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Abstract—In spite of the significant advance achieved in the
development of optimal power flow (OPF) programs, most of
the solution methods reported in the literature have considerable
difficulties in dealing with different-nature objective functions si-
multaneously. By leveraging recent progress on the semidefinite
programming (SDP) relaxations of OPF, in the present article,
attention is focused on modeling a new SDP-based multiobjective
OPF (MO-OPF) problem. The proposed OPF model incorporates
the classical ε-constraint approach through a parameterization
strategy to handle the multiple objective functions and produce
Pareto front. This article emphasizes the extension of the SDP-
based model for MO-OPF problems to generate globally nondomi-
nated Pareto optimal solutions with uniform distribution. Numeri-
cal results on IEEE 30-, 57-, 118-bus, and Indian utility 62-bus test
systems with all security and operating constraints show that the
proposed convex model can produce the nondominated solutions
with no duality gap in polynomial time, generate efficient Pareto
set, and outperform the well-known heuristic methods generally
used for the solution of MO-OPF. For instance, in comparison with
the obtained results of NSGA-II for the 57-bus test system, the best
compromise solution obtained by SDP has 1.55% and 7.42% less
fuel cost and transmission losses, respectively.

Index Terms—Convexification, multiobjective OPF (MO-OPF),
optimal power flow (OPF), semidefinite programming (SDP),
ε-constraint method.

I. INTRODUCTION

NOWADAYS, humanity’s need for electric power energy
is increasing day by day, and electrical demands have
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increased rapidly concerning the growth in population and in-
dustrial applications. Hence, various aspects, such as minimiz-
ing fuel costs, losses, environmental pollution, and so on, are
essential to be taken into consideration for satisfactory power
system operation and planning [1], [2]. For these reasons and
more, optimal power flow (OPF) is the heart of an economically
efficient operation tool for independent system operators. Given
that almost 4% of the total system costs refer to the power losses
so that the economic feasibility of power systems, particularly
in a competitive energy market, relies on the optimum set of all
parameters related to any generator or transmission element [3].
On the other hand, due to the dependence of transmission losses
on reactive power, indeed, optimization of the reactive power
dispatch of power systems can be regarded as the minimization
of the real power loss.

Hence, the OPF objective functions, which are basically
founded on the system economic aspects, require the loss factor
besides the cost function to consider, while meeting the various
equality and inequality constraints.

In addition, environmental pollution is a matter of concern,
which is raised by the harmful effect of the electric power
industry. Therefore, the OPF problem is largely classified as
a nonlinear constrained multiobjective optimization (MOO) in
which the total generation fuel cost, besides the other objective
functions, must be inevitably optimized. In a single-objective
optimization problem, there exists a global optimum, while in the
case of MOO, no optimal solution is evidently defined; instead, a
set of solutions, namely the Pareto optimal front, is given [4]. The
convex or nonconvex models of the multiobjective programming
problem require appropriate approaches to manage the multiob-
jective nature [5] and are dependent on obtaining an efficient
set of Pareto optimal solutions, which is not as simple as it is
for a single-objective optimization problem. Therefore, different
methods are defined for solving multiobjective optimization
problems (MOOPs). One way to handle the multiobjective OPF
(MO-OPF) problem is to turn it to a single-objective optimiza-
tion problem by specific conversion methods, such as weighted
sum. With varying the weights of the obtained linear function,
all of the points that are on the convex envelope can be found.
However, from the literature, some reported drawbacks of the
weighted sum method are solutions with nonuniform distribu-
tion and not discovering the optimal solutions over the noncon-
vex areas. The ε-constrained method is also a widely known
method to tackle the MOOPs, which generates a noninferior set.
In this approach, all but one objective function transformed into
constraints, and the Pareto front can be generated exactly by
varying the ε-vector. For example, in [6], the MO-OPF problem
consisting of simultaneous minimization of the generation cost
and transmission losses for the first time is introduced to solve,
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in which a method denominated as a surrogate worth tradeoff
is suggested to obtain a best compromised solution (BCS). In
another case [7], a MOOP based on the ε-constraint is employed
to minimize the operation cost as well as the air pollutant
emissions as the second objective function, while the transient
stability margin as the third objective function is maximized si-
multaneously. The ε-constrained method is capable of detecting
a number of nondominated solutions on a nonconvex region in
contrast to the weighted sum scalarization. Another way to solve
the MOOPs is producing all the Pareto optimal solutions or a
typical subset of the Pareto frontier. These kinds of methods
entitled posterior methods, which are classified into two groups:
mathematical programming based posterior approaches, such as
normal boundary intersection [8], and evolutionary algorithms.
Presently, a number of evolutionary MOO algorithms, including
differential evolution (DE) [9], teaching learning-based opti-
mization (TLBO) [10], particle swarm optimization [11], evolu-
tionary programming [12], gravitational search algorithm (GSA)
[13], and so on, have been applied to handle MOOPF problems.
Evolutionary algorithms can generate sets of the solution and,
in general, are able to compute a representative set of the entire
Pareto front. A big advantage of evolutionary computation is
that it is conceptually not complicated and can be easily applied
to different kinds of power system optimization problems [14],
but then again, some possible limitations of these algorithms
are their computationally burdensome [15] and no guarantee of
obtaining the noninferior solutions.

Semidefinite programming (SDP) is a new subfield of convex
optimizations, which has fascinated researchers since the discov-
ery of conic sections. SDP can solve optimization problems over
positive semidefinite matrices with a linear cost function and
linear constraints [16]. A large number of realistic electric power
engineering problems consist of polynomial objective functions
and constraints, but the applications of SDP in the power system
have been reported scantily in the available literature. Recent
trends of research in the subfield of OPF generally can be
classified into three groups.

1) Investigation of sufficient conditions under which the ex-
istence of no duality gap for different OPF problems is
guaranteed [17].

2) Employing semidefinite relaxation (SDR) techniques to
reduce the computational cost of SDR problems [18].

3) The identification of any limitations of the convexification
methods [19].

A. Summary of Contributions

Due to the inherent nonconvex nature of the multiobjective
problems, most of the solution methods focused on finding local
solutions and are, thus, only appropriate for convex problems.
Another alternative for solving nonconvex problems is using
heuristic methods that are very time consuming and inefficient
for MOOPs. That is all the more reason to take a special
interest in a deterministic framework, which we actually tried to
address in this article using the SDP. Recent advances in convex
optimization and their application in engineering motivate the
authors to use the SDP in the proposed area. Specifically, the
main contributions of the proposed framework can be listed
pointwise as follows.

1) The proposed article mainly seeks to focus on the further
development of the existing OPFs based on the SDP to
generalize this model from the other aspects. With this end

in view, this article next tries to propose an exact convex
model for highly sophisticated nonconvex multiobjective
OPF problems with several nonlinear targets and obtain
the zero duality gap for more sophisticated problems.

