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Abstract—The electric vehicle (EV), when aggregated by an agent (Aggregator), is a suitable candidate for participating in 
demand response in power system operation. As the interface between distribution network and EV users, as well as an 
independent party at the same time, an optimal scheduling algorithm is necessary with consideration of benefits of three 
parties, which in return will affect aggregators’ sustainable development. The benefits of distribution system from demand 
response, aggregator and EV users are defined in this paper. EV users’ benefit is described by their satisfaction on SOCs 
reached after a given period of time and overall costs/revenues for charging/discharging and policy award/penalty, while 
the benefit of distribution network for the integration of large amount EV loads through aggregator is evaluated by 
aggregator’s load shifting capability through a price-based demand response (DR) program under real time electricity 
price. The optimal scheduling of the aggregator is with an objective of maximizing its own benefit under constraints of EV 
users’ minimum satisfaction and minimum load-shifting capability required by distribution network. The optimization 
scheduling is tested by a test system, and further analysis is given on the effect of aggregator’s facility level and 
technology (Vehicle to Vehicle) and the operation mode of aggregator group on the benefits of three parties.  

Index Terms—Aggregator; Demand response; Electric vehicle; Users’ satisfaction; Load shifting; Vehicle to Vehicle

NOMENCLATURE

Acronyms
DGs Distributed Generations
DR Demand Response
EV Electric Vehicle
V2G Vehicle to Grid
V2V Vehicle to Vehicle
SOC State of Charge
SOH State of Health
DSO Distribution System Operator
TOU Time-of-Use

Indices
 𝑡 Index of time slot.
 𝑖 Index of EV.

Parameters and Variables
 𝑀𝑑𝑎𝑦% Evaluation function of aggregator’s demand response (DR) capability.

,𝑀𝑎 𝑀𝑒 Variance of the latest 24-hour load curve with DR and base-line load curve, respectively.
 𝐿𝑡 Base load of the system at time t (kW).

 𝐿 Average load of base-line load curve of the latest 24 hours (kW).



,  𝑃𝐷𝑅,𝑡 ‒ 1  𝑃𝐷𝑅,𝑡 DR power of the aggregator at the (t-1)th and tth scheduling moment (kW), respectively.  means the aggregator 𝑃𝐷𝑅,𝑡 < 0
sends power to the network. 

 𝑃𝐷𝑅 Average power of the aggregator of the latest 24 hours (kW).
,𝑃 𝑚𝑖𝑛

𝐷𝑅, 𝑡 𝑃𝑚𝑎𝑥
𝐷𝑅,𝑡 Maximum and minimum of load of the aggregator of time slot t (kW).

 𝑃 '
𝑐,𝑡 Charging price for the tth slot by the aggregator without considering the penalty during high load period (CNY/kWh).

𝑃 '
𝑑,𝑡 The purchasing price (V2G price) given by aggregator without considering the policy award for time slot t (CNY/kWh).

 𝑃𝑐,𝑡 Forecasted real-time electricity price given by distribution system for time slot t (CNY/kWh).
 𝑃𝑎𝑑𝑑,𝑡 Service fee for charging service collected by the aggregator (CNY/kWh).

 𝑃𝑚,𝑡 Whole V2V power available at time slot t (kW).
 𝐸𝑐,𝑖 Charging cost of the ith EV (CNY).
,𝑅𝑐,𝑖  𝑅𝑑,𝑖 Policy penalty paid and award gained of the ith EV(CNY).
 𝐼𝑑,𝑖 The ith EV’s V2G revenue paid by the aggregator (CNY).
,𝑅𝑐,𝑡 𝑅𝑑,𝑡 Policy penalty for charging service and award for V2G service at time t (CNY/kWh).

𝑅𝑑𝑚𝑎𝑥 Maximum policy award an EV could obtain (CNY).
 𝜃 Purchasing price of V2G given by distribution network (CNY/kWh).

 𝐶𝐵,𝑖 Rated capacity of battery of the ith EV(kWh).
 𝑤1,𝑖,𝑤2,𝑖 Weights of the ith EV’s SOC and economic satisfaction.

 𝜇 Economic benefit of aggregator’s DR capability.
 𝑟𝑖 Maximum change rate of DR per unit time in Aggregator.
 𝑀 The minimum DR capability required by distribution network.
 𝑁 Number of piles.
 𝑚 Number of EVs that charge from distribution network.

 𝑛 Number of EVs that discharge to distribution network.
 𝑡𝑐,𝑏𝑒𝑔𝑖𝑛,𝑡𝑐,𝑒𝑛𝑑 Charging beginning and ending time.
 𝑡𝑑,𝑏𝑒𝑔𝑖𝑛,𝑡𝑑,𝑒𝑛𝑑 Discharging being and ending time.

 ∆𝑆𝑂𝐶 ‒
𝑖,𝑡 SOC increment of the ith EV within time slot t. Superscript (-) means discharging.

 ∆𝑆𝑂𝐶 +
𝑖,𝑡

SOC increment of the ith EV within time slot t. Superscript (+) indicates charging.

 𝑆𝑂𝐶''
𝑖 SOC of the ith EV at the leaving time. 

 𝑆𝑂𝐶0,𝑖
SOC of the ith EV at the arriving time. 

