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Abstract15

Clean Energy sources, such as wind and solar, have become an inseparable16

part of today’s power grids. However, the intermittent nature of these sources17

has become the greatest challenge for their owners, which makes the bidding18

in the restructured electricity market more challenging. Hence, the main goal19

of this paper is to propose a novel multi-objective bidding strategy framework20

for a wind-thermal-photovoltaic system in the deregulated electricity market for21

the first time. Contrary to the existing bidding models, in the proposed mod-22

el, two objective functions are taken into account that the first one copes with23

profit maximization while the second objective function concerns with emis-24

sion minimization of thermal units. The proposed multi-objective optimization25

problem is solved using the weighted sum approach. The uncertainties associ-26

ated with electricity market prices and the output power of renewable energy27

sources are characterized by a set of scenarios. Ultimately, in order to select28

the best-compromised solution among the obtained Pareto optimal solutions,29
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two diverse approaches are applied. The proposed bidding strategy problem is30

being formulated and examined in various modes of joint and disjoint opera-31

tion of dispatchable and non-dispatchable energy sources. Simulation results32

illustrate that not only the integrated participation of these resources increases33

the producer’s expected profits but also decreases the amount of the produced34

pollution by the thermal units.35

Keywords: Integrated operation, bidding strategy, Multi-objective36

optimization, Wind-thermal-Photovoltaic system, weighted-sum technique,37

Emission trading38

Nomenclature

Indices

t Period index.

g Index for thermal units.

ω Scenario index.

b Index for blocks of the generation cost curve

and emission curve of thermal units.

Constants

πω Probability of occurrence of scenario ω

PW,Max Rated wind power output, MW.

PPV,Max Rated PV power output, MW.

STUC(g) Start-up cost of every thermal unit, e/each start-up.

MDT (g) Minimum down-time of every thermal unit, hr.

MUT (g) Minimum up-time of every thermal unit, hr.

RUR(g) Ramp-up rate of every thermal unit, MW/hr.

RDR(g) Ramp-down rate of every thermal unit, MW/hr.

EEQ Emission quota of power producer, lbs.

2



PMaxb(b, g) Maximum power output of every thermal unit in bth

block of the piecewise linear cost function, MW.

PMax(g) Maximum power output of every thermal unit, MW.

PMin(g) Minimum power output of every thermal unit, MW.

PSMax(g) Maximum capacity of every thermal unit for participating

in the spinning reserve market, MW.

NC(g) No-load generating cost of every thermal unit, e/hr.

IC(b, g) Incremental generating cost of bth block of unit g, e/MWhr.

E(q, b, g) Slope of block b in emission group q of every thermal unit, lbs/MWhr.

EMG Emission group including NOX and SO2.

STURL(g) Start-up ramp bound of every thermal unit, MW/hr.

STDRL(g) Shut-down ramp bound of every thermal unit g, MW/hr.

ag, bg, cg Coefficients of thermal generation cost function.

αg, βg, γg Emission coefficients of thermal unit g.

NT Number of periods.

NG Number of thermal units.

NΩ Number of scenarios.

Nb Number of segments of the production cost and emission curve.

λEM Emission market price, e/lbs.

Variables

λE(t, ω) Price of day-ahead energy market, e/MW.

λS(t, ω) Price of spinning reserve market, e/MW.

P th,S(t, ω) Optimal bid of thermal units in the spinning reserve market, MW.

P th,E(t, ω) Optimal bid of thermal units in the day-ahead energy market, MW.

PW (t, ω) Optimal bid of wind power plant in the day-ahead energy market, MW.

PPV (t, ω) Optimal bid of PV system in the day-ahead energy market, MW.

P th,Ac(t, ω) Actual power output of thermal units, MW.

PW,F (t, ω) Realized power output of wind power plant, MW.

PPV,F (t, ω) Realized power output of PV system, MW.

PC(t, ω) Joint energy offer of the all energy resources in the day-ahead

energy market, MW.
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∆+(t, ω) Imbalance-up, MW.

∆−(t, ω) Imbalance-down, MW.

STU(g, t, ω) Start-up cost of every thermal unit, e.

C(g, t, ω) Generation cost of every thermal unit, e.

EG(b, g, t, ω) Produced power of thermal units through the bth block of the

piecewise linear cost function for participating in the day-ahead

energy market, MW.

ES(g, t, ω) Power offer of every thermal unit in the spinning reserve market, MW.

ET (g, t, ω) Total power offer by every thermal unit in all selected markets, MW.

u(g, t, ω) Binary variable which indicates acceptance situation of every thermal

unit in the day-ahead energy market.

x(g, t, ω) Binary variable which indicates start-up situation of thermal units in

the day-ahead energy market.

y(g, t, ω) Binary variable which indicates shut-down situation of thermal units

in the day-ahead energy market.

r+(t, ω) Imbalance penalty for over-generation as multiplier of energy price

r−(t, ω) Imbalance penalty for under-generation as multiplier of energy price

1. Introduction39

1.1. Motivation and Aim40

Nowadays, a wide range of power system issues is affected by the presence of41

renewable energy resources. With the growth of industries and communities, the42

request for supplying customers demand is rising day-to-day [1]. In this regard,43

conventional energy sources such as coal, gas and nuclear, as well as renewable44

energy sources, e.g., hydro, wind and solar, are the two main options for gov-45

ernments to supply the required electricity of communities [2]. Generally, the46

rising cost of fossil fuels and attention to environmental concerns can be men-47

tioned as the main reasons for the desire of diverse communities to augment the48

penetration of renewable energy sources [3]. Briefly, sustainability, environmen-49

tally friendly, reducing fossil fuel consumption, and low maintenance costs are50
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among the reasons for increasing the interest of various communities in renew-51

able energy sources [4]. Despite many subsidies that governments have devoted52

to renewable energy developers, we will witness a significant increase in invest-53

ments in this sector [5]-[6]. On the other hand, the existence of subsidies will not54

guarantee the profits of investors. Hence, the deregulated electricity market lay55

the groundwork for both producers and consumers to devise the best possible56

strategy for themselves. Consequently, renewable energy sources owned by gen-57

eration companies (GenCos)/large consumers must design the most profitable58

bidding strategy by participating in various electricity markets.59

1.2. Literature Review60

The problem of optimal bidding strategy/self-scheduling has attracted the61

attention of many researchers so far [7]-[22]. A bidding structure based on the62

joint implementation of stochastic and robust uncertainty modeling approach-63

es for an industrial consumer has been addressed in [7]. Likewise, in [8], the64

authors conducted a stochastic-robust optimization-based framework for a bid-65

ding strategy of a large consumer in a deregulated electricity market. In both66

papers [7] and [8], the uncertainty of load is addressed by the specified range,67

