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Abstract 11 
In this paper, a methodology to solve Unit Commitment (UC) problem from a probabilistic perspective is developed 12 
and illustrated. The method presented is based on solving the Economic Dispatch (ED) problem describing the 13 
Probability Distribution Function (PDF) of the output power of thermal generators, energy not supplied, excess of 14 
electricity, Generation Cost (GC), and Spinning Reserve (SR). The obtained ED solution is combined with Priority 15 
List (PL) method in order to solve UC problem probabilistically, giving especial attention to the probability of 16 
providing a determined amount of SR at each time step. Three case studies are analysed; the first case study explains 17 
how PDF of SR can be used as a metric to decide the amount of power that should be committed; while in the second 18 
and third case studies, two systems of 10-units and 110-units are analysed in order to evaluate the quality of the 19 
obtained solution from the proposed approach. Results are thoroughly compared to those offered by a stochastic 20 
programming approach based on mixed-integer linear programming formulation, observing a difference on GCs 21 
between 1.41% and 1.43% for the 10-units system, and between 3.75% and 4.5% for the 110-units system, depending 22 
on the chosen significance level of the probabilistic analysis. 23 
© 2015 Elsevier Ltd. All rights reserved. 24 
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Nomenclature 26 

Sets 27 

݆ Index for conventional generators (݆ = 1, … ,  (ܬ
ݐ) Index for time step ݐ = 1, … , ܶ) 
݅ Index for the discrete states of discrete distribution ܩ௝௧ (݅ = 1, … ,  (ܫ
ݍ) Index for discrete states of forecasted wind power distribution ݍ = 1, … ,ܳ) 
ݐ Index for sampling point of output power at ݎ − ݎ) 1 = 1, … ,ܴ) 
݈ Discretization state (bin) of forecasted wind generation (݈ = 1, … ,  (ܮ

Parameters 28 

௝ܣ , ௝ܤ ,  ݆ ௝ Parameters of fuel consumption cost of unitܥ
ܷ ௝ܴ Ramp up rate limit of unit ݆ 
ܦ ௝ܴ  Ramp down rate limit of unit ݆ 
ܷܵ ௝ܴ Start-up ramp rate limit of unit ݆ 
ܦܵ ௝ܴ  Shut-down ramp rate limit of unit ݆ 
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ܵܪ ௝ܷ Hot start-up cost of unit ݆ 
ܵܥ ௝ܷ  Cold start-up cost of unit ݆ 
ܵܥ ௝ܶ  Cold start-up time of unit ݆ 
ܦܯ ௝ܶ Minimum down time of unit ݆ 
ܷܯ ௝ܶ Minimum up time of unit ݆ 
 ݐ ௧ Discretized distribution of forecasted wind generation at timeܩܹܣ
௠௔௫௧ܩܹܣ  Maximum forecasted wind generation at time ݐ 
௠௜௡௧ܩܹܣ  Minimum forecasted wind generation at time ݐ 
௧ߙ , ௧ߚ  Parameters of beta distribution at time ݐ 
 Battery wear cost ܥܹܤ
 Value of lost load ܮܮܱܸ
 Significance level of the probabilistic analysis ߛ
ܴܵ௥௘௤௧  Spinning reserve requirements at time ݐ 
 Discretization parameter of beta distribution ߜ

Variables 29 

 ݐ ௝௧ Output power of unit ݆ at timeܩ
 ݆ ௝௠௜௡ Minimum power generation of unitܩ
 ݆ ௝௠௔௫ Maximum power generation of unitܩ
݃௝,௥
௧ିଵ Power generation for unit ݆ and sampling point ݎ at time ݐ − 1 

݃௝,௥
௧,௠௔௫ Maximum power of unit ݆ at time ݐ (limited by ramp constraint and rated capacity) 

 ௝௧ܩ ௠௔௫ Maximum value of power to be represented on discrete distributionܩ
  ௝௧ܩ Discretization step of discrete distribution ܩ߂
,݅)௣ௗ௙ܩ ݆) Tabular representation of ܩ௝௧ for discrete state ݅ and unit ݆ 
 ݐ ௝௧ Start-up cost of unit ݆ at timeܥܷܵ
 ݐ ௧ Discretized distribution of consumed wind generation at timeܩܹܥ
 ݐ ௟௧ Forecasted wind generation for the state (bin) ݈ at time݃ݓܽ
 ݐ ௟௧ Consumed wind generation for the state (bin) ݈ at time݃ݓܿ
 ݅ ௜ Power value of the binܩ
 ௥ Sampling point of the interval [0,1]ߤ
 ௥ߤ ௠௔௫ Maximum value ofߤ
௠௜௡ߤ  Minimum value of ߤ௥ 
௠௜௡ߤ] Step used for sampling interval ߤ߂ ,  [௠௔௫ߤ
ܵܲ(݆,   ௝௧ିଵܩ Tabular representation of sampled points of distribution (ݎ
݊௤ Values of the support over the interval [0,1] of discretized beta distribution 
Ω Discretized beta distribution (interval [0,1]) 
߮ Intermediate variable for discretization of beta discretization 

௥ܲഥ {·} Calculation of a normalized probability value 

௥ܲ{·} Calculation of a probability value 
 Calculation of an expected value {·}ܧ
 ݐ ௧ Hourly load at timeܮܪ
 ݐ ௧ Hourly net load at timeܮܰܪ
 ݐ ௧ Discretized probability distribution of excess of electricity at timeܧܧ
 ݐ ௧ Discretized probability distribution of energy not supplied at timeܵܰܧ
 Discretized probability distribution of total generation cost ܭ
 Difference between generation cost obtained from proposed approach and reference method ܭ߂
ܴܵ௧ Discretized probability distribution of spinning reserve at time ݐ 
݇௥,௟ Total generation cost for sampling point ݎ and state (bin) ݈ 



݁݁௥௧ Excess of electricity for sampling point ݎ at time ݐ 
 ݐ at time ݎ ௥௧ Energy not supplied for sampling pointݏ݊݁
 ݐ at time ݎ ௥௧ Measurement of spinning reserve for sampling pointݎݏ
௝௧ݑ) ௝௧ Binary variable to represent offlineݑ = 0) or online (ݑ௝௧ = 1) conditions 
௢ܶ,௝
௧  Amount of time that unit ݆ has been online 
௙ܶ,௝
௧  Amount of time that unit ݆ has been offline 

௝ܥܥܨ
௔௩௚ Average fuel consumption cost of unit ݆ 

௝ܩ
௔௩௚ Average power production of unit ݆ 

 ݐ ௧ Cumulative committed capacity at timeܲܥ
ܷܲ ௝ܵ

௧ Element that corresponds to unit ݆ at time ݐ of primary unit scheduling 
 ௧ Increment of committed capacity due to forecasting errorܩܹܣ߂
 ݐ ௙௧ Mode of forecasted wind-generation probability distribution at timeܩܹܣ
ܵ Intermediate variable of addition of power generation process 