 𝑆𝑂𝐶'
𝑖 Target SOC of the  EV.𝑖𝑡ℎ

 𝑆𝑂𝐻𝑖
SOH of the ith EV.

 𝑆𝑂𝐶𝑡,𝑖
SOC of the ith EV at time t.

 𝐺1,𝑖% The ith EVs’ SOC satisfaction.

 𝐺𝑐2,𝑖% The ith EVs’ economic satisfaction for charging service.

 𝐺𝑑2,𝑖% The ith EVs’ economic satisfaction for discharging service.

 𝐺𝑐,𝑖%,𝐺𝑑,𝑖% Satisfaction of the ith EV for charging service and discharging service, respectively.

 𝐺% Satisfaction of the whole user group.
 𝐺𝑚𝑖𝑛% Minimum users’ satisfaction of the whole EV group.

 𝐹 The aggregator’s profit during the latest 24 hours (CNY).

 𝐹𝑐,𝑡,𝑖,𝐹𝑑,𝑡,𝑖
Service fees for charging and V2G service collected from the ith EV at time slot t, respectively (CNY).

 𝐹𝑉2𝑉,𝑡
Equivalent savings from serving EVs through V2V at time slot t (CNY).

 𝐹𝐷𝑅
Aggregator’s revenue of its DR capability of the latest 24 hours (CNY).

,𝑁 𝑐
𝑡,𝑖 𝑁 𝑑

𝑡,𝑖 Priority of the ith EV for charging and V2G service, respectively.

 𝐶𝑅𝑡,𝑖
Charging and discharging rate of the ith EV, respectively.

I. INTRODUCTION

Under the pressure of energy crisis and environmental pollution, the effective application of renewable energy has become the 
theme of current era. Distributed generations (DGs), especially the renewable generations, provide a solution for higher efficiency 
and greener electricity. However, the randomness and fluctuation of renewable DGs’ output brings new challenges to the operation 
of distribution system. Demand response (DR) provides more flexibility for maintaining the balance between supply and demand 
sides and improving system reliability [1-3].  

As one of the most popular participants in DR, electric vehicles (EVs) play an important role on reducing CO2 emission under 
the government promotion policy in recent years. Due to the capacity limit of a single EV battery, the aggregators are necessary 
as market agents for EVs to actively participate in DR and other proper balancing services [4, 5]. Aggregators act as interfaces 
between the distribution system and multiple EV users. Due to the owners’ behaviors’ uncertainty, the EV aggregation agent will 
confront numerous challenges in order to participate in DR and other market services [6, 7]. Their performance affects EV users’ 



benefits as well as the market efficiency and system reliability. In return, the sustainable development of aggregators will finally 
be shaped by the synergic operation of distribution system and EVs. Aggregator, when being considered as a private entity, always 
wants to maximize its own profit by using various means including additional services [8] and selling secondary reserve in 
electricity market.

Cooperation among multiple aggregators could provide better service to customers with relatively low infrastructure 
configuration in each station and better DR flexibility. Multiple aggregators and distribution operator could coordinate between 
each other, for example, a centralized hierarchical framework was proposed that Distribution System Operator (DSO) seeks to 
coordinate the charging of all aggregators to minimize energy purchase costs under Time-of-Use (TOU) tariffs and achieve peak 
load controlling [9, 10]. However, it brings data privacy issues and individual economic concerns. When there is no central 
controller of multiple aggregators, coordination could be achieved through incentive-based mechanism between aggregators or 
distributed optimization algorithm [11-13]. 

Aggregator, as the interface between distribution system and EV users, its benefit is closely related to the other two parties.  
Part of the benefit of an aggregator is from the price differences between buying energy from the system and selling energy to the 
system [13]. Participating in different market services could enlarge its profit room. However, the EV aggregators need to secure 
a certain amount of EV users to make its real energy consumption as close as the energy bided by aggregators in the market, the 
difference of which will lead to punishment to aggregators.  

Although aggregators can protect their users by signing contracts [14], a more sustainable and long-term solution is to improve 
users’ satisfaction. Then, most studies define the optimal scheduling goal of aggregators as the maximization of user satisfaction 
or/and the minimization of purchasing energy cost [15][16]. The users’ satisfaction is modeled through charging time, state of 
charge (SOC), charging cost and the combination of the above factors. For example, in Ref. [11], the users’ convenience is modeled 
by the available charging time and the users’ initial SOC. Ref. [15] defines users’ satisfaction as the average value of the ratio of 
energy to demand provided by plug-in electric vehicles within 24 hours. Ref. [17] expresses users’ satisfaction by the shortest time 
required to meet the charging need, and users’ satisfaction can be expressed by user waiting time (including queuing time and 
charging time) [18-20]. In [21]and [22], users’ satisfaction is measured by user charging and discharging cost under TOU electricity 
price. This paper models the users’ satisfaction of charging service provided by the aggregator as well as discharging service. The 
proposed satisfaction model in our study has two parts: user’s satisfaction for charging service and user’s satisfaction for 
discharging service. Each of them is decided by SOC satisfaction and economic satisfaction. The SOC satisfaction is defined 
similar to that of other references, while the economic satisfaction is decided by the cost/income EV user has to pay or obtain. If 
the cost cannot be minimized by aggregator through avoiding charging from the grid during peak load hour, or the income cannot 
be maximized by aggregator through discharging to the grid during the peak load hour, EV user’s economic satisfaction drops.

