
Journal of Computational Design and Engineering, 2020, 7(2), 177–194

doi: 10.1093/jcde/qwaa016
Journal homepage: www.jcde.org
Advance Access Publication Date: 2 April 2020

RESEARCH ARTICLE

Embedding quasi-static time series within a genetic
algorithm for stochastic optimization: the case of
reactive power compensation on distribution systems
Juan M. Lujano-Rojas1,2,*, Ghassan Zubi3, Rodolfo Dufo-López4, José
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Abstract
This paper presents a methodology for the optimal placement and sizing of reactive power compensation devices in a
distribution system (DS) with distributed generation. Quasi-static time series is embedded in an optimization method
based on a genetic algorithm to adequately represent the uncertainty introduced by solar photovoltaic generation and
electricity demand and its effect on DS operation. From the analysis of a typical DS, the reactive power compensation rating
power results in an increment of 24.9% when compared to the classical genetic algorithm model. However, the
incorporation of quasi-static time series analysis entails an increase of 26.8% on the computational time required.
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List of symbols

b : Index for each bit of genetic algorithm individual
(b = 1, . . . , B).

c : Index for each Monte Carlo simulation (c =
1, . . . , C ).

g : Index for each individual of genetic algorithm (g =
1, . . . , G).

h : Index for each hour of the day (h = 1, . . . , 24).
n : Index for each node of distribution system (n =

1, . . . , N).

nRPC : Node for the installation of reactive power com-
pensation.

t : Index for each hour of the year (t = 1, . . . , 8760).
A : Matrix of genetic algorithm population.
�a(g) : Individual g of genetic algorithm population (A).
a(b, g) : Bit b of individual g of genetic algorithm.
ACC(n) : Capital cost of compensation device at node

n (€).
ACC F xd

(n) : Capital cost of fixed compensation device at node

n (€).
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ACC Var
(n) : Capital cost of variable compensation device at

node n (€).
ARC(n) : Replacement cost of compensation device at node

n (€).
ARC F xd

(n) : Replacement cost of fixed compensation device at

node n (€).
ARC Var

(n) : Replacement cost of variable compensation device

at node n (€).
AMC(n) : Maintenance cost of compensation device at node

n (€).
AMC F xd

(n) : Maintenance cost of fixed compensation device at

node n (€).
AMC Var

(n) : Maintenance cost of variable compensation device

at node n (€).
BC BV : Branch-current to bus-voltage matrix.
B I BC : Bus-injection to branch-current matrix.
C RF : Capital recovery factor.
C AP(l, b) : Reactive power injected to the system for block l

and node b (kVAr).
d(h, n) : Load profile at time h and node n.
D(t, n, c) : Load time series at time t, node n, and Monte Carlo

trial c.
Dk++

(t, n) : Load time series selected by k-means++ algo-
rithm.

Dmax
(n) : Capacity of distribution transformer at node n

(kVA).
eP V : Electron charge (C).
Emax : Maximum value of electricity prices (€/MWh).
E (t) : Electricity price at time t (€/MWh).
EL S(n) : Cost of energy losses for compensation installed at

node n (€).
fR (·) : Function to calculate the heat loss by radiation.
fC (·) : Function to calculate the heat loss by convection.
fS(·) : Function to calculate the heat gained by solar ra-

diation.
fMP P T (·) : Implementation of maximum power point track-

ing algorithm.
FZ̃ (·) : Cumulative distribution of time series z̃(t, n, c).
FD (·) : Cumulative distribution of load-demand time se-

ries D(t, n, c).
F F o

P V(t, n) : Maximum fill factor at time t for generator n.
F FP V(n) : Fill factor of generator n.
G MD(n) : Geometric mean distance between phase conduc-

tors of branch n (m).
G MR(n) : Geometric mean radius of phase conductor of

branch n (m).
G (t) : Solar radiation at time t (W/m2).
I SC

P V(t, n) : Short-circuit current at time t for generator n (A).

I SC
P V, STC (n) : Short-circuit current under standard test condi-

tions for unit n (A).
I MAX

P V(n) : Current at maximum power production for gener-
ator n (A).

IP V(t, n) : Photovoltaic cell current at time t for generator n
(A).

�I(t) : Vector of branch currents at time t (A).
I(t, n) : Current at time t and branch n (A).
�I(t,n) : Difference between the maximum current and the

actual (A).
I max
(t, n) : Ampacity at time t of branch n (A).

kDS : Coefficient that depends on the system frequency
(�/km).

kP V : Parameter of solar transmittance and absorptance.
kB : Boltzmann constant (J/K).

kC S(n) : Auxiliary variable of objective function for node
and branch n.

mP V : Photovoltaic cell ideality factor.
NPC(n) : Net present cost for compensation equipment at

node n (€).
NPCG A(g) : Net present cost of individual g (€).
NP S

P V(n) : Number of panels connected in serial on generator
n.

NP P
P V(n) : Number of panels connected in parallel on gener-

ator n.
NC S

P V(n) : Number of cells connected in serial on generator
n.

NC P
P V(n) : Number of cells connected in parallel on generator

n.
NOCT(n) : Nominal operating cell temperature of generator n

(◦C).
ObjG A(g) : Value of the objective function for individual g (€).
pI (t, n) : Normalized power of inverter at time t for genera-

tor n.
PI (n) : Rated power of converter of generator n (kW).
P(t, n) : Active power consumed at time t and node n (kW).
PR(t, n) : Heat loss by radiation at time t for branch n (W/m).
PC (t, n) : Heat loss by convection at time t for branch n

(W/m).
PS(t, n) : Heat gained by solar radiation at time t for branch

n (W/m).
PP V(t, n) : Photovoltaic cell power at time t for generator n

(W).
Pr {·} : Probability of a determined event.
Q(t, n) : Reactive power consumed at time t and node n

(kVAr).
Ql

C : Lowest value of confidence interval of reactive
power (kVAr).

Qr
C : Highest value of confidence interval of reactive

power (kVAr).
QF xd

RPC (n) : Rated capacity of fixed compensation at node n
(kVAr).

QVar
RPC (n) : Rated capacity of variable compensation at node n

(kVAr).
R(n) : Conductor resistance of branch n (�/km).
RS

P V(t, n) : Photovoltaic cell resistance at time t for generator
n (�).

S(t, n) : Simulated load series at time t and node n (kVA).
TA(t) : Ambient temperature at time t (◦C).
TP V(t, n) : Photovoltaic cell temperature at time t for genera-

tor n (◦C).
uOC

P V(t, n) : Relative photovoltaic cell open-circuit voltage at
time t for unit n.

�U(t) : Vector of system voltage at time t (kV).
U(t, n) : Voltage at time t and node n (kV).
�UR : Vector of rated voltage (kV).−→
�U (t) : Vector of voltage reduction at time t (kV).
U SYS

P V(n) : Voltage of photovoltaic generator at node n (V).
Umin : Minimum allowed voltage of distribution system

(kV).
Umax : Maximum allowed voltage of distribution system

(kV).
U OC

P V(t, n) : Photovoltaic cell open-circuit voltage at time t for
generator n (V).

U OC
P V, STC (n) : Open-circuit voltage under standard test condi-

tions of unit n (V).
Ue

P V(t, n) : Thermal voltage at time t for generator n (V).
UP V(t, n) : Photovoltaic cell voltage at time t for generator n

(V).
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U MAX
P V(n) : Voltage at maximum power production for gener-

ator n (V).
V(t) : Wind speed at time t (m/s).
z̄(h, n) : Standardized daily load profile at time h for node

n.
z̃(t, n, c) : Standardized and normalized series at time t,

node n, and trial c.
z̄(t, n) : Standardized yearly load profile at time t for node

n.
Z(n) : Conductor impedance of branch n (�/km).
αL (t) : Value of white noise at time t.
αP V(n) : Temperature coefficient of generator n (%/◦C).
αI (n) : Parameter of inverter efficiency model for genera-

tor n.
βI (n) : Parameter of inverter efficiency model for genera-

tor n.
δ : Significance level.
ηI (t, n) : Inverter efficiency at time t for generator n.
ηP V(n) : Cell efficiency of photovoltaic generator n.
θI (n) : Parameter of inverter efficiency model for genera-

tor n.
λ(t, n, c) : Random variable at time t, node n, and Monte Carlo

trial c.
μd : Mean value of daily load profile.
σd : Standard deviation value of daily load profile.
Ø : Autocorrelation coefficient of load time series (%).