1. Introduction 30 

During many years, wind energy has experienced a relevant development from a technological and 31 
economic point of views, incrementing its participation and importance to supply energetic requirements 32 
in many countries around the world in order to reduce oil consumption and consequently the emission of 33 
Green-House Gases (GHG) [1]. However, the variability of wind resources is an aspect that limits the 34 
integration of wind power at high penetration due that the variability of wind power generation introduces 35 
uncertainty into the scheduling problem, which makes difficult determining the optimal amount of power 36 
that should be committed in order to compensate the variability with the lowest Generation Cost (GC). In 37 
fact, this problem has inter-temporal characteristics that depends on the integration level; according to the 38 
analysis of Electric Reliability Council of Texas (ERCOT) data [2], GC related to the variability of wind 39 
generation in the interval from 15 minutes to 1 hour decreases as capacity factor increases; or in other 40 
words, those wind farms installed in places with high wind resources has a low integration cost; however, 41 
the benefit obtained from the integration of an additional wind farm reduces suddenly. Regarding the 42 
emissions of GHG, wind power variability can impact their emissions in a negative way due that cycling 43 
units are partially loaded so that their efficiency is reduced while GHG emissions are increased; besides 44 
of this, a recent analysis of Spanish power system [3] suggests that reduction of CO2 emissions and their 45 
corresponding benefits are still important. 46 

Nowadays, solving Economic Dispatch (ED) and Unit Commitment (UC) problems considering 47 
uncertainty of wind power generation have been extensively analysed by many authors. This problem 48 
could be solved by applying scenario generation/reduction methods as well as probabilistic methods. 49 
Scenario generation/reduction methods have been widely suggested in the technical literature due to 50 
extreme operating conditions can be easily represented in order to obtain a robust and cost-effective 51 
schedule; for this reason, it is likely that this methodology being adopted and implemented by the power 52 
industry. Other approaches, still under development, are those based on probabilistic analyses, which 53 
studies the probabilistic optimization problem since an analytical point of view; these methodologies have 54 
not been totally accepted because the reliability of the obtained results from their implementation has not 55 
been proved yet [4]. 56 



A representative methodology to solve stochastic UC problem by scenario generation/reduction 57 
method was proposed by Tuohy et al. [5] at which, correlated scenarios of wind generation and hourly 58 
load are generated by means of Monte Carlo Simulation (MCS) approach; more specifically, by 59 
evaluating an Autoregressive Moving Average (ARMA) model in order to describe the inter-temporal 60 
characteristics of wind power time series. The optimization model used to determine UC solution is based 61 
on a mixed-integer, stochastic optimization formulation. Additionally, an operation policy based on 62 
rolling planning is implemented in order to take advantage of wind generation and hourly load predictions 63 
with lower forecasting error; in consequence, a more robust solution could be obtained. However, this 64 
approach can be carried out only analysing a scenario set with a reduced number of trials, which could be 65 
a source of error. To solve this problem, Ruiz et al. [6] proposed the incorporation of Spinning Reserve 66 
(SR) requirements for each scenario to improve the robustness of the solution; this strategy compensates 67 
the problems related to consider a limited number of scenarios. Other important conclusion of this study 68 
is related to the computational time, which notably increases with the number of scenarios due that the 69 
solution of the corresponding stochastic optimization problem requires the solution of the equivalent 70 
deterministic problem; in this sense, the implementation of decomposition techniques was suggested by 71 
the authors. Besides of this, other way to reduce computational efforts consists on relaxing the integrality 72 
constraint of fast-start units as well as representing generation unit outages as a load increment [7].  73 

Scenario generation/reduction method depends on the type and quality of trials used; in this sense, 74 
Constantinescu et al. [8] developed a tool able to integrate Numerical Weather Prediction (NWP) models 75 
on stochastic UC formulation, this tool allows us evaluating the capabilities of forecasting methods based 76 
on NWP from an operational point of view. According to the reported results, it was not found a 77 
considerable benefit from the intra-day operation, which contradicts those results reported by other 78 
authors whose used scenarios synthetically generated; this fact shows how the quality of the scenario set 79 
used can influence the day-ahead scheduling.  80 

Other approach previously proposed to solve stochastic UC is Chance-Constrained Programming 81 
(CCP); Ozturk et al. [9] developed an optimization model able to consider uncertainty of hourly load and 82 
its correlation so that unit scheduling is estimated in order to meet demand with a high probability over 83 
the scheduling horizon; the methodology is based on the solution of several deterministic UC problems 84 
which gradually converges to the final solution. In a similar way, Ding et al. [10] developed a scheduling 85 
model based on CCP at which, several stochastic variables such as hourly demand, generation unit forced 86 
outages, energy prices, and wind power generation are taken into account; this method changes 87 
probabilistic constraints by their corresponding deterministic ones; then, they are incorporated in a 88 
optimization problem solved by branch and bound algorithm.  89 

Modelling wind power uncertainty through a Markov process has been proposed in the literature, as 90 
well. In this regard, Hargreaves et al. [11] proposed the application of stochastic dynamic programming 91 
approach, where the optimization is represented by a two-stage problem using the recursive Bellman 92 
equation and wind power generation is modelled as a first-order Markov process through the 93 
corresponding transition matrix; to overcome the problems related to the analysis of large-scale systems, a 94 
unit aggregation algorithm based on Mixed-Integer Linear Programming (MILP) is developed.  95 



Another work in this field is proposed by Luh et al. [12] where was used a Markov process to model 96 
wind generation; then, stochastic UC problem is modelled in terms of states instead of scenarios, which 97 
allows us reducing the mathematical complexity due that the information related to the previous time 98 
steps is concentrated in the transition matrix; to consider extreme operating conditions, rare events are 99 
efficiently taken into account by means of importance sampling.  100 

More recently, other methodologies based on the combination of some of the approaches previously 101 
explained have been presented. Wang et al. [13] proposed the combination of CCP and Two-Stage 102 
Stochastic Programming (CCTS). CCTS is mathematically formulated in order to ensure the integration 103 
of the available wind generation with a high probability for each time step over the scheduling horizon; 104 
this model consists of a combined sample average approximation algorithm composed of scenario 105 
generation, convergence analysis, and solution validation, while the optimization model is formulated as a 106 
MILP problem. In other approach, Zhao et al. [14] proposed a model that combines two-stage stochastic 107 
UC and robust optimization; hence, a solution to stochastic UC problem with low generation cost and 108 
high robustness is reached. This approach incorporates weights at the objective function that can be 109 
adjusted by system operator according to its preferences, while optimization model is based on MILP 110 
formulation combined to Benders decomposition algorithm.  111 

Regarding probabilistic approaches, Hetzer et al. [15] proposed a model to solve ED problem at which 112 
wind power generation is modelled through a Weibull distribution evaluated on a linearized power curve 113 
of the wind farm, while the objective function is formulated in terms of fuel consumption cost, wind 114 
generation cost, cost related to the consumption of Excess of Electricity (EE), and SR provision; optimal 115 
power dispatch is analysed as a function of scale factor, SR cost, among others factors. Similarly, the 116 
model proposed by Liu et al. [16] includes wind generation as a constraint in the optimization problem 117 
and is numerically analysed through Lagrange multiplier approach, considering several values of shape, 118 
scale, and penetration factors. In other work, Liu [17] analyses the expected value of GC by means of a 119 
linear representation of the obtained solutions. Liu et al. [18] analytically study the Oxides of Nitrogen 120 
(NOx) emissions through a model expressed in terms of incomplete gamma function to describe the 121 
effects of wind generation on ED problem. Roy [19] presented an optimization model which analyses ED 122 
problem during a short duration interval (validity interval); this approach avoids stochastic relations on 123 
the optimization problem by taking advantage of the characteristics of aggregated wind generation; under 124 
this context, turbulence intensity is used to represent short variations. Osório et al. [20] proposed a model 125 
at which forecasting error is represented as a discretized Beta distribution and incorporated in ED 126 
problem under uncertainty. Besides of this, proposed model is able to probabilistically represent ramping 127 
capabilities of thermal generators and their GHG emissions. 128 

