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Abstract 
 

This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning head-sensitive 
reservoirs under competitive environment. We propose a novel method, based on nonlinear programming (NLP), for 
optimising power generation efficiency. This method considers hydroelectric power generation as a nonlinear 
function of water discharge and of the head. The main contribution of this paper is that the maximum water 
discharge, thus giving the maximum power generation, is also considered as head-dependent in order to obtain more 
realistic and feasible results. The proposed method has been applied successfully to solve a case study based on one 
of the Portuguese cascaded hydro systems, providing a higher profit at an acceptable computation time in comparison 
with classical optimisation methods based on linear programming (LP) that ignore head dependence. 
© 2007 Elsevier Ltd. All rights reserved. 
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1. Introduction 
 

The satisfaction of the demand for electric energy has been mainly achieved with hydro resources and 

thermal resources. Hydro resources particularly run-of-the river resources are considered to provide a 

clean and environmentally friendly energy option, while thermal resources particularly fossil fuel-based 

resources are considered to provide an environmentally aggressive energy option, but nevertheless still in 

nowadays a necessary option. Hence, promoting efficiency improvements in the exploitation of the hydro 

resources is increasingly important, reducing the reliance on fossil fuels and decreasing greenhouse 

emissions which are major contributors to climate change. 
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The hydro scheduling problem is usually divided into different time horizons: 

 Medium and long-term hydro scheduling, which encircle a time horizon of one or more years, 

discretised in weekly or monthly intervals. Stochastic models are used [1]. 

 Short-term hydro scheduling (STHS), which encircles a time horizon of one day to one week, usually 

discretised in hourly intervals. Deterministic models are used. Where stochastic quantities are 

included, such as hydro inflows or energy prices, the corresponding forecasts are used [2,3]. 

In a regulated environment, the main goal of the hydro scheduling problem is the minimisation of the 

deviation between total hydroelectric generation and electric energy demand, accomplishing the reservoir 

storage conditions at the beginning and at the end of the scheduling time horizon [4]. This problem could 

be a part of a traditional hydrothermal coordination problem, typically solved with methods based on 

decomposition approaches, determining the start-up and shut-down schedule of thermal plants, as well as 

the power output of thermal and hydro plants during the time horizon [5]. 

In a deregulated profit-based environment, such as the Norwegian case [6] or concerning Portugal and 

Spain given the forthcoming Iberian Electricity Market, the optimal management of the water available in 

the reservoirs for power generation, without affecting future operation use, represents a major advantage 

for generating companies (GENCOs) to face competitiveness given the economic stakes involved. The 

main goal in the profit-based hydro scheduling problem is to maximise the value of total hydroelectric 

generation throughout the time horizon, while satisfying all hydraulic constraints, aiming the most 

efficient and profitable use of the water [7]. Hence, the improvement of existing hydro scheduling models 

promoting a better exploitation efficiency of hydro resources is an important line of research [8], 

especially for head-dependent reservoirs in light of market conditions [9]. The efficiency characterizes the 

conversion of the potential energy contained in the water discharged through the turbines into the gross 

hydro energy output [10]. 

The hydro generation characteristics are mainly assumed as linear or piecewise linear in hydro 

scheduling models, neglecting head variations. For long-term time horizons, the linearity assumption is 

reasonable, since errors introduced by this assumption are expected to be small compared to uncertainties 

with respect, for instance, to hydro inflow [11]. For a particular configuration of the hydro system, the 

linearity assumption may be acceptable or not for short-term time horizons depending on how important 

is the head variation over the time horizon.  
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In hydro plants with a large storage capacity available, as it is the case in the Brazilian system for 

instance, head variation has negligible influence on power generation efficiency in the short-term [12], 

and the linearity assumption is acceptable.  

In hydro plants with a small storage capacity available, also known as run-of-the-river hydro plants, 

the power generation efficiency can change significantly due to the head change effect. For instance, in 

the Portuguese system there are several hydro chains formed by many but small reservoirs. Hence, it is 

necessary to consider the head change effect on STHS in order to obtain more realistic and feasible 

results. The head change effect together with the cascaded hydro configuration, implying spatial-temporal 

coupling among reservoirs, increases the problem complexity. 