1. Introduction

The cultural and technological development of human society is
closely related to the idea of management and allocation of nat-
ural, human, and economic resources in an appropriate man-
ner. Management of resources and budgets needed for develop-
ing social welfare requires feasible strategies, frequently based
on optimization techniques. With the increasing complexity of
industrial systems and human interactions, optimized manage-
ment of real-life activities involves the incorporation of stochas-
tic processes. Decision-makers incorporate various sources of
uncertainty through probability theory or fuzzy logic (FL) to en-
hance the effectiveness and reliability of the decision process.

Moreover, the construction of a sustainable society requires
an electricity network with smart capabilities to integrate re-
newable resources and mechanisms to their full exploitation.
Due to the random behavior of clean energies, optimal manage-
ment of energy systems supported by these technologies has be-
come a necessity because of their growing adoption.

The topic under discussion in this paper is essentially a plan-
ning problem subject to the uncertain effects of renewable gen-
eration. Next, subsection 1.1 briefly presents a general perspec-
tive of the state-of-the-art optimization techniques under un-
certainty, while subsection 1.2 explores particular issues of the
electricity system operating under uncertain conditions. Finally,
subsection 1.3 carefully explains the main contributions of the
approach developed in this work.

1.1. Optimization under uncertainty

In a general sense, decision-makers can solve optimization
problems with uncertain variables using robust optimization
(RO), stochastic programming (SP), chance-constrained pro-
gramming (CCP), and FL, among other techniques.

Concerning RO, Bertsimas, Gupta, and Kallus (2018) devel-
oped a robust version of the sample average approximation to

overcome the weaknesses related to the limited number of data
points used to represent the behavior of uncertain processes.
The authors combined features of distributionally RO with hy-
pothesis testing. Similarly, Esfahani and Kuhn (2018) developed
a technique to face the problems related to the availability of
a limited number of data points by using the Wasserstein met-
ric and distributionally RO. Following a similar trend, Ning and
You (2018) modeled the uncertainty using the Dirichlet process
mixture combined with a maximum likelihood estimator. Ma
(2019) produced a model based on RO that incorporates the risk
of life cycle assessment, minimizing the environmental impact
of product usage.

RO can be combined with FL and SP to improve optimization
results. Farrokh, Azar, Jandaghi, and Ahmadi (2018) developed a
hybrid robust fuzzy SP model to consider the influence of dif-
ferent types of uncertainty sources expressed as distributions
and fuzzy numbers. In the same way, Ghahremani-Nahr, Kian,
and Sabet (2019) developed a model formulated as a robust fuzzy
programming problem that employs heuristic techniques. Tsao,
Vo-Van, Lu, and Yu (2018) combined two-stage SP and FL for
multiobjective optimization. Zou, Ahmed, and Sun (2019) evalu-
ated the weaknesses of multistage stochastic integer program-
ming and proposed an enhanced technique based on stochastic
dual dynamic integer programming. The authors reformulated
the problem and combined decomposition algorithms with La-
grangian cuts. Baptista, Barbosa-Povoa, Escudero, Gomes, and
Pizarro (2019) developed a technique for two-stage multiperiod
stochastic optimization that combined CCP and second-order
stochastic dominance for risk aversion.

Van Ackooij, Berge, Oliveira, and Sagastizábal (2017) devel-
oped a technique to determine the area in which the proba-
bilistic constraints are feasible. Jie, Prashanth, Fu, Marcus, and
Szepesvári (2018) developed a technique to solve those prob-
lems in which human perspectives are involved. The technique
is based on the cumulative prospect theory, where the esti-
mation and optimization are sequentially determined. The ap-
proach developed by Buchheim and Pruente (2019) aimed to de-
fine a set of feasible solutions instead of a single optimal one.
Liu, Lau, and Kananian (2019) proposed a constrained stochas-
tic successive convex approximation methodology to the solu-
tion of non-convex problems. The technique solves several con-
vex optimization problems using a surrogate model. Liu, Liu,
and Tao (2019) designed a technique to face stochastic com-
position optimization problems with two expected value func-
tions. The approach embedded an inner objective function into
an outer one. The stochastic variance reduction gradient and
stochastic average gradient methodologies are combined to esti-
mate the value of the inner objective function, while the duality-
free concept is employed to estimate the value of the outer
function.

Al-Juboori and Datta (2019) employ non-dominated sorted
genetic algorithm-II (NSGA-II) on the optimal design of hydraulic
water-retaining structures considering reliability concepts. The
formulation considers several stochastic ensemble surrogate
models to incorporate the effect of uncertainty.

Regarding CPP, Tan, Gong, Chiclana, and Zhang (2019) pro-
posed a model based on goal programming. The interaction be-
tween decision-makers’ opinions is represented using uncer-
tain variables, while a combined technique based on the Monte
Carlo (MC) simulation and a genetic algorithm (GA) solves the
optimization problem. Further on this topic, Kinay, Saldanha-
da-Gama, and Kara (2019) created a multicriteria model and
analyzed the performance of vectorial optimization and goal
programming. Tavana, Shiraz, and Di Caprio (2019) proposed a
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model based on random rough mathematical programming for-
mulated using CCP.

On the one hand, the computational tractability of the prob-
lem deserves particular attention. On the other hand, the knowl-
edge about the specific application becomes crucial to mitigate
the adverse effects of the lack of information. Concerning this
reasoning, the next subsection gives an overview of the problem
analyzed in this paper.

1.2. Reactive power compensation on distribution
networks

Full-scale deployment of renewable generation could produce
operating problems on a distribution system (DS), specifically
on the voltage profile. A representative condition is when a high
amount of renewable power is injected into the DS during pe-
riods of low load, resulting in a voltage increase out of the safe
limits. Under this panorama, planning engineers analyze the in-
corporation of reactive power compensation (RPC) to guarantee
the effective operation of the smart grid (SG).

RPC can be performed using different devices: a shunt capac-
itor bank (SCB), a distribution static compensator (DSTATCOM),
a unified power quality conditioner (UPQC), or a static VAR com-
pensator (SVC).

Consequently, the sizing and management of these devices
have been extensively studied in the literature, resulting in sev-
eral techniques. Das, Das, and Patra (2017) developed a method
that aims to improve the voltage of a node remotely located from
another under our control by injecting reactive power. Azzam
and Mousa (2010) combined a GA and the ε-dominated definition
with the technique for order preference by similarity to the ideal
solution (TOPSIS), considering multiple optimization objectives.
Pereira, Costa, Contreras, and Mantovani (2016) presented a
model for the allocation of distributed generation (DG) and RPC,
which uses a tabu search (TS) algorithm and Chu–Beasley GA
(CBGA). The TS is used to optimize the installation place of the
SCB and DG, while the CBGA is used to perform their power dis-
patch. Jannat and Savić (2016) developed a model for the optimal
allocation and size of an SCB. The model considers the variabil-
ity of renewable resources, the quality of the voltage profile, and
the capacity of reactive power. Thus, MC simulations are used to
consider the uncertainty, while an NSGA-II solves the multiob-
jective optimization problem. Fard and Niknam (2014) developed
a methodology that jointly analyzes several reliability indexes
and the power loss cost. The authors designed the method as the
solution to a multiobjective optimization problem using a firefly
algorithm. Su, Masoum, and Wolfs (2016) proposed a sequential
approach to maximize the net annual savings, taking into ac-
count the voltage limits and the maximum size of the SCB.

Using the literature review presented until this point, the
next subsection discusses the main contributions of this
work.

1.3. Contributions

Stochastic optimization techniques presented in the technical
literature show different viewpoints on how to describe the un-
certain processes as well as how to make the resulting formu-
lation computationally tractable. On the other hand, the perfor-
mance of RPC devices, such as SCBs, DSTATCOMs, UPQCs, and
SVCs, depends on the load profile and behavior of the DG so that
the operation is affected by the randomness of renewable gen-
eration.

Probabilistic constraints related to the problem of installing
RPC in a DS supported by renewable energy are directly related to
the interactions between the DG and load demand through time.
Both of these variables, solar photovoltaic (PV) generation and
load demand, are modeled by a time series with a determined
correlation degree and daily profile, along with other features.
In this paper, quasi-static time series is combined with a GA to
determine the optimal size and placement of RPC devices, such
as SCB and DSTATCOM.