In this paper, a UC model that combines probabilistic ED model with Priority List (PL) method is 129 
described to represent all the variables of interest (power production of thermal units, Energy Not 130 
Supplied (ENS), EE, GC, and SR) by means of their discretized Probability Distribution Function (PDF), 131 
giving a completely analytical treatment to the UC problem under uncertainty. The rest of the paper is 132 
organized as follows: Section 2 briefly describes the probabilistic ED model; Section 3 describes the 133 
probabilistic UC model; Section 4 describes the analysis of three case studies to illustrate the capabilities 134 
of proposed analytical model. Finally, conclusions and remarks are presented in Section 5. 135 



2. Probabilistic economic dispatch 136 

Solving probabilistic ED problem consists on finding PDF of output power of conventional generators, 137 
ENS, GC, SR, and EE considering the uncertainty of wind generation. Fig. 1 presents a simplified 138 
representation of the system under study at which, wind generation is modelled by the aggregated wind 139 
generation; as can be observed wind generation is described by two PDF, one to represent the available 140 
wind generation (ܩܹܣ௧), and another one to represent the consumed or dispatched wind generation 141 
 Available wind generation is obtained from forecasting tools (ARMA models, NWP, etc.), while 142 .(௧ܩܹܥ)
consumed wind generation is obtained from the solution of probabilistic ED problem; by this way it is 143 
possible representing wind power curtailment from a probabilistic point of view. 144 

“See Fig. 1” 145 

The analytical approach used to solve probabilistic ED problem is composed by three processes [20]: 146 
discretization of the PDF of available wind generation, simplification of the PDF of conventional power 147 
generation at ݐ − 1, and inclusion of discretized PDF of forecasting error on probabilistic ED problem. 148 
These processes are briefly describes in the next sub-sections. 149 

2.1 Discretization of forecasting error probability distribution 150 

From the analysis of a one-year time series obtained from a real installation and simulations based on 151 
the persistence forecasting method; in [21], the capabilities of Beta distribution to model wind power 152 
forecasting error were extensively evaluated, concluding that this distribution can reasonably representing 153 
its fat-tailed characteristic. Nowadays, other probability distributions have been suggested in the literature 154 
(Versatile distribution [22], Lévy α-stable distribution [23], Cauchy distribution [24]); however, to 155 
illustrate our proposed methodology, in this paper Beta distribution is going to be used. The parameters 156 
used to model Beta distribution are those required to represent the shape of the PDF (ߙ௧ and ߚ௧) and those 157 
required to represent the minimum (ܩܹܣ௠௜௡௧ ) and maximum (ܩܹܣ௠௔௫௧ ) available wind power 158 
generation.  159 

Discretization process used in this paper was initially proposed by Punzo and Zini [25]; according to 160 
this method, discretized Beta distribution can be described by the set ߗ, as is presented in (1): 161 

ߗ = ൛݊௤ , ௥ܲ൛݊௤ൟ; ݍ = 0,1, … ,ܳൟ                                                          (1) 162 
where the total amount of discrete states (ܳ) or bins are selected by system operator taking into account 163 
the precision required and the available computational resources, this representation is shown in Fig. 2, 164 
where the values of (݊௤  ߳  [0, 1] ; ݍ   = 1, … ,ܳ)  are estimated according to (2): 165 

݊௤ =

⎩
⎨

ݔܽ݉⎧ ൬൜
ݍ
ܳ −

ߜ
ܳ , 0ൠ ,

ݍ
ܳ −

ߜ
ܳ +

1
ܳ
൰ ; ݍ    = 0, 1, … ,ܳ − 1

൤
ݍ
ܳ −

ߜ
ܳ , 1൨ ; ݍ    = ܳ

                            (2) 166 

“See Fig. 2” 167 



where discretization parameter (ߜ) could be selected by the system operator considering the precision 168 
required and the available computational resources, its typical value is (ߜ = 3). The corresponding 169 
probability value of each state or bin (ݍ) is calculated by using (3): 170 

௥ܲ൛݊௤ൟ =
(1 + ܳ)ఈ೟ିଵ(ݍ + 1 − ఉ೟ିଵ(ݍ

∑ (1 + ߮)ఈ೟ିଵ(ܳ + 1 − ߮)ఉ೟ିଵொ
ఝୀ଴

; ݍ    = 0, 1, … , ܳ                            (3) 171 

Once the set ߗ has been described, the values (݊௤) are displaced in order to obtain the set of available 172 
power (ܩܹܣ௧) to be injected into the system, this is carried out by including an additional index (݈); 173 
hence, ݈ = ݍ + 1 and using (4): 174 

௧ܩܹܣ = ௟௧݃ݓܽ} = ௠௔௫௧ܩܹܣ) − ௠௜௡௧ܩܹܣ )݊௟ିଵ + ݊௟ିଵ;    ݈ = 1,2, … ,  175 (4)                   {ܮ

2.2 Solution of probabilistic economic dispatch 176 

For each time step ݐ = 1, 2, … , ܶ, the power production at previous time instant ݐ − 1 should be taken 177 
into account to solve probabilistic ED problem considering the ramp rate capabilities of conventional 178 
generators. In the probabilistic ED model used in this paper, power generation at any time interval is 179 
represented by a discretized PDF able to represent power values (ܩ௜) between 0 and ܩ௠௔௫, using 180 ܫ 
discrete states or bins; then, considering this information discretization step (ܩ߂) is calculated according 181 
to (5): 182 

ܩ߂ =
௠௔௫ܩ

ܫ − 1                                                                          (5) 183 

Output power of conventional units are probabilistically described by using these discrete states (݅ =184 
1, … , ݐ including those generated at time ;ܩ߂ ௠௔௫, with precisionܩ to represent values as high as (ܫ − 1 185 
 which are assumed to be known in our analysis.  186 ,(௝௧ିଵܩ)

Cumulative Distribution Function (CDF) of ܩ௝௧ିଵ is presented in Fig. 3, this function is used to sample 187 
some power values determined by means of the quantile concept; in more detail, the interval [0, 1] is 188 
sampled by the variable ߤ௥ ߳ [ߤ௠௜௡ ,  defined by the system operator; 189 (ߤ߂) ௠௔௫] with a determined stepߤ
then, for each of the values of ߤ௥, the inverse CDF is evaluated by using a linear interpolation algorithm 190 
in order to obtain the power value ݃௝,௥

௧ିଵ, which is saved in the table of sampled points  191 
(ܵܲ(݆,  rows and ܴ columns). The quantity ܴ is selected by the system operator according to the 192 ܬ with (ݎ
required precision, while ߤ௠௜௡  and ߤ௠௔௫ are selected by considering a determined significance level (ߛ); 193 
so that, ߤ௠௜௡ = ௠௔௫ߤ and ,ߛ = 1− ௠௜௡ߤ ,For example, if a significance level of 1% is selected .ߛ  = 1% 194 
and ߤ௠௔௫  = 99%. It is possible to note that as lower is the significance level selected, more extreme are 195 
the conditions of power generation included in the probabilistic ED analysis.  196 

Once the table ܵܲ(݆, ݆ is completed by evaluating the inverse CDF for (ݎ = 1, … , ݎ and ܬ = 1, … ,ܴ; the 197 
corresponding weighting factors or normalized probabilities ( ௥ܲഥ൫݃௝,௥