Through aggregator, EVs could be accumulated and participate in DR program and other market services and gain more benefit 
[23]. When aggregators are as sources of DR, from the perspective of distribution network, a better load profile with low peak-to-
average ratio through charging/discharging behaviors of aggregators is expected [10]. The difficulties in aggregator scheduling 
scheme and the uncertainty in its DR capacity are caused by the randomness in EVs’ behaviors. Measures are taken to minimize 
them in references. For example, in [24], EV users are required to book services in advance. In [4], users that cannot buy services 
in aggregator as booked will be punished. These measures are feasible, but they omit the fact that charging needs of EV users are 
rigid, and Vehicle to Grid (V2G) behavior is benefit-responsive. Under the market environment, EV users’ behaviors should not be 
“planned”. In some cases, the daily price also might be one impact factors affecting the EV users’ behaviors [25]. 

V2V（Vehicle-to-Vehicle） is performed among multiple EVs within a local grid, and energy exchange with distribution 
network is not needed. Through V2V, EVs can transfer their energy by bidirectional chargers through a local grid, and then 
distribute the energy among other EVs by aggregator [26]. Technology to conventional charging /discharging devices with the 
increasing market volume of EV. As indicated in [26], V2V has multiple features, such as uncomplicated infrastructure 
requirements and small transmission losses, operation in community-grid, etc. At present, research on V2V technology mainly 
focuses on the charging and discharging strategies, the cooperation between users and system, etc. An online V2V charging / 
discharging strategy for switching stations based on price control is proposed in [27]. The optimal V2V charging and discharging 
strategy is formulated by using game theory and Lagrange dual optimization technology. Based on the concept of V2V for 
collaborative charging, a flexible energy management protocol with different V2V matching algorithm is proposed in [28], which 
helps electric vehicles to achieve more flexible and intelligent charging/discharging behaviors. Ref. [29] proposes a mobile PEVs 
smart grid structure with enhanced communication capability by strengthening smart grid through heterogeneous wireless network. 
Differently, in our research, we mainly study the impact of V2V technology in the aggregator on EV user satisfaction, aggregator’s 
benefit, and aggregator’s DR capability. Also, the condition, under which V2V effect, is also studied.

In this paper, the interaction of benefits of distribution network, aggregator and EV users were firstly analyzed and quantified. 
The model of EV user’s satisfaction for services they seek in aggregators is improved by considering the nonlinear relationship 
between the changes of State of Charge (SOC) and satisfaction. Based on the analysis, an optimal scheduling algorithm for 
aggregator’s operation is proposed. Through the optimal scheduling algorithm and necessary facility and technology, the 
aggregator maximizes its own profit, meantime satisfies the minimum requirements of DR capability set by distribution network 
and satisfaction required by EV users. 



Considering the range of EV batteries and the correlation of charging and discharging behaviors among different stations due to 
the temporal-spatial statistics of behaviors of EVs, in this study we focus on the service quality, DR performance and the benefit 
of two aggregators in residential and commercial areas respectively. Due to the rigid requirement of EV users’ charging needs, EV 
users’ economic motivation for DR program, the services they order and profit of two aggregators are correlated. The benefit of 
each aggregator and aggregator group of 2 aggregators under different facility and technology (V2V) level is further analyzed. 
Useful implications for the configuration and operation of aggregators are given. 

The paper is organized as follows. In section II, the benefit that distribution network obtains from the management of large 
amount of EV loads through aggregators, satisfaction of EV users and benefit of an aggregator as the interface between EVs and 
distribution system are defined. Based on them, an optimal scheduling algorithm and key issues in the scheduling are provided in 
section III. In section IV, models and the optimal algorithm are tested through a test system under a simulation of 5 simulated years 
with a resolution of 15 minutes. Effects of facility and technological level of aggregators in different areas on the benefits of three 
parties are further analyzed. In section V, comprehensive conclusions are provided. 

II. BENEFITS OF THREE PARTIES

In this study, we propose an optimal scheduling model with consideration of the benefits of multiple parties involved. Fig.1 
gives the interaction of benefits among aggregators, EV users, and distribution network, where supplement by optimization refers 
to the increase of income because of serving more customers by technology introduced in section III-B and potential profit brought 
in the future by the increase of customers’ satisfaction due to the aggregator’s optimal scheduling technique.
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Fig. 1.  The interaction of benefits among aggregators, EV users and distribution network

In this section, we define an “evaluation function”, users’ satisfaction, and aggregators’ profit to represent the benefit of 
distribution system, EV users, and aggregators, respectively. Charging/V2G prices affects the profile of EV loads. In this study, 
real time pricing scheme is considered for a price-based demand response scheme, i.e. a real-time pricing scheme. Under the real 
time pricing scheme, higher tariff is charged for peak load period during the day, while lower tariff is charged for valley load 



period during the night. On top of that, another incentive-based DR program is defined as follows: the DR program is on when the 
load level of the system is above 80% of the system’s peak load. During this period of time, EV users for charging will be charged 
an extra penalty on top of the real time electricity price, while EV users for discharging will be paid a reward on top of the 
purchasing price given by the local distribution network. Since the peak load is shifted under these two DR programs, aggregator’s 
load-shifting capability also refers to its DR capability in the following.