and the uncertainty related to renewable productions and market prices are68

modeled via independent scenarios. A self-scheduling model for the participa-69

tion of a sample microgrid containing plug-in electric vehicles, wind turbines,70

and fuel cell units has been developed in [9]. In [10], authors have proposed71

a coordinated self-production and load-scheduling framework for an industrial72

plant in joint electricity and carbon emission markets. A hybrid probabilistic-73

possibilistic technique has been employed in [11] to cope with the uncertainties74

in the self-scheduling of thermal units. In [12], authors have focused on pre-75

senting a bi-objective self-scheduling structure for a typical factory as a large76

consumer. In [13], a risk-constrained self-scheduling model for a real virtual77

power plant in Iran has been suggested.78

Integrated energy resources scheduling is one of the most challenging prob-79

lems in the electrical power system which has attracted much attention. Wind80
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power generation as one of the most favorite organ of integrated energy re-81

sources has been widely considered alongside other production resources such82

as thermal, hydro, solar, and pumped storage power plants. In [14], the au-83

thors present an integrated self-scheduling model for a wind-pumped-storage84

system while the uncertainty of wind power generation is modeled by a neu-85

ral network based technique. Authors illustrated that presenting a coordinated86

bidding strategy of both resources can remarkably raise their profitability. A87

critical shortage of this work is that the authors have not modeled the uncer-88

tainty associated with electricity market prices. Authors in [15], presented a89

linear programming framework for self-scheduling of a hydro-thermal system,90

whereas the electricity market prices and forced outages of generating units91

have been considered uncertain as the uncertain sources. Likewise, the inves-92

tigation of integrated wind and thermal energy sources in the context of the93

bidding strategy problem have been accomplished in [16]-[18]. The ultimate94

goal of all these three works is to prove the profitability of integrated scheduling95

compared to non-integrated one. In [19], a risk-based bidding framework for a96

wind-thermal-pumped storage system is presented.97

Contrary to the mentioned studies, the bi-objective scheduling of integrated98

energy systems with the aim of minimizing pollution emission has also been con-99

sidered by researchers [20]-[21]. In [20], a bi-objective microgrid self-scheduling100

model is presented in which the microgrid cost and emission minimizations are101

taking into account. A multi-objective self-scheduling model for a hydro-thermal102

system considering joint energy and ancillary services markets is proposed in103

[21]. In [22], a multi-objective economic dispatch model for pumped-hydro-104

thermal systems is presented in which the normal boundary intersection is uti-105

lized to achieve the Pareto optimal solutions. The taxonomy of reviewed papers106

[7]-[22] based on different aspects of their works has been listed in Table 1.107

———————————108

Table 1 is placed here109

———————————110
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1.3. Contributions111

According to the reviewed papers in subsection 1.2 and the specified char-112

acteristics for each paper in Table 1, this paper focuses on presenting a novel113

bi-objective bidding strategy of a wind-thermal-photovoltaic system in the en-114

ergy and spinning reserve markets. To the best of author’s knowledge, this work115

proposes the most comprehensive study in the context of multi-objective and116

single-objective coordinated bidding strategy of wind, thermal and photovoltaic117

units in the literature, so the major contributions of this paper are:118

• Presenting a comprehensive coordinated mathematical formulation for the119

multi-objective bidding strategy of all existing sources.120

• Proposing a novel bi-objective bidding strategy for a wind-thermal-photovoltaic121

(WTPV) system participating in the energy and spinning reserve markets.122

The process of profit maximization and emission minimization are concur-123

rently accomplished while the uncertainty arising from day-ahead energy,124

spinning reserve, and imbalance prices along with the output power of125

renewable energy resources are addressed in the proposed framework.126

• An efficient solution method, namely, the hybrid weighted sum method127

and fuzzy satisfying approach, is introduced as the solution methodology128

of the bi-objective bidding strategy problem129

• A decision-making scheme based on the preferences of decision-maker is130

suggested in the bidding strategy problem to select the most favored so-131

lution.132

• Proposing an additional pattern based on the emission trading concept for133

an emission-constrained WTPV power producer to select the best possible134

strategy.135

2. Problem formulation136

The multi-objective bidding strategy problem of a WTPV system is formu-137

lated as a stochastic mixed integer programming (MIP) which maximizing the138
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expected profit of WTPV system and minimizing the expected emission aris-139

ing from thermal units are considered as two distinct objective functions of the140

decision-maker. In the following subsections, separate objective functions of the141

bi-objective bidding strategy problem will be thoroughly explained.142

2.1. First objective function: Maximizing expected profit143

The primary purpose of the WTPV system is to maximize its profits through144

participation in diverse electricity markets in the 24-hour scheduled horizon. In145

the coordinated bidding structure, a single offering package will be offered to146

the energy market from all existing energy resources while the offering package147

of power producer in the spinning reserve market exclusively contains the par-148

ticipation of thermal units in this market. The first objective function of the149

power producer for the coordinated operation of all resources is formulated as150

follows:151

Max FC1 =

NΩ∑
ω=1

πω × [

T∑
t=1

(λE(t, ω)P th,E(t, w) + λE(t, ω)PW (t, w)

+ λE(t, ω)PPV (t, w) + λS(t, ω)P th,S(t, w)

+ λE(t, ω)r+(t, ω)∆+(t, ω)− λE(t, ω)r−(t, ω)∆−(t, ω))]

−
NΩ∑
ω=1

πω × [

T∑
t=1

NG∑
g=1

C(g, t, ω)−
T∑
t=1

NG∑
g=1

(STU(g, t, ω))] (1)

where the first two lines of (1) represent the expected income of power pro-152

ducer from participating in the day-ahead energy and spinning reserve markets153

while the third line relates to the imbalances of power producer in the balancing154

market, finally, the last line refers to the costs of operating and start-up costs155

of the thermal units. The constraints of the objective function (1) would be156

categorized into the following groups:157

• Coordinated operation constraints: Constraint (2) calculates the final bid158

of power producer that should be offered to the energy market. Con-159

straints (3)-(6) model the imbalances of the power producer in the bal-160

8



ancing market. Restriction (5) limits the positive energy deviations of161

power producer within the total actual power output of all three sources162

while constraint (6) ensures that the negative energy deviations should163

not exceed the maximum capacity of renewable energy sources plus the164

maximum available capacity of thermal units. Equations (7) and (8) rep-165

resent the upper and lower bounds of the scheduled power of renewable166

energy sources. Constraint (9)-(10) and (11)-(12) are the non-decreasing167

and non-anticipativity settings for the offering packages in the energy and168

spinning reserve markets, respectively.169

PC(t, ω) = P th,E(t, w) + PW (t, w) + PPV (t, w) ∀t,∀ω (2)