On the one hand, heuristic optimization approaches, such as
GA, GA-TOPSIS, TS-CBGA, NSGA-II, firefly, and PSO, provide flex-
ibility on their formulation and implementation, which allows
us to incorporate the non-linear influence of RPC devices on the
DS operation. On the other hand, the technical literature consid-
ers a limited number of load and DG operating conditions due to
the high complexity of the problem under study.

Quasi-static time series consists of evaluating the perfor-
mance of the DS in terms of voltage and current at each node
and branch of the system along the time. The method performs
a probabilistic power flow (PPF), obtaining the probability distri-
bution function (PDF) of each voltage and current of the system.
These PDFs allow us to verify whether the voltage and ampacity
at each node and branch of the network are within the appro-
priate operating interval.

As the main contribution of this paper, the proposed method-
ology embedded this general concept into an optimization
model based on a GA, using probabilistic constraints to guar-
antee the feasibility of the solution (sizing and placing of RPC
equipment), and minimizing the net present cost (NPC). This
contribution fulfills the gap of many works that only assess and
optimize the system behavior under a limited number of oper-
ating conditions and assumptions.

The paper organization is as follows: Section 2 describes the
energy system; Section 3 explains the simulation method; Sec-
tion 4 presents the proposed methodology, and Section 5 il-
lustrates the proposed method. Finally, Section 6 discusses the
main conclusions and findings.

2. Energy System Model

This section describes several essential aspects: the model of en-
vironmental resources, the characterization of electricity con-
sumption, the model of the energy conversion systems used for
DG, and the behavior of energy prices.

2.1. Environmental variables and renewable resources

Many research centers analyze the meteorological variables
such as solar radiation, wind speed, and ambient temperature.
The United States National Aeronautics and Space Administra-
tion (NASA) provides a general-purpose database of natural re-
sources across the globe (NASA, 2019), which many optimization
tools use for the integration of renewable energies.

This work pays special attention to the influence of solar ra-
diation, wind speed, and ambient temperature on the ampacity
of DS feeders. The proposed method’s simulation model adopts
the retrospective reanalysis approach; Pfenninger and Staffell
(2016) and Staffell and Pfenninger (2016) implemented this tech-
nique for the estimation of the natural resources. The website
Renewables.ninja (2019) provides an online implementation of
this technique.
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Figure 1: Daily load profile.

2.2. Electricity demand, real-time pricing, and smart
distribution system

With the integration of communication equipment and remote
sensing (Zaji, Bonakdari, & Gharabaghi, 2019) into the DS, the
interest in the behavior of electricity consumption has grown
continuously. Many approaches have been proposed in the liter-
ature to represent and classify the consumption pattern of elec-
tricity. This work uses a statistical approach to numerically cre-
ate a time series able to represent the daily behavior and PDF of
energy consumption. However, other methodologies based on
the combination of a time series regression with an artificial
neural network (Moeeni & Bonakdari, 2017) or those based on
a Markov process (Bonakdari, Zaji, Binns, & Gharabaghi, 2019)
are also available.

The simulation approach used in this paper assumes the
availability of a consumption profile, its correlation coefficient,
and its PDF. Thus, the process described as follows can be used to
synthetically generate hourly values in 1 year (Lambert, Gilman,
& Lilienthal 2006):

Step 1: Select a determined node (n) classified as a demand
node (PQ model for power flow). For those nodes with PV gener-
ation, go to subsection 2.3.

Step 2: Set the index of the MC simulation (c) to 1 (c ← 1).
Step 3: Create the time series of correlated random numbers

for the corresponding node (n) and MC simulation (c). It is carried
out by applying equation (1).

λ(t,n,c) = Ø
(
λ(t−1,n,c)

)+ αL (t) ∀ t = 1, . . . , 8760 (1)

The variable αL (t) is modeled as white noise with mean zero
and standard deviation equal to

√
1 − Ø2.

Step 4: Calculate the normalized time series of a typical load
profile. A typical load profile in 1 day [d(h, n) ∀ h = 1, . . . , 24] is
shown in Fig. 1 (Labeeuw & Deconinck, 2013).

Equation (2) defines the normalized daily profile.

z̄(h,n) = d(h,n) − μd

σd
∀ h = 1, . . . , 24 (2)

Step 5: Calculate the yearly time series of a typical load pro-
file. It is carried out by periodically repeating the daily profile
throughout the year (365 times). It results in the yearly profile
z̄(t, n) built from the series z̄(h, n).

Figure 2: CDF of load demand.

Step 6: Create a yearly time series with a determined correla-
tion degree and with the profile shown in Fig. 1. It is carried out
by adding the series z̄(t, n) and λ(t, n, c) according to equation (3).

z̃(t,n,c) = z̄(t,n) + λ(t,n,c) ∀ t = 1, . . . , 8760 (3)

Step 7: Apply the probability transformation shown in equa-
tion (4) to determine the load time series with the required PDF.
Figure 2 presents the cumulative density function (CDF) of load
time series [FD (·)], which was calculated from the load profile of
Fig. 1.

D(t,n,c) = F −1
D

(
FZ̃

(
z̃(t,n,c)

)) ∀ t = 1, . . . , 8760 (4)

Step 8: If c < C , set c ← c + 1, and go back to Step 3; else go to
Step 9.

Step 9: Select the time series to be used in the simulation
process employing the k-means++ clustering algorithm. All of
the time series D(t, n, c) are input to the k-means++ algorithm to
find a single time series [Dk++

(t, n)] to represent the load at node n.

Step 10: Scale the time series obtained in Step 9 [Dk++
(t, n)] us-

ing the capacity of distribution transformer [Dmax
(n) ], according to

equation (5).

S(t,n) =
[
Dmax

(n)

] [
Dk++

(t,n)

]
∀ t = 1, . . . , 8760 (5)

An essential characteristic of SG is its capability to ap-
ply the electricity tariff on a real-time basis so that elec-
tricity prices can vary dynamically. Regarding this issue, this
study assumes that the electricity prices are proportional to
the corresponding electricity demand. It means that electric-
ity prices reach their highest value when load demand is max-
imal, and they reach their minimum value at those hours of
low demand. Accordingly, equation (6) estimates the electricity
prices.

E(t) = Emax

⎡
⎣ N∑

n=1

{
S(t,n) ∀ t = 1, . . . , 8760

}/
max

⎛
⎝ N∑

n=1

{
S(t,n) ∀ t = 1, . . . , 8760

}⎞⎠
⎤
⎦
(6)

The average impedance of each branch of the network, con-
sidering the conductor temperature in the range between 25 and
75◦C, is a frequently used parameter to perform power flow anal-
ysis of three-phase balanced systems. Thus, equation (7) shows
its definition (Short, 2004).

Z(n) = R(n) +
(√−1

)
(kDS) log10

(
G MD(n)

G MR(n)

)
⦡n = 1, . . . , N (7)
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2.3. Distributed PV generation

PV generation distributed over the system is a promising man-
ner to incorporate renewable generation in urban areas. Equa-
tions (8–21) describe a complete model of a PV generator con-
nected to a determined node (n). The PV cell temperature de-
pends on the ambient temperature and solar radiation, as
shown in equation (8) (Lambert, Gilman, & Lilienthal, 2006). The
PV cell model, including the non-linear relationship between
voltage and current, is presented in equations (9–17) (Lorenzo
et al., 1994).

The PV controller employs the golden section search algo-
rithm (Kheldoun, Bradai, Boukenoui, & Mellit, 2016) applied on
equation (17). Equation (18) expresses this idea through the
function fMP P T (·). The rated capacity of the power converter is
presented in equation (19), while equations (20) and (21) describe
its efficiency (Rampinelli, Krenzinger, & Romero 2014).

