (16a)-(16e).

θ1 + θ2 = 37.05 (16a)
θ1 + θ2 = 91.04 (16b)

0.7741θ1 + 0.6331θ2 = 64.98 (16c)
0.8469θ1 + 0.5318θ2 = 64.83 (16d)
0.7741θ1 + 0.6331θ2 = 86.32 (16e)

Equalities (16a) and (16b) imply that some generators reach
the minimum output when the total wind generation increases
to certain level. Equalities (16c), (16d), and (16e) originate
from the limitations of line flow capacity (15c).

Then, the ANN and ODT methods are performed to learn
the set of active constraints, as there is no binary variable in the
OPF problem (15). For the ODT method, the decision tree after
training is displayed in Fig. 4; the splitting criteria are shown
beside each branch. It is observed that the splitting criteria in
ODT are very close to the exact partition of critical regions.
The criteria of nodes 1-5 match (16d), (16b), (16e), (16a),
and (16c) respectively. Such coincidence explains that the true
optimal dispatch policy can be learned with high accuracy.

The ANN method is also conducted, but the ANN does not
offer a directly interpretable result. Nevertheless, since ANN

Fig. 4: Training result of ODT

(a) Critical regions by ODT (b) Critical regions by ANN

Fig. 5: Critical regions learned by ML methods

and ODT identify the set of active constraints, the classifica-
tion results are examined point-by-point and exhibited in Fig.
5. Compared to Fig. 3(a), we can see two ML methods provide
almost exact partitions of critical regions, and the results are
well interpreted via the tree in Fig. 4.

The above example considers a continuous optimization
problem. When binary variables are taken into account, the
situation is more complicated. We can think that the MIQP
can be solved at all possible values of binary variables. Each
binary variable corresponds to an optimal value function, then
the optimal value function of the MIQP is the pointwise
minimum of all the optimal value functions with fixed binary
variables1. For example, Fig. 6(a) shows the optimal value
functions z1(θ) and z2(θ) under different binary variables. The
pointwise minimum z(θ) = min{z1(θ), z2(θ)} is piecewise
quadratic and drawn in Fig. 6(b). The region CR0 is divided
into three critical regions CR1, CR2, and CR3. In each new
critical region, the optimal continuous variable remains an
affine function in the parameter θ.

Although the solution structure of MIQP has been analyzed,
solving a parametric MIQP is much more difficult than solving
a single MIQP, especially when the dimension of the parameter
is high. The proposed learning method is scalable to the
dimension of parameter θ.

1Among all possible combinations of 0-1 variables, only a few are candidate
optimal solutions when θ varies in a certain range. In the offline training, a
sufficient number of optimal patterns are explored by solving (1) with sampled
data. There is no need to traverse binary values or solving any optimization
problem during the online phase, which saves computation time.

Authorized licensed use limited to: b-on: UNIVERSIDADE DO PORTO. Downloaded on June 16,2021 at 13:47:27 UTC from IEEE Xplore.  Restrictions apply. 



1949-3029 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2021.3088951, IEEE
Transactions on Sustainable Energy

7

(a) Objectives and CRs before
comparison

(b) Objectives and CRs after
comparison

Fig. 6: Optimal value function and critical regions.

IV. EXTENSION OF THE PROPOSED METHOD

As the cost of fossil-fuel generators is a quadratic function,
the discussions in Section II rely on MIQP. In some power
markets, the independent system operators ask for a linear cost
bid, yielding an MILP, a special case of MIQP in which Q = 0.
Hence, the optimal primal and dual variables can be analyzed
separately. The cases with a linear objective function and line
contingency constraints are also discussed in this section.

A. Suitability for Linear Case

For MILP, the offline learning process remains unchanged.
For a given optimal pattern with a binary variable y? and a
set of active constraints Āx + Ēy? = b̄ + B̄θ, the optimal
continuous variable solves

min c>1 x

s.t. Āx = b̄? + B̄θ
(17)

where b̄? = b̄− Ēy?. The optimality condition of (17) is

Ā>λ? = c1

Āx? = b̄? + B̄θ
(18)

where λ? is the dual variable corresponding to the active
constraints. When the problem is non-degenerated, matrix Ā>

is invertible, and (x?, λ?) can be expressed as

x? = Ā−1b̄? + Ā−1B̄θ

λ? = (Ā>)−1c1
(19)

The remaining dual variables λ̂ for inactive constraints are 0
according to complementary and slackness condition.