Dynamic programming (DP) is among the earliest methods applied to the STHS problem [13–15]. 

Although, DP can handle the non-concavities and the nonlinear characteristics present in the hydro 

model, direct application of DP methods for hydro systems with many coupled plants is impractical due 

to the well-known DP curse of dimensionality, more difficult to avoid in short-term than in long-term 

optimisation without losing the accuracy needed in the model [16]. 

Artificial intelligence techniques have also been applied to the STHS problem, namely, neural 

networks [17,18] and genetic algorithms [19,20]. However, a significant computational effort is necessary 

to solve the problem for a time horizon of one week discretised in hourly intervals. Also, due to the 

heuristics used in the search process only sub-optimal solutions can be reached. 

The network flow technique is especially effective for solving problems associated with the 

mathematical modelling of hydro resources [21], because of the underlying network structure subjacent in 

cascaded reservoirs [22–28]. A set of cascaded reservoirs, each one having just one downstream 

neighbour, can be represented by a tree. Their nodes represent the reservoirs and their arcs represent the 

water releases. The replication of this tree for each period results in a particular network. The arcs 

connecting the trees represent the water stored in the reservoirs [29]. For cascaded hydro systems, as there 

are water linkage and electric connections among plants, the advantages of the network flow technique 

are salient: for instance, it is more difficult for other approaches to consider the water travel delay 

between reservoirs in a river effectively, especially when the river is branched [30]. 

The network flow model is often simplified to a linear or piecewise linear one. Linear programming 

(LP) is a widely used method for STHS [31–33]. LP algorithms lead to extremely efficient codes, 
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implementations of which can be found commercially. Also, mixed-integer linear programming (MILP) 

is becoming frequently used for STHS [34–38], where binary variables allow modelling of start-up costs, 

which are mainly due to wear and tear of the windings and to malfunctions of the control equipment. 

However, LP algorithms imply that power generation is linearly dependent on water discharge, thus 

neglecting head dependence to avoid nonlinearities, leading to inaccuracy. Also, the discretisation of the 

nonlinear dependence between power generation, water discharge and head, used in MILP to model head 

variations, augment the computational burden required to solve this problem. 

Hydro scheduling is in nature a nonlinear optimisation problem. A nonlinear programming (NLP) 

method is proposed in this paper to solve the STHS problem considering head dependence. This method 

expresses hydro generation characteristics more accurately and the head change effect can be taken into 

account. Although there were considerable computational difficulties in the past to directly use NLP 

methods to this sort of problem [39–41], with the drastic advancement in computing power and the 

development of more effective nonlinear solvers in recent years this disadvantage seems to be eliminated. 

The nonlinear dependence between the power generation, the water discharge and the head is taken into 

account in our study through a novel nonlinear formulation, which represents one of the main difficulties 

associated with the STHS problem. In our earlier formulation [42], the maximum water discharge in each 

plant was considered constant. As a new contribution, the maximum water discharge and thus the 

maximum power generation is also considered head-dependent in this formulation, in order to obtain 

more realistic and feasible results. 

The Portuguese fossil fuels energy dependence is among the highest in the European Union. Portugal 

does not have endogenous thermal resources, which has a negative influence on Portuguese economy. 

Moreover, the Portuguese greenhouse emissions are already out of Kyoto target and must be reduced in 

the near future. Hence, promoting efficiency improvements in the exploitation of the Portuguese hydro 

resources reduces the reliance on fossil fuels and decreases greenhouse emissions. In this paper, we report 

our research concerning efficiency improvements applied on a case study based on one of the Portuguese 

cascaded hydro systems, thus providing a higher profit for the GENCO. 

The paper is structured as follows. Section 2 provides the notation used throughout the paper along 

with the mathematical formulation of the STHS problem. Section 3 develops the proposed NLP method 
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for solving the STHS problem considering head dependence. Section 4 presents a case study, illustrating 

the numerical simulation results. Section 5 provides conclusions. 

 
2. Problem formulation 

 

Notation 

K  total number of hours in the scheduling time horizon. 