TP V(t,n) =
TA(t) + G (t)

[
NOCT(n)−20◦C

800 W/m2

] [
1 − ηP V(n)(1−αP V(n)25◦C)

kP V

]

1 + [NOCT(n) − 20◦C
] [ G (t)

800 W/m2

] [
αP V(n)ηP V(n)

kP V(n)

] (8)

Ue
P V(t,n) = mP VkB TP V(t,n)

eP V
(9)

U OC
P V(t,n) =

U OC
P V,STC (n)

NC S
P V(n)

+ αP V(n)
[
TP V(t,n) − 25◦C

]

+Ue
P V(t,n)log

[
G (t)

1000 W/m2

]
(10)

uOC
P V(t,n) =

U OC
P V(t,n)

Ue
P V(t,n)

(11)

F F o
P V(t,n) =

uOC
P V(t,n) − log

(
uOC

P V(t,n) + 0.72
)

uOC
P V(t,n) + 1

(12)

I SC
P V(t,n) =

I SC
P V,STC (n)

NC P
P V(n)

(
G (t)

1000 W/m2

)
(13)

F FP V(n) =
U MAX

P V(n) I
MAX
P V(n)

U OC
P V,STC (n) I

SC
P V,STC (n)

(14)

RS
P V(t,n) =

(
1 − F FP V(n)

F F o
P V(t,n)

) (
U OC

P V(t,n)

I SC
P V(t,n)

)
(15)

IP V(t,n) = I SC
P V(t,n)

[
1 − exp

(
UP V(t,n) − U OC

P V(t,n) + IP V(t,n) RS
P V(t,n)

Ue
P V(t,n)

)]

(16)

PP V(t,n) = IP V(t,n)

⎡
⎢⎣U OC

P V(t,n) − IP V(t,n) R
S
P V(t,n)

+Ue
P V(t,n)log

(
1 − IP V(t,n)

I SC
P V(t,n)

)⎤⎥⎦ (17)

P MP P T
P V(t,n) = fMP P T

(
PP V(t,n)

)
(18)

PI (n) =
[
I MAX

P V(n)U
MAX
P V(n)

] [
NP S

P V(n) N
P P
P V(n)

]
(19)

pI (t,n) =
P MP P T

P V(t,n)

(
NC S

P V(n) N
C P
P V(n)

) (
NP S

P V(n) N
P P
P V(n)

)
PI (n)

(20)

ηI (t,n) = pI (t,n)

pI (t,n) + αI (n) + βI (n)
(
pI (t,n)

)+ θI (n)
(
pI (t,n)

)2 (21)

3. Performance of the Energy System

A long-term analysis of the optimal allocation of compensa-
tion devices requires a reliable and accurate simulation model.
This section describes how the SG is studied, taking into ac-
count the influence of DG. Figure 3 summarizes the general
methodology implemented for the assessment of the energy
system.

According to Fig. 3, information related to the environmen-
tal variables (wind speed, ambient temperature, and solar radi-
ation) is required. Additionally, technical data related to the SG,
such as DS topology, branch impedance, load demand, and elec-
tricity price time series, are also needed. In this sense, the mod-
els previously described in Section 2 can be used to approximate
some of the required data.

Another piece of critical data is the information related to the
set of nodes (candidate nodes) in which a decision-maker would
install compensation devices (SCB and DSTATCOM).

Assume that a decision-maker compensates a determined
node (nRPC ). It means that the voltage at this node should be
equal to the rated value of the system (one in the per-unit sys-
tem). An RPC device consumes or injects reactive power from
or to this node, respectively, at each hour of the year. An RPC
compensation device consists of a constant (fixed) provision of
reactive power and another provision of reactive power with dy-
namic (variable) capabilities. The constant provision could be an
SCB, and the variable provision could be a DSTATCOM. Once the
initial input data are available, solar radiation time series [G (t)] is
used to estimate the corresponding PV generation. Then, the SG
and DS information, as well as load and electricity price time se-
ries, are incorporated into the PPF, taking into account that the
voltage of the compensation node (nRPC ) keeps at the nominal
value.

The PPF consists of sequentially solving 8760 power flow
problems to consider the variations of load demand and DG gen-
eration along the time. Time series of the current at each branch,
the voltage at each node, energy losses on the DS, and the reac-
tive power consumed or injected from or to the compensation
node (nRPC ) are results of the PPF analysis. Time series of all of
these variables are used to estimate the cost of integrating RPC
at the chosen node and the probability of maintaining the volt-
age profile and branch current within an acceptable interval. The
time series of reactive power at the compensation node (nRPC ) is
analyzed to estimate the rated value of the equipment (SCB and
DSTATCOM) to be installed.

Then, the decision-maker builds the PDF of the RPC at this
node. The confidence interval associated with the PDF is calcu-
lated considering a determined significance level (δ) and later
used to estimate the rated capacity of the RPC device. Thus,
the rated capacity consists of the constant provision of reactive
power [QF xd

RPC (nRPC )] and the dynamic provision [QVar
RPC (nRPC )], specif-

ically.
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Figure 3: Structure of the simulation model.

Moreover, the time series of energy losses is used to estimate
its associated costs [EL S(nRPC )]. The rated capacity for compensa-
tion equipment and the cost related to energy losses (EL S) are
combined with other techno-economic parameters to estimate
the corresponding NPC, which is the crucial factor to be mini-
mized in this study.

Voltage time series at each node are used to build their corre-
sponding PDFs. These PDFs are later used to evaluate the proba-
bility of maintaining the voltage within a determined interval
(Pr {Umin ≤ U(t, n) ≤ Umax} ≥ 1 − δ), considering a determined sig-
nificance level (δ).

Wind speed, solar radiation, and temperature time series, as
well as SG data, are used to perform the ampacity analysis. This
study obtains the maximum allowed current per branch [I max

(t, n)].
Then, the model computes the difference between the maxi-
mum allowed current and the actual current obtained from the
PPF [�I(t, n) = I max

(t, n) − I(t, n)], to estimate the probability of over-
loading at each branch [Pr {�I(t, n) < 0} ≤ δ], considering a deter-
mined significance level (δ).

From the perspective of an optimization study, adequacy
analysis for the installation of a compensation device is eval-
uated using the NPC as the main objective, and the probabili-
ties Pr {Umin ≤ U(t, n) ≤ Umax} ≥ 1 − δ and Pr {�I(t, n) < 0} ≤ δ as con-
straints. The next subsections explain each of these steps on the
assessment of the SG.

3.1. Probabilistic power flow analysis

The solution of PPF with the load demands and DGs is an itera-
tive process. As aforementioned, load nodes are represented as
a PQ model, while DGs are voltage-controlled nodes (PV model
for power flow nomenclature). PV generation is connected to DS
at point of common coupling (PCC) through the power converter,
which has capabilities to maintain the voltage at the connection
node at the rated value (IEEE Standards Coordinating Committee
21, 2018).

For each hour of the year (t = 1, . . . , 8760) and node of the
system (n = 1, . . . , N), the corresponding apparent power [S(t, n)],
active power [P(t, n)], and reactive power [Q(t, n)] are available in
the format shown in equation (22).

S(t,n) = P(t,n) +
(√−1

)
Q(t,n) ⦡ t = 1, . . . , 8760; n = 1, . . . , N (22)

In the case of load demand nodes, the model used here cal-
culates the active and reactive power through equation (22) us-
ing the time series developed in subsection 2.2 with a deter-
mined power factor. In the case of PV generation, the simula-
tion model estimates the active and reactive power combining
the output power of PV generation according to subsection 2.3
and the reactive power required to maintain the voltage at PCC
at its rated value. The computational procedure to calculate the
reactive power of PV nodes is available in Teng, (2003, 2008) and
Lujano-Rojas, Dufo-López, Bernal-Agustı́n, Domı́nguez-Navarro,
and Catalão (2018).

The optimization model solves 8760 load flow problems, ob-
taining the vectors of voltage and current [ �U(t) and �I(t)] that define
the time series of the voltage of each node and current of each
branch of the system. Equation (23) defines the form of such vec-
tors.

�U(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

U(t,1)

...
U(t,n)

...
U(t,N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

; �I(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

I(t,1)

...
I(t,n)

...
I(t,N)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

∀ t = 1, . . . , 8760 (23)

3.2 Ampacity analysis

The maximum admissible current through a determined DS
feeder [I max

(t, n)] can be approximated using the general heat equa-
tion of the conductor of interest under steady-state conditions.
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This process results in the model shown in equation (24) (Deb,
2000).

I max
(t,n) =

√
PR(t,n) + PC (t,n) − PS(t,n)

R(n)
⦡ t = 1, . . . , 8760; n = 1, . . . , N

(24)

In this sense, heat loss by radiation depends on temperature,
as suggested in equation (25). Heat loss by convection depends
on the temperature and wind speed, as suggested in equation
(26), while heat gain depends on the solar radiation, as suggested
in equation (27) (Deb, 2000).