In this section, we define an “evaluation function”, users’ satisfaction, and aggregators’ profit to represent the benefit of 
distribution system, EV users, and aggregators, respectively. Charging/V2G prices affects the profile of EV loads. In this study, 
real time pricing scheme is considered for a price-based demand response scheme, i.e. a real-time pricing scheme. Under the real 
time pricing scheme, higher tariff is charged for peak load period during the day, while lower tariff is charged for valley load 
period during the night. On top of that, another incentive-based DR program is defined as follows: the DR program is on when the 
load level of the system is above 80% of the system’s peak load. During this period of time, EV users for charging will be charged 
an extra penalty on top of the real time electricity price, while EV users for discharging will be paid a reward on top of the 
purchasing price given by the local distribution network. Since the peak load is shifted under these two DR programs, aggregator’s 
load-shifting capability also refers to its DR capability in the following. 

A. Evaluation function for aggregator’s DR capability
Fig. 2 gives the schematic diagram of the influence of EVs charging and discharging load through aggregator on the daily load 

curve of the distribution network. In Fig. 2, the grey area between the red and blue dot dash lines represents the energy consumed 
by EVs.
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Fig. 2.  Illustration of daily load without DR and daily load with DR

The red curve (the load curve with EVs’ participating in DR through aggregator under optimal scheduling) fluctuates less than 
the blue curve (the load curve without EVs load). Peak-shifting effect is gained. Theoretically, an evaluation on aggregator’s DR 
capability from the distribution side needs load curves of the system with EVs’ participating in DR through aggregators and without 
EVs participating in DR programs. However, without real-time price scheme and V2G through aggregators, EV users charging 
load is affected not only by EV users’ driving behavior, but also their charging habits, for example, charging every day or charging 
every two days. Therefore, more assumptions need to be made in order to obtain the load curve without EVs’ participating in DR. 
Since a better load profile with low peak-to-average ratio is expected by the distribution system, in this study, as a replacement, 
we use the difference in the variation of loads with DR and base load (no EV loads and V2Gs) to reflect aggregator’s DR capability. 
Under real-time tariff system, EV users tend to charge at low price period (normally during night time), while discharge at high 
price period (normally during day time). Under the proposed DR program, if EVs discharge more and charge less when policy 
award is available (which is also during high price period), better load-shifting is obtained, and the load curve will be flatter, and 
area filled in yellow will be greater.

Therefore, we define , which is calculated by (1)-(5), to evaluate the performance of an aggregator as a provider of DR 𝑀𝑑𝑎𝑦%
capacity for the latest 24 hours.

                                              (1)𝑀𝑑𝑎𝑦% =
𝑀𝑒 ‒ 𝑀𝑎

𝑀𝑒
× 100%

                                             (2)𝑀𝑎 = 1
𝑇∑𝑇

𝑡 = 0[
𝐿𝑡 ‒ 𝐿 + 𝑃𝐷𝑅,𝑡 ‒ 𝑃𝐷𝑅 

𝐿 + 𝑃𝐷𝑅
]

2

                                                  (3)𝑀𝑒 = 1
𝑇∑𝑇

𝑡 = 0[
𝐿𝑡 ‒ 𝐿

𝐿 ]
2

                                                   (4)𝐿 =
1

𝑇 + 1∑𝑇
𝑡 = 0𝐿𝑡



                                                (5)𝑃𝐷𝑅 =
1

𝑇 + 1∑𝑇
𝑡 = 0𝑃𝐷𝑅,𝑡

where  and  are the standard deviation of the latest 24-hour load curve with DR and base-line load curve respectively; 𝑀𝑎 𝑀𝑒
 is the power of the aggregator at the tth scheduling moment;  is the average load of base-line load curve of the latest 24 𝑃𝐷𝑅,𝑡 𝐿

hours，where Lt is the load of the system at time t;  is the average load of the aggregator of the latest 24 hours. The operation 𝑃𝐷𝑅
of aggregator of 24 hours is divided into multiple time slots, which is represented by (T+1) in (2)-(5). For example, if each time 
slot is 15 minutes, and , then there are 96 time slots in total for a day. Therefore,  is the relative difference 𝑡 = 0,1,2,⋯,95 𝑀𝑑𝑎𝑦%
between the standard deviations of two time series  and . {𝐿𝑡} {𝐿𝑡 + 𝑃𝐷𝑅,𝑡}

The distribution system evaluates aggregator’s performance by  and delivers correspondent service fee to the aggregator 𝑀𝑑𝑎𝑦%
for the DR capacity it provides.

B. EV users’ satisfaction 
Under market environment, the EV user’s satisfaction is one of the key factors that affect the aggregator’s market volume and 

development. Charging time, state-of-charge (SOC) or variation of these two factors, as well as the cost of buying energy from 
distribution network are main factors deciding EV users’ satisfaction [11, 13, 17-22].

EV user’s charging time or discharging time is mainly decided by aggregator’s facility level (the number of charging/discharging 
piles, the charging/discharging power), the number of EV users arrives at the aggregator within the same time slot, which cannot 
be controlled, and the order that EVs are served, which could be adjusted by the scheduling strategy of the aggregator. When the 
EV user could decide its leaving time in advance, the abovementioned factors will affect EV’s SOC reached at the predefined 
leaving time. Therefore, we define EV user’s satisfaction to the aggregator’s service to be a weighted summation of SOC 
satisfaction and economic satisfaction. 