2) In virtue of the nonconvex nature of the multiobjective
problem, it is proved that the SDP relaxations converge
to the globally optimal solutions of the MO-OPF problem
starting from any initial states.

3) The basic idea for producing Pareto front in this article
is developing a novel model based on the ε-constraint by
establishing a convex scalar dual problem. The resulting
convex model advances the application of the ε-constraint
method to provide good approximation of the Pareto fron-
tier and avoids inefficient ones.

4) This article initially includes simultaneous minimization
of fuel cost and losses in transmission systems and then
models total fuel cost, losses, and pollutant emission con-
currently as competing for objective functions, which must
be moved into the set of constraints and turned into the
SDP form.

5) More importantly, the multiobjective model proposed in
this article is a general SDP based on the ε-constraint
model, which can be developed over the other nonconvex
MOOPs with polynomial functions.

The remainder of this article is arranged as follows. Section II
describes the basic formulation of the OPF problem. The MOO
description is provided in Section III. Section IV gives the single-
objective OPF problems based on the SDP and then introduces
the proposed SDR of the MO-OPF problem. This is followed
by simulations and comparison with the results with the other
well-known state-of-the-art algorithms in Section V. At last, the
main conclusion of the article is drawn in Section VI.

II. TERMINOLOGY AND PROBLEM STATEMENT

A. Model

Consider a typical power network, where N , N b, and NT
represent, respectively, the set of all buses, the number of shunt
VAR compensators, and the set of all tap regulating transform-
ers. G denotes the set of generator buses, i.e., G ⊆ N , and
L ⊆ N ×N describes the set of all lines such that if there
is a transmission line between k and l then (k, l), (l, k) ∈ L.
Ti,k ∈ NT shows the transformer available between buses
(i, k) ∈ L. The apparent power of the connected generator
and load to the bus i is expressed as Sg,i = Pg,i + jQg,i and
Sd,i = Pd,i + jQd,i, respectively. Besides, the apparent power
flow from bus i to bus k through (i, k) ∈ LU is presented asSi,k.
Stack, respectively, the voltages and currents in common vectors
as v = [v1, v2, . . . , vN ] and i = [i1, i2, . . . , iN ]. Note that N
signifies the number of all buses. Let us define a component
of the nodal admittance matrix Y ∈ RN×N as yij , where yij
describes the mutual admittance between the buses i and j, and
yii shows the total admittance connected to the bus i.

B. Objective Functions

1) Minimization of the Total Fuel Cost (fC): The operation
cost fC is the main objective, which should be minimized and
defines the fuel cost associated with each generator. This fuel
cost curve can be represented as a quadratic convex or a set of
piecewise-linear functions. Here, the fuel cost curve is modeled
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as a convex quadratic function [20], [21]

fC(Pg) =
∑

i∈G
ci2P

2
g,i + ci1Pg,i + ci0 (1)

where ci2, ci1, and ci0 are the fuel cost coefficients and Pg, i is
the power generation output of the generator i.

2) Minimization of Transmission Line Losses (PLoss): The
second objective function, which is imposed on the network and
must be optimized, is the active power loss PLoss. This function
can be defined as follows:

PLoss = Re

(
∑

i∈N
vii

∗
i

)
. (2)

3) Minimization of the Pollutant Emission (fE): The total
emission of generation is related to the fuel consumption of
the thermal units and can be considered as the second-order
polynomial form, such as the fuel cost function [22]

fE(Pg) =
∑

i∈G
ei2P

2
g,i + ei1Pg,i + ei0 (3)

where ei2, ei1, and ei0 are defined as the emission coefficients.
4) Constraints: Assuming the π-equivalent model of the

power network, currents, and voltages fulfill the i = Yv equa-
tion. In this way, the power balance equation and physical
constraints are defined in the following form:

vii
∗
i = Sg,i − Sd,i ∀i ∈ N (4a)

Pmin
g,i ≤ Pg,i ≤ Pmax

g,i ∀i ∈ G (4b)

Qmin
g,i ≤ Qg,i ≤ Qmax

g,i ∀i ∈ G (4c)

vmin
i ≤ |vi| ≤ vmax

i ∀i ∈ N (4d)

Qmin
b,i ≤ Qb,i ≤ Qmax

b,i ∀i ∈ N b (4e)

Tmin
i,k ≤ |Ti,k| ≤ Tmax

i,k ∀(i, k) ∈ L (4f)

|Si,k| ≤ Smax
i,k ∀(i, k) ∈ L. (4g)

In the above equation, | vi| signifies the voltage magnitude
of the ith bus. Qb,i denotes the shunt VAR injection of the ith
shunt compensator (i ∈ N b). The transformer ratio between bus
i ∈ N and bus k ∈ N belongs to the transformer, ti,k ∈ NT is
indicated by |Ti,k|, wherein (i, k) ∈ L. Superscripts “min” and
“max” show, respectively, the upper and lower bounds related
to the determined variables.

III. MULTIOBJECTIVE PROGRAMMING

A. Model

Numerous real-world applications entail more than one ob-
jective function, which is needed to be optimized concurrently,
while a number of associated equality and inequality equations
must be satisfied. In this type of optimization, a single solu-
tion that optimizes all the objective functions and fulfills the
constraints does not exist. Rather, in that case, researchers deal
with a set of nondominated solutions. The following problem
defines the general formulation of multiobjective programming
problems:

minimize f(x,u)

subject to h(x,u) = 0, g(x,u) ≤ 0. (5)

Here, x is the vector of state variables containing slack bus
power, load bus voltages, reactive power generator outputs,
and transmission line loading. u is the vector of control vari-
ables comprising of generator real power outputs except for
the slack bus, generator voltages, transformer tap settings, and
reactive power injections. f(x,u) is the set of objective func-
tions as f(x,u) = [f1(x,u), f2(x,u), . . . , fnf

(x,u)]T . Be-
sides, h(x,u) and g(x,u) denote, respectively, the equality
and inequality constraints’ vectors, i.e., illustrating the power
balance as well as the upper and lower limits of variables. The
number of objective functions is defined by nf .

B. Semidefinite Programming

SDP can be defined as a generalization of linear programming
over the intersection of the cone of positive semidefinite matrices
with an affine space and let us define a semidefinite constraint, in
addition to the linear constraints set. SDP has an important role in
the combinatorial optimizations, where it is utilized to deal with
the nonlinear convex relaxations of quadratic NP-hard optimiza-
tion problems [23]. Then, all linear programs can be converted
as SDPs, and the polynomial optimization problems can also be
reformulated as an SDP form. Recall that the semidefiniteness
of a matrix is indicated by “�−,” i.e., IF A �− B THEN A−B is

positive semidefinite (A−B �− 0), and the eigenvalues of the

matrix A−B are all non-negative.
Using convex approaches for solving the OPF problem may

lead to some challenges arisen from NP-hardness and noncon-
vexity of a set of limitations. This matter can be handled by
converting a feasible set of the problem into a convex one. In
other words, constraints and objective functions in the nonlin-
ear form are changed to linear ones by replacing them into
the SDP variables and constraints form. A salient feature of
SDP is that the dual of SDP is also in the SDP form and the
associated dual problem can be obtained by applying Shor’s
relaxation. Therefore, if the obtained duality gap is zero, then
strong duality is held, and the Dual Lagrangian problem can
find the best possible bound. Although strong duality does not
easily obtain, some conditions are generally needed to place
on the problem under which a strong duality is obtained. One
of these so-called “constraint qualifications” is Slater’s condi-
tion. This means, if the primal problem is convex and Slater’s
condition is satisfied, then strong duality is held, and the pri-
mal problem along with the dual problem can have the same
solutions [24].