J  total number of hydro resources. 

jkl  water level in reservoir j during period k. 
max
jl  maximum water level in reservoir j. 
min
jl  minimum water level in reservoir j. 

jkh  head of plant j during period k. 
max
jh  maximum head of plant j. 
min
jh  minimum head of plant j. 

jkv   water storage of reservoir j at end of period k. 
max
jv  maximum storage of reservoir j. 
min
jv  minimum storage of reservoir j. 

jv 0   initial water storage of reservoir j. 

jKv   final water storage of reservoir j. 

jkq   water discharge of plant j during the period k.  
max

jkq  maximum water discharge of plant j during the period k. 
min
jq  minimum water discharge of plant j. 

jks   water spillage by reservoir j during the period k. 

jka   natural inflow to reservoir j during the period k. 

jkp  power generation of plant j during period k. 

jk  efficiency of plant j during period k.  
max
j  maximum efficiency of plant j. 
min
j  minimum efficiency of plant j. 

jm   water travel delay between reservoirs m and j. 

k  forecasted energy price during period k. 

j   future value of the water stored in reservoir j. 

jM   set of upstream reservoirs to reservoir j. 

F  nonlinear function of variables. 

A  constraint matrix. 
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maxb    upper bound vector on constraints. 
minb    lower bound vector on constraints. 

x    vector of the flux variables corresponding to the arcs of the network. 
maxx   upper bound vector on variables. 
minx    lower bound vector on variables. 
 
The STHS problem is formulated as a NLP problem. The objective function to be maximised can be 

expressed as: 

)(
111

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jKj

J
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jkk
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The objective function in (1) is composed of two terms. The first term represents the profit with the 

hydro system during the short-term time horizon, where k  is the forecasted energy price during period k 

and jkp  is the power generation of plant j during period k. The last term expresses the water value, j , 

for the future use of the water stored in the reservoirs at the last period, jKv . A representation when this 

term is explicitly taken into account can be seen in [43,44]. The storage targets for the short-term time 

horizon, which are established by medium-term planning studies, may be represented either by a penalty 

on water storage or by a previously determined ‘future cost function’. 

The optimal value of the objective function is determined subject to constraints: equality constraints 

and inequality constraints or simple bounds on the variables. The following equations represent the set of 

constraints for the plants over the short-term time horizon. 

1) Water Balance Equation: 

;)( ,,,1 jkjk
Mm

mkmkjkjkjk sqsqavv
j

jmjm
 


       ,Kk       Jj   (2)  

2) Power Generation Equation: 

);( jkjkjkjk hqp       ,Kk       Jj   (3)  

3) Head Equation: 

);()( )()()()( jtkjtkjfkjfkjk vlvlh       ,Kk       Jj   (4)  
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4) Water Storage Constraints: 

;maxmin
jjkj vvv       ,Kk       Jj   (5)  

5) Water Discharge Constraints: 

);(maxmin
jkjkjkj hqqq       ,Kk       Jj   (6)  

6) Water Spillage Constraints: 

;0jks      ,Kk       Jj   (7)  

Eq. (2) corresponds to the water conservation equation, where jkv  is the water storage of reservoir j at 

end of period k, jka  is the natural inflow to reservoir j during the period k, jkq  is the water discharge of 

plant j during the period k, jks  is the water spillage by reservoir j during the period k, jm  is the water 

travel delay between reservoirs m and j, K is the total number of hours in the scheduling time horizon, J is 

the total number of hydro resources and jM  is the set of upstream reservoirs to reservoir j. The travel 

time between reservoirs must be taken into account if the transportation delays are not negligible. In (3) 

power generation, jkp , is considered a function of water discharge, jkq , and of efficiency, jk , 

expressed as the output-input ratio, which in turn depends on the head, jkh . In (4) the head, jkh , is 

considered a function of the water level in the upstream reservoir )( jf , )( jfkl , and of the water level in 

the downstream reservoir )( jt , )( jtkl , both levels depending on the water storages in the respectively 

reservoirs. Typically for a powerhouse with a reaction turbine, where the tail water elevation is not 

constant, the head is modelled as in (4), and for a powerhouse with an impulse turbine, where the tail 

water elevation remains constant, the head depends only on the upstream reservoir water level. In (5) 

water storage has lower and upper bounds. Here, for each reservoir j, min
jv  is the minimum storage 

capacity and max
jv  is the maximum storage capacity. In (6) water discharge has lower and upper bounds. 