PR(t,n) = fR
(
TA(t)

) ∀ t = 1, . . . , 8760; n = 1, . . . , N (25)

PC (t,n) = fC
(
TA(t), V(t)

) ∀ t = 1, . . . , 8760; n = 1, . . . , N (26)

PS(t,n) = fS
(
G (t)
) ∀ t = 1, . . . , 8760; n = 1, . . . , N (27)

Specific details about the estimation model represented
by the functions fR (·), fC (·), and fS(·) can be found in
Deb (2000).

3.3. Net present cost estimation

Estimating NPC depends on many critical techno-economic fac-
tors, such as inflation and discount rates and project lifetime, as
well as capital replacement and maintenance costs. Capital and
replacement costs are directly related to the capacity of the RPC
equipment to be installed, while maintenance costs are related
to the costs associated with the energy losses on the DS.

The model calculates the fixed and variable capacities of the
RPC device [QF xd

RPC (n) and QVar
RPC (n)] from the PDF of reactive power

provision at the node of interest (n = nRPC ). It means that the
reactive power to be provided to this node, to maintain its volt-
age at the nominal value, has to be calculated for each hour of
the year.

Otherwise, the model estimates the effect of the RPC (fixed
and variable) on the DS by modeling this device as a voltage-
controlled node (PV model for power flow nomenclature) able to
provide reactive power only.

The approximation of the required amount of reactive power
to be injected or drawn from the system is an iterative process.
The main result consists of a vector of reactive power injected or
drawn to the installation node [Q(t, nRPC ) ∀ t = 1, . . . , 8760]. Then,
the model calculates the rated capacity of the compensation de-
vice using the CDF. The probabilistic technique accurately esti-
mates the rated capacity from the most extreme value observed
on the confidence interval of the PDF, considering a specific sig-
nificance level (δ). The technique calculates the confidence in-
terval by evaluating the CDF of Q(t, nRPC ) inversely in the points
δ/2 and 1 − δ/2, to obtain the lowest and highest values of the
interval, respectively.

Figure 4 briefly shows this idea, where the model uses
the histogram of frequencies of reactive power Q(t, n) at the
installation node (n = nRPC ) to calculate the CDF. The technique
estimates the highest value of the confidence interval (Qr

C ) by
evaluating the corresponding CDF curve at 1 − δ/2 in an inverse
manner. Similarly, the approach calculates the lowest value of
the confidence interval (Ql

C ) by evaluating the CDF curve at the
point δ/2 inversely. Finally, it defines the rated capacity of each
RPC device [QF xd

RPC (nRPC ) and QVar
RPC (nRPC )] according to equations (28)

Figure 4: Determining rated capacity of the RPC from the CDF.

and (29).

QF xd
RPC (nRPC ) = min

(∣∣Ql
C

∣∣ , ∣∣Qr
C

∣∣) (28)

QVar
RPC (nRPC ) = max

(∣∣Ql
C

∣∣ , ∣∣Qr
C

∣∣)− min
(∣∣Ql

C

∣∣ , ∣∣Qr
C

∣∣) (29)

This approach allows us to determine the rated capacity of
the device for a given node. Thus, exclusively focusing on de-
termining the proper node to install the corresponding device is
needed.

The cost of energy losses [EL S(nRPC )] related to the compensa-
tion of the node n = nRPC can be estimated by using the energy
losses obtained from the PPF and the electricity price time series
[E (t)]. Finally, the NPC [NPC(nRPC )] of reactive power compensation
at node n = nRPC is calculated using equations (30–33).

ACC(n) = ACC F xd
(n) + ACC Var

(n) (30)

ARC(n) = ARC F xd
(n) + ARC Var

(n) (31)

AMC(n) = AMC F xd
(n) + AMC Var

(n) (32)

NPC(n) =
∑

nRPC

{
ACC(n) + ARC(n) + AMC(n)

}+ EL S(n)

C RF
(33)

3.4 Probabilistic voltage profile analysis

As previously mentioned, the optimization model evaluates the
quality of the voltage profile by using the probabilistic constraint
shown in equation (34).

Pr
{
Umin ≤ U(t,n) ≤ Umax

} ≥ 1 − δ ⦡ n = 1, . . . , N; t = 1, . . . , 8760

(34)

The optimization technique uses the results obtained from
the PPF related to the voltage of the DS at each node. Thus, it
builds the CDF of voltage at a determined node (n) using U(t, n)

time series.
Then, the approach computes the value

Pr {Umin ≤ U(t, n) ≤ Umax} as the subtraction between
Pr {U(t, n) ≤ Umax} and Pr {U(t, n) ≤ Umin}.

3.5 Probabilistic feeder ampacity analysis

The optimization method uses the results from the PPF for the
probabilistic assessment of feeders overloading. This evaluation
is carried out by verifying equation (35).

Pr
{
�I(t,n) < 0

} ≤ δ ⦡ n = 1, . . . , N; t = 1, . . . , 8760 (35)

�I(t,n) = I max
(t,n) − I(t,n) ⦡ n = 1, . . . , N; t = 1, . . . , 8760 (36)
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The proposed technique employs the branch current time
series [I(t, n)] and the maximum permissible current time series
[I max

(t, n)] to calculate the margin time series [�I(t, n)], as shown in
equation (36). Then, it builds the CDF of the margin [�I(t, n)] and
the probability value Pr {�I(t, n) < 0} using a linear interpolation
algorithm.

4. Proposed Methodology

This section thoroughly explains the proposed methodology.
First, in subsection 4.1, the formulation of the optimization prob-
lem is carried out in a probabilistic manner so that the random
nature of renewable resources is adequately justified. Then, in
subsection 4.2, the solution to this problem using a GA is com-
prehensively described.

4.1. Optimization problem

Optimal allocation and sizing of the RPC devices consists of min-
imizing equation (37),

min
{
NPC(n)

} ∀ n = nRPC , (37)

subject to equations (38–42).

Pr
{
Umin ≤ U(t,n) ≤ Umax

} ≥ 1 − δ ∀ n = 1, . . . , N; t = 1, . . . , 8760

(38)

Pr
{
�I(t,n) < 0

} ≤ δ ∀ n = 1, . . . , N; t = 1, . . . , 8760 (39)

�I(t,n) = I max
(t,n) − I(t,n) ⦡ n = 1, . . . , N; t = 1, . . . , 8760 (40)

−→
�U (t) = [BC BV] [B I BC ] �I(t) ∀ t = 1, . . . , 8760 (41)

�U(t) = �UR − −→
�U (t) ∀ t = 1, . . . , 8760 (42)

Equation (37) represents the minimization of the NPC of the
RPC equipment. Equations (38–40) are the constraints of the volt-
age profile and feeder ampacity. Constraint equations (41) and
(42) represent the energy balance of the system obtained by solv-
ing power flow at each time step (t = 1, . . . , 8760).

The next subsection describes the proposed GA implemen-
tation.

4.2. GA implementation

Researchers apply heuristic techniques in many engineering
fields such as vehicle performance improvement (Morteza &
Yildiz, 2016), manufacturing process optimization (Yildiz, 2013),
and the cam-roller follower mechanism design (Hamza, Ab-
derazek, Lakhdar, Ferhat, & Yildiz, 2018), among other applica-
tions. The optimization method developed in this paper con-
siders all of the available places in the system to the alloca-
tion of the RPC equipment. The proposed approach organizes
the information in a table similar to that presented in Fig. 5,
considering B places for the allocation of RPC devices. The pro-
posed methodology uses a binary-coded GA, where each indi-
vidual has B bits. This table establishes the relationship be-
tween each bit and the DS node. Using the example shown in
Fig. 5, if the second bit (b = 2) is equal to 1, it means that the
installation of a compensation device on node 20 (nRPC = 20)

Figure 5: Example of a table of candidate nodes.

Figure 6: Scheme of the GA population.

Figure 7: Scheme of the GA individual.

is analyzed. On the contrary, if the second bit is equal to zero,
the installation of a compensation device in that node is not
considered.

Figure 6 presents an illustration of the GA population (A) with
G individuals and B possible places for the installation of com-
pensation equipment. Figure 7 illustrates the structure of the in-
dividual g, which considers the compensation of two different
places on the system simultaneously.