∆(t, w) = PPV,F (t, ω) + PW,F (t, ω) + P th,Ac(t, ω)− PC(t, w), ∀t, ∀ω

(3)

∆(t, w) = ∆+(t, ω)−∆−(t, ω), ∀t, ∀ω (4)

0 ≤ ∆+(t, ω) ≤ PPV,F (t, ω) + PW,F (t, ω) + P th,Ac(t, ω), ∀t,∀ω (5)

0 ≤ ∆−(t, ω) ≤ PPV,Max + PW,Max +

NG∑
g=1

PMax(g).u(g, t, ω), ∀t, ∀ω

(6)

0 ≤ PW (t, w) ≤ PW,Max, ∀t, ∀ω (7)

0 ≤ PPV (t, w) ≤ PPV,Max, ∀t, ∀ω (8)

PC(t, ω) ≤ PC(t, ω̃), ∀ω, ω̃ : [λE(t, ω) ≤ λE(t, ω̃)], ∀t (9)

P th,S(t, ω) ≤ P th,S(t, ω̃), ∀ω, ω̃ : [λS(t, ω) ≤ λS(t, ω̃)], ∀t (10)
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PC(t, ω) = PC(t, ω̃), ∀ω, ω̃ : [λE(t, ω) = λE(t, ω̃)], ∀t (11)

P th,S(t, ω) = P th,S(t, ω̃), ∀ω, ω̃ : [λS(t, ω) = λS(t, ω̃)], ∀t (12)

• Thermal units constraints: The generation cost of thermal units for en-170

ergy delivery is computed through constraint (13). The quadratic cost171

curve of thermal units makes the problem nonlinear. In order to over-172

come this issue, many researchers have been approximated this cost curve173

using various piecewise blocks [20]. In the current paper, these piecewise174

linearized segments are indexed by letter b. Constraint (14) represents175

the total bid of thermal units in the energy market. Equations (15) and176

(16) restrict the generated power of thermal units within their minimum177

and maximum bounds. Constraint (17) calculates total bid of thermal178

units in the spinning reserve market while equation (18) is implement-179

ed to limit the spinning reserve offer of generation facility within their180

maximum capability in providing upward spinning reserve. Constraints181

(19) and (20) are fulfilled to restrict the total bids of thermal units in the182

day-ahead energy and spinning reserve market within their limited oper-183

ating areas. Constraints (21) is fulfilled to calculate the start-up costs184

incurred by thermal units during the scheduling horizon. Other techni-185

cal restrictions of thermal units, as well as the minimum up/down time186

and the logical relationship between the various status of generation fa-187

cilities, are enforced by constraints (22)-(24). Finally, the ramp-up and188

ramp-down limitations, considering the shut-down and start-up ramps of189

thermal units are modeled by constraints (25)-(26).190

C(g, t, ω) = NC(g)u(g, t, ω) +

Nb∑
b=1

IC(b, g)EG(b, g, t, ω), ∀t,∀ω (13)

NG∑
g=1

Nb∑
b=1

EG(b, g, t, ω) = P th,E(t, ω), ∀t,∀ω (14)
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0 ≤ EG(b, g, t, ω) ≤ PMaxb(b, g), ∀b,∀g,∀t,∀ω (15)

PMin(g)u(g, t, ω) ≤
Nb∑
b=1

EG(b, g, t, ω) ≤ PMax(g)u(g, t, ω), ∀g,∀t, ∀ω

(16)

NG∑
g=1

ES(g, t, ω) = P th,S(t, ω), ∀t, ∀ω (17)

0 ≤ ES(g, t, ω) ≤ PSMax(g)u(g, t, ω), ∀g,∀t,∀ω (18)

ET (g, t, ω) =

Nb∑
b=1

EG(b, g, t, ω) + ES(g, t, ω), ∀g,∀t, ∀ω (19)

PMin(g)u(g, t, ω) ≤ ET (g, t, ω) ≤ PMax(g)u(g, t, ω), ∀g,∀t,∀ω (20)

0 ≤ STU(g, t, ω) ≥ STUC(g)x(g, t, ω), ∀g,∀t, ∀ω (21)

t∑
n=t−MUT (g)+1

x(g, t, ω) ≤ u(g, t, ω), ∀g,∀t,∀ω (22)

u(g, t, ω) +

t∑
n=t−MDT (g)+1

y(g, t, ω) ≤ 1, ∀g,∀t, ∀ω (23)

u(g, t− 1, ω)− u(g, t, ω) + x(g, t, ω)− y(g, t, ω) = 0, ∀g,∀t,∀ω (24)

Nb∑
b=1

EG(b, g, t, ω) ≤
Nb∑
b=1

EG(b, g, t− 1, ω) +RUR(g)u(g, t− 1, ω)

+ STURL(g)x(g, t, ω), ∀g,∀t,∀ω (25)

Nb∑
b=1

EG(b, g, t− 1, ω) ≤
Nb∑
b=1

EG(b, g, t, ω) +RDR(g)u(g, t, ω)

+ STDRL(g)y(g, t, ω), ∀g,∀t,∀ω (26)
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2.2. Second objective function: Minimizing expected emission191

The second objective function of the power producer in the proposed struc-192

ture is emission minimization. In fact, due to the worldwide rising concerns193

about environmental issues, minimizing the produced pollution by thermal u-194

nits is consistently considered as one of the objective functions of the power195

producers in the optimization process. The linear form of this objective func-196

tion would be as follows:197

Min F th2 =

NΩ∑
ω=1

πω[×
EMG∑
q=1

NG∑
g=1

Nb∑
b=1

E(q, b, g)EG(b, g, t, ω)] (27)

It is worth to note that in order to take advantage of linear programming in198

the proposed structure, the emission functions of thermal units, which generally199

have a quadratic form, are approximated by some piecewise linearized blocks.200

In the current paper, the SO2 and NOX are taken into consideration as the201

primary sources of emission [21].202

In this paper, three different bidding strategies, including the coordinated203

and uncoordinated operation of various energy sources, are considered to thor-204

oughly examine the productivity of the proposed structure. Fig. 1 shows these205

three different bidding strategies with their determinant constraints. These206

three trading strategies are designed to exhaustively assess the multi-objective207

bidding strategy problem based on the following modes of operation:208

1. Uncoordinated operation of all three available energy resources.209

2. Coordinated operation of two energy resources + Uncoordinated operation210

of the last energy resources.211

3. Coordinated operation of all three available energy resources.212

Note that the authors have passed up to present the formulation of the first213

and second trading strategies to avoid tautology in writing. It is notable that214

the superscript numbers in the constraints of the second strategy point out two215

distinct trading strategy in this case study.216
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———————————217