The minimum water discharge, min
jq , in our case study is considered null, but may be required to be non-

zero due to navigation, recreational or ecological reasons. As a new contribution to earlier studies, the 

maximum water discharge, max
jkq , is considered a function of the head. Hence, the maximum water 
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discharge may be different for each period k, which represents a real feature that is required on our case 

study in order to achieve better exploitation efficiency. In (7) a null lower bound is considered for water 

spillage. Water spillage by the reservoirs can occur only in normal schedule situations when without it the 

water storage exceeds its upper bound, so spilling is necessary due to safety considerations. The initial 

water storages, jv 0 , and the inflows to reservoirs, jka , are assumed as known input data. Also, 

discharge ramping constraints [36] should be included for a reservoir with a task of navigation to keep a 

less and stead head variation. 

 
3. The proposed NLP method 

 

In order to solve the STHS problem, it is essential to use appropriate models, considering power 

generation as a function of water discharge and also of the head for run-of-the-river hydro plants. This 

function is represented by the unit performance curves, a family of nonlinear curves each for a specified 

value of the head, as shown in Fig. 1. 

"See Fig. 1 at the end of the manuscript". 

The main contribution of this paper is that the maximum water discharge is considered a function of 

the head as shown in (6), implying that the maximum power generation is also head-dependent. This is 

indicated by the dashed line labelled max
jkq  in Fig. 1.  

The STHS problem can be formulated as the following nonlinear optimisation problem: 

Max )(xF  (8)  

Subject to: 

maxmin bxAb   (9)  

maxmin xxx   (10)  

where x  is the vector of the flux variables corresponding to the arcs of the underlying network structure 

in hydro chains, consisting of the water storages, the water discharges, and the water spillages, (.)F  is a 

nonlinear function of the vector of the flux variables, A  is the constraint matrix, maxb  is the upper bound 

vector on the constraints, minb  is the lower bound vector on the constraints, maxx  is the upper bound 
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vector on the variables and minx  is the lower bound vector on the variables. The water balance in (2) is 

rewritten as in (9), setting the lower bound equal to the upper bound. The bounds on water storage, water 

discharge and water spillage in (5), (6) and (7), respectively, are rewritten as in the inequality constraints 

in (10). Also, due to the maximum water discharge head dependency, the upper bound on water discharge 

implies a new inequality constraint that will be rewritten as in (9). 

In (3) the efficiency depends on the head. We consider it given by: 

;0
jkjjjk h       ,Kk       Jj   (11)  

where the parameters 0
j  and j  are respectively the offset and the slope given by: 

;maxmax0
jjjj h       Jj   (12) 

);(/)( minmaxminmax
jjjjj hh        Jj   (13)  

In (13) parameter j  depends on the extreme values for efficiency and head, where max
j  is the 

maximum efficiency, min
j  is the minimum efficiency, max

jh  is the maximum head and min
jh  is the 

minimum head. 

In (4) the water level depends on the water storage. We assume it given by: 

;0
jkjjjk vll       ,Kk       Jj   (14)  

where the parameters 0
jl  and j  are respectively the offset and the slope given by: 

;maxmax0
jjjj vll       Jj   (15) 

);(/)( minmaxminmax
jjjjj vvll       Jj   (16)  

this assumption implies reservoirs with vertical walls, which is a good approximation for run-of-the-river 

reservoirs, due to its small storage capacity, as our data have shown for the case study. 

In (16) parameter j  depends on the extreme values for water level and storage, where max
jl  is the 

maximum water level, min
jl  is the minimum water level, max

jv  is the maximum storage and min
jv  is the 

minimum storage. 



 10

Substituting (11) into (3) we have: 

);( 0
jkjjjkjk hqp        ,Kk       Jj   (17)  

By substituting (4) and (14) into (17) power generation becomes a nonlinear function of water 

discharge and water storage, given by: 

;)()()()(
0

)(
0

)(
0

jtkjkjtjjfkjkjfjjkjtjjkjfjjkjjk vqvqqlqlqp                

           ,Kk       Jj   (18)  

In our model, the maximum water discharge is considered head-dependent and it is given by: 

;0max
jkjjjk hqq       ,Kk       Jj   (19)  

where the parameters 0
jq  and j  are respectively given by: 

;max10
jjjj hqq       Jj   (20) 

);(/)( minmaxmax1
jjjjj hhqq       Jj   (21)  

In (21) parameter j  depends on the extreme values for head and the corresponding maximum water 

discharge values, where max
jh  is the maximum head, min

jh  is the minimum head, 1
jq  is the maximum 

water discharge achieved at max
jh  and max

jq  is the maximum water discharge achieved at min
jh . Since 

1
jq  is inferior to max

jq , j  is never greater than zero. 