The optimization algorithm calculates the objective function
of a determined individual [�a(g)] by following the algorithm ex-
plained as follows:

Step 1: Considering those bits of the GA individual [�a(g)] equal
to 1 and the corresponding table of candidate nodes (Fig. 5), per-
form the PPF (subsection 3.1) and ampacity analysis (subsection
3.2), and estimate the capacity of the RPC equipment and the
NPC (subsection 3.3). Equation (43) expresses the NPC of the in-
dividual under analysis.

NPCG A(g) ← NPC(n) ∀ n = nRPC ∀ g = 1, . . . , G (43)

Step 2: Set n ← 1.
Step 3: The CDF of the system voltage and current at each

node and branch (n) are built to evaluate the inequality equa-
tions (38) and (39). If the constraint equation (38) is false or the
constraint equation (39) is false, the respective element of the
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Figure 8: Load demand time series.

Figure 9: Temperature time series.

constraint vector becomes 1 [kC S(n) ← 1]. On the contrary case,
the respective element becomes zero [kC S(n) ← 0].

Step 4: If (n < N), set n ← n + 1, and go to Step 3; else go to
Step 5.

Step 5: Calculate the value of the objective function [ObjG A(n)]
of individual g using equation (44).

ObjG A(g) = NPCG A(g)

(
1 +

N∑
n=1

kC S(n)

)
⦡ g = 1, . . . , G (44)

The objective function equation (44) becomes higher as
the operational feasibility of the solution reduces. In other
words, when the constraint equations (38) and (39) are not
valid in some nodes or branches, the value of the objective
function in equation (44) increases, reducing the fitness of the
individual.

The rest of the steps related to the optimization with a GA
using binary coding (reproduction, crossing, and mutation pro-

cedures) appear in the technical literature; more information is
available in Goldberg (1989).

5. Case Study

The technique proposed in this work has been analyzed using
an extensive simulation process considering a hypothetical DS.
The next subsections thoroughly describe the testing conditions
as well as the corresponding results.

5.1. Case description

A DS to be located in Zaragoza (Spain) illustrates the proposed
methodology in this paper. The simulation model generated the
load demand and electricity price time series using the method
previously described in subsection 2.2. For a better understand-
ing, Fig. 8 shows the yearly time series of load demand [Dk++

(t, n)] on
the left side and the first 72 hours of the year on the right side.
It is possible to observe how the generated time series have the
hourly trend of the profile previously shown in Fig. 1.

The typical meteorological year (TMY) for solar radiation,
ambient temperature, and wind speed were found on the web-
site Renewables.ninja (2019) for the area of interest (latitude
equal to 41.84◦ and longitude equal to −1.1695◦).

Figures 9 and 10 present the TMY for ambient temperature
and wind speed, respectively. Figure 11 shows the TMY of solar
radiation for 0◦ and 36◦ tilt. The TMY of ambient temperature,
wind speed, and solar radiation with 0◦ tilt are used to eval-
uate the ampacity of each distribution feeder (subsection 3.2).
The TMY of solar radiation for 36◦ tilt is used to evaluate the PV
power production; according to Jacobson and Jadhav (2018), this
is the optimal tilt angle for the location under study.

Figure 12 shows the structure of the DS, while Table 1
presents the corresponding information related to the conduc-
tor type, feeder length, and the location of the DG. The rated
voltage was assumed to be 12.47 kV operating at 60 Hz; the tol-
erance of PPF analysis was 0.001, the maximum number of iter-
ations was 16, and the general power factor was 90%.
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Figure 10: Wind speed time series.

Figure 11: Solar radiation time series.

The substation capacity was 4000 kVA. All of the conductors
of the DS were assumed to be an all-aluminum conductor type,
while the structure of each feeder was assumed to be built con-
sidering G MD(n) = 1.26 m. The types of nodes considered were
load, generation, and compensation. The load nodes are power
consumption with constant power factor, while the compensa-
tion nodes are places where the decision-maker would install
RPC equipment (candidate nodes). Compensation and genera-
tion nodes are voltage-controlled nodes to maintain the voltage
at PCC to 12.47 kV.

Table 2 presents the data and characteristics of the PV gen-
erators used to estimate the power production of the farms con-
nected to nodes 18 and 49.

Table 3 shows the table of candidate nodes (Fig. 5) for the sys-
tem under analysis. Table 1 was used to build this table, con-
sidering the node type. This table presents the relationship be-
tween GA individuals and the candidate nodes available for the
installation of the RPC devices. According to the number of rows
in this table, the number of bits of each individual is set to 20
(B = 20), obtaining 220 = 1048 576 possible combinations for the
installation of the RPC.

The binary-coded GA with the objective function described
in subsection 4.2 was implemented considering 100 generations,

50 individuals in the population (G = 50), a crossover rate of 95%,
and a mutation rate of 5%. The maximum value of electricity
prices considered is 110€/MWh (Emax = 110€/MWh). The calcu-
lated NPC assumes a discount rate of 5% and an inflation rate of
3.5%.

The example considered a project lifetime of 25 years. Capital
costs for fixed and variable RPC equipment were assumed to be
50€/kVA and 500€/kVA, respectively, and their lifetime was 15
years. The simulation has been performed in MATLAB R© using
a computer with an i7-3630QM CPU at 2.40 GHz with 8 GB of
memory and 64-bit operating system.

5.2. Optimization results

Table 4 presents the rated values of the fixed [QF xd
RPC (n)] and vari-

able [QVar
RPC (n)] compensation devices. These values were esti-

mated considering a significance level of 5% (δ = 0.05).
The computational time spent was 58 hours, approximately.

The iterative process needed to estimate the reactive power to be
injected or drawn at each compensation node and time step re-
quires a considerable amount of computational resources. Nev-
ertheless, the proposed approach can obtain a reliable solution
with a probabilistic basis.

Figure 13 describes the behavior of the optimization algo-
rithm, which converges to the values previously shown in Ta-
ble 4. Figures 14 and 15 present the PDF and CDF of the RPC,
respectively. The values of reactive power are negative, which
means that reactive power is injected into the system most of
the time. As shown in Fig. 14, a continuous provision of reactive
power is required. This amount of reactive power (463.39 kVAr)
is supposed to be supplied by a device similar to an SCB. On the
other hand, the hourly fluctuations of the reactive power, mainly
related to the diurnal variations of load demand, are supposed
to be provided by a device with dynamic capabilities, similar to
a DSTATCOM of 1464.69 kVAr.

Table 5 presents the probability constraint equations (38) and
(39) considering a range of ±5% of the rated voltage of the system
(Umin = 95% and Umax = 105%). As can be observed, all of the prob-
abilities of fulfilling the constraint equation (38) are higher than
95% (with a significance level of 5%) when the RPC devices are in-
stalled. Initially, the DS has problems at those nodes located far
from the substation. Nodes 62, 64, and 65 have low probabilities
of fulfilling the required operating conditions. These nodes have
probabilities of 94.908, 90.325, and 87.594%, respectively (i.e. all
of them are lower than 95%, with a significance level of 5%).

However, when the decision-maker evaluates the installa-
tion of RPC in node 8, the corresponding condition becomes valid
for all the nodes of the system. On the other hand, the probabil-
ity of overloading remains negligible because the wind speed is
higher than zero most of the time, which increases the ampacity
of each distribution feeder.

5.3. Proposed versus traditional GA implementation

This subsection presents a comparison between the proposed
and the traditional GA implementation. Complete details re-
lated to the implementation of a traditional GA are given in
Appendix A. Table 6 presents the rated capacity of the RPC at
each node of the system, while Table 7 shows a comparative
analysis between the total RPC to be added to the system ac-
cording to the method implemented.

From Tables 4 and 6, the proposed methodology only sug-
gests the integration of the RPC in specific nodes, while the tra-
ditional methodology suggests the integration of compensation
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Figure 12: Distribution system under study.

Table 1: Distribution system data.