Fig. 1 is placed here218

———————————219

2.3. Solution method of the multi-objective optimization problem220

Most practical engineering issues are faced with more than one objective221

function, which in many cases, these objective functions conflict with each oth-222

er. Multifarious techniques and methods have been employed in the literature223

to solve multi-objective problems, which ε-constraint technique [20] and the224

weighted sum (WS) approach [24] are among these methods. In the present225

paper, the weighted sum technique has been used to solve the multi-objective226

bidding strategy of wind-thermal-photovoltaic energy resources. In the weight-227

ed sum method, all objective functions with different weighting factors that228

represent the relative significance of each objective function are put together in229

a separate objective function according to the following equation:230

Min [OF ] = w1F
′

1 + w2F2 (28)

subject to231 
w1 + w2 = 1

F
′

1 = −F1

All restrictions of the proposed probelm

(29)

where F1 and F2 stand for the two conflicting objective functions of the232

proposed problem, i.e., profit maximization and emission minimization. One233

of the problems faced by decision-makers in the weighted sum method is the234

different scale of objective functions in (28). To this end, a fuzzy satisfying235

approach is proposed to overcome this issue in the literature of multi-objective236

programming problems [21]. Based on this approach, the objective functions in237

(28) are normalized as follows:238
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F1,pu =
F1 − Fmax1

Fmax1 − Fmin1

(30)

F2,pu =
Fmax2 − F2

Fmax2 − Fmin2

(31)

where F1,pu and F2,pu are the per unit values of objective functions F1 and239

F2, respectively. In fact, the equations (30) and (31) map the objective functions240

F1 and F2 in the range 0 and 1. (Fmax1 , Fmax2 ) and
(
Fmin1 , Fmin2

)
represent the241

obtained maximum and minimum values of each objective function through the242

single objective optimization process, respectively. After normalizing each ob-243

jective function, the objective function of the weighted sum method is rewritten244

as follows:245

Min [OF ] = w1F
′

1,pu + w2F2,pu (32)

2.4. Decision-maker’s approach to select the best compromise solution246

After obtaining the Pareto solutions via the WS method, the most favored247

solution among all set of solutions should be picked up. In the present paper,248

the final selection of the best compromise solution is accomplished based on the249

mindset, inclination, and preferences of decision-makers [25]. Indeed, decision-250

makers ascertain the minimum and maximum permissible values for the objec-251

tive functions based on insight, the experience of previous years, short-term and252

long-term plans, and restrictions imposed by system operators. In this regard,253

for the objective function of maximizing profit, the minimum acceptable profit254

and for the objective function of minimizing emission, the maximum allowable255

emission is determined by the decision-maker, and finally, the most favored256

solution is selected based on these preconditions.257

2.5. Uncertainty characterization258

The uncertain sources in the optimal bidding strategy of a GenCo are gener-259

ally divided into two groups: the price of various target markets and generation260
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power of renewable energy sources. The methodology for modeling the uncer-261

tainties arising from electricity market prices and output power of renewable262

energy sources will be explained in the following subsections.263

2.5.1. Market Prices uncertainty model264

In the proposed framework, the normal probability density function (PDF)265

is utilized to model the three uncertain market prices: the day-ahead energy and266

spinning reserve market prices along with the real-time market price. The PDF267

of an electricity market price λprice with mean µprice and standard deviation268

σprice would be formulated as follows:269

fprice(λprice, µprice, σprice) =
1

σprice
√

2π
exp

[
− (λprice − µprice)2

2σ2
price

]
(33)

2.5.2. Wind power uncertainty model270

As it is evident, the production power of a wind turbine is not constant and271

changes as a function of wind speed. In the current paper, the Weibull PDF272

has been considered for modeling wind speed. The Weibull PDF of wind speed273

V with scale and shape factors c and k is defined as follows:274

fwind(V, c, k) =
k

c

(
V

c

)k−1

exp

[
−
(
V

c

)k]
(34)

The generated power of a wind turbine in specified wind speed V has fully275

corresponded to its technical specifications, namely, cut-out speed vco, cut-in276

speed vci, and rated speed vr, which is calculated using the following equation:277

278

Pwind =


0, 0 ≤ V ≤ vci

Prated ×
(
V−vci
vr−vci

)
, vci ≤ V ≤ vr

Prated, vr ≤ V ≤ vco

(35)

2.5.3. Solar power uncertainty model279

Solar irradiance is the most significant factor in determining the output280

power of photovoltaic units, which is always confronted with uncertainties. In281
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this paper, the Beta PDF is utilized as an appropriate expression pattern of282

solar irradiance. The Beta PDF of solar irradiance Si is expressed as follows:283

firr(Si, α, β) =


Γ(α+β)

Γ(α)Γ(β) × (Si)α−1 × (1− Si)β−1, 0 ≤ Si ≤ 1, α ≥ 0, β ≥ 0

0, otherwise

(36)

Given the solar irradiance Si of photovoltaic units, their efficiency ηPV and284

total area SPV , the output power of PV units PPV are calculated as follows285

[23]:286

PPV = ηPV × SPV × Si (37)

Finally, By assigning appropriate probability density functions to each un-287

certain parameter, scenarios associated with these parameters are constructed288

by the roulette wheel mechanism [23].289

3. Emission trading290

In this paper, a solution fits the purchasing or selling emission quotas is pre-291

sented for those occasions that taking advantage of emission trading is accessible292

for GenCos/industrial consumers. In this regard, [26] and [27] have focused on293

the detailed investigation of emission trading pattern in China’s container ter-294

minal and building materials industry, respectively. Based on this approach,295

after solving the multi-objective bidding strategy problem, a specific strategy296

for each Pareto optimal solution will be adopted. If the emission of thermal297

units per Pareto exceeds the emission quota, the GenCo will have to purchase298

additional emission quotas. However, if the emission of a GenCo in each Pareto299

is less than the assigned emission quota, the Genco can sell its surplus emission300

quota. As mentioned above, the total expected earnings of GenCo in every301

Pareto optimal solution will be calculated as follows:302

TPF = EPP +
[
λEM ×

(
EEQ − EEG

)]
(38)
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where the TPF is net expected profit, EPP is the expected profit of Gen-303