௧ିଵ൯⦡݆߳[1,  should be calculated; it 198 ([ܬ
is required because not all the possible combinations of power generation between the units of the system 199 
are taken into account at time ݐ − 1; then, the probability of the selected trials by means of quantile 200 
evaluation does not sum up one; then, normalized probabilities are calculated by evaluating (6) [20]: 201 



“See Fig. 3” 202 

௥ܲഥ ൛ܩ௝௧ିଵ = ݃௝,௥
௧ିଵൟ =

∏ ൫ ௥ܲ൛ܩ௝௧ିଵ = ݃௝,௥
௧ିଵൟ൯௃

௝ୀଵ

∑ ∏ ൫ ௥ܲ൛ܩ௝௧ିଵ = ݃௝,௥
௧ିଵൟ൯௃

௝ୀଵ
ோ
௥ୀଵ

                                         (6) 203 

Modelling of output power at time ݐ − 1 allows us estimating the consumed or dispatched wind 204 
generation by means of the solution of probabilistic ED problem with ramp constraints; in a similar way 205 
as the available wind generation, dispatched wind power is analytically represented through the set 206 
 according to (7): 207 (௧ܩܹܥ)

௧ܩܹܥ = ݓܿ}௟௧,   ௥ܲ݃ݓܿ} ௟݃
௧};    ݈ = 1, 2, … ,  208 (7)                                             {ܮ

Once the available wind generation has been discretized and PDF of power generation of each unit at 209 
time ݐ − 1 has been simplified (by sampling some points according to quantile evaluation), the next step 210 
in our analysis is the solution of probabilistic ED problem; this is carried out by following the algorithm 211 
presented as follow [20]: 212 

 Step 1: Select the first column of the table ܵܲ(݆, ← ݎ or in other words, set ;(ݎ 1 ⦡ ݆ ߳ [1,  213 ,[ܬ
(choose the first column). 214 

 Step 2: Select the first state (bin) of discretized available wind generation distribution by setting 215 
݈ ← 1. 216 

 Step 3: Solve ED problem for the pair (ݎ, ݈) previously selected in steps 1 and 2; the optimization 217 
problem to be solved is presented in (8)-(15) [26]: 218 

݇௥,௟ = ෍ቄܣ௝ݑ௝௧ + ௝൫݃௝,௥ܤ
௧ ൯ + ௝൫݃௝,௥ܥ

௧ ൯ଶቅ
௃

௝ୀଵ

(௥௧݁݁)ܥܹܤ+ +  219 (8)                      (௥௧ݏ݊݁)ܮܮܱܸ

෍݃௝,௥
௧

௃

௝ୀଵ

+ ௟௧݃ݓܿ =  ௧                                                            (9) 220ܮܪ

݃௝,௥
௧ − ݃௝,௥

௧ିଵ ≤ ܷ ௝ܴ ௝௧ݑ    ; = ௝௧ିଵݑ   ,1 = 1                                             (10) 221 

݃௝,௥
௧ିଵ − ݃௝,௥

௧ ≤ ܦ ௝ܴ ௝௧ݑ   ; = ௝௧ିଵݑ   ,1 = 1                                             (11) 222 

௝௠௜௡ܩ ≤ ݃௝,௥
௧ ≤ ௝௧ݑ    ;௝௠௔௫ܩ = 1                                                   (12) 223 

0 ≤ ௟௧݃ݓܿ ≤ ௟௧݃ݓܽ                                                                (13) 224 
݃௝,௥
௧ ≤ ܷܵ ௝ܴ ௝௧ݑ    ; = ௝௧ିଵݑ    ,1 = 0                                                (14) 225 

݃௝,௥
௧ ≤ ܦܵ ௝ܴ ௝௧ݑ    ; = ௝௧ାଵݑ    ,1 = 0                                                (15) 226 

Using the results obtained from the solution of the optimization problem (carried out by applying 227 
quadratic programming approach), SR resources are measured by applying (16): 228 

௥௧ݎݏ = ෍݃௝,௥
௧,௠௔௫ݑ௝௧ − ݃௝,௥

௧                                                            (16)
௃

௝ୀଵ

 229 

 Step 4: Using the values obtained of power production of thermal units (g୨,୰୲ ), energy not supplied 230 
(ens୰୲), excess of electricity (ee୰୲ ), generation cost (k୰,୪), and spinning reserve (sr୰୲); discretized 231 
PDF of each probabilistic variable is built by finding the discrete state that corresponds to value 232 
obtained from the optimization process. 233 



An example of this process applied to allocate g୨,୰୲  on the G୨
୲ distribution is shown in Fig. 4 at 234 

which, discretized distribution G୨
୲ ⦡jϵ[1, J] is represented in tabular form through the matrix 235 

G୮ୢ୤(i, j) with all its elements initialized to zero. It is possible to note the influences of the 236 
probability of occurrence of a determined wind power value, as well as, the normalized probability 237 
of a determined power generation of conventional units at time t − 1. A similar algorithm can be 238 
easily adopted to build discretized PDF of other probabilistic variables of interest such as GC, 239 
ENS, ES, SR, among others. 240 

“See Fig. 4” 241 

 Step 5: If, l < L, set l⃪l + 1 and go back to step 3; else go to step 6. 242 
 Step 6: If, r < R, set r⃪r + 1 and go back to step 2; else end. 243 

3. Probabilistic unit commitment 244 

Generally speaking, in the case of systems vertically integrated, day-ahead UC problem is carried out 245 
in order to minimize GC over the scheduling horizon (ܶ); as in our model all variables are described by 246 
their corresponding PDFs, UC problem can be easily formulated in terms of these variables. Equation 247 
(17) [27] describes expected value of total GC (ܭ) at which, fuel consumption cost, start-up cost, cost 248 
related to EE, and cost related to ENS are considered; Battery Wear Cost (ܥܹܤ) is incorporated in order 249 
to evaluate the cost of storing or consuming EE: 250 

{ܭ}ܧ = ෍൞෍ቄܣ௝ݑ௝௧ ௝௧൯ܩ௝൫ܤ+ + ௝௧൯ܩ௝൫ܥ
ଶቅ + −௝௧൫1ܥܷܵ ௝௧ݑ௝௧ିଵ൯ݑ

௃

௝ୀଵ

+ {௧ܧܧ}ܧ(ܥܹܤ) + ൢ{௧ܵܰܧ}ܧ(ܮܮܱܸ)
்

௧ୀଵ

 (17) 251 

An additional SR requirement (ܴܵ௥௘௤௧ ) to be adjusted by system operator has been assumed; in this 252 
sense, this constraint should be fulfilled with a determined probability (1 −  this is mathematically 253 ;(ߛ
expressed in (18): 254 

௥ܲ൛ܴܵ௧ ≥ ܴܵ௥௘௤௧ ൟ ≥ 1 −  255 (18)                                                          ߛ
Power balance of the system is represented by (19), where available wind generation (ܩܹܣ௧) at any 256 

time step ݐ could be curtailed in order to preserve it; hence, consumed or dispatched wind generation 257 
 is incorporated to this constraint: 258 (௧ܩܹܥ)

෍ܩ௝௧ݑ௝௧ + ௧ܩܹܥ = ௧ܮܪ                                                            (19)
௃

௝ୀଵ

 259 

A simplified definition of start-up cost is used in this paper according to (20) expressed in terms of the 260 
cumulative number of time steps that unit ݆ has been offline ( ௙ܶ,௝