The inactive constraints are

Âx? < b̂? + B̂θ (20)

Substituting (19) into (20), the critical region can be obtained

CR =
{
θ
∣∣∣(ÂĀ−1B̄ − B̂)θ < b̂? − ÂĀ−1b̄?

}
(21)

The set of active constraints keeps invariant in a critical region,
i.e., (Ā, B̄, b̄?) does not change. So x? is an affine function of
θ, and λ? is constant in a critical region according to (19). In
fact, (19) and (21) are special cases of (11) and (14). When
Q = 0, the conditions on primal variable x? and dual variable
λ? are decoupled.

In summary, the proposed method can be applied to MILP-
based problems with minor adjustments on the calculation of
continuous optimizer.

B. Implication on LMP
The above discussion inspires learning the map from param-

eter θ to locational marginal prices (LMPs). Indeed, a multi-
parametric linear programming method for LMP forecast was
proposed in [34]. In OPF problem (15) with a linear objective
function, the LMP at each bus can be extracted from the
dual variable γ associated with each nodal power balancing
constraint (15b). By the expression in (19), in each critical
region LMP remains constant. Therefore, we just need to learn
the critical regions and the corresponding value of LMP. The
procedures are as follows:

Offline Training:
(a) Formulate the DCOPF problem as an mp-LP problem.
(b) Retrieve data samples and generate the pattern set. Each

pattern corresponds to a set of active constraints.
(c) For each pattern, record the coefficients (Ā, B̄, b̄?),

(Â, B̂, b̂?) and λ? in (19)-(20).
(d) Train the ML model for the classification task.
Online Prediction:

(a) Predict top-k candidate patterns for the sample.
(b) Retrieve k candidate solutions (x1, ..., xk) for the D-

COPF problem, and find out the optimal one x? by
comparing the objective value. Regard the corresponding
λ? as the predicted LMP.

Fig. 7: Topology and parameters of PJM 5-bus system

A test case of LMP is constructed based on a modified PJM
5-bus system. The original system can be found in [35]. The
topology and parameters of the system are displayed in Fig. 7.
The varying parameters in the problem are the load variations
at bus B and D with the range of [−100, 100]MW. 10000
samples are generated in the proposed method, including 8000
training samples and 2000 test samples. The critical regions
acquired by the theoretical analysis and the proposed method
with ANN are shown in Fig. 8a and Fig.8b respectively.

The LMP in each critical region is a constant, which can
be accurately inferred by (19). Therefore, the error of the
proposed method only comes from the misclassification of
patterns, i.e., the error on the division of critical regions.
Results show that when top-2 predictions are provided, all the
test samples are given a correct pattern, and all the predicted
LMPs are accurate.
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(a) Critical regions by (21)
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(b) Critical regions by learning

Fig. 8: Comparison of the critical regions

C. Incorporating Contingency Constraints

Sometimes, contingency constraint is also included in the
UC problem, ensuring the security of power flow redistribution
after the tripping of a transmission line. The N−1 contingency
constraint can be cast as [36]

−Fl ≤
∑
i

πkilp
g
i −

∑
j

πkjlp
d
j ≤ Fl, ∀l,∀k (22)

where pgi represents the generator output at bus i; pdj is the
load demand at bus j; Fl is the power flow capacity of line l;
πkil/π

k
jl represents the power transfer distribution factor from

bus i/j to line l under contingency scenario k. In UC problem,
constraint (22) holds in every period.