Co per Pareto, EEQ is the assigned emission quota to GenCo, λEM refers to304

emission price, and the EEG stands for the expected emission of GenCo per305

Pareto. Ultimately, for each emission price, a Pareto with the maximum val-306

ue of TEP is selected as the optimal Pareto solution of the proposed bidding307

strategy problem.308

4. Results and discussion309

4.1. Input data310

The proposed system under study comprises five thermal units, a wind farm,311

and a PV site with the maximum capacity of 340 MW, 250 MW, and 150312

MW for each, respectively. The economic and technical information on thermal313

units is provided in Table 2 and Table 3. These data have been extracted with314

some adjustments from [16]. Also, the data related to the emission curve of315

thermal units are given in Table 4. It is worthwhile to mention again that316

the quadratic cost and emission curves of thermal units are approximated by317

three piecewise blocks. This action, along with the proper formulation of the318

problem, leads to the absence of any nonlinear term in the proposed issue. On319

the basis of previously published papers, the SO2 and NOx are considered as the320

fundamental origins of emission [21]. The expected values of forecasted wind321

speed and solar irradiance [28] are portrayed in Fig. 2 while information on wind322

turbines and PV site are provided in Table 5.323

————————————————–324

Tables 2, 3, 4, and 5 are placed here325

————————————————–326

————————————————–327

Figure 2 is placed here328

————————————————–329

In the proposed model, GenCo only allows the thermal units to participate330

in the spinning reserve market, and since the offer of each unit in this market331
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has to be ready to deliver in ten minutes, the maximum offer for each unit in332

this market is calculated using PSMax(g) = 1
6 × RUR(g) [29]. As outlined in333

subsection 2.5, five uncertainty sources exist in the proposed structure (day-334

ahead market, spinning reserve market, and imbalance prices as well as wind335

and PV generation). Based on the suggested model, for each parameter, the336

adequate number of scenarios based on the statistical analysis of [28] and [30] is337

constructed using roulette wheel mechanism, and with a common approach, i.e.,338

fast forward reduction technique [16] and [19], the initially generated scenarios339

for each parameter are reduced to three representative scenarios. Consequently,340

the final scenario set will contain 35 = 243 scenarios. The proposed structure341

is formulated based on the MIP and has been implemented in GAMS (general342

algebraic modeling system), with CPLEX as the solver.343

4.2. Results344

In order to assess the performance of the proposed structure, two different345

case studies are considered in this paper. In the first case study, we examine the346

single objective framework for the bidding strategy of the system under consid-347

eration, and in the second case study, the multi-objective bidding strategy of348

the wind-thermal-PV system is discussed. It is worth to note that in all case349

studies, the three trading strategies shown in Fig. 1 is fully explored. The first350

trading strategy appertained to the disjoint operation of all three energy sources351

in the electricity markets. The second trading strategy refers to the coordinated352

operation of wind and thermal units, while the PV system individually and in-353

dependently participates in the electricity market. Eventually, the third trading354

strategy relates to the coordinated operation of all available energy sources.355

4.2.1. Case study 1356

As already mentioned, this case study focuses on the single objective bidding357

strategy of the system under study. In other words, this case study focuses solely358

on maximizing producer’s profit without having a program or goal to minimize359

emissions. The results of this case study have been exhibited in Table 6. It360

is necessary to mention that this table will allow us to compare the economic361
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and environmental aspects of different trading strategies. According to the ob-362

tained results, trading strategy 1 has the lowest expected profit (e302434.636)363

and the highest imbalance cost (e25369.536) among all three trading strategies.364

In contrast, coordinated operations of all three resources (trading strategy 3)365

have resulted in the highest profitability and the lowest imbalance cost, which366

the obtained results are e304509.778 and e15278.357, respectively. Similar-367

ly, in the second trading strategy that includes the coordinated operation of368

wind and thermal resources, more profit (e303221.192) and fewer imbalance369

cost (e23037.277) are obtained compared to the first strategy. From a differ-370

ent point of view, coordinated operation of energy resources in the proposed371

bidding strategy not only increase the profitability of the power producer but372

also reduces the emission of thermal units. It has to be noted that the numeric373

percent for comparing the decreasing or increasing values related to expected374

profit, expected emission, and expected imbalance cost of trading strategies two375

and three will be presented later to check out the effectiveness of the proposed376

bidding strategy.377

———————————378

Table 6 is placed here379

———————————380

Fig. 3 shows the expected participation of WTPV system in the energy381

and spinning reserve markets for all trading strategies. According to Fig. 3a,382

it is observed that at almost most of the hours, trading strategy 1 has more383

participation in the energy market. This issue has led the trading strategy 1 to384

have the highest imbalance cost, which ultimately leads to more reduction in the385

expected profit of WTPV system. Besides, it can be viewed that the difference386

in the participation of various trading strategies in the day-ahead energy market387

reflects more during high market prices. On the other hand, as shown in Fig. 3b,388

the participation of WTPV system in the spinning reserve market for trading389

strategies 2 and 3 are similar at most hours. Also, the high day-ahead market390

prices during hours 11-14 have led to a reduction in producer’s participation391

in the spinning reserve market for the specified time interval. In other words,392

19



the producer will have a greater willingness to participate in the energy market393

instead of participating in the spinning reserve market to gain more profit in the394

aforementioned time interval. Finally, Fig. 4 presents the comparison between395

the share of thermal units from the entire participation of WTPV system in the396

energy market for all trading strategies. The share of thermal units in trading397

strategies 1 and 2 are lower than the first trading strategy, which leads to lower398

emission of power producer, as reported in Table 6. It is worth mentioning399

that Fig. 3 and Fig. 4 are demonstrated to unfold how the coordinated trading400

strategy of various available sources will alter the expected participation of the401

whole system and thermal units in the energy and spinning reserve markets,402

respectively.403

————————————————–404

Figures 3 and 4 are placed here405

————————————————–406

4.2.2. Case study 2407

This case study is designed to address the multi-objective bidding strategy408

of the wind-thermal-PV system. Contrary to the first case study, in this case409

study, minimizing the emission of thermal units is also added to one of the410

decision-maker’s goals in the optimization process. As discussed in the previous411

sections, the weighted sum method is used to solve the multi-objective optimiza-412

tion problem. In this method, different weighting factors for objective functions413

(here, w1 and w2) are chosen subject to w1+ w2 = 1, and finally, the Pareto414

solutions of the proposed problem will be obtained. The results of Pareto for415

trading Strategies 1, 2, and 3 are shown in Fig. 5, Fig. 6, and Fig. 7, respec-416

tively. After obtaining Pareto results, the proposed approach in subsection 2.4417

is implemented to select the most favored solution among all Pareto solutions.418