Substituting (4) and (14) into (19) we have: 

;)()()()(
0

)(
0

)(
0max

jtkjtjjfkjfjjtjjfjjjk vvllqq        ,Kk       Jj   (22)  

The maximum water discharge becomes a function of water storage, given by: 

;)(
2

)(
10max

jtkjjfkjjjk vvq        ,Kk       Jj   (23)  

where the parameters 0
j , 1

j  and 2
j  are respectively given by: 

;0
)(

0
)(

00
jtjjfjjj llq        Jj   (24) 
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;)(
1

jfjj        Jj   (25) 

;)(
2

jtjj        Jj   (26) 

Hence, the new inequality constraint to be rewritten as in (9) is given by: 

;0
)(

2
)(

1
jjtkjjfkjjk vvq        ,Kk       Jj   (27)  

 
4. Case study 

 

The proposed NLP method has been applied on a case study based on one of the Portuguese hydro 

systems, consisting of three head-sensitive cascaded reservoirs. The spatial coupling among reservoirs is 

shown in Fig. 2. 

"See Fig. 2 at the end of the manuscript". 

Only the first reservoir has inflow. This inflow is due to an upstream watershed belonging to a 

different company and is shown in Fig. 3. 

"See Fig. 3 at the end of the manuscript". 

Our model was implemented on a 600-MHz-based processor with 256 MB of RAM using the 

optimisation solver package Xpress-MP under MATLAB. The scheduling time horizon chosen is one 

week divided into 168 hourly periods. 

The energy price profile over the time horizon is shown in Fig. 4 (where $ is a symbolic economic 

quantity). 

"See Fig. 4 at the end of the manuscript". 

Energy prices are important input data to achieve a successful schedule based on profit maximisation. 

This data has uncertainty due to the deregulation of the electricity markets. Hence, an accurate forecast of 

energy prices has become a very important tool for a GENCO to develop an appropriate bidding strategy 

in the market and to optimally schedule its hydro resources. Several techniques have been tried out for 

energy prices forecasting, mainly based on time series and ARIMA models [45,46], or on artificial neural 

networks [47–49]. These energy prices are considered as deterministic input data for the STHS problem. 

In our case study the final water storage in reservoirs is constrained to be equal to the value at the 

beginning of the scheduling time horizon. Hence, the future value of the water stored in reservoirs is not 

considered. 
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The computation time for solving a nonlinear program is highly dependent on the starting point. A 

considerable reduction in the overall solution time may be obtained if a good guessed starting point is 

obtained. We consider for the optimisation procedure a starting point given by the solution of an LP 

problem and using NLP in our case study we always arrive at convergence to a superior solution. 

The computed 168-hours optimal reservoir storage and head trajectories are shown respectively in 

Figs. 5 and 6. 

"See Fig. 5 at the end of the manuscript". 

"See Fig. 6 at the end of the manuscript". 

Considering the head change effect, the reservoirs should operate at an appropriated high storage level 

in order to achieve the most benefiting point of the overall efficiency for the conversion of potential 

energy of the water into electric energy. The storage trajectories of the first and second reservoirs are 

pulled up, opposing to the change in the storage trajectory of the third reservoir. Nevertheless, due to the 

constraint on final water storage, the storage trajectory of the third reservoir is pulled up near the final 

hours of the time horizon, implying a decrease on the storage trajectory of the second reservoir. This 

behaviour is in favour of the overall power generation efficiency thereby yielding an increase on total 

profit for the GENCO. The data for this case study satisfies the following relations between parameters: 

332211   . Different watershed data giving different parameterisation and its effect on the 

behaviour of a head-sensitive hydro chain can be seen in our earlier work [42], with no model 

consideration for head-dependent maximum water discharge. 