As the contingency constraint (22) is linear, the UC problem
remains an MILP/MIQP. However, the contingency constraint
set introduces a large number of inequalities in the parametric
programming problem, and the majority of them are redundan-
t, or in other words, removing any of the redundant constraints
does not change the feasible set of the original UC problem.
Hence, to improve computational efficiency, it is helpful to
remove redundant constraints in advance. To this end, several
redundancy filtering methods have been proposed, such as
those in [36]–[38]. Here we apply a data-driven method to
reduce the size of the contingency constraint set. First, the
UC problem without contingency constraints is solved under
each set of parameters in the training set, and line power flow
under each contingency can be calculated based on the optimal
generation schedule. With Ntrain training samples, we can get
Ntrain groups of line flow data. By traversing such data, the
overloaded lines and the corresponding contingency scenarios
are obtained. Assuming that the number of training samples is
sufficient, we can pick up necessary line flow constraints that
could impact the feasible region of the SCUC problem and
circumvent redundancy.

V. CASE STUDY

In this section, the proposed method is tested via the
network constrained unit commitment problem (NCUC). Solar
outputs are regarded as the varying parameters in the problem.
The detailed model of NCUC is given in the Appendix, which
has the canonical form of (1). Testing systems include the
IEEE 57-bus system and a real-world 1881-bus system in
China. The case studies aim to exhibit the performance of
the proposed learning method for solving a single instance of

MIQP (1) with a fixed θ, from the perspectives of computation
efficiency, infeasibility rate, and optimality gap. In practice,
MIQP (1) can be solved in a rolling horizon fashion with
the latest forecast of θ, so that unit on-off status can be
updated sub-hourly, for example, 15 minutes, supporting the
operation of fast-response gas-fired units. As the renewable
forecast is beyond the scope of this paper, the rolling horizon
implementation is omitted from the case study.

A. IEEE 57-bus system

The System data can be found in Matpower toolbox [39].
Two solar stations with 100MW rated capacity connect to the
system at bus 8 and bus 9. Parameter θ includes solar outputs
of two stations in the next 24 periods, so the dimension of θ
is 48. In order to fully sample the parameter space, adequate
solar output curves should be obtained. In this study, the solar
data is acquired based on the method in [40].

Fig. 9: Solar curves in the sample set

ANN is applied to learn the optimal patterns. Each of the
two hidden layers consists of 30 nodes with ReLU activation,
and the output layer is activated by the softmax function in
order to predict the probabilities of each pattern.

The experiment is implemented on a laptop with an Intel
i7-1065G7 CPU and 16 GB memory. Optimization problems
are solved by CPLEX 12.9 with YALMIP interface [41]. ANN
is implemented by TensorFlow [42].

For online prediction, 5 candidate patterns are selected and
the final predicted solution is the optimal one among the 5
solutions. The ANN is trained with 60000 sampled curves
shown in Fig. 9. Another 20000 samples are used to examine
the performance of the ML method.

First, the effect of the Good-Turing estimator is examined
and exhibited in Fig. 10. In Fig. 10(a), it is observed that
the ratio N1/N decreases during sampling, indicating that
there are fewer patterns that appeared only once with the
increase of the number of samples. The shaded area in Fig.
10(a) contains the points where the stopping criterion (7) is
met. When the sampling number N is greater than 50000,
the curve of N ∼ N1/N enters the shaded area, and hence
the sampling procedure is terminated. Fig. 10b displays the
change of pattern number during sampling. It can be seen that
when N = 50000, the number of optimal patterns is around
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150, and the further growth of N does not bring to a notable
increase of new patterns, validating the effectiveness of the
stopping criterion.

(a) Change of N1/N (b) Change of pattern number

Fig. 10: Validation of the Good-Turing estimator

The computation time is checked. For each validation
sample, we call CPLEX to solve the corresponding NCUC;
the time is recorded and shown in Fig. 11a. The validation
samples are sent to the ANN, and the online prediction is
executed; the time is exhibited in Fig. 11b. It is observed
that compared to directly solving NCUC with CPLEX, the
acceleration brought by the ML method is about two orders of
magnitudes on average, because only a set of linear equations
is solved during the online prediction stage. The acceleration
could be more significant if the system is larger and possesses
more generators.

(a) Solution time of CPLEX (b) Online prediction time of the
proposed method

Fig. 11: Comparison of solution time.