The minimum and maximum predetermined limits for the profit and emission419

are assumed to be 20×103 lbs and e 250×103, respectively. It has to be not-420

ed that these limits are determined by the decision-maker (GenCo) to merely421

compare the results of different trading strategies under similar conditions and422
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consequently, every other restriction can be imposed by the decision-maker. Ac-423

cordingly, the presented Pareto solutions in Fig. 5, Fig. 6, and Fig. 7 will let us424

pick the most favored solution under different predetermined restrictions. The425

summary results of different trading strategies in terms of the environmental426

and economic evaluation of the multi-objective bidding strategy have been pro-427

vided in Table 7. It is worth noting that the results of Table 7 correspond to the428

red box of Fig. 5, Fig. 6 and Fig. 7 (P14) that obtained through the suggested429

approach in subsection 2.4.430

————————————————–431

Table 7 is placed here432

————————————————–433

————————————————–434

Figures 5, 6 and 7 are placed here435

————————————————–436

According to the provided results in Table 7, trading strategies 2 and 3 have437

also led to an increase in the producer’s expected profit in the multi-objective438

bidding strategy. The expected profit for trading strategies one, two, and three439

is e253638.926, e255566.283, and e256978.704, respectively. In this regard, the440

most expected profit is achieved via the third trading strategy (e256978.704)441

Which is consistent with the results of the previous case study. Similar to the442

first case study, in the second case study, the trading strategies 2 and 3 also443

diminish the imbalance costs and emissions in comparison with the first trading444

strategy.445

Similar to Fig. 3, Fig. 8 illustrates the expected bids of power producer446

that are going to be submitted in the energy and spinning reserve markets for447

all three trading strategies. The expected production bids in the energy market448

(Fig. 8a) follow the explanation given about Fig. 3a, with the difference that the449

rates of production bids are significantly reduced. Fig. 8b allows us to conclude450

that the power producer’s bidding approach in the spinning reserve market for451

all trading strategies will not affect the producer’s strategy in this market. This452

issue stems from the fact that the producer tends to utilize the maximum level453
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of participation in the spinning reserve market to gain its expected profit in454

whole trading strategies while the pollution constraints restrict its production455

in the energy market. At the remaining hours, the rising level of GenCo’s456

participation in the energy market, the GenCo’s involvement in the spinning457

reserve also increases. Analogous to Fig. 4, the comparison between the portion458

of thermal units from the total participation of the WTPV system in the energy459

market for all trading strategies in the multi-objective optimization approach is460

captured in Fig. 9. In fact, this figure exposes how the emission of both trading461

strategies 2 and 3 will be reduced in comparison with the first trading strategy.462

In comparison with the first case study, a large portion of the thermal units’463

production bids has been reduced, which is more evident in time intervals with464

lower energy prices.465

————————————————–466

Figures 8 and 9 are placed here467

————————————————–468

In order to participate in diverse electricity markets, the producers should469

submit their bidding packages to each specific market. The bidding curves of the470

power producer in the energy market for hours 8 and 22 for both single-objective471

and bi-objective bidding approaches are captured in Fig. 10 and Fig. 11. It can472

be noticed that in the coordinated operation of energy resources, for example,473

trading strategy 3, a bidding curve from all three energy resources is submit-474

ted to the day-ahead energy market. As can be seen from these curves, the475

coordinated operation of two or all units (strategy 2 or 3) leads to a change in476

the producer’s bidding curve compared to the uncoordinated one (strategy 1).477

This is evident for both single objective and bi-objective bidding approaches.478

Moreover, the drop in bid volumes of bi-objective bidding approach compared479

to the single objective one is noticeable as can be seen from these figures.480

————————————————–481

Figures 10 and 11 are placed here482

————————————————–483

In this paper, along with the proposed approach in subsection 2.4, emission484
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trading is also taken into consideration as a new scheme in the decision-making485

process of the power producer. Following the explanations given in section 3,486

after solving the multi-objective bidding strategy problem and obtaining corre-487

sponding Pareto solutions, this approach is implemented to select the optimal488

solution among all Pareto solutions. The maximum TPF obtained by equation489

(38) will be the optimal solution corresponding to each emission price. One of490

the superiorities and advantages of this method versus other techniques is that491

the emission quota of the power producer is implicitly included in the bidding492

process. In the current paper, in order to avoid tautology in the demonstration493

of results, only the results of emission quota arbitraging for trading strategy 3494

have been reported in Table 8. The emission quota of the power producer is495

considered 20×103 lbs. The bold numbers in each column pertaining to emission496

prices indicate the optimal Pareto solution for that particular emission price.497

As can be seen from this table, the increase in the price of emission leads to a498

reduction in the expected net profit of the power producer.499

———————————500

Table 8 is placed here501

———————————502

4.3. Discussion503

In the current paper, a comprehensive bidding model for the participation504

of wind, thermal, and photovoltaic units has been proposed. In summary, by505

examining the presented results in two case studies using the suggested approach506

in subsection 2.4, we can conclude that the proposed trading strategies will507

increase the expected profit and reduce the expected emission of the power508

producer. In order to assess the effectiveness of the second and third trading509

strategies in comparison with the first trading strategy, Fig. 12 and Fig. 13 are510

provided. According to these figures, it can be concluded that:511

1. In both case studies, third trading strategy has the highest profit incre-512

ment, which these values are 1.36% and 0.68% for the first and second513

case studies, respectively.514
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2. In both case studies of the second and third trading strategies, the emission515

of thermal units decreases compared to the first trading strategy, which is516

more striking in the first case study.517

3. Trading strategy 3 has the highest imbalance reduction, especially in the518

bi-objective bidding approach.519

4. Reducing the expected production bids in the energy market has led to a520

reduction in the cost of imbalances and, consequently, an increase in the521

producer’s profit.522

5. In the bi-objective bidding approach, the trading strategy of power pro-523

ducer will not affect the participation level of thermal units in the spinning524

reserve market.525

————————————————–526

Figures 12 and 13 are placed here527

————————————————–528

Nevertheless, two other items can be considered as further suggestions for529

the future research of authors in the bidding strategy of a WTPV system:530

1. Considering a risk measuring index in the bi-objective bidding strategy of531

WTPV system as an additional parameter.532

2. Proposing a bi-level bidding model for the WTPV system while it behaves533

as a price-maker producer in one of the target electricity markets.534

5. Conclusion535

In this paper, a new framework for multi-objective bidding strategy of an536

integrated wind-thermal-photovoltaic system alongside two different decision-537

making schemes was proposed to attain the introduced contributions. In order538

to assess the effectiveness of the suggested bidding structure, three different trad-539

ing strategies, including coordinated and uncoordinated operation of generation540
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units, along with their relevant formulation were comprehensively presented, and541