C. ε-Constraint Scalarization Method

As previously noted, the decision makers attempt to find
the “most preferred” alternative among the obtained solutions
through solving a multiobjective problem. To do so, the primal
multiobjective problem should be turned into a single-objective
one, and a collection of noninferior alternatives should be
obtained. This is regarded as a scalarized problem used for
changing a multiobjective problem into a simple single-objective
problem. It should be noted that the appropriate solutions give
a guarantee for obtaining the optimal Pareto set [25]. A brief
review of the ε-constraint method can be found in [26].

1) ε-Constraint: The main objective function is singled out
in the ε-constraint method, and the other ones are considered as
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inequality constraints, as follows:

min fm(x,u)

subject to h(x,u) = 0

g(x,u) ≤ 0, fi(x,u) ≤ εi , i = 1, . . . , nf and i �= m
(6)

where fi(x,u) defines the objective functions switched over to
the inequality constraints and εi is the upper bound of the ith
extra inequality constraint andx represents the vector of decision
variables, which comprises dependent and control variables.

IV. PROPOSED MODEL

A. Reformulation and SDP Relaxation

Generally, the presence of the multiple local minima of a prob-
lem makes it a big challenge in global optimization. Intrinsically,
the nonlinear interrelation among the physical parameters of the
electrical network causes nonlinearity and nonconvexity of the
OPF problem [27]. On the other hand, taking account of several
objectives created the additional complexity of the problem.
Hence, convexifying this fundamental problem can make the
problem be solved more efficiently than a general case. It should
be noticed that a MOOP is convex if all objective functions
and the feasible region are convex. This section represents the
reformulation of the MO-OPF problem with economic, loss, and
emission minimization objectives into a framework that permits
it to be handled as an SDP form. To do so, let ei denote the
ith column of the standard basis and vi = vdi + jvqi denote the
complex voltage of bus i ∈ N . Consider the vector V ∈ R2N

comprising the real and imaginary parts of the voltage coor-
dinates as V = [vd1, . . . , vdN , vq1, . . . , vqN ]. Using the admit-
tance matrix Y, some new matrices are defined as Yi := eie

T
i Y

and Yi,k = (ỹi,k + yi,k) eie
T
i − (yi,k) eke

T
k , and then based on

these matrices, some other necessary constant matrices, namely
Yi, Ỹi, Yi,k, Ỹi,k, can be described as follows:

Yi :=
1

2

(
Yi + Y H

i

)
Ỹi :=

j

2

(
Yi − Y H

i

)
(7)

Yi,k :=
1

2

(
Yi,k + Y H

i,k

)
Ỹi,k :=

j

2

(
Yi,k − Y H

i,k

)
(8)

Mi := eie
T
i (9)

where the superscript H points out the conjugate transpose of
the related matrix. The above matrices are described in more
detail in the Appendix.

Using the above matrices, the OPF parameters can be rewrit-
ten. In view of these matrices, squared voltage magnitude is
represented as tr (VTMiV), wherein “tr” demonstrates the
trace of a square matrix. Recall that the sum of diagonal
components is known as the trace of a matrix. The net ac-
tive and reactive power injections at the bus i are defined as
Pinj,i = Pg,i − Pd,i and Qinj,i = Qg,i −Qd,i ∀i ∈ G, which
can be rewritten by the above matrices as Pinj,i = tr(VTYiV)

and Qinj,i = tr (VT ỸiV) ∀i ∈ N . Besides, the active and
reactive power transferred from bus i ∈ N to bus k ∈ N are
described, respectively, as Pi,k = tr(VTYi,kV) and Qi,k =

tr (VT Ỹi,kV). Assume that each bus i ∈ N includes a variable
shunt element within a specified range. The upper and lower
bounds of these elements are fixed at zero if associated buses

have no shunts. Accordingly, (4c) can be rewritten as follows:

Qmin
g,i −Qd,i +Qb, i ≤ Qinj, i ≤ Qmax

g,i −Qd,i +Qb, i ∀i ∈ N

(if i ∈ N \G then Qmax
g,i

= Qmin
g,i = 0, if i /∈ N b then Qb,i = 0). (10)

Besides, tap ratios of the transformers are considered as the
other controllable parameters. Taking unknown tap ratios of
the two-port, Π block of the transformer into consideration,
are appeared in a nonlinear form in the admittance matrix. To
avoid this issue, another type of modeling must be employed
[28]. To this end, assume that every tap-changing transformer
connected between buses i and k in the system is replaced with
an ideal transformer connected between two real/virtual buses
i and k′, along with some lumped elements (series resistance,
leakage reactance, and so on). Define Pi,k′ and Qi,k′ as the
active and reactive powers transferred from the bus i to the
rest of the network and consider the admittance matrix Y after
eliminating the transformer. Consider the line flow limits for all
lines, apart from the lines, including transformers. Furthermore,
add the extra condition related to the lines with transformers as
P ′2
i,k +Q′2

i,k ≤ (Smax
i,k′ )2. Actually, modeling a transformer in this

way may be needed to define a virtual bus such as k′. Note that
the transformer is considered ideal, and the admittance shown
is related to the line (i, k) ∈ L and may be for the nonideal
transformer (before modeling). Additional information about
this modeling is available in [28].

B. MO-OPF Problem Formulated as SDP

1) Modeling of the MO-OPF Problem Considering two Objec-
tive Functions: Generally, the MO-OPF problem, with the goal
of minimization of production cost and transmission losses, can
be arranged as an aggregation of the selected objective functions
and constraints as follows:

min [fC(x,u), PLoss(x,u)] (11a)

subject to (4a)−(4g) (11b)

where fC and PLoss describe the cost and loss functions, respec-
tively. Accordingly, equivalent reformulation of the MO-OPF
problem formula, introducing a new variable W := VVT can
be expressed as problem (12). It should be noticed that a given
matrix W is equivalent to VVT if and only if W is a rank-one
symmetric positive semidefinite matrix

min

[
∑

i∈G

{
ci2(tr(YiW ) + Pd, i)

2

+ ci1 (tr(YiW ) + Pd,i) + ci0

}
,
∑

i∈N
tr(YiW )

]