Table I shows the results of top-5 prediction with different
numbers of training samples. The size of the training set
is within 60000, while another 20000 samples serve as the
validating set. The size of the pattern set denotes the number
of optimal patterns that have appeared in the training set. The
infeasibility rate means the proportion of test samples that
cannot be associated with a feasible solution with the predicted
patterns. The sub-optimality rate means the proportion of test
samples that can only acquire a suboptimal solution with the
predicted patterns. The maximum gap of sub-optimality for
the test set is defined as

max
i

objpredi − objactui

objactui

(23)

where objpredi and objactui represent the predicted objective
value and the actual one (reported by CPLEX with the default
optimality gap) of the i-th test sample respectively.

From Table I, we can observe that the infeasibility rate
continues to drop as more patterns are discovered. When the
size of the training set increases to 60000, only one sample
among the 20000 test samples is predicted to be infeasible.
Additionally, the sub-optimality rate is also small enough, and
the gap of sub-optimality is no more than 0.21%, indicating
that even if a suboptimal value is predicted, it is still very
close to the true optimal one. The above results validate the
feasibility and efficiency of the proposed method.

TABLE I: Test results by top-5 prediction

Training set size 10000 20000 40000 60000

Size of pattern set 84 110 134 153
Infeasibility rate 0.1% 0.05% 0.025% 0.005%

Suboptimality rate 0.13% 0.085% 0.05% 0.055%
Max suboptimality gap 0.21% 0.21% 0.21% 0.13%

It is found that the value of k also influences the quality of
predictions, as an increase of k implies a higher possibility
of including the true optimal pattern. Table II and Table
III provide additional results with k = 30 and k = Np
respectively, where Np is the size of the pattern set, implying
the latter one traverses all the optimal patterns found with
the training data. Results in Table I-Table III show that a
larger k leads to a reduced feasibility rate and optimality gap.
Table III suggests that when the predictions are acquired by
traversing the optimal pattern set, all the predicted solutions
are feasible, and the maximum optimality gap is no more
than 0.0012%, demonstrating the effectiveness of the proposed
method. Although a larger value of k leads to an increase in
the prediction time, the online time is still kept within 0.16s
even if all the optimal patterns are traversed, which is fast
enough in real applications.

TABLE II: Test results by top-30 prediction

Training set size 10000 20000 40000 60000

Size of pattern set 84 110 134 153
Infeasibility rate 0 0 0 0

Suboptimality rate 0.06% 0.035% 0.025% 0.02%
Max suboptimality gap 0.21% 0.21% 0.13% 0.08%

TABLE III: Test results by traversing the pattern set

Training set size 10000 20000 40000 60000

Size of pattern set 84 110 134 153
Infeasibility rate 0 0 0 0

Suboptimality rate 0.055% 0.035% 0.01% 0.01%
Max suboptimality gap 0.21% 0.21% 0.0012% 0.0012%

Table IV compares the performance of the proposed method
with a model-free direct prediction method recently proposed
in [43]. It predicts each binary variable as a binary classifica-
tion task. For the continuous variable, k-means clustering is
implemented to approximate the division of critical regions,
followed by linear regressions between each continuous vari-
able and parameters in each cluster. Such a method directly
predicts the optimal solution without exploiting the solution
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structure of the optimization model discussed in Section III.
The method is applied to the UC problem of the above 57-bus
system. The same 60000 samples are used to train the model.

TABLE IV: Comparison of two ML methods

Method Proposed method Direct prediction

Infeasibility rate 0 21.65%
Suboptimality rate 0.01% 57.16%

Max suboptimality gap 0.0012% 6.94%
Average online computation time 0.01s 0.01s

Table IV suggests that although both methods have sim-
ilar computation time, the direct prediction method exhibits
much higher infeasibility rates and optimality gaps, because
it neglects the constraints as well as the intrinsic solution
structure of the UC model, and predicts the binary variables
and continuous variables separately. In contrast, the proposed
method takes full advantage of the optimization model, so it
is able to provide high-quality solutions.