௧ ) in order to properly estimate start-up 261 
cost (ܷܵܥ௝௧) according to hot start-up (ܵܪ ௝ܷ) and cold start-up cost (ܵܥ ௝ܷ) [28, 29]: 262 

௝௧ܥܷܵ = ቊ
ܵܪ ௝ܷ ; ௙ܶ,௝

௧ ≤ ܦܯ ௝ܶ + ܵܥ ௝ܶ

ܵܥ ௝ܷ ;  ௙ܶ,௝
௧ > ܦܯ ௝ܶ + ܵܥ ௝ܶ

                                                 (20) 263 

Parameters ௙ܶ,௝
௧  and ௢ܶ,௝

௧  are calculated by using (21) and (22) in a cumulative sense [30]: 264 



௢ܶ,௝
௧ = ቊ ௢ܶ,௝

௧ + ௝௧ݑ      ;1 = 1
௝௧ݑ    ;0 = 0

                                                         (21) 265 

௙ܶ,௝
௧ = ቊ ௙ܶ,௝

௧ + ௝௧ݑ      ;1 = 0
௝௧ݑ      ;0 = 1

                                                         (22) 266 

In order to obtain a feasible solution, the amount of time that a determined unit ݆ has to be online 267 
should be higher or equal than the corresponding minimum up time (ܷܯ ௝ܶ , ݆ ߳ [1,  while the amount 268 ,([ܬ
of time that this unit should be offline has to be higher or equal than its corresponding minimum down 269 
time (ܦܯ ௝ܶ , ݆ ߳ [1,  this idea is mathematically expressed in (23) and (24) [30]: 270 ;([ܬ

௢ܶ,௝
௧ ≥ ܷܯ ௝ܶ                                                                     (23) 271 

௙ܶ,௝
௧ ≥ ܦܯ ௝ܶ                                                                     (24) 272 

Operation of each generation unit ݆ is carried out to limit power generation to a lower (ܩ௝௠௜௡) and upper 273 
 limit, this is presented in (25) [30]:  274 (௝௠௔௫ܩ)

௝௠௜௡ܩ ≤ ௝௧ܩ ≤ ;௝௠௔௫ܩ ௝௧ݑ     = 1                                                     (25) 275 
Similarly, conventional units are operated to limit their increment or decrement on the power 276 

production according to their corresponding ramp up rate limit (ܷ ௝ܴ and ܷܵ ௝ܴ) and ramp down rate limit 277 
(ܷܵ ௝ܴ and ܵܦ ௝ܴ) during continues, starting-up and shutting-down conditions; this is expressed in (26)-278 
(29) [30]: 279 

௝௧ܩ − ௝௧ିଵܩ ≤ ܷ ௝ܴ ௝௧ݑ    ; = ௝௧ିଵݑ   ,1 = 1                                              (26) 280 
௝௧ିଵܩ ௝௧ܩ− ≤ ܦ ௝ܴ ௝௧ݑ    ; = 1, ௝௧ିଵݑ   = 1                                             (27) 281 

௝௧ܩ ≤ ܷܵ ௝ܴ ௝௧ݑ    ; = ௝௧ିଵݑ   ,1 = 0                                                  (28) 282 
௝௧ܩ ≤ ܦܵ ௝ܴ ; ௝௧ݑ     = 1, ௝௧ାଵݑ    = 0                                                  (29) 283 

Finally, dispatched wind generation is limited to be lower than that value forecasted, this is presented 284 
in (30); then, power values of dispatched generation of thermal and renewable sources are completely 285 
feasible: 286 

0 ≤ ௧ܩܹܥ ≤  ௧                                                               (30) 287ܩܹܣ
Once the mathematical formulation has been presented, probabilistic UC problem should be solved; in 288 

our case by PL method. This method is composed by three main processes: Primary Unit Scheduling 289 
(PUS), minimum up down/time repairing, and addition of power generation, each of these steps is briefly 290 
described in the next subsections. 291 

3.1 Primary unit scheduling 292 

During PUS, an initial approximation to probabilistic UC solution is developed based on an economic 293 
criteria; this solution is built by committing conventional generators from the cheapest one to the most 294 
expensive one until a reserve margin able to face wind power variability is reached. PUS process is 295 
applied by following the algorithm presented next: 296 



 Step 1: Create table PUS୨୲, with J rows and T columns. All elements of this table are initialled with 297 
zero. 298 

 Step 2: Determine the order at which conventional generators are going to be committed (priority 299 
list); this order is established by means of the average fuel consumption cost (ܥܥܨ௝

௔௩௚) presented 300 
in (31) [30]:  301 

௝ܥܥܨ
௔௩௚ =

௝ܣ ௝ܩ௝൫ܤ+
௔௩௚൯ + ௝ܩ௝൫ܥ

௔௩௚൯ଶ

௝ܩ
௔௩௚                                                   (31) 302 

௝ܩ
௔௩௚ =

௝ܩ
௔௩௚

2
ቆ1 +

௝௠௜௡ܩ

௝௠௔௫ܩ
ቇ                                                             (32) 303 

 Step 3: Set ݐ ← 1. 304 
 Step 4: Commit the first unit according to the priority list created in step 2 and set ⃪݆1. 305 
 Step 5: Set ܷܲ ௝ܵ

௧  ← 1. 306 
 Step 6: Calculate the cumulative capacity (ܲܥ௧), the increment of committed capacity due to 307 

forecasting error (ܨܹ߂௧), and hourly net load (ܮܰܪ௧) at time t according to (33), (34) and (35), 308 
respectively:  309 

௧ܲܥ = ෍ܩ௝௠௔௫ܷܲ ௝ܵ
௧

௃

௝ୀଵ

                                                                    (33) 310 

௧ܩܹܣ߂ = ௠௔௫௧ܩܹܣ൫ݔܽ݉ − ௙௧ܩܹܣ   ,௙௧ܩܹܣ − ௠௜௡௧ܩܹܣ ൯                                 (34) 311 
௧ܮܰܪ = ௧ܮܪ൫ݔܽ݉  ௙௧,   0൯                                                         (35) 312ܩܹܣ−

 ௙௧ is the wind power generation profile with the highest probability, it can be interpreted as 313ܩܹܣ
the mode of ܩܹܣ௧. 314 

 Step 7: If ܲܥ௧ < ௧ܮܰܪ + ݆ ௧, andܩܹܣ߂ ≤ ← ݆ set ,ܬ  ݆ + 1 and go to step 5; else if ݐ ≤ ܶ, set 315 
← ݐ ݐ  + 1 and go to step 4; else, stop. 316 

3.2 Minimum up/down time repairing 317 

As can be observed, solution obtained from PUS process (ܷܲ ௝ܵ
௧) could be unfeasible due that 318 

minimum up/down time constraints (equations (23) and (24)) could not be fulfilled; in order to overcome 319 
this problem, in this paper the algorithm proposed by Dieu et al. [30] is used. 320 

3.3 Addition of power generation 321 

As was stated before, a probabilistic constraint to SR margin is considered in (18); this condition is 322 
probabilistically verified by means of discretized distribution of SR obtained from the solution of 323 
probabilistic ED problem (Sub-section 2.2); in other words, the solution obtained from the application of 324 
minimum up/down time repairing (Sub-section 3.2) is probabilistically evaluated to obtain ED solution 325 
(Section 2); then, discretized distribution of SR (ܴܵ௧) is used to evaluate ௥ܲ൛ܴܵ௧ ≥ ܴܵ௥௘௤௧ ൟ; if  326 