(12a)

subject to

Pmin
g,i − Pd,i ≤ tr(YiW ) + Pi,k′ ∀i, k′ ∈ N (if i, k′ ∈ N \G

then Pmin
g,i = 0, if (i, k′) /∈ NT then Pi,k′ = 0) (12b)

tr(YiW ) + Pi,k′ ≤ Pmax
g,i − Pd,i ∀i, k′ ∈ N (if i, k′ ∈ N \G

then Pmax
g,i = 0, if (i, k′) /∈ NT then Pi,k′ = 0) (12c)
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Qmin
g,i −Qd, i +Qb, i ≤ tr(ỸiW )

+ Qi,k′ ∀i, k′ ∈ N (if i, k′ ∈ N \G

then Qmin
g,i = 0, if i /∈ N bthen

Qb, i = 0, if (i, k′) /∈ NT then Qi,k′ = 0) (12d)

tr(ỸiW ) +Qi,k′ ≤ Qmax
i −Qd,i

+Qb,i ∀ i, k′ ∈ N (if i, k′ ∈ N\G
then Qmax

i = 0, if i /∈ N b then

Qb,i = 0, if (i, k′) /∈ NT then Qi,k′ = 0) (12e)

(vmin
i )2 ≤ tr(MiW ) ∀i ∈ N (12f)

tr(MiW ) ≤ (vmax
i )2 ∀i ∈ N (12g)

Qmin
b,i ≤ Qb,i ∀i ∈ N b (12h)

Qb,i ≤ Qmax
b,i ∀i ∈ N b. (12i)

Equations (12j)–(12o) are corresponding to the transformers
[28]

(Tmin
i,k′ )2tr(Mk′W ) ≤ tr(MiW ) ∀(i, k′) ∈ N T (12j)

tr(MiW ) ≤ (Tmax
i,k′ )2tr(MiW ) ∀(i, k′) ∈ N T (12k)

W i,N+k′ = W k′,N+i (12l)

W i,k′ �− 0 (12m)

WN+i,N+k′ �− 0 (12n)

⎡

⎢⎣
−(Smax

i,k′ )
2 Pi,k′ Qi,k′

Pi,k′ −1 0

Qi,k′ 0 −1

⎤

⎥⎦ ≺− 0 ∀(i, k′) ∈ NT (12o)

⎡

⎢⎣
−(Smax

i,k )2 tr(Yi,kW ) tr(Ỹi,kW )
tr(Yi,kW ) −1 0

tr(Ỹi,kW ) 0 −1

⎤

⎥⎦

≺− 0 ∀(i, k) ∈ Land(i, k) /∈ NT (12p)

W �− 0 (12q)

rank(W ) = 1. (12r)

Note that Schur’s complement formula is used to conclude
that (12o) and (12p) are equivalent to the line flow constraints
corresponding to the lines with and without transformers, re-
spectively. The constraint (12l) can be rewritten as

tr(M′
i,N+k′W ) = tr(M′

k′,N+iW ) ∀(i, k′) ∈ NT . (13)

Besides, the constraints (12m) and (12n) are rewritten as
follows:

tr(M′
i,k′W ) ≥ 0 ∀(i, k′) ∈ NT (14)

tr(M′
N+i,N+k′W ) ≥ 0 ∀(i, k′) ∈ NT (15)

where M′
m,n shows a 2N × 2N matrix whose (m,n) and

(n,m) entries are equal to 1 and 0 otherwise. In the whole
modeling process, first, it is presumed that all buses are equipped
with generators and shunt elements, and if some bus i does not

have one of these parameters, the associated extreme values are
set to zero. Besides, whenever the bus i is not connected to any
load, then Pd,i + jQd,i = 0.

2) Modeling of the MO-OPF Problem Considering Three Ob-
jective Functions: Primal problem considering three objective
functions, i.e., minimization of production cost, transmission
losses, and pollutant emission can be defined as (16),

min [fC(x,u), PLoss(x,u), fE(x,u)] (16a)

subject to (4a)−(4g) . (16b)

To model the MO-OPF problem with three objective func-
tions, based on the SDP formulation, the following general
scheme is proposed:

min

[
∑

i∈G

{
ci2(tr(YiW ) + Pd, i)

2 + ci1 (tr(YiW ) + Pd, i)

+ ci0

}
,
∑

i∈N
tr(YiW ),

∑

i∈G
ei2

×{tr(YiW ) + Pd, i}2 + ei1 {tr(YiW ) + Pd, i}+ ei0

]

(17a)

subject to (12b)−(12k) , (12o)−(12r) , (13)−(15) . (17b)

C. SDP Relaxation of the Multiobjective Problems

Actually, at this point, it seems that problems (12) and (17)
are as much difficult as problems (11) and (16), respectively, and
there is no significant change. However, the reformulated version
reveals us to detect the major difficulty in handling problems (12)
and (17). Indeed, the rank-one constraint rank(W ) = 1 is the
only nonconvex constraint in these problems. Accordingly, we
can drop it to attain the following SDR framework of the OPF
problem (12):

min

[
∑

i∈G

{
ci2(tr(YiW ) + Pd, i)

2

+ ci1 (tr(YiW ) + Pd, i) + ci0

}
,
∑

i∈N
tr(YiW )

]

(18a)

subject to (12b)−(12k) , (12o)−(12q) , (13)−(15) . (18b)

The general SDR framework for the triobjective problem can
be formulated as follows:

min

[
∑

i∈G

{
ci2(tr(YiW ) + Pd, i)

2

+ ci1 (tr(YiW ) + Pd,i) + ci0

}
,
∑

i∈N
tr(YiW ),

∑

i∈G
ei2{tr(YiW ) + Pd,i}2 + ei1 {tr(YiW ) + Pd,i}+ei0

]

(19a)

subject to (18b) . (19b)
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In order to generate Pareto optimal solutions, the ε-constraint
method assumes that the objectives can be arranged according to
their importance. Accordingly, let us assume that the cost func-
tion is the most important and the minimization of transmission
losses, and pollutant emissions are in the next ranks. Therefore, a
sequence of single-objective optimization problems based on the
SDP formulation for two and more objective functions must be
solved as (20) and (21), respectively, such that each run generates
one Pareto efficient solution

min
∑

i∈G

{
ci2(tr(YiW ) + Pd,i)

2

+ ci1 (tr(YiW ) + Pd,i) + ci0

}
(20a)

subject to (18b) (20b)
∑

i∈N
tr(YiW ) ≤ ε2,n2

, n2 = 0, 1, . . . , p2 (20c)

and

min
∑

i∈G

{
ci2(tr(YiW ) + Pd,i)

2

+ ci1 (tr(YiW ) + Pd,i) + ci0

}
(21a)

subject to (18b) (21b)
∑

i∈N
tr(YiW ) ≤ ε2,n2

, n2 = 0, 1, . . . , p2 (21c)

∑

i∈G
ei2{tr(YiW ) + Pd, i}2 + ei1 {tr(YiW ) + Pd, i}

+ ei0 ≤ ε3,n3
,

n3 = 0, 1, . . . , p3. (21d)

Here, p2 and p3 represent the density of Pareto solutions
related to the minimization of loss and pollutant emission, re-
spectively. Recall that the different values of parameters located
within the right sides of limited objective functions lead to
different results, which can be obtained according to the range
of these functions.