Sending
node

Receiving
node Node type

Mathematical
model

Size
(kcmil) Strands

Length
(km)

Rating
voltage (kV)

Transformer
capacity (kVA)

Substation 1 Load PQ 300 19 2.583 75
1 2 Load PQ 300 19 1.461 75
2 3 Load PQ 300 19 2.731 75
3 4 Load PQ 266.8 7 2.842 75
4 5 Compensation PV 250 7 2.139 12.47
5 6 Load PQ 250 7 1.163 50
6 7 Load PQ 250 7 1.381 75
7 8 Compensation PV 250 7 2.721 12.47
8 9 Load PQ 250 7 1.203 75
9 10 Compensation PV 83.69 7 1.903 12.47
10 11 Load PQ 41.74 7 1.496 75
11 12 Compensation PV 26.24 7 2.328 12.47
12 13 Load PQ 26.24 7 1.081 75
13 14 Compensation PV 26.24 7 2.215 12.47
3 15 Load PQ 26.24 7 2.710 75
15 16 Compensation PV 26.24 7 2.434 12.47
16 17 Load PQ 26.24 7 2.129 50
17 18 Generation PV 26.24 7 1.644 12.47
16 19 Load PQ 26.24 7 2.322 75
19 20 Load PQ 26.24 7 2.948 50
4 21 Load PQ 26.24 7 1.936 75
21 22 Load PQ 26.24 7 2.713 75
22 23 Load PQ 26.24 7 1.710 50
23 24 Load PQ 26.24 7 1.125 25
24 25 Compensation PV 26.24 7 1.631 12.47
22 26 Compensation PV 26.24 7 2.306 12.47
26 27 Load PQ 26.24 7 3.126 75
24 28 Load PQ 26.24 7 1.802 25
5 29 Load PQ 26.24 7 2.033 15
29 30 Compensation PV 26.24 7 1.489 12.47
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Table 1: Continued

Sending
node

Receiving
node Node type

Mathematical
model

Size
(kcmil) Strands

Length
(km)

Rating
voltage (kV)

Transformer
capacity (kVA)

30 31 Load PQ 26.24 7 1.359 75
31 32 Load PQ 26.24 7 2.496 50
30 33 Load PQ 26.24 7 1.411 75
33 34 Compensation PV 26.24 7 1.851 12.47
6 35 Compensation PV 26.24 7 3.046 12.47
7 36 Load PQ 26.24 7 1.601 75
36 37 Load PQ 26.24 7 2.205 75
37 38 Compensation PV 26.24 7 1.866 12.47
36 39 Load PQ 26.24 7 2.326 75
37 40 Load PQ 26.24 7 1.914 75
8 41 Compensation PV 26.24 7 2.082 12.47
41 42 Load PQ 26.24 7 2.147 25
42 43 Load PQ 26.24 7 3.011 75
41 44 Load PQ 26.24 7 3.115 75
42 45 Load PQ 26.24 7 3.070 25
9 46 Compensation PV 26.24 7 1.529 12.47
46 47 Load PQ 26.24 7 1.471 50
47 48 Load PQ 26.24 7 1.536 75
48 49 Generation PV 26.24 7 2.518 12.47
47 50 Compensation PV 26.24 7 2.612 12.47
50 51 Load PQ 26.24 7 1.869 75
48 52 Load PQ 26.24 7 1.243 25
10 53 Load PQ 26.24 7 1.702 50
53 54 Load PQ 26.24 7 1.483 75
54 55 Load PQ 26.24 7 2.801 75
53 56 Compensation PV 26.24 7 2.359 12.47
54 57 Load PQ 26.24 7 2.256 75
11 58 Compensation PV 26.24 7 1.438 12.47
58 59 Load PQ 26.24 7 1.892 50
59 60 Load PQ 26.24 7 2.425 75
58 61 Compensation PV 26.24 7 1.794 12.47
59 62 Load PQ 26.24 7 2.770 75
12 63 Compensation PV 26.24 7 2.656 12.47
63 64 Load PQ 26.24 7 2.520 50
64 65 Load PQ 26.24 7 2.139 75
13 66 Load PQ 26.24 7 1.973 15
66 67 Compensation PV 26.24 7 1.612 12.47

Table 2: Characteristics of PV panels.

Parameter n = 18 n = 49

NOCT(n) (◦C) 47.9 47.9
mP V 1 1
U OC

P V,STC (n) (V) 30.3 30.3

I SC
P V,STC (n) (A) 8.06 8.06

αP V(n) (%/◦C) −0.377 −0.377
ηP V(n) (%) 20 20
U MAX

P V(n) (V) 27.79 27.79

I MAX
P V(n) (A) 9.3 9.3

NC S
P V(n) 48 48

NC P
P V(n) 1 1

NP P
P V(n) 40 60

U SYS
P V(n) (V) 600 600

devices spread over the system. On the other hand, the tradi-
tional method suggests the incorporation of less compensation
capacity than the proposed technique.

At this point, the most important differences between both
techniques influence the results. In the proposed methodology,

adding or subtracting reactive power fixes the voltage of a deter-
mined node of the system at the rated value. Thus, this action
impacts the behavior of the rest of the system. In the traditional
approach, the addition or subtraction of reactive power reduces
the energy losses of the system, maintaining the voltages within
a determined operating interval, but not necessarily at the rated
value all the time.

On the one hand, the proposed approach considers the local
effects of reactive power injection of DG at the PCC, and the in-
teraction between the load demand and DG. On the other hand,
the traditional method considers the DG’s effects in a centralized
manner, using the estimation of the net load. In a general sense,
the estimation of the net load results in the analysis of a DS with
lower demand than in the case of the proposed approach, result-
ing in a lower estimation of the RPC and a difference of 24.9%.

Nevertheless, the formulation of both methods has neces-
sary implications for the structure of the optimization problem.
The proposed technique depends only on the number of can-
didate nodes, while the traditional formulation depends on sev-
eral aspects; these aspects are the number of blocks of load dura-
tion curve (LDC), the number of candidate nodes, and the integer
magnitudes of reactive power.
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Table 3: GA individuals and candidate nodes.

Bit of GA
individual

Candidate node
for compensation

1 5
2 8
3 10
4 12
5 14
6 16
7 25
8 26
9 30
10 34
11 35
12 38
13 41
14 46
15 50
16 56
17 58
18 61
19 63
20 67

Table 4: RPC planning.

n =
nRPC QF xd

RPC (n) (kVAr) QVar
RPC (n) (kVAr) NPC(n) (€) Time (min)

8 463.39 1464.69 1515 202.306 3501.22

Figure 13: Convergence of a GA.

The reactive power injected to the system per load block and
node [C AP(l, b) ∀ l = 1, . . . , 12; b = 1, . . . 20] was represented as an
integer in the interval [−114, 0] using 115 steps. Under this as-
sumption, the number of possible combinations is 115(O=BL ) =
115240 . From this reasoning, the proposed methodology consid-
erably reduces the number of possible combinations of the op-
timization problem and its computational complexity (the pro-
posed method has only 220 possible combinations). However, the
traditional implementation requires only the solution of L = 12
power flow problems for a single individual, while the proposed
method requires the solution of 8760, increasing it by 26.8%.

Figure 14: The PDF of the RPC at node 8.

Figure 15: The CDF of the RPC at node 8.

6. Conclusions

In this paper, a methodology for the optimal placement and
sizing of RPC devices in a DS with PV generation has been pre-
sented and tested through an extensive computational analysis.

The proposed methodology reduces the computational com-
plexity when compared to the traditional GA implementation
based on the discretization of the LDC, because it considers only
binary variables. However, the evaluation of each GA individual
of the proposed approach requires the solution of PPF, which
means solving 8760 deterministic power flow calculations. Con-
versely, the evaluation of a GA individual of the traditional im-
plementation depends on the number of discretization intervals
used to build the LDC. Consequently, the proposed approach re-
quires 26.8% more computational time than the classic version,
according to the analyzed case. This issue could be overcome by
implementing parallel computing solutions or by reducing the
number of data points of input time series using a clustering al-
gorithm. Another significant problem of the proposed approach
is its scalability because the computational time also increases
with the number of DS nodes.

D
ow

nloaded from
 https://academ

ic.oup.com
/jcde/article-abstract/7/2/177/5815390 by guest on 04 M

ay 2020



Journal of Computational Design and Engineering, 2020, 7(2), 177–194 191

Table 5: Analysis of voltage and current limits.