In Fig. 7 the computed 168-hours optimal plant discharge trajectories are shown. 

"See Fig. 7 at the end of the manuscript". 

The water discharge and consequently the hydro production tend to follow the shape of the price 

profile in Fig. 4, but due to the consideration of the head change effect some shape adaptation is imposed. 

The effect on maximum water discharge for the first plant implies that there is a slope shape at the most 

favourable price hours of each day, instead of the normal flat shape when the maximum water discharge 

was considered constant. This effect is less important due to the numerical data in the other plants. Hence, 

in Fig. 7 the normal flat shape is seen for the second and third plant. 
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A comparison of the power generation per water discharge between the LP method and the proposed 

NLP method for plant 1, 2 and 3 is shown respectively in Figs. 8, 9 and 10. 

"See Figs. 8, 9 and 10 at the end of the manuscript". 

This comparison is in favour of the proposed NLP method, achieving a higher total profit with an 

increase of 4.94% as shown in the Table 1. Moreover, when there is a need to consider the maximum 

water discharge as a function of the head, the proposed NLP method is more adequate than our earlier 

NLP method [42]. 

"See Table 1 at the end of the manuscript". 

The computation time for this case study was about 0.88 s, showing that the proposed NLP method is 

not only more accurate but also computationally acceptable. 

 

5. Conclusion 
 

The new environment of competitive electricity markets for energy requires new computing tools to 

allow generating companies to achieve a better short-term hydro schedule, more realistic and feasible, 

improving on power generation efficiency which is crucial to face competitiveness. A generating 

company should not ignore the head change effect for head-sensitive cascaded reservoirs in order to 

improve power generation efficiency. This effect implies not only a nonlinear dependence between the 

power generation, the water discharge and the head, but also implies that the maximum water discharge 

giving the maximum power generation is a function of the head. This paper proposes a nonlinear 

programming method for head-sensitive cascaded reservoirs in order to consider the head change effect 

on hydroelectric power generation. As a new contribution to earlier studies, we report the consideration of 

a slope shape for water discharge at the most favourable price hours of each day, instead of the normal 

flat shape when the maximum water discharge was considered with no head change effect. The proposed 

method has been successfully tested on a case study based on one of the Portuguese cascaded hydro 

systems with head-sensitive reservoirs, providing a higher profit in comparison with classical 

optimisation methods based on linear programming that ignore head dependence. Numerical simulation 

results show that the proposed method is both accurate and computationally acceptable, providing a novel 

and better approach to optimise power generation efficiency for head-sensitive cascaded reservoirs.  
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Fig. 1. Unit performance curves. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Hydro system with three cascaded reservoirs. 

 

1ks

2ks

3ks

1kv

2kq

3kv

2kv

1kq

3kq

1ka



 17

 

 

 

Fig. 3. Inflow on the first reservoir. 

 

 

 

 

 

Fig. 4. Energy price profile considered. 

 



 18

 

 

 

Fig. 5. Optimal reservoir storage trajectories over minimum storage. The solid line denotes reservoir 1 results, the 

dashed line denotes reservoir 2 results and the dash-dot line denotes reservoir 3 results. 

 

 

 

 

Fig. 6. Optimal plant head trajectories over minimum head. The solid line denotes plant 1 results, the dashed line 

denotes plant 2 results and the dash-dot line denotes plant 3 results. 
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Fig. 7. Optimal plant discharge trajectories. The solid line denotes plant 1 results, the dashed line denotes plant 2 

results and the dash-dot line denotes plant 3 results.  

 

 

 

 

Fig. 8. Power generation per water discharge at plant 1 — LP method (dashed line) versus proposed NLP method 

(solid line). 
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Fig. 9. Power generation per water discharge at plant 2 — LP method (dashed line) versus proposed NLP method 

(solid line).  

 

 

 

 

Fig. 10. Power generation per water discharge at plant 3 — LP method (dashed line) versus proposed NLP method 

(solid line).
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Tables 
 

Table 1 

Comparison of LP with the NLP method 

 
 

Profit ($) % Increase CPU time (s) 

LP method 5,259,872 - 0.21 

Proposed NLP method 5,519,738 4.94 0.88 
 