௥ܲ൛ܴܵ௧ ≥ ܴܵ௥௘௤௧ ൟ is lower than (1 −  more generation capacity is added according to the order 327 ,(ߛ
established by PL method.  328 



This is an iterative process that could be implemented by following the algorithm presented next [31]: 329 

 Step 1: For ݐ = 1, 2, … , ܶ verify the probability of fulfil the required SR requirements (ܴܵ௥௘௤௧ ) by 330 
means of ௥ܲ൛ܴܵ௧ ≥ ܴܵ௥௘௤௧ ൟ. 331 

 Step 2: Build a list with those hours at which SR requirements are not fulfilled; or in other words, 332 
fill out the list with those hours with probability lower than 1 −  once the list has been 333 ;ߛ
completed, the amount of elements of this list is saved in the factor ܵ. 334 

 Step 3: If (ܵ > 0), create a table with ܵ rows and two columns, this table is designed to content the 335 
units that should be committed to fulfil SR requirements at each hour. In other case; stop. 336 

 Step 4: The information obtained in step 2 is used to fulfil the table created in step 3, the second 337 
column specifically. 338 

 Step 5: For each element of the table created in step 3; using PL method, those units which should 339 
be committed in order to fulfil SR requirements are identified, this information is used to complete 340 
the first column of the table created in step 3. 341 

 Step 6: The first element of column one and column two of the table completed in step 5 are 342 
selected; so that, the condition of the corresponding unit at the corresponding hour is changed from 343 
offline to online. 344 

 Step 7: As the scheduling has been changed, minimum up/down time repairing algorithm (sub-345 
section 3.2) is applied in order to obtain a feasible solution. 346 

 Step 8: Go to step 1. 347 

Methodology proposed in this paper is illustrated by analysing three case studies with 6, 10, and 110 348 
units; in order to evaluate the performance of proposed method, where a comprehensive comparison with 349 
scenario generation/reduction approach is presented. 350 

4. Case studies 351 

In this section, three case studies are carefully analysed and the comparison with Stochastic 352 
Programming (SP) approach (reference method) is presented in order to evaluate the proposed 353 
probabilistic methodology. The reference method used is based on the mathematical formulation 354 
proposed in [32]. Regarding the case studies; in the first case study, a system with 6 units is analysed; in 355 
the second case study, a system with 10 units is studied; and finally in the third case study a system with 356 
110 units is analysed. The proposed approach in this paper was implemented in MATLAB programming 357 
language, while the reference method was implemented in GAMS programming language. The computer 358 
used is provided with i7-3630QM CPU at 2.40 GHz, 8 GB of RAM and 64-bit operating system.  359 

4.1 6-units power system 360 
This case study is proposed and analysed in order to understand the probabilistic treatment of the SR 361 

requirements proposed in this paper, data used here was adapted from that proposed in [18] at which, 362 
ramp up/down limitations and wind generation have been added.  All the relevant information related to 363 
the conventional generators is shown in Table 1, while the characteristics of wind generation are 364 
described in Table 2, the analyses is carried out for a single time step (1 = ܶ) ݐ. Hourly load of the system 365 
is assumed to be 3.5MW (ܮܪ௧ = 3.5) and reserve margin is assumed to be 0.89MW (ܴܵ௥௘௤௧  = 0.89). 366 



Discretized distribution of ܩ௝௧ିଵ has been built by representing the values shown in Table 1 in a 367 
probabilistic way, assigning probability of 1 to the corresponding state (bin) of the initial power 368 
generation of each unit. Regarding the representation of discretized PDFs, power of conventional units 369 
has been represented by using 2,500 states (2,500 = ܫ); so that, a maximum power value of 1.3MW can be 370 
represented (ܩ௠௔௫ = 1.3); wind generation has been represented by using 100 states (ܳ = 100); hence, a 371 
maximum power value of 1.6MW (dispatched or consumed power) can be represented; ENS, EE, and SR 372 
have been modelled by using 100 states; then, a maximum power value of 1.5MW can be represented. 373 

“See Table 1” 374 

“See Table 2” 375 

Fig. 5 shows discretized PDF and CDF of SR when units 1, 2 and 3 are committed, if SR requirements 376 
are evaluated in CDF, it is possible observing that there is 54% of fulfil this requirement; then, if a 377 
significance level of 1% (γ = 0.01) is adopted, more generation capacity should be committed; by this 378 
way, the required amount of capacity in order to fulfil a determined SR requirement is determined by 379 
committing each unit of the system sequentially (addition of power generation process of PL method); as 380 
can be observed, this is an iterative process. 381 

Results obtained from this approach are shown in Fig. 6, where it is possible concludes that capacity 382 
required is 3.8MW; discretization parameters δ was adjusted to 5, while only the scenario of conventional 383 
power production at time t − 1 with highest probability was considered by setting R = 1 and consequently 384 
μଵ = 0.5 (Fig. 3). 385 

“See Fig. 5” 386 

“See Fig. 6” 387 

4.2 10-units power system 388 

Technical data of conventional generators and hourly load profile used in this case study can be found 389 
in [33], while the characteristics of wind power generation over a scheduling horizon of 24 hours  390 
(T = 24) are presented in Table 3. In order to evaluate the performance of proposed approach, scenario 391 
generation/reduction method has been implemented and used as a reference of comparison; initially 3,000 392 
scenarios of wind power production on daily basis has been generated by using a first order ARMA 393 
model; then, a scenario reduction method based on k-means++ clustering algorithm was used to reduce 394 
the scenario set to 50 trials; reference solution was estimated by using duality gap of 0%. In proposed 395 
model, only are specified the parameters of Beta distribution for each hour, while autocorrelation is not 396 
modeled; in other words, it is equivalent to assume that wind generation is not correlated in hourly basis, 397 
which general speaking is not true. In order to avoid the effects of this fact on the comparison, both SP 398 
approach and proposed method are compared by using an additional set of 1,000 scenarios.  399 

Discretization of forecasting error was done by considering ܳ = 10, ߤ ,5 = ߜ௠௜௡  ௠௔௫ = 0.99, 400ߤ ,0.01 = 
 ௠௔௫ = 500, and SR requirements were defined as:  401ܩ ,0.01 = ߛ ,2,500 = ܫ ,(3 = ܴ) 0.49 = ߤ߂
ܴܵ௥௘௤௧ = ,(௧ܮܪ)0.1 ,1] ߳ ݐ ܶ]. 402 



“See Table 3” 403 
Fig. 7 shows results obtained from scenario generation/reduction algorithm used at which, extreme 404 

profiles of maximum (ܩܹܣ௠௔௫௧ ) and minimum (ܩܹܣ௠௜௡௧ ) wind generation has been included.  405 

“See Fig. 7” 406 
Fig. 8 shows a comparison between the hourly committed capacity required by our proposed method 407 

and reference approach; as can be observed, proposed approach requires the commitment of more power 408 
during almost all the hours, especially during the time interval between ݐ = 1h and ݐ = 5h. This 409 
difference directly impacts the expected value of GC over the entire day.  410 

“See Fig. 8” 411 
The proposed probabilistic approach does not take into account auto-correlated nature of wind 412 

generation; so that, expected value of GC ({ܭ}ܧ) has been calculated by MCS approach through the 413 
solution of ED problem using the scenario set of 1,000 trials previously mentioned. Finally, the obtained 414 
results were used to verify the probability of fulfil constraint (18) and the quality of the solution from an 415 
economical perspective.  416 