We assume that EV could provide the following information to the aggregator when calling for charging or V2G service in the 
aggregator: current SOC, State of Health (SOH) of the battery, arriving time, charging/discharging power, the target SOC, and 
leaving time. We assume that EV user’s intelligent device, for example, trip computer or Apps on EV driver’s smart phone, can 
provide an optimal target SOC for charging and V2G to aggregator at arriving. For example, EV users’ willingness to charge and 
target SOCs could be decided by its current SOC and the cost they will pay to charge, while their willingness to V2G and target 
SOCs are decided by forecasted purchasing prices of electricity during discharging period, cost of extra cycling of the battery 
(related to the SOH of the battery), and the cost of previous charging [30].  

a)  EVs’ SOC satisfaction

SOC satisfaction is defined as the percentage that EV user’s charging/discharging plan is fulfilled at the aggregator. When EV 
users participate in the service, there may be a difference between the expected and actual charging / discharging SOC due to the 
facility limitation or constraints of operation conditions, which will have an impact on the user experience. Therefore, we define 
an index, denoted by , to reflect the ith EVs’ satisfaction with SOC when leaving the aggregator.𝐺1,𝑖%

                                                  (6)𝐺1,𝑖% =
𝑆𝑂𝐶''

𝑖 ‒ 𝑆𝑂𝐶0,𝑖

𝑆𝑂𝐶'
𝑖 ‒ 𝑆𝑂𝐶0,𝑖

where , , and are the SOC at the arriving time, the target SOC and the SOC at the leaving time of the ith EV, 𝑆𝑂𝐶0,𝑖 𝑆𝑂𝐶'
𝑖 𝑆𝑂𝐶''

𝑖
respectively.

b) EV’s economic satisfaction for charging service

Based on Fig. 1, we define an index, denoted by , to describe the ith EVs’ economic satisfaction for charging service as 𝐺𝑐2,𝑖%
follows.

                                              (7)𝐺𝑐2,𝑖% =
𝐸𝑐,𝑖

𝐸𝑐,𝑖 + 𝑅𝑐,𝑖

                                       (8)𝐸𝑐,𝑖 = ∑𝑡𝑐,𝑒𝑛𝑑
𝑡 = 𝑡𝑐,𝑏𝑒𝑔𝑖𝑛

(𝑃 '
𝑐,𝑡 ∙ 𝐶𝐵,𝑖 ∙ ∆𝑆𝑂𝐶 +

𝑖,𝑡 )
                                        (9)𝑅𝑐,𝑖 = ∑𝑡𝑐,𝑒𝑛𝑑

𝑡 = 𝑡𝑐,𝑏𝑒𝑔𝑖𝑛
(𝑅𝑐,𝑡 ∙ 𝐶𝐵,𝑖 ∙ ∆𝑆𝑂𝐶 +

𝑖,𝑡 )
                                             (10)𝑃 '

𝑐,𝑡 = 𝑃𝑐,𝑡 + 𝑃𝑎𝑑𝑑,𝑡

where the ith EV need to pay  for the charging service provided by the aggregator.  is the charging cost of the ith (𝐸𝑐,𝑖 + 𝑅𝑐,𝑖) 𝐸𝑐,𝑖
EV without consideration of policy punishment for charging during peak load hour; is the rated capacity of battery;  is 𝐶𝐵,𝑖 𝑅𝑐,𝑖
the total policy punishment of the ith EV when the loading level is above a given value;  are the charging starting and 𝑡𝑐,𝑏𝑒𝑔𝑖𝑛,𝑡𝑐,𝑒𝑛𝑑
ending time. During the charging period, when the loading of the system is above 80% of the peak loading level, ; 𝑅𝑐,𝑡 ≠ 0
otherwise, .  is the SOC increment due to charging behavior within one scheduling time slot. Superscript “+” 𝑅𝑐,𝑡 = 0  ∆𝑆𝑂𝐶 +

𝑖,𝑡

indicates charging.  is the charging price for per kWh given by the aggregator without considering the penalty during high  𝑃 '
𝑐,𝑡

load period, which is announced before the transaction due to the commercial nature of the aggregator;  is the forecasted real-𝑃𝑐,𝑡
time electricity price; is the service fee for per kwh of electricity charged/discharged, which is collected by the aggregator.𝑃𝑎𝑑𝑑,𝑡



c) EV’s economic satisfaction for discharging service

Based on Fig. 1, we define an index, denoted by , to describe the ith EVs’ economic satisfaction for discharging service 𝐺𝑑2,𝑖%
as follows.