Receiving
node or
branch

Voltage limits Current limits

Without
compensa-

tion
With com-
pensation

Without
compensa-

tion
With com-
pensation

1 1 1 0 0
2 1 1 0 0
3 1 1 0 0
4 1 1 0 0
5 1 1 0 0
6 1 1 0 0
7 1 1 0 0
8 1 1 0 0
9 1 1 0 0
10 1 1 0 0
11 1 1 0 0
12 0.97642694 1 0 0
13 0.97223174 1 0 0
14 0.97223174 1 0 0
15 1 1 0 0
16 1 1 0 0
17 1 1 0 0
18 1 1 0 0
19 1 1 0 0
20 1 1 0 0
21 1 1 0 0
22 1 1 0 0
23 1 1 0 0
24 1 1 0 0
25 1 1 0 0
26 1 1 0 0
27 1 1 0 0
28 1 1 0 0
29 1 1 0 0
30 1 1 0 0
31 1 1 0 0
32 1 1 0 0
33 1 1 0 0
34 1 1 0 0
35 1 1 0 0
36 1 1 0 0
37 1 1 0 0
38 1 1 0 0
39 1 1 0 0
40 1 1 0 0
41 1 1 0 0
42 1 1 0 0
43 1 1 0 0
44 1 1 0 0
45 1 1 0 0
46 1 1 0 0
47 1 1 0 0
48 1 1 0 0
49 1 1 0 0
50 1 1 0 0
51 1 1 0 0
52 1 1 0 0
53 1 1 0 0
54 0.99292237 1 0 0
55 0.97514269 1 0 0
56 1 1 0 0
57 0.97751142 1 0 0
58 0.99531963 1 0 0
59 0.96906393 1 0 0

Table 5: Continued

Receiving
node or
branch

Voltage limits Current limits

Without
compensa-

tion
With com-
pensation

Without
compensa-

tion
With com-
pensation

60 0.9524258 1 0 0
61 0.99531963 1 0 0
62 0.94908676 1 0 0
63 0.95316781 1 0 0
64 0.90325342 1 0 0
65 0.87594178 1 0 0
66 0.97106164 1 0 0
67 0.97106164 1 0 0

Table 6: RPC sizing and placing analysis (traditional method).

Candidate node Rated RPC (kVAr)

5 66
8 93
10 81
12 55
14 105
16 71
25 70
26 53
30 97
34 69
35 82
38 88
41 34
46 78
50 106
56 64
58 36
61 79
63 83
67 38

Table 7: Comparison of total RPC.

Method
Rated RPC

(kVAr) Time (min)

Proposed 1928.099 3501.224
Traditional 1448 2561.801
Difference (%) 24.9 26.8

Although the proposed technique requires considerable
computational resources, it can provide a reliable solution with
a probabilistic basis. In other words, traditional GA implemen-
tation offers a general approximation of a required RPC; this
method calculates it from the discretized LDC (Table A1 of the
appendix). Relevant characteristics, such as autocorrelation and
daily profile behavior, are not considered. Conversely, the pro-
posed approach considers the hourly interaction between the
load demand (Fig. 8) and renewable resources (Figs 9–11), result-
ing in a 24.9% increase of the RPC’s capacity, when compared
with the classical approach. Additionally, PPF considers the con-
nection node of the RPC on the DS in each evaluation of GA in-
dividuals. These features offer higher accuracy and a solution
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with high robustness because the PDF of the RPC is calculated
(Figs 14 and 15).

Another disadvantage relies on the quality of the time series
simulation method of environmental variables and electricity
demand because the proposed approach is highly dependent on
this data. In this regard, recently developed approaches related
to big data analytics applied to the SG can be useful to estimate
the time series of the load and the environmental variables of
interest. Besides, a more in-depth study on the relationship be-
tween the behavior of load demand and electricity prices (equa-
tion 6) should be performed to increase the feasibility of the NPC
estimation.

Supplementary Data

Supplementary data are available at JCDENG online.
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Appendix A

This appendix presents the most relevant results obtained from
the implementation of a traditional GA for optimal allocation
and sizing of DSTATCOM.

A.1 Traditional GA implementation

The technique proposed by Das (2002) was considered a bench-
mark for comparison. Traditional implementation consists of
building the system’s LDC, as shown in Fig. A1. Then, the tradi-
tional method discretizes this curve into l = 1, . . . , L blocks con-
sidering the corresponding relationship between the load de-
mand [�P(l)] and time [�t(l)].

Calculations have been carried out by considering the net
load of the system, while the power injection at each generation
node was zero.

Figure A1: Discretization of the net load demand curve.

The traditional methodology estimates rated compensation
capacity [QRPC (n)] to minimize the objective shown in equation
(A.1) subject to the constraint presented in equation (A.2). The

Figure A2: Structure of an integer-coded GA individual.
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Figure A3: Discretization of the LDC.

Figure A4: Convergence of the GA (traditional method).

objective (equation A.1) is related to the energy losses on the
DS and the investment in RPC devices, while the constraint
(equation A.2) is related to the voltage profile improvements for
each operating condition (l = 1, . . . , L ). The energy cost (Ke) is the
mean value of the price signal [E (t)], while the acquisition cost
(Kc) is the value mentioned above 500€/kVA.

min

{
Ke

L∑
l=1

�t(l)�PL S(l) + Kc

N∑
n=1

QRPC (n)

}
(A.1)

Umin ≤ U(n,l) ≤ Umax ⦡ n = 1, . . . , N; l = 1, . . . , L (A.2)

Figure A2 shows the structure of a typical individual of this
implementation, which uses integers to specify a determined
type and size of RPC. The variable C AP(l, b) characterizes each el-
ement of the GA individual; this variable depends on the block
number and the installation node. C AP(l, b) represents the mag-
nitude of the reactive power injected or drawn from the system
during the analysis of the load condition, which corresponds to
the block l at the installation node b.

Figure A3 presents the LDC and the corresponding discretiza-
tion.

The traditional GA was implemented considering 800 gen-
erations, a population size of 7500 individuals, a crossover rate
of 95%, and a mutation rate of 5%. The addition or subtraction
of reactive power was evaluated using integer magnitudes. It
means that the sizes associated with the variable C AP(l, b) ∀ l =
1, . . . , 12; b = 1, . . . 20 were injections or extractions of reactive
power using integers in the step of 1 kVAr. For our case study,
C AP(l, b) ∈ [−114, 0]. Figure A4 shows the convergence of the tra-
ditional GA for the case under study.

Table A1 shows the results of the optimization process. It re-
ports the amount of reactive power to be injected per candidate
node (b = 1, . . . ,20) and discretization block (l = 1, . . . ,12). As
expected, the highest injection of reactive power occurs at the
highest load demand, which defines the capacity of the equip-
ment according to this method.

Table A1: Injection of reactive power per candidate node and load block (kVAr).

b/l 1 2 3 4 5 6 7 8 9 10 11 12

1 −65 −66 −66 −65 −57 −19 −22 −43 −7 −37 −53 −8
2 −93 −93 −93 −75 −85 −67 −5 −59 −21 −23 −12 −7
3 −79 −81 −81 −75 −70 −64 −26 −56 0 −13 −36 −38
4 −55 −55 −55 −51 −10 −50 −45 −9 −39 −16 −2 −43
5 −105 −105 −90 −56 −25 −77 −68 −43 −46 −47 −50 −21
6 −71 −71 −71 −70 −71 −71 −71 −71 −71 −71 −71 −69
7 −69 −70 −70 −65 −67 −66 −70 −70 −54 −49 −32 −40
8 −53 −53 −53 −52 −53 −51 −53 −53 −48 −44 −13 −33
9 −97 −97 −97 −97 −80 −85 −58 −44 −35 −9 −68 −31
10 −69 −69 −69 −61 −55 −53 −8 −18 −53 −5 −5 −49
11 −82 −82 −81 −67 −77 −82 −75 −67 −16 −29 −40 −4
12 −88 −88 −88 −68 −87 −86 −56 −40 −72 −69 −18 −57
13 −34 −34 −34 −34 −9 −19 −30 −13 −12 −29 −12 −3
14 −78 −78 −78 −67 −58 −28 −39 −40 −12 −35 −16 −31
15 −106 −106 −106 −106 −72 −37 −106 −18 −54 0 −17 −22
16 −63 −64 −64 −45 −62 −63 −41 −55 −60 −45 −64 −44
17 −35 −36 −36 −30 −36 −14 −34 −36 −14 −13 −18 −25
18 −79 −79 −79 −79 −51 −79 −79 −11 −78 −72 −32 −34
19 −83 −83 −82 −80 −83 −21 −31 −60 −3 −2 −29 −1
20 −38 −38 −36 −31 −28 −20 −25 −22 −28 −28 −8 −17
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