Table 4 shows the probability of fulfil the required SR requirements measured from the evaluation of 417 
the obtained solution from the proposed method on the set of 1,000 scenarios aforementioned, including 418 
significance levels of 10% and 1% (considering wind power autocorrelation), while Fig. 9 presents a 419 
comparison between probabilities obtained from the evaluation of 1,000 scenarios (using information 420 
taken from Table 4 and known as correlated in Fig. 9) and analytically measured by using the proposed 421 
approach, at which probability values are obtained by reading discretized PDF of SR by means of a linear 422 
interpolation (known as proposed in Fig. 9).  423 

From Table 4, it is possible observing how the probability of fulfil constraint (18) increases as 424 
significance level is reduced (specifically at ݐ = 6h), due that more generation capacity should be 425 
committed, increasing GC. From Fig. 9, it is possible observing that this constraint is not totally fulfilled 426 
for ݐ = 12h and ݐ = 18h. In fact, during ݐ = 12h, there is a high-load period and high wind power 427 
uncertainty; for this reason, all units in the system are committed; however, according to these results it is 428 
not enough. Regarding ݐ = 18h, the proposed approach is quite sensitive to the number of intervals used 429 
for discretization process (Q), which impacts the accuracy to represent PDF of SR. The application of PL 430 
method to determine the units to be committed, combined with the solution of ED problem at each hour 431 
lead to a sub-optimal scheduling because this procedure does not have look-ahead capabilities [34]; this is 432 
the reason why to fulfill a determined SR requirements, the solution obtained by PL suggests more 433 
generation capacity (Fig. 8) than that scheduling obtained from SP approach.  434 

This could be evaluated by observing the probability of fulfill the required reserve (Fig. 9) where at 435 
time t = 12h, the corresponding probability value is low due to all available capacity have been 436 
committed. In SP approach, ED and UC problems are solved simultaneously for the scenario set 437 
considered (solving the equivalent deterministic problem), while in PL method power dispatch is obtained 438 
from the solution of the optimization problem at each time step; hence, SR requirements are obtained by 439 
committing additional capacity generation according to the list built by using (31) and (32). This explains 440 
the difference between generation costs and probability of provide a determined SR requirements. 441 



“See Table 4” 442 

“See Fig. 9” 443 

By one hand, scheduling obtained from SP approach was obtained in 48.049 seconds with expected 444 
value of GC equals to 551,060.065$; on the other hand; the information related to the proposed approach 445 
is shown in Table 5, where according to these results, proposed method offers a unit scheduling between 446 
1.41% and 1.43% more expensive than that obtained from SP approach. Besides of this, an additional 447 
increment on the computational time is observed (the number of iterations required by addition of power 448 
generation process of PL method is reported in the last column); differences on the computational time 449 
could be related to the languages employed to carry out the numerical analysis. 450 

“See Table 5” 451 

4.3 110-units power system 452 

In this case study, data related to the conventional generators and hourly load profile was taken from 453 
reference [35], while forecasting of wind generation used is presented in Table 6; and as was stated 454 
before, corresponding comparison with SP approach was carried out; for this purpose, 3,000 scenarios of 455 
wind generation were created and then reduced to 30 scenarios; additionally, extreme conditions shown in 456 
Table 6 was included in the optimization process; all scenarios generated are shown in Fig. 10. 457 
Discretization of forecasting error was done by considering Q = 5, δ = 5, μଵ = 0.5, R = 1, G୫ୟ୶ = 800,  458 
I = 1,500 and SR requirements were defined as: SR୰ୣ୯

୲ = 0.1 (HL୲), t ϵ [1, T]. 459 

“See Table 6” 460 

“See Fig. 10” 461 

Comparison of the hourly committed capacity between the scheduling obtained from the application of 462 
our proposed methodology and SP approach is shown in Fig. 11; according to these results more capacity 463 
is committed especially during the interval between t = 1 h and t = 8 h; which relatively increases GC. 464 

“See Fig. 11” 465 

As in the previous case study (Sub-section 4.2), an additional set of 1,000 scenarios was created and 466 
from the evaluation of this set, SR was measured and probabilistically analysed; then, probability of fulfil 467 
constraint (18) was estimated; the results are presented in Table 7, where it is possible observing that this 468 
constraint is successfully fulfilled. 469 

“See Table 7” 470 

In this case, solution from SP was obtained in a limited time of 36,000 seconds, expected value of GC 471 
of the corresponding solution is 2,436,638.424$ (duality gap equals to 0.000420). Relevant information 472 
related to the solution obtained from proposed approach is shown in Table 8, where a difference between 473 
3.8% and 4.5% with respect to SP approach was observed. Such as in previous case study analyzed, the 474 
number of iterations required by addition of power generation process of PL method is reported in the last 475 
column. 476 



“See Table 8” 477 

Overall, SP and the proposed method have important differences: 1) On the one hand, the scheduling 478 
obtained from SP approach strongly depends on the characteristics of the scenario set used; on the other 479 
hand, the proposed method depends on the parameters of probability distribution, significance levels, 480 
discretization intervals, and sampling points on cumulative distribution. 2) In scenario 481 
generation/reduction method if a reduced number of trials is considered, all of them are close to the point 482 
forecasting of wind generation, excluding extreme conditions of very high and very low wind generation; 483 
however, by discretization of forecasting error distribution with a few amount of intervals, extreme 484 
conditions could be considered with their corresponding probabilities. 3) Scenario reduction process used 485 
to obtain a representative set of possible wind generation profiles requires, in many of the available 486 
algorithms, the comparison of one to one scenarios in a repetitive way, which increases the computational 487 
burden. However, in our proposed methodology, discretization intervals can be easily increased. 488 

5. Conclusions 489 

In this paper, a probabilistic methodology to the day-ahead unit scheduling of power systems provided 490 
of wind generation was proposed and evaluated. The method was based on solving probabilistic ED 491 
problem finding the probability distribution of the variables of interest in a discrete form; then, this 492 
method was incorporated to PL method to determine a near-optimal scheduling of the system by 493 
analysing probability distribution of SP at each time step. Three case studies were analysed; the first case 494 
study explained how the probability distribution of SR can be used to determine the capacity that should 495 
be committed in order to provide a required amount of SR requirements; while in the second and third 496 
case studies, two systems of 10-units and 110-units were respectively studied. In order to evaluate the 497 
performance of the proposed approach, results were compared to those obtained from a SP approach 498 
based on MILP formulation, observing an increment on GCs between 1.41% and 1.43% for 10-units 499 
system, and between 3.75% and 4.5% for the 110-units system, depending on the selected significance 500 
level of the probabilistic analysis.  501 
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Figures caption 583 

 584 
Fig. 1: Simplified system under study. 585 

 586 
Fig. 2: Discretized beta distribution. 587 

 588 
Fig. 3: Analysis of cumulative distribution of ۵ିܜܒ૚.   589 
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 590 
Fig. 4: Algorithm to fulfil the table ۵591 .܎܌ܘ 

 592 
Fig. 5: Discretized PDF and CDF of spinning reserve when 3.2MW are committed.  593 

 594 
Fig. 6: Evaluation of P୰൛SR୲ ≥ SR୰ୣ୯

୲ ൟ for case study 1.    595 
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 596 
Fig. 7: Wind power scenarios for 10-units system. 597 