                                          (11)𝐺𝑑2,𝑖% =
𝐼𝑑,𝑖 + 𝑅𝑑,𝑖

𝐼𝑑,𝑖 + 𝑅𝑑𝑚𝑎𝑥

                                (12) 𝑅𝑑,𝑖 = ∑𝑡𝑑,𝑒𝑛𝑑
𝑡 = 𝑡𝑑,𝑏𝑒𝑔𝑖𝑛

(𝑅𝑑,𝑡 ∙ 𝐶𝐵,𝑖 ∙ ( ‒ ∆𝑆𝑂𝐶 ‒
𝑖,𝑡))

where  is the policy award for V2G at time t. Rdmax is the maximum policy award an EV could obtain, which is when it 𝑅𝑑,𝑡
discharges at the same discharging rate during the whole policy award period.  and  represent the starting and 𝑡𝑑,𝑏𝑒𝑔𝑖𝑛  𝑡𝑑,𝑒𝑛𝑑

ending time of V2G service. is the SOC increment due to the discharging behavior within one scheduling time slot. ∆𝑆𝑂𝐶 ‒
𝑖,𝑡 ∆

 is calculate by deducting  at the end of the tth time slot from  at the beginning of the tth time slot. Superscript 𝑆𝑂𝐶𝑖,𝑡 𝑆𝑂𝐶𝑖 𝑆𝑂𝐶𝑖

(-) means discharging, because .∆𝑆𝑂𝐶 ‒
𝑖,𝑡 ≤ 0

 in (13) is the ith EV’s V2G revenue paid by the aggregator. The revenue of EV’s participating in V2G is closely related to 𝐼𝑑,𝑖
the amount of energy discharged and the discharging time span. The discharging time span with policy incentives usually coincides 
with peak load hours. For example, the policy incentives will be higher when the load level is higher. If the discharging time span 
is determined, the income of EV’s participation in V2G is only determined by the amount of energy discharged.  is defined as 𝐼𝑑,𝑖
follow:

                           (13)𝐼𝑑,𝑖 = ∑𝑡𝑑,𝑒𝑛𝑑
𝑡 = 𝑡𝑑,𝑏𝑒𝑔𝑖𝑛

((𝜃 + 𝑃𝑎𝑑𝑑,𝑡) ∙ 𝐶𝐵,𝑖 ∙ ( ‒ ∆𝑆𝑂𝐶 ‒
𝑖,𝑡))

                                               𝜃 > 0
where  is the purchasing price of per kWh given by the distribution network. It is decided by the policies of state and local 𝜃
government. Since right now in most of local distribution networks in China, no policy has been made on the purchase prices of 
V2G electricity, we set it to be a constant, similarly to the case of distributed photovoltaics. 

Then the purchasing price given by aggregator without considering the policy award is given by the following: 
                                      (14)𝑃 '

𝑑,𝑡 = 𝜃 + 𝑃𝑎𝑑𝑑,𝑡

d) EV uses’ satisfaction as a weighted summation of SOC satisfaction and economic satisfaction

The satisfaction of the ith EV for charging service and discharging service are denoted by  and  respectively, and 𝐺𝑐,𝑖% 𝐺𝑑,𝑖%
are expressed by:

                                 (15)𝐺𝑐,𝑖% = 𝑤1,𝑖𝐺1,𝑖% + 𝑤2,𝑖𝐺𝑐2,𝑖%
                                 (16)𝐺𝑑,𝑖% = 𝑤1,𝑖𝐺1,𝑖% + 𝑤2,𝑖𝐺𝑑2,𝑖%

where  are weights of the ith EV for SOC and economic satisfaction respectively, with  . They are 𝑤1,𝑖,𝑤2,𝑖 𝑤1,𝑖 + 𝑤2,𝑖 = 1
determined by user’s preference. For example,  could be set when the EV user care more about the cost paid or revenue 𝑤1,𝑖 < 𝑤2,𝑖
gained at the aggregator; while  is set when the EV user care more if their target SOC are reached when leaving the 𝑤1,𝑖 > 𝑤2,𝑖
aggregator. When the ith EV users’ show no preference for any of the factors,  could be set. In this study, due to the 𝑤1,𝑖 = 𝑤2,𝑖
limitation of length, we do not provide further discussion on the choice of weighting coefficients and set  .𝑤1,𝑖 = 𝑤2,𝑖 = 0.5

The mean value of all users’ satisfaction, , is adopted in this paper to describe the satisfaction of the whole user group in a 𝐺%
given period of time.

                                 (17)𝐺% =
1
𝑛∑𝑛

𝑖 = 1𝐺𝑐,𝑖% +
1
𝑚∑𝑚

𝑖 = 1𝐺𝑑,𝑖%
where n is the number of EVs for charging service; m is the number of EVs for discharging service during the evaluation period. 

C. The Aggregator’s profit 
In this study, we assume that the prices that the aggregator buys and sells electricity to the distribution network are the same as 

those that the aggregator buys and sells electricity to EV users. Therefore, the profit of the aggregator includes service fee for 
charging and V2G services and equivalent income from V2V and DR. 

According to [31], EV could be charged from some other EVs if the collected capacity from the intra-grid within the aggregator 
allows. We denote this technology as V2V. Even though no detail or further study is found in [31], we can still see some advantages 
of this concept. For example, if the aggregator is equipped with V2V technology, it can serve more EVs when there are not enough 
charging/discharging poles directly connected to distribution grid. Therefore, EVs satisfaction can be improved and aggregator can 
attract more customers. 