subsequently, an efficient technique was applied to solve the bi-objective prob-542

lem. Based on the proposed bidding strategies, the coordinated operation of all543

energy resources was led to the highest expected profit in both single-objective544

and multi-objective bidding strategies. In fact, in the bi-objective model, the545

aim was to evaluate the profitability of the coordinated bidding strategy of all546

available sources in the presence of an additional objective function, which in547

this occasion, the proposed bidding strategy was also able to gain the total ex-548

pected profit of the system. Also, the numerical results have demonstrated that549

reduction in the output power of thermal units in the bi-objective approach will550

lead to considerable imbalance reduction in comparison with the single-objective551

one which is considered as the main reason for the profitability of the recom-552

mended model. This imbalance reduction was accompanied by a reduction in553

the participation of the system in the energy market. Another important ob-554

servation of this paper was that the variation in the trading approach of the555

system did not affect the bidding strategy in the spinning reserve market. Also,556

the numerical results illustrated that emission trading in the electricity markets557

results in higher values of expected profit compared to the markets without this558

capability.559
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[18] Laia, R., Pousinho, H.M.I., Meĺıco, R., Mendes, V.M.F., 2016. Bidding624

strategy of wind-thermal energy producers. Renew. Energy 99, 673–681.625

https://doi.org/10.1016/j.renene.2016.07.049626

[19] Al-Swaiti, M.S., Al-Awami, A.T., Khalid, M.W., 2017. Co-optimized trad-627

ing of wind-thermal-pumped storage system in energy and regulation mar-628

kets. Energy 138, 991–1005. https://doi.org/10.1016/j.energy.2017.07.10629

[20] Aghaei, J., Alizadeh, M.I., 2013. Multi-objective self-scheduling of CHP630

(combined heat and power)-based microgrids considering demand response631

programs and ESSs (energy storage systems). Energy 55, 1044–1054. http-632

s://doi.org/10.1016/j.energy.2013.04.048633

[21] Ahmadi, A., Aghaei, J., Shayanfar, H.A., Rabiee, A., 2012. Mixed integer634

programming of multiobjective hydro-thermal self scheduling. Appl. Soft635

Comput. J. 12, 2137–2146. https://doi.org/10.1016/j.asoc.2012.03.020636

[22] Simab, M., Javadi, M.S., Nezhad, A.E., 2018. Multi-objective pro-637

gramming of pumped-hydro-thermal scheduling problem using nor-638

mal boundary intersection and VIKOR. Energy 143, 854–866. http-639

s://doi.org/10.1016/j.energy.2017.09.144640

[23] Niknam, T., Kavousifard, A., Aghaei, J., 2012. Scenario-based multiob-641

jective distribution feeder reconfiguration considering wind power using642

adaptive modified particle swarm optimisation. IET Renew. Power Gener.643

6, 236–247.644

[24] Jannati, J., Nazarpour, D., 2019. Optimal performance of electric ve-645

hicles parking lot considering environmental issue. J. Clean. Prod. 206,646

1073–1088.647

[25] Zakariazadeh, A., Jadid, S., Siano, P., 2014. Stochastic multi-objective648

operational planning of smart distribution systems considering demand re-649

sponse programs. Electr. Power Syst. Res. 111, 156–168.650

28



[26] Zhong H, Hu Z, Yip TL. Carbon emissions reduction in China’s contain-651

er terminals: Optimal strategy formulation and the influence of carbon652

emissions trading. J Clean Prod 2019;219:518–30.653

[27] Zhao, S., Shi, Y., Xu, J., 2018. Carbon emissions quota allocation based654

equilibrium strategy toward carbon reduction and economic benefits in Chi-655

na’s building materials industry. J. Clean. Prod. 189, 307–325.656

[28] Weather history+ - meteoblue [WWW Document], n.d. URL http-657

s://www.meteoblue.com/en/historyplus (accessed 4.22.19).658

[29] Khaloie, H., Abdollahi, A., Rashidineiad, M., 2018. Risk-Constrained Self-659

Scheduling and Forward Contracting Under Probabilistic-Possibilistic Un-660

certainties, in: Electrical Engineering (ICEE), Iranian Conference On.661

IEEE, pp. 1138–1143. https://doi.org/10.1109/ICEE.2018.8472668.662

[30] Bienvenido — ESIOS electricidad · datos · transparencia [WWW Docu-663

ment], n.d. URL https://www.esios.ree.es/es (accessed 3.14.19).664

29



Offering Strategy 1 Offering Strategy 2

Energy Market
Spinning Reserve 

Market

Offering Strategy Offering Strategy Offering Strategy

Energy Market

Spinning Reserve 

Market

Offering Strategy

Energy Market
Spinning Reserve 

Market

Strategy 1: Uncoordinated operation of wind, thermal and PV 

units

Strategy 2: Coordinated operation of wind and thermal power 

units and uncoordinated operation of PV units

Strategy 3: Coordinated operation of wind, thermal and PV 

units

),(),(),(=),( , wtPwtPwtPtP PVWEthC 

),(),(),(),(=),( ,,, wtPtPtPtPwt CActhFWFPV  

),(),(),(),(0 ,,,  tPtPtPt ActhFWFPV  

),,().(),(0
1=

,,  tgugPPPt Max
G

N

g

MaxWMaxPV  

ttttPtP EECC  )],
~

,(),([:
~

,),
~

,(),( 

ttttPtP EEEthEth  )],
~

,(),([:
~

,),
~

,(),( ,, 

ttttPtP SSSthSth  )],
~

,(),([:
~

,),
~

,(),( ,, 

MaxPVWPVW PwtP ,// ),(0 

  ,),,(),(=),( /,/ twtPtPwt PVWFPVW

   ,),,(),(0 ,/ ttPt FPVW

   ,,),(0 ,/ tPt MaxPVW

ttttPtP EEPVWPVW  )],
~

,(),([:
~

,),
~

,(),( // 

ttttPtP EECC  )],
~

,(),([:
~

,),
~

,(),( 

ttttPtP SSSthSth  )],
~

,(),([:
~

,),
~

,(),( ,, 

),(),(=),( , wtPwtPtP WEthC 

),(),(),(=),( ,,1 wtPtPtPwt CActhFW  

),(),(),(0 ,,1,  tPtPt ActhFW  

),,().(),(0
1=

,1,  tgugPPt Max
G

N

g

MaxW  

MaxPVPV PwtP ,),(0 

ttttPtP EEPVPV  )],
~

,(),([:
~

,),
~

,(),( 

  ,),,(),(=),( ,2 twtPtPwt PVFPV

   ,),,(),(0 ,2, ttPt FPV

   ,,),(0 ,2, tPt MaxPV

),(, tP Sth

),(, tP Sth
),(, tP Sth

),( wtPW ),( wtPPV ),( wtPPV),( tPC
 ),( tPC

Thermal units Thermal units Thermal units PV unitsWind unitsPV unitsWind unitsPV unitsWind units