The OPF problem is, in general, a highly nonconvex and
NP-hard problem. Actually, extracting the optimal solution of
the problem V∗, which is rank one, from a globally optimum
W ∗, is deep trouble. Hence, handling the dual problem of the
reformulated relaxed problem may help. To do so, first of all,
the Lagrange multiplier of each semidefinite constraint must
be defined. λi, γi

, μ
i
, β

i
, and τ i are used to represent the

Lagrange multipliers corresponding to lower inequality con-
straints related to the active power (12b), reactive power (12d),
the magnitude of voltage (12f), injected reactive power by
shunt element (12h), and transformer tap configuration (12j),
respectively. Moreover, the Lagrange multipliers connected to
upper inequality limitations related to active power (12c), re-
active power (12e), voltage magnitude (12g), injected reactive
power by shunt element (12i), and transformer tap configuration
(12k) are considered, respectively, by λ̄i, γ̄i, μ̄i, β̄i, and τ̄i,
respectively. Lagrange multipliers for constraints (13)–(15) are
denoted by χ′

i,k, χ′′
i,k, and χ′′′

i,k, respectively. In addition, the
Lagrange multipliers related to positive semidefinite matrices
in (12o) and (12p) are considered y as two 3× 3 symmetric

matrices with �mn
i,k entries in which for every line (i, k) ∈ L

maybe (i, k) ∈ / /∈ NT and for m �= n → �mn
i,k = �nmi,k . Note

that the quadratic production cost function can be stated by the
epigraph formulation fC(Pg) ≤

∑
i∈G tfC ,i, tfC ,i ≥ 0 and

then by implementing the concept of Schur’s complement, can
be reformulated as
[
ci1tr(YiW )− tfC ,i + afc, i

√
ci2tr(YiW ) + bfC , i√

ci2tr(YiW ) + bfC ,i −1

]

≺− 0 ∀i ∈ G (22)

where the unknown parameters used in (22) are described as
{
afC , i := ci0 + ci1Pd, i

bfC , i :=
√
ci2Pd, i

and tfC , i is some scalar variable. Therefore, a 2× 2 symmetric
matrix as

RfC ,i :=

[
1 R12

fC ,i

R12
fC ,i R22

fC ,i

]

is needed to demonstrate the Lagrange multipliers associated
with the positive semidefinite matrix of the cost function. Be-
sides, the Lagrange multiplier related to the inequality constraint
(21c) is indicated by ηε2, n2

. Finally, consider the set of dual mul-
tipliers related to (12b)–(12k), (14), (15), and (20c) constraints
by Z, the linear matrix inequalities subject to (12o)–(12q) and
(22) by R and the linear equality constraint (13) by R′. Now,
the dual OPF problem based on the SDP formulation can be
modeled using defined Lagrange multipliers.

D. Dual OPF

1) Dual OPF: Dual problem of single-objective OPF prob-
lem considering the minimization of fuel cost as an objective
function.

Define a real-valued function ϕ

ϕ(Z,R,R′) :=
∑

i∈N

{
λiP

min
g,i − λ̄iP

max
g,i +λfC ,iPd,i + γ

i
Qmin

g,i

− γ̄iQ
max
g,i + γiQd,i + μ

i
(vmin)

2 − μ̄i(vmax)
2

+β
i
Qmin

b,i − β̄iQ
max
b,i

}
+
∑

i∈G

{
ci0 −R22

fC ,i

}

−
∑

(i,k)∈L&/∈NT

{
(Smax

i,k )2�11i,k + �22i,k + �33i,k

}

−
∑

(i,k′)∈NT

{
(Smax

i,k′ )
2�11i,k′ + �22i,k′ + �33i,k′

}

(23)

and define linear matrix inequality A

A(Z,R,R′) :=
∑

i∈N

{
λfC ,iYi + γiỸi + μiMi

}

+
∑

(i,k)∈L, /∈NT

{
2�12i,kYi,k + 2�13i,kỸi,k

}

+
∑

(i,k′)∈NT

{
Mk′

(
τ i,k′(Tmin

i,k′ )
2 − τ̄i,k′(Tmax

i,k′ )2
)
+ τi,k′Mi
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+ χ′
i,k′ (M′

i,N+k′ −M′
k′,N+i)− χ′′

i,k′M′
i,k′

−χ′′′
i,k′M′

N+i,N+k′
}

(24)

where

λfC ,i :=

{−λi + λ̄i + ci1 + 2R12
fC ,i

√
ci2 ∀i ∈ G

−λi + λ̄i, otherwise

and
{
γi := −γ

i
+ γ̄i

μi := −μ
i
+ μ̄i

∀i ∈ N , τi,k′ := −τ i,k′ + τ̄i,k′

∀(i, k′) ∈ NT .

Then, the dual OPF problem taking minimization of total fuel
cost into account as the objective function is structured as

max ϕ (Z,R,R′) (25a)

subject to

A(Z, R,R′) �− 0, R �− 0, Z ≥ 0 (25b)

γ
i
− γ̄i − β

i
+ β̄i = 0 ∀i ∈ N b (25c)

− λi + λ̄i + λk′ − λ̄k′ + 2�12i,k′ = 0 ∀(i, k′) ∈ NT (25d)

− γ
i
+ γ̄i + γ

k′ − γ̄k′ + 2�13i,k′ = 0 ∀(i, k′) ∈ NT . (25e)

Dual constraints (25c)–(25e) are, respectively, associated with
scalar variables Qb,i, Pi,k′ , and Qi,k′ .

2) Dual OPF: Dual problem of single-objective OPF problem
considering the minimization of loss as an objective function

ϕ (Z,R,R′) :=
∑

i∈N

{
λiP

min
g,i − λ̄iP

max
g,i + λPLoss,iPd,i

+ γ
i
Qmin

g,i − γ̄iQ
max
g,i + γiQd,i + μ

i
(vmin)

2 − μ̄i(vmax)
2

+β
i
Qmin

b,i − β̄iQ
max
b,i

}

σ tPLoss, −
∑

(i,k)∈L & /∈NT

{
(Smax

i,k )2�11i,k + �22i,k + �33i,k

}

−
∑

(i,k′)∈NT

{
(Smax

i,k′ )
2�11i,k′ + �22i,k′ + �33i,k′

}
(26)

and

A(Z,R,R′) :=
∑

i∈N

{
λPLoss,iYi + γiỸi + μiMi + σ

∑

i∈N
Yi

}

+
∑

(i,k)∈L&/∈NT

{
2�12i,kYi,k + 2�13i,kỸi,k

}

+
∑

(i,k′)∈NT

{
Mk′

(
τ i,k′(Tmin

i,k′ )
2 − τ̄i,k′(Tmax

i,k′ )2
)
+ τi,k′Mi

+ χ′
i,k′ (M′

i,N+k′ −M′
k′,N+i)− χ′′

i,k′M′
i,k′

−χ′′′
i,k′M′

N+i,N+k′

}
(27)

where λPLoss,i := −λi + λ̄i ∀i ∈ N . Note that in the primal
problem, loss minimization function is considered as

∑

i∈N
tr(YiW ) ≤ tPLoss

, tPLoss
≥ 0 ∀i ∈ N (28)

where tPLoss
is a scalar variable such as tfC . Besides, σ is used as

the Lagrange multipliers related to the constraint (28). Regarding
dual multiplier of constraint (28) in the set of Z, the duality of
the SDP model of OPF problem is considered as

max ϕ (Z,R,R′) (29a)

subject to (27) , (25c)−(25e) . (29b)

3) Dual OPF: Dual problem of multiobjective OPF problem
considering the cost minimization as the main objective and
loss minimization as the secondary objective based on the ε-
constraint method.