Aggregator’s profit for the latest 24 hours is given by (18)-(22). 
                         (18)𝐹 = ∑0

𝑡 = ‒ 𝑇[∑𝑚
𝑖 = 1𝐹𝑐,𝑡,𝑖 + ∑𝑛

𝑖 = 1𝐹𝑑,𝑡,𝑖 + 𝐹𝑉2𝑉,𝑡] + 𝐹𝐷𝑅

                                        (19)𝐹𝑉2𝑉,𝑡 = 𝑃𝑚,𝑡(𝑃 '
𝑐,𝑡 ‒ 𝑃 '

𝑑,𝑡) ∙ ∆𝑡
                                          (20)𝐹𝐷𝑅 = 𝜇𝑀𝑑𝑎𝑦%



                                   (21)𝐹𝑐,𝑡,𝑖 = 𝑃𝑎𝑑𝑑,𝑡 ∙ 𝐶𝐵,𝑖 ∙ ∆𝑆𝑂𝐶 +
𝑖,𝑡

                                  (22)𝐹𝑑,𝑡,𝑖 = 𝑃𝑎𝑑𝑑,𝑡 ∙ 𝐶𝐵,𝑖 ∙ ( ‒ ∆𝑆𝑂𝐶 ‒
𝑖,𝑡)𝛿

where subscript “0” means the current times slot, “-T” means the previous T slot. Current time slot is the slot whose scheduling 
scheme is about to be decided.   are service fees for charging and V2G service collected from the ith EV at time slot t; 𝐹𝑐,𝑡,𝑖,𝐹𝑑,𝑡,𝑖

 is the equivalent savings from purchasing electricity through V2V at time slot t;  and  are the charging price and 𝐹𝑉2𝑉,𝑡 𝑃 '
𝑐,𝑡 𝑃 '

𝑑,𝑡
V2G price for aggregators at time slot t given by (10) and (14) respectively;  is the whole V2V power available at time slot 𝑃𝑚,𝑡
t;  is the revenue came from DR;  is defined to reflect the economic benefit of aggregator’s performance; m, n represent 𝐹𝐷𝑅 𝜇
the numbers of EVs which order charging and V2G services respectively.  

III. OPTIMAL SCHEDULING STRATEGY

A. The optimal scheduling model of aggregator
The optimal scheduling is real-time scheduling and is called at the beginning of each time slot to decide the scheduling 

scheme for the following several minutes. In this paper, the time slot is 15 minutes.
The optimal scheduling model for the coming time slot is given by (23)-(29) as follows. 

                                                      (23𝑀𝑎𝑥 {∑𝑚
𝑖 = 1𝐹𝑐,𝑡,𝑖𝐵𝑐,𝑡,𝑖 + ∑𝑛

𝑖 = 1𝐹𝑑,𝑡,𝑖𝐵𝑑,𝑡,𝑖 + 𝐹𝑉2𝑉,𝑡 ∓ 𝜇𝑃𝐷𝑅,𝑡}
)

The constraints include:  
                                          (24)𝑃 𝑚𝑖𝑛

𝐷𝑅, 𝑡 ≤ 𝑃𝐷𝑅,𝑡 ≤ 𝑃𝑚𝑎𝑥
𝐷𝑅,𝑡

                                          (25)𝑃𝐷𝑅,𝑡 ‒ 𝑃𝐷𝑅,𝑡 ‒ 1 ≤ 𝑟𝑖∆𝑡
                                               (26)𝐺% ≥ 𝐺𝑚𝑖𝑛%
                                              (27)𝑀𝑑𝑎𝑦% ≥ 𝑀

                                               (28)𝑛 + 𝑚 ≤ 𝑁
                                             (29)𝐵𝑐,𝑡,𝑖 + 𝐵𝑑,𝑡,𝑖 ≤ 1

where  and  are the load of the aggregator at adjacent time slot t and t-1. Eq. (24) is the constraints of the equivalent 𝑃𝐷𝑅,𝑡 𝑃𝐷𝑅,𝑡 ‒ 1
load of the aggregator  at t.  and  are set by the distribution system operator (DSO) according to the optimized 𝑃𝐷𝑅,𝑡  𝑃𝑚𝑖𝑛

𝐷𝑅,𝑡 𝑃𝑚𝑎𝑥
𝐷𝑅,𝑡

operation of the whole network, and refer to the minimum and maximum power consumption by the aggregator at time slot t. Eq. 
(25) is the constraint of the ramping rate of aggregator’s equivalent load, where  is the maximum changing rate of . The 𝑟𝑖 𝑃𝐷𝑅,𝑡
purpose of the constraint is to prevent a sudden increase of charging load at time slot t from causing the operation risk of the 
distribution network. It is also set by DSO.  in (26) is the minimum users’ satisfaction requirement of the whole EV group 𝐺𝑚𝑖𝑛%
for services provided by the aggregator. M in (27) is the minimum DR capacity requirement for the aggregator during 24 hours. 

 could be positive or negative and is calculated by Eq. (1). Positive DR capacity is preferred. Eq. (28) is the constraint of 𝑀𝑑𝑎𝑦%
the no. of EVs which are ordering charging (m) and V2G services (n) at the aggregator at current time. N is the summation of the 
no. of piles and the no. of EVs that being served by V2V.  and  in Eq. (29) are binary optimization variables. , 𝐵𝑐,𝑡,𝑖 𝐵𝑑,𝑡,𝑖 𝐵𝑐,𝑡,𝑖 = 0

 means that EV does not participate in either charging or discharging service;  means that EV participates in 𝐵𝑑,𝑡,𝑖 = 0 𝐵𝑐,𝑡,𝑖 = 1
charging service; and  means that EV participates in discharging service. Eq. (29) means that the same EV cannot 𝐵𝑑,𝑡,𝑖 = 1
participate in both charging and discharging services at the same time.