 598 
Fig. 8: Comparison of committed capacity for 10-units system (γ = 1%). 599 

 600 
Fig. 9: Comparison of P୰൛SR୲ ≥ SR୰ୣ୯

୲ ൟ between MCS and proposed approach for the case 2. 601 
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 602 
Fig. 10: Wind power scenarios for 110-units system. 603 

 604 
Fig. 11: Comparison of committed capacity for 110-units system (γ = 1%).   605 
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Table caption 606 

Table 1: data of 6-units power system. 607 
ܷ ௝௠௔௫ (MW)ܩ ௝௠௜௡ (MW)ܩ ௝ ($/MW2h)ܥ ௝ ($/MWh)ܤ ௝ ($/h)ܣ ݆ ௝ܴ(ܹܯ) ܩ௝௧ିଵ 
1 100 60 10 0.06 1.2 0.48 0.630 
2 180 40 20 0.05 1.0 0.40 0.525 
3 180 40 20 0.05 1.0 0.40 0.525 
4 150 100 10 0.03 0.6 0.24 0.315 
5 150 120 10 0.03 0.6 0.24 0.315 
6 200 100 10 0.02 0.5 0.20 0.260 

Table 2: Prediction of wind generation for 6-units system. 608 
௧ߚ ௧ߙ ௠௔௫௧ܩܹܣ   (MW) ܩܹܣ௠௜௡௧  (MW) 
10 7 1.50 1.35 

Table 3: Prediction of wind generation for 10-units system. 609 
Time (h) ߙ௧ ߚ௧ ௠௔௫௧ܩܹܣ ௙௧ (MW)ܩܹܣ   (MW) ܩܹܣ௠௜௡௧  (MW) 

1 2.860350 10.42120 35.87775463 150 4.545437013 
2 2.631970 11.21150 32.20319371 150 4.545437013 
3 2.660710 13.07550 29.13805961 150 4.545437013 
4 3.406050 17.10470 26.80320913 150 2.272724935 
5 2.762190 4.30981 23.59278973 56.817994810 2.272724935 
6 1.884270 3.81715 17.28766489 52.272622080 0 
7 1.544660 11.0983 13.34824758 109.09061690 0 
8 1.097010 6.22027 17.04852272 113.63598960 0 
9 1.623870 9.47347 17.96137725 122.72686360 0 
10 1.237900 5.75834 21.71822366 122.72686360 0 
11 0.725405 2.76941 23.59664687 113.63598960 0 
12 0.664855 2.29428 26.03692561 115.90874030 0 
13 0.793996 2.48559 28.08763404 115.90874030 0 
14 0.405002 1.09549 30.64876957 113.63598960 0 
15 0.363353 1.19035 26.52163851 113.63598960 0 
16 0.466796 2.13421 20.35279899 113.63598960 0 
17 0.977628 6.42645 14.98367148 113.63598960 0 
18 1.507940 8.80069 14.30353056 97.72699221 0 
19 1.156170 6.44942 15.92866878 104.54511560 0 
20 1.190020 8.13745 16.81838052 131.81748050 0 
21 1.134190 7.52165 17.57052123 134.09061690 0 
22 1.107700 7.02068 18.28280491 134.09061690 0 
23 1.271600 8.05439 18.61066111 136.36375320 0 
24 1.585750 9.93250 19.40137314 140.90874030 0 



Table 4: Probability of fulfil the required spinning reserve requirements for 10-units system. 610 

Time (h) 
Significance level (ߛ) 

Time (h) 
Significance level (ߛ) 

10% 1% 10% 1% 
1 1 1 13 1 1 
2 1 1 14 1 1 
3 1 1 15 1 1 
4 1 1 16 1 1 
5 1 1 17 1 1 
6 0.946693 1 18 0.853649 0.853649 
7 1 1 19 1 1 
8 1 1 20 1 1 
9 1 1 21 1 1 

10 0.970404 0.970404 22 1 1 
11 1 1 23 0.950022 0.950022 
12 0.345073 0.345073 24 1 1 

Table 5: Evaluation of proposed approach for 10-units system (the solution obtained by reference method 611 
is 551,060.065$ in 48.049 seconds). 612 

 Time (s) Iterations (%) ܭ߂ ($) {ܭ}ܧ ߛ
10% 558,840.0 1.411808 75.560 17 
1% 558,989.4 1.438929 78.895 18 

Table 6: Prediction of wind generation for 110-units system. 613 
Time (h) ߙ௧ ߚ௧ ௠௔௫௧ܩܹܣ ௙௧ (MW)ܩܹܣ   (MW) ܩܹܣ௠௜௡௧  (MW) 

1 2.99616 2.45200 4,054.917418 7,000 456.524172 
2 2.96971 2.53426 3,986.994699 7,000 456.524172 
3 2.94002 2.60665 3,924.796773 7,000 456.524172 
4 2.85717 2.55981 3,867.893203 6,923.942051 456.524172 
5 2.83312 2.54650 3,862.64189 6,923.942051 456.524172 
6 2.80922 2.53345 3,857.261447 6,923.942051 456.524172 
7 2.78557 2.52058 3,851.881003 6,923.942051 456.524172 
8 2.59041 2.48979 3,754.258237 6,923.942051 456.524172 
9 2.39065 2.42182 3,669.118099 6,923.942051 456.524172 
10 2.20859 2.34557 3,592.629715 6,923.942051 456.524172 
11 2.34426 2.36178 3,678.028114 6,923.942051 456.524172 
12 2.52819 2.44768 3,780.902193 7,000 456.524172 
13 2.67248 2.39877 3,904.566306 7,000 456.524172 
14 2.62938 2.43037 3,856.658837 7,000 456.524172 
15 2.58686 2.45653 3,812.539200 7,000 456.524172 
16 2.54458 2.47736 3,771.733917 7,000 456.524172 
17 2.74820 2.48496 3,892.600199 7,000 456.524172 
18 2.93763 2.43562 4,033.783036 7,000 456.524172 
19 3.10541 2.33074 4,194.421556 7,000 456.524172 
20 3.20148 2.24473 4,302.977384 7,000 456.524172 
21 3.30078 2.15577 4,414.847564 7,000 456.524172 
22 3.40902 2.07074 4,527.449485 7,000 456.524172 
23 3.29546 2.12700 4,433.356290 7,000 456.524172 
24 3.17969 2.17268 4,343.825711 7,000 456.524172 



Table 7: Probability of fulfil the required spinning reserve requirements for 110-units system. 614 

Time (h) 
Significance level (ߛ) 

Time (h) 
Significance level (ߛ) 

10% 1% 10% 1% 
1 1 1 13 1 1 
2 1 1 14 1 1 
3 1 1 15 0.999002 1 
4 1 1 16 0.999002 0.999763 
5 1 1 17 1 1 
6 1 1 18 0.999002 1 
7 0.999002 1 19 0.999002 1 
8 1 1 20 0.999002 1 
9 0.999002 1 21 0.999002 1 
10 1 1 22 1 1 
11 0.999002 0.999763 23 0.999002 1 
12 1 1 24 0.999002 1 

Table 8: Evaluation of proposed approach for 110-units system (the solution obtained by reference 615 
method is 2,436,638.424$ in 36,000 seconds). 616 

 Time (s) Iterations (%) ܭ߂ ($) {ܭ}ܧ ߛ
10% 2,528,236 3.759163 777.181 82 
1% 2,547,217 4.538180 956.706 100 

 617 