Further tests considering N − 1 line contingency are also
carried out. Before the training phase, the constraint reduc-
tion method in Section IV-C is applied to accelerate sample
generation. Compared with conventional UC problems, the
inclusion of contingency constraint leads to the growth of op-
timal patterns, therefore, a larger dataset with 120000 training
samples and 20000 test samples are used. The results of the
top-50 prediction are shown in Table V. It can be seen that
the size of the pattern set approximately converges to 700
as the training set size increases, and the proposed method
exhibits a satisfactory performance. When the training set size
reaches 120000, only 0.01% of test samples are predicted to
be infeasible, 0.04% of predicted solutions are suboptimal,
and the maximum sub-optimality gap is no more than 0.1%,
demonstrating the effectiveness of the proposed method on
contingency-constrained UC problems.

TABLE V: Test results considering contingency

Training set size 20000 50000 80000 120000

Size of pattern set 403 569 664 716
Infeasibility rate 0.07% 0.05% 0.03% 0.01%

Suboptimality rate 0.09% 0.04% 0.03% 0.04%
Max suboptimality gap 0.14% 0.084% 0.084% 0.082%

B. A real-world 1881-bus system

A real-world power system in China is used to test the
performance of the proposed method on large-scale systems.
It consists of 1881 buses, 2760 transmission lines, 180 thermal
generators, and 3 wind farms. The total installed capacity of
thermal units is 48.7GW, the peak load is 41.8GW, and the
capacity of each wind farm is 1.5GW. The classification model
is trained on 2 servers, each with 4×22-core Intel Xeon CPU
(E5-2699 v4 @ 2.20GHz) and 1024 GB memory. Optimization
problems are solved by CPLEX 12.9. The sample set consists
of 40000 training samples and 10000 test samples.

To maintain a fair comparison, the offline solution time of
CPLEX and the online prediction time of the proposed method

TABLE VI: Comparison results on the 1881-bus system

Method CPLEX solver Proposed method

Average solution time 3448s 0.42s
Maximum solution time 4026s 1.41s
Minimum solution time 2574s 0.35s

Standard Deviation of solution time 386s 0.07s

Fig. 12: Online prediction time of the proposed method

are tested on the same laptop used previously. Using the
default setting with an optimality gap of 0.01%, CPLEX solver
fails to find an optimal solution in 10 hours. So the criterion for
termination is manually modified to a 0.1% optimality gap. We
solve 100 instances with samples randomly chosen from the
10000 testing samples and record the statistical performance
of CPLEX. Results are displayed in Table VI, from which we
can see that it takes CPLEX around 1 hour to solve the UC
problem. For the proposed ML method, k = 50 is used for
the ANN-based classification method. The online prediction
time of all the 10000 samples is also recorded and exhibited
in Fig. 12. The average online processing time is only 0.42s,
achieving an acceleration of four orders of magnitudes.

TABLE VII: Test results on the 1881-bus system

Training set size 10000 20000 30000 40000

Size of pattern set 192 243 270 288
Infeasibility rate 0.22% 0.16% 0.11% 0.10%

Max suboptimality gap 0.0020% 0.0018% 0.0018% 0.0018%

Table VII presents the quality of the solution offered by
the proposed method. In this case, as CPLEX fails to find
the true optimal solution with default optimality gap, the
approximate optimal solution with an optimality gap of not
more than 0.1% is used as the benchmark; objCPLEXi denotes
the objective value of sample i at this solution. The maximum
sub-optimality gap is defined as

max
i

objpredi − objCPLEXi

objCPLEXi

(24)

where objpredi is the objective value of sample i at the
predicted solution. Table VII suggests that when the number
of samples is sufficiently large, only 0.1% of solutions for test
samples are infeasible, and the objective value predicted by the
proposed method is very close to the one offered by CPLEX.
In summary, the proposed method has the potential to be used
in real-world large-scale power systems.
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VI. CONCLUSIONS

This paper proposes a classification based method to pre-
dict the optimal solution of power system dispatch problems
modeled by MIQPs/MILPs. Instead of directly learning the
optimal strategy, the proposed method learns the map from
the parameter to the optimal patterns which are discrete and
accounts for mandatory constraints. The tree-based classifica-
tion gives interpretable policy and the ANN-based one has
better efficiency in high-dimensional problems. Results of the
DCOPF problem is compared with the analytical method,
and validates the accuracy. Case studies on the UC problem
demonstrate that the online processing time is less than a
second, because the online prediction entails solving only a set
of linear equations. The strategy offered by the ML method
exhibits a small optimality gap with a magnitude of 0.1%,
which is generally acceptable in practice. LMP can be obtained
conveniently without extra effort.