The dual formulation of the combined two last OPF problems
over the ε-constraint method, as stated in (12), can be obtained
as (32). Recall that the cost minimization is specified as the
main target, and loss minimization of the transmission losses is
defined as a second objective, which is taken into account as a
new limitation. The dual model of the final relaxed form of SDP
problem is presented as follows:

ϕ (Z,R,R′) :=
∑

i∈N

{
λiP

min
g,i − λ̄iP

max
g,i + λfC ,iPd,i

+ γ
i
Qmin

g,i −γ̄iQ
max
g,i + γiQd,i+μ

i
(vmin)

2 − μ̄i(vmax)
2

+ β
i
Qmin

b,i − β̄iQ
max
b,i

}
+
∑

i∈G

{
ci0 −R22

fC ,i

}

−
∑

(i,k)∈L&/∈NT

{
(Si,k)

2�11i,k + �22i,k + �33i,k

}

−
∑

(i,k′)∈NT

{
(Smax

i,k′ )
2�11i,k′ + �22i,k′ + �33i,k′

}
− ηε2,n2

ε2,n2

(30)

and

A(Z,R,R′) :=
∑

i∈N

{
λfC ,iYi + γiỸi + μiMi

}

+ ηε2,n2

∑

i∈N
Yi +

∑

(i,k)∈L&/∈N T

{
2�12i,kYi,k + 2�13i,kỸi,k

}

+
∑

(i,k′)∈NT

{
Mk′

(
τ i,k′(Tmin

i,k′ )
2 − τ̄i,k′(Tmax

i,k′ )2
)
+ τi,k′Mi

+ χ′
i,k′ (M′

i,N+k′ −M′
k′,N+i)− χ′′

i,k′M′
i,k′

−χ′′′
i,k′M′

N+i,N+k′

}
. (31)

Dual form of SDP problem can be expressed as a linear
function to be maximized as

max ϕ (Z, R,R′) (32a)

subject to (31) , (25c)−(25e) . (32b)

4) Dual OPF (iv): Dual problem of multiobjective OPF
problem considering the cost function minimization as the main
objective and loss as well as the pollutant emission minimization
as the other objectives based on the ε-constraint method.

Considering a scalar tfE ,i ≥ 0 for every i ∈ G to define the
convex quadratic emission function as an inequality constraint
by the epigraph formulation fE(Pg) ≤

∑
i∈G tfE ,i. Now, this

new constraint can be rewritten by Schur’s complement formula
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to turn it as an SDP constraint
[
ei1tr(YiW )− tfE ,i + afE ,i

√
ei2tr(YiW ) + bfE ,i√

ei2tr(YiW ) + bfE ,i −1

]

≺− 0 ∀i ∈ G (33)

where
{
afE ,i := ei0 + ei1Pd,i

bfE ,i :=
√
ei2Pd,i.

Moreover, (25d) can be expressed based on the scalar tfE ,i as
follows:

∑

i∈G
tfE ,i ≤ ε3,n3

, n3 = 0, 1, . . . , p3. (34)

The Lagrange multipliers corresponding to the linear matrix
inequality (35) are defined as a 2× 2 symmetric matrix

RfE ,i :=

[
R11

fE ,i R12
fE ,i

R12
fE ,i R22

fE ,i

]

and also, the Lagrange multiplier associated with (34) is denoted
by ϑε3,n3

. Then, considering the dual multiplier of (33) in the
set of R and the Lagrange multipliers of constraints (21c) and
(34) in the set of Z, real-valued function ϕ and linear matrix
inequality A can be defined as follows:

ϕ(Z,R,R′) :=
∑

i∈N

{
λiP

min
g,i − λ̄iP

max
g,i +λfC ,iPd,i + γ

i
Qmin

g,i

− γ̄iQ
max
g,i +γiQd,i + μ

i
(vmin)

2−μ̄i(vmax)
2

+β
i
Qmin

b,i − β̄iQ
max
b,i

}
+
∑

i∈G

{
ci0 −R22

fC ,i

}

−
∑

(i,k)∈L&/∈NT

{
(Si,k)

2�11i,k + �22i,k + �33i,k

}

−
∑

(i,k′)∈NT

{
(Smax

i,k′ )
2�11i,k′ + �22i,k′ + �33i,k′

}

− ηε2,n2
ε2,n2

+ ϑε3,n3
ε3,n3

(35)

and

A(Z,R,R′) :=
∑

i∈N

{
λMO,iYi + γiỸi + μiMi

}

+ ηε2,n2

∑

i∈N
Yi +

∑

(i,k)∈L&/∈NT

{
2�12i,kYi,k + 2�13i,kỸi,k

}

+
∑

(i,k′)∈NT

{
Mk′

(
τ i,k′(Tmin

i,k′ )
2 − τ̄i,k′(Tmax

i,k′ )2
)
+ τi,k′Mi

+ χ′
i,k′ (M′

i,N+k′ −M′
k′,N+i)− χ′′

i,k′M′
i,k′

−χ′′′
i,k′M′

N+i,N+k′

}
(36)

where

λMO,i :=

⎧
⎪⎨

⎪⎩

−λi + λ̄i + ci1 + 2R12
FC,i

√
ci2

+ ei1R
11
FE,i + 2R12

FE,i

√
ei2 ∀i ∈ G

−λi + λ̄i, otherwise.

Fig. 1. Connection among different presented OPF optimization problems
(∗: ↔ shows the equivalence).

Now, the dual form of the triobjective OPF problem based on
SDP is then given by

max ϕ(Z,R,R′) (37a)

subject to(36), (25c)− (25e) . (37b)

Assume that there is no duality gap for every typical OPF
problem corresponding to the configuration of the admittance
matrix Y. Then, the duality gap is zero for the convex model of
MO-OPF problems (32) and (37) as well so that the globally
optimal solutions of these problems can be retrieved in the
polynomial time. This means that dim (null(A(Z, R,R′)) ≤ 2
is satisfied in each subproblem produced by the ε-constrained
method and then owing to the complementary slackness condi-
tion, we have tr(AW ) = 0 [29], thusrank(W ) ≤ 2. “null” and
“dim” denote, respectively, the null space and the dimensions
of the given matrix. At long last, if binding voltage magnitude
constraint [30] or other binding constraints [31] are identified,
and on the other hand, if reference bus angle is assumed zero,
then a unique rank-one solution can be extracted from rank-two
solutions in each subproblem of the MO-OPF problem. Fig. 1
demonstrates plainly all of the reformulation steps.