),(, tP Eth

ttttPtP SSSthSth  )],
~

,(),([:
~

,),
~

,(),( ,, 

Figure 1: Schematic of different bidding strategies
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Figure 3: Single objective bidding approach
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Figure 4: Comparison of expected amount of production bids of thermal units in the day-ahead

energy market for all trading strategies (case study 1)
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Figure 7: Pareto front for trading strategy 3
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energy market for all trading strategies (case study 2)
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Figure 10: Day-ahead energy market bidding for hour 8
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Figure 11: Day-ahead energy market bidding for hour 22
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Table 2: Thermal units information

Thermal Cost coefficients of generator Pmin Pmax

Units ag(e/MW 2h) bg(e/MWh) cg(e/h) (MW) (MW)

G1 0.0144 31.400 40.260 0 50

G2 0.0339 43.022 85.509 5 45

G3 0.0339 42.022 82.342 5 45

G4 0.0330 28.090 42.760 25 100

G5 0.0248 26.504 49.140 25 100

Table 3: Technical specification of thermal units

Thermal RDR(g) RUR(g) STDRL(g) STURL(g) STUC(g)

units (MW/hr) (MW/hr) (MW/hr) (MW/hr) (e)

G1 50 50 30 20 0

G2 15 15 20 15 88

G3 15 15 20 15 88

G4 50 50 60 50 110

G5 50 50 60 50 110

Table 4: Emission coefficients of thermal units

Thermal Coefficient of SO2 emission function Coefficient of NOx emission function

units αg (lbs/MW2) βg (lbs/MW) γg (lbs) αg (lbs/MW2) βg (lbs/MW) γg (lbs)

G1

G2

G3

G4

G5

0.0249

0.0167

0.0167

0.0157

0.0157

3.554

12.259

11.259

2.762

2.762

1.866

4.470

4.470

2.262

2.262

0.0087

0.0073

0.0073

0.0095

0.0095

1.345

5.945

5.945

0.820

0.820

3.716

5.298

5.298

4.653

4.653
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Table 5: Information on wind turbines and PV site

Parameter Value unit Parameter Value unit

vci 3 m/s ηPV 15 %

vr 15 m/s SPV 106 m2

vco 25 m/s PPVrated 150 MW

PWrated 250 MW - - -

Table 6: Results of single objective bidding strategy in various trading strategies

Trading strategy Expected profit Expected emission Imbalance cost

(e) (lbs) (e)

Wind uncoordinated

PV uncoordinated

Thermal uncoordinated

Sum uncoordinate wind and thermal

Coordinated wind and thermal

Sum uncoordinated wind, PV and thermal (Strategy 1)

Sum uncoordinated PV and coordinated wind-thermal (Strategy 2)

Sum coordinate wind, PV and Thermal (Strategy 3)

94868.919

53734.278

153831.439

248700.358

249486.914

302434.636

303221.192

304509.778

—–

—–

61455.848

61455.848

59401.666

61455.848

59401.666

59590.001

16995.914

8373.622

—–

16955.914

14663.655

25369.536

23037.277

15278.357

Table 7: Results of Multi-objective bidding strategy in various trading strategies

Trading strategy Expected profit Expected emission Imbalance cost

(e) (lbs) (e)

Wind uncoordinated

PV uncoordinated

Thermal uncoordinated

Sum uncoordinate wind and thermal

Coordinated wind and thermal

Sum uncoordinated wind, PV and thermal (Strategy 1)

Sum uncoordinated PV and coordinated wind-thermal (Strategy 2)

Sum coordinate wind, PV and Thermal (Strategy 3)

94868.919

53734.278

105035.729

199904.648

201832.005

253638.926

255566.283

256978.704

—–

—–

19266.137

19266.137

18971.043

19266.137

18971.043

18997.492

16995.914

8373.622

—–

16955.914

-1225.947

25369.536

7147.675

2003.541
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Table 8: Results of emission quota arbitraging for Pareto optimal solutions of strategy 3

Total Emission Profit without Emission trades Net profits (e)

(lbs) emission trade (e) (lbs) λEM=0.1 (e/lbs) λEM=0.3 (e/lbs) λEM=0.5 (e/lbs) λEM=1 (e/lbs)

59590.001

56009.132

52814.999

49652.657

46939.804

42807.933

38700.833

35374.524

31145.031

28286.335

25544.215

22952.056

21044.007

18997.492

14221.486

12567.015

8303.996

0

304509.778

304058.522

303192.137

301854.928

300526.825

297896.198

294798.142

291777.572

287088.975

283176.988

277774.429

270843.444

264561.387

256978.704

236828.236

229008.445

206041.240

149735.991

-39590.001

-36009.132

-32814.990

-29652.657

-26939.804

-22807.933

-18700.833

-15374.524

-11145.031

-8286.335

-5544.215

-2952.056

-1044.007

1002.508

5778.514

7432.985

11696.004

20000.000

300550.778

300457.608

299910.637

298889.662

297832.845

295615.405

292928.059

290240.120

285974.472

282348.355

277220.008

270548.238

264456.986

257078.955

237406.087

229751.744

207210.840

151735.991

292632.778

293255.782

293347.637

292959.131

292444.884

291053.818

289187.892

287165.215

283745.466

280691.088

276111.165

269957.827

264248.185

257279.456

238561.790

231238.341

209550.041

155735.991

284714.778

286053.956

286784.638

287028.600

287056.923

286492.232

285447.726

284090.310

281516.460

279033.821

275002.322

269367.416

264039.384

257479.958

239717.493

232724.938

211889.242

159735.991

264919.777

268049.390

270377.147

272202.271

273587.021

275088.265

276097.309

276403.048

275943.944

274890.653

272230.214

267891.388

263517.380

257981.212

242757.218

236441.430

217737.244

169735.991

46


	Introduction
	Motivation and Aim
	Literature Review
	Contributions

	Problem formulation
	First objective function: Maximizing expected profit
	Second objective function: Minimizing expected emission
	Solution method of the multi-objective optimization problem
	Decision-maker's approach to select the best compromise solution
	Uncertainty characterization
	Market Prices uncertainty model
	Wind power uncertainty model
	Solar power uncertainty model


	Emission trading
	Results and discussion
	Input data
	Results
	Case study 1
	Case study 2

	Discussion

	Conclusion