Future work is to increase the efficiency of sampling: using
more dedicated samples that are properly chosen rather than
randomly chosen, so as to reduce the required number of
samples while maintaining a sufficiently low infeasibility rate
and optimality gap. Extending the method in a dynamic en-
vironment and tackling multi-stage decision-making problems
are also promising directions.

APPENDIX A
FORMULATION OF NCUC

An NCUC problem can be modeled as the following MIQP:

min
T∑
t=1

∑
i

(
FUit (uit, vit, zit) + FCit (pit)

)
s.t. Cons-Binary, Cons-Continuous

(25a)

where zit = 1/0 means the unit is on/off in period t; uit = 1
means the unit is startup in period t; otherwise uit = 0; vit = 1
means the unit is shutdown in period t; otherwise vit = 0; pit
is the output of unit i in period t; function

FUit (uit, vit, zit) = SUiuit + SDivit + SZizit (25b)

consists of startup cost, shutdown cost and running cost, where
SZi is the fixed running cost coefficient, and SUi/SDi is the
startup/shutdown cost coefficient. Function

FCit (pit) = aip
2
it + bipit (25c)

is the variable operation cost, depending on the output level.
Cons-Binary encapsulates all constraints involving binary
variables:

−zi(t−1) + zit − zik ≤ 0,∀i,∀t,
∀k ∈ {t, . . . , T oni + t− 1}

(25d)

zi(t−1) − zit + zik ≤ 1,∀i,∀t,

∀k ∈
{
t, . . . , T offi + t− 1

} (25e)

−zi(t−1) + zit − uit ≤ 0,∀i,∀t (25f)
zi(t−1) − zit − vit ≤ 0, ∀i,∀t (25g)
zit, uit, vit ∈ {0, 1},∀i,∀t (25h)

where T oni and T offi are the minimum-up and minimum-down
time of unit i; constraints (25d)-(25e) denote the minimum-
up and minimum-down time of each generator, respectively;
inequality (25f) forces uit = 1 when zi(t−1) = 0 and zit = 1
to represent the startup action, otherwise uit = 0 because
of the minimization of objective function. Inequality (25g)
influences vit in a similar way to represent the shutdown
action. Cons-Continuous includes all constraints involving
continuous variables:

zitp
l
i ≤ pit ≤ zitpmi ,∀i,∀t (25i)

pit − pi(t−1) ≤
(
2− zi(t−1) − zit

)
pli

+
(
1 + zi(t−1) − zit

)
RUi,∀i,∀t

(25j)

pi(t−1) − pit ≤
(
2− zi(t−1) − zit

)
pli

+
(
1− zi(t−1) + zit

)
RDi,∀i,∀t

(25k)∑
i

pit +
∑
k

pskt =
∑
j

pdjt,∀t (25l)

−Fl ≤
∑
i

πilpit +
∑
k

πklp
s
kt

−
∑
j

πjlp
d
jt ≤ Fl,∀l,∀t

(25m)

where pli and pmi are the minimum and maximum output of
generator i, RUi/RDi are the ramp-up/ramp-down limits of
generator i; pdjt represents power demand of bus j at time t; pskt
is the renewable output at bus k and time t; Fl is the line flow
limit of line l; πil represents the power transfer distribution
factor from bus i to line l; (25i) indicates generation capacity,
(25j) and (25k) prescribe upward and downward ramping
limits, (25l) imposes system-wide power balancing, and (25m)
stipulates the flow capacity limit of each transmission line.

All the constraints (25d)-(25m) are linear, and the problem
is an MIQP. Let x = {pi,t|∀i,∀t} and y = {zit, uit, vit|∀i,∀t}
represent continuous and discrete variables respectively. Pa-
rameter is renewable output θ = {pskt|∀k, ∀t}. Then NCUC
comes down to the canonical form in (1).

For more comprehensive discussions on the concrete opti-
mization models of UC, ED and OPF, please refer to [44].
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