V. TEST RESULTS

To test the effectiveness of the proposed single and the
MO-OPF models, different benchmark problems including the
standard IEEE 30-, 57-, and 118-bus test systems and also a real
Indian utility 62-bus test system have been considered with the
following characteristics.

1) The IEEE 30-bus system comprises 30 buses, 41 branches,
nine reactive power compensators, four transformers, and
six generators. This optimization problem has 24 vari-
ables. The operation data of the IEEE 30-bus system are
available in [32].

2) For the IEEE 57-bus system, the limits of the control vari-
ables, along with the other necessary data, are extracted
from [33]. This system consists of 80 transmission lines,
seven generators at buses 1–3, 6, 8, 9, and 12, and 15
branches are under load tap setting transformer. Shunt
VAR injections are considered at the buses 18, 25, and
53. The total load demand for the system is 1250.8 MW
and 336.4 MVAR.

3) IEEE 118-test system is including 54 thermal units, 64
load buses, and 186 transmission lines. The necessary
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Fig. 2. Pareto-optimal front of the SDP and NSAGA-II algorithms for (a) IEEE 30-bus test system, (b) IEEE 57-bus test system, and (c) IEEE 118-bus test
system.

data of this system are available in [13]. This system
consists of 129 control variables, namely 54 active powers
of generators and bus voltages, nine taps of tap-changer
transformers, and 12 shunt reactive power sources.

4) Indian utility 62-bus system [22], [34] consists of 19
generating units, 89 lines, 11 tap-changing transformers,
and nine possible injected VAR sources. The taps of trans-
formers can be taken between 0.9 p.u. and 1.1 p.u. and
reactive power sources, each having 30 MVAr capacity
that is installed at bus numbers 12, 13, 15, 17, 20, 21, 23,
24, and 29.

For a better comparison of the results, the simulations are
carried out on two different cases categorized as cases I and II;
Case I: In this case study, the MO-OPF model with fuel cost
and loss minimization as a biobjective optimization framework
is optimized, Case II: In this case, the problem with fuel cost,
transmission loss, and emission minimization as three compet-
ing objectives is optimized. For all simulations, MATLAB-based
toolbox “YALMIP” with the solver “SeDuMi” 1.3 as an SDP
solver with tolerance parameter eps 10−8 is used. In the pur-
suance of making a better comparison, the nondominated sorting
genetic algorithm II (NSGA-II) [35], [36] has been used to solve
the MO-OPF problems in the same run environment.

Furthermore, the results of the proposed model are compared
with the results of several state-of-the-art algorithms. The pa-
rameters of NSGA-II are set as follows.

The maximum generation and the population size are 220 and
50 for both the IEEE 30-bus, 57-bus, and Indian utility 62-bus
system; 320 and 520 for the IEEE 118-bus system, respectively

1) crossover distribution index and mutation distribution in-
dex are selected 0.8;

2) the number of the run for each case study is chosen 50.
All simulations are performed in MATLAB software (R2016a

version) on a laptop with a 64-bit Intel-7500U CPU, Core i7,
2.90-GHz CPU, and 12 GB of RAM.

A. Case I: Biobjective OPF Optimization

Recall that the first step in the ε-constraint method is to
construct the payoff table [25]. To this end, it is essential to obtain
the extreme values of both objectives, and initially conduct the
SDR of single-objective problems. In accordance with the article
presented in [30], 10−5 p.u. resistance is added to the lines
with zero resistance for multiobjective problems. Accordingly,
in pursuance of determining the maximum spread of the SDP

algorithm, we have added the least resistance to these lines in the
single-objective modeling. The ideal minimum points obtained
for single-objective problems considering the operating and se-
curity constraints for the IEEE 30-, 57-, and 118-bus systems are
shown in Fig. 2. To analyze how SDP based on the ε-constrained
method behaves with the multiobjective problems, in addition
to the cost minimization, which is an integral objective function
of the power systems, we are also interested in minimizing the
total loss minimization as a competing objective function.

Generally, the experiments aim to evaluate two leading prop-
erties of the SDP model: First, the ability to find adequate
Pareto fronts for different-scale problems. Second, the required
running time for obtaining the nondominated solutions. In order
to thoroughly assess the proposed model based on the SDP, three
different-scale (IEEE 30-, 57-, and 118-bus) systems have been
considered in this article. Optimal compromise solutions of all
test cases selected by Fuzzy multicriteria decision makers have
been listed in Table I. Notice that having the multiple objectives,
a set of outcomes are obtained. So, a tradeoff condition should
be achieved between the different outcomes in which the most
compromise solution should be determined. This procedure is
handled through the fuzzification process. This alternative satis-
fies all objectives in the best way possible in contrast to the other
ones. The total membership function (total degree of optimality)
of each Pareto optimal solution is calculated regarding the indi-
vidual membership functions and the relative importance of the
objective functions (wi). More detailed information about this
process can be found in [39]. Table I provides a comparison of the
results obtained using the SDP model in the present article with
NSGA-II and those reported in the literature for multiobjective
cases.

The best compromises of SDP are displayed in boldface.
Fig. 2(a)–(c) represents a representative set of Pareto fronts
computed by SDP and NSGA-II for all case systems. The
horizontal axes denote the cost minimization objective, while
the minimization of active loss is displayed on the vertical axes.
The BCS presented in Table I have been marked in this figure,
and for better clarity, these graphs are redrawn. Analyzing the
results mentioned above, the interpretation of associated Pareto
front approximations for all case systems leads to three points
as follows.

1) For each test case, all solutions that are not all dominated
in the Pareto set obtained by SDP satisfy the numerical
rank-one condition, and the globally optimal point for each
scenario can be acquired in polynomial time. However,
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TABLE I
COMPARISON OF THE BCS FOR IEEE 30-, 57-, AND 118-BUS TEST SYSTEMS

TABLE II
COMPARISON OF PERFORMANCE METRICS

the SDP model based on the ε-constraint method is able
to generate a global Pareto frontier with well distribution,
as shown in Fig. 2. A comparison of performance metrics
between SDP and NSGA-II shows exactly how uniformly
the nondominated fronts are distributed. The spacing [40]
metric (S), which determines how uniformly the nondomi-
nated front are distributed, and the set coverage [41] metric
[C(M,N)], which computes the ratio of Pareto points in N
that are weakly dominated by solutions of M, validate the
even distribution of SDP. These metrics are tabulated in
Table II.

2) The SDP method pays off for both cost and loss functions.
Since these functions conflict with each other, a significant
improvement of one function brings about a substantial
degradation in the other one. As an example, for the IEEE
30-bus system, the best compromise alternative can be
finally created with either a tradeoff between a 27.5916$/h
increase of fuel cost and a 3.2738 MW reduction in loss
with regard to the first generation, or a simultaneous loss
degradation of 2.4982 MW with 135.4666$/h cutback in
fuel cost to the following extreme solution. As another
instance, for case 57-bus, SDP obtains the best tradeoff
between objectives at a point with 42 350.5988$/h
and 10.2148 MW, i.e., fuel cost is 1.5477% less than
NSGA-II, 1.1432% less than MICA3 [33], 1.1549% less
than MICA2 [33], 1.1669% less than MICA1 [33], and
1.1807% less than ICA [33], and transmission losses is
7.4158% less than NGSA-II, 0.3554% less than MICA3
[33], 0.3593% less than MICA2 [33], 0.7391% less
than MICA1 [33], and 0.7264% less than ICA [33].
Furthermore, note that the transmission losses achieved
by NSGA-II for 118-bus test system (157.8906 MW)
in its BCS are even higher than the extreme solution
obtained by SDP, in terms of both cost and transmission
loss minimization.

3) The Pareto solutions obtained by the SDP model outper-
forms the nondominated solutions achieved by NSGA-II
in all cases and can generate much better sequences. In
other words, at the same level of the cost, the transmission

TABLE III
COMPUTED TIME FOR VARIOUS MULTIOBJECTIVE PROBLEMS IN MINUTES

loss attained by the SDP model is lower than that of
the well-known NSGA-II algorithm. At the other end of
the scale, the performance of the proposed SDP-based
MO-OPF algorithm is compared with those of the other
state-of-the-art algorithms, such as QOTLBO [10], MOHS
[10], TLBO [10], DE [7], ICA [33], MICA (1,2, and 3)
[33], BBO [13], and GSA [13]. From Table I and Fig. 2
can be best seen that the produced solutions of the SDP
model easily dominate the best compromising cost and
loss of those found by other methods for all test cases 30,
57, and 118.

Especially, the difference is noticeable clearly with increasing
the size and complexity of the systems. Notice that the IEEE 118-
bus system has been demonstrated similar characteristics such
as the small and medium case studies, even though this case has
higher computational complexity. This shows the accuracy and
superiority of the SDP-based method and its ability to generate
stronger Pareto optimum.

4) Finally, Table III demonstrates the execution time of
various case studies associated with the multiobjective
structure in minutes. As observed in this table, although
the calculated time for the SDP model is lower or near than
NSGA-II, the solver time of the proposed model increases
exponentially both in multiobjective and single-objective
problems [41].

This shows the main drawback of the standard SDP, especially
in cases where problems with larger scales are presented. How-
ever, it is worth mentioning that a slight reduction in the accuracy
of SeDuMi can lead to a significant reduction in computational
time. However, the Pareto set is generally obtained offline;
hence, the computational burden is not limitative.

B. Case II: Triobjective OPF Optimization

The next set of numerical analysis involves applying the triob-
jective SDP-based formulation presented in dual OPF (iv) on two
test systems. For the sake of brevity, a more-detailed comparison
based on the most preferred solution between the SDP model and
NSGA-II is given in Table IV. Although the Pareto front consists
of 50 efficient solutions, only one solution is chosen in order of
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TABLE IV
COMPARISON OF THE BCS FOR IEEE 30 AND INDIAN UTILITY 62-BUS TEST SYSTEMS

preference. To do so, two sets of weight factors including the
same importance for all objective functions as wCost=wEmission

=wLoss= 0.333 and two times more important for minimization
of cost fuel in comparison to the other objective as wCost =
0.500, wEmission = wLoss = 0.250 are considered in Table IV.
As expected, due to a change of importance of objective func-
tions, the production cost is reduced from 864.3504 ($/h) and
13904.9520 ($/h) to 814.2541 ($/h) and 13467.1825 ($/h) (when
the objective functions have the same importance) for the IEEE
30-bus and the Indian utility 62-bus test systems, respectively.
Looking at this table, some thought-provoking remarks can be
inferred: First, with both sets of weight factors, the BCS obtained
by SDP outperforms the NSGA-II technique. Second, it was
found in the numerical analysis that adding more objective func-
tions does not degrade the performance of the proposed model,
and the results corroborate that the SDP-based model is also a de-
pendable tool to solve the real-world multiobjective OPF prob-
lems, where multiple Pareto front solutions can be achieved by
changing ε.

VI. CONCLUSION

This article has provided a contribution to extend the convex
multiobjective models for the OPF problems based on SDP.
The ε-constrained method is effectively implemented for ap-
proximating the Pareto front solutions. Actually, this article
tries to prove that a zero duality gap for more complex power
problems can also be kept. Considered that the nonlinear ob-
jective functions of the MO-OPF problem are the total fuel
cost, transmission losses, and emission pollutants, where the
minimization of fuel cost is regarded as the leading objective,
and the other objectives are added to other inequality constraints
of the OPF problem. This article addresses the single-objective
problems at first with modeling all security and operational
constraints, more especially, considering control parameters,
such as tap-changing transformers and variable shunt elements.
After obtaining the extreme solutions, the nonconvex multi-
objective OPF problem based on the ε-constrained method
is modeled in a convex way using SDP. It has shown that
the proposed modeling can be successfully applied to various
scale systems, and all nondominated solutions in the Pareto
set satisfy the rank condition for each scenario produced by
the ε-constrained method and the obtained BCS are better than
those of the other methods. Moreover, comparison metrics to
assess the diversity property of Pareto front obtained by SDP,
NSGA-II, and other widely known algorithms verify the com-
putational efficacy, accuracy, and applicability of the SDP-based
framework.

APPENDIX

As a reminder, Yi, Ỹi, Yik, Ỹik, and Mi, which are used
in the processing of reformulation the OPF equations based on

SDP, are defined as follows according to [24]:
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Mi : =

[
eie

T
i 0

0 eie
T
i

]
. (A5)

If Pd,i + jQd,i is considered as the connected load to the
bus i, and also the injected power to bus i are regarded as
Pinj, i = Pg, i − Pd, i and Qinj, i = Qg, i −Qd, i, then the fol-
lowing equations can be obtained ∀i ∈ N and ∀(i, k) ∈ L:

Pinj,i = tr(VTYiV) (A6)

Qinj,i = tr (VT ỸiV) (A7)

Pi,k = tr (VTYi,kV) (A8)

Qi,k = tr (VT Ỹi,kV) (A9)

|Si,k|2 = {tr(VTYi,kV)}2 + {tr(VT Ỹi,kV)}2 (A10)

| vi|
2

= tr (VTMiV). (A11)

Now, using these matrices and by defining W : = VVT ,
problem (4) can be easily reformulated as problem (12) based
on SDP.
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