The objective function given in (23) is to maximize the aggregator’s profit in current time slot.  𝜇(𝐿𝑡 ‒ (𝐿𝑡 + 𝑃𝐷𝑅,𝑡)) = 𝜇𝑃𝐷𝑅,𝑡
in (23) is the difference between base load and load with EV participating in DR programs. We can see from Fig.2 that the larger 
the difference, the flatter the load curve will be, and the higher  in 24-hour period of time will be. Calculating  instead 𝐹𝐷𝑅 𝜇𝑃𝐷𝑅,𝑡
of  defined in (20) has two benefits: Firstly, we can estimate the DR effect in a single time slot, because  defined in (20) 𝐹𝐷𝑅 𝐹𝐷𝑅
needs data of 24-hour period of time. Secondly, we make the objective function linear. During the daily time, “ ” is taken for “‒

”, otherwise, “ ”is taken for “ ”. ∓ + ∓
 in (27) is calculated by aggregator’s data in the latest 24 hours, including the time slot being optimized. Constraint (26) 𝑀𝑑𝑎𝑦%

calculates the satisfaction of EV users which had been served in latest 24 hours, including the time slot being optimized. Constraint 
(27) can be linearized by method given in the Appendix.

B. Application of V2V in aggregator’s optimal scheduling
When V2V is available at the aggregator, the charging energy required by a single EV could come from other EVs who are 

discharging. During the peak load hour, the penalty due to charging could be lowered by the application of V2V. Theoretically, 
the number of piles required in the aggregator can be decreased. EVs satisfaction can be improved because more EV customers 
can be served when no extra charging/V2G poles are available.   

We set that all EVs for V2G participate in V2V when the total energy of charging at the tth scheduling moment is greater than 
that of V2G ( ); while all EVs for charging service participate in the V2V when ∑(𝐶𝐵,𝑖 ∙ ∆𝑆𝑂𝐶 +

𝑖,𝑡 ) > ∑(𝐶𝐵,𝑖 ∙ ( ‒ ∆𝑆𝑂𝐶 ‒
𝑖,𝑡))



. The rest of EVs will exchange electricity with distribution network. In this way, the ∑(𝐶𝐵,𝑖 ∙ ∆𝑆𝑂𝐶 +
𝑖,𝑡 ) < ∑(𝐶𝐵,𝑖 ∙ ( ‒ ∆𝑆𝑂𝐶 ‒

𝑖,𝑡))
aggregator could have as many as possible free charging/V2G poles to cope with the situation when a large amount of EVs arrive 
within the same time slot in the near future. 

We set the charging and V2G prices per kWh through V2V to be the same as the charging and V2G prices through distribution 
network because the aggregator needs to treat all customers equally. 

C. The priority in charging and V2G services
Charging/discharging priorities are normally related to the SOC of EV’s battery and charging time. For example, ref. [11] defines 

a weight factor which is inversely proportional to the multiplication of SOC and the remaining charging time. In our study, we 
decide the charging and discharging priority by 3 factors: initial SOC, initial SOH and charging or discharging rate. The first two 
are given directly by EV users to the aggregator at arriving time, while the last one can be calculated by the target SOC and leaving 
time given by EVs.

For charging service, the lower the initial SOC is, the higher the charging need is; the lower the charge rate is, the longer the 
time that EV needs to meet the target SOC, therefore, the longer the charging facility will be occupied by the EV, or the higher the 
probability that the target SOC cannot be reached when leaving time is up, which will cause the decrease of EV user’s satisfaction. 
Therefore, the priority of EV’s accepting charging service is decided based on the following rule: the lower its initial SOC is, and 
the lower the charging rate is, the higher its priority will be. 

Then ith EV’s priority of charging is calculated as follows.

                                              (30)𝑁 𝑐
𝑡,𝑖 =

1
𝑆𝑂𝐶𝑡,𝑖 ∙ 𝐶𝑅𝑡,𝑖

where  is SOC of the ith EV at time t; 𝑆𝑂𝐶𝑡,𝑖
Similarly, the priority of EV’s discharging is decided based on the following rule: the higher its SOH and the initial SOC are, 

the slower the discharging rate is, the higher the priority of the EV to discharge electricity is. Then the priority of the ith EV for 
V2G service is given by (31).

                                              (31)𝑁 𝑑
𝑡,𝑖 =

𝑆𝑂𝐻𝑖

𝑆𝑂𝐶𝑡,𝑖 ∙ 𝐶𝑅𝑡,𝑖

Because V2G brings extra cycle loss and it may not profitable for the EV when battery’s SOH is low, SOH is considered in (31).   
The application of priority of charging service and V2G service in solving the optimal scheduling problem is given in the next 

subsection.

D. Solving the optimal scheduling problem
Owing to the fact that the no. of EVs and the no. of charging/V2G piles in the aggregator are finite and countable, the aggregator's 

possible scheduling schemes are finite at any time. Through the approximation given in the Appendix, the nonlinear constraint 
(27) can be linearized. Therefore, we use integer programming to solve the proposed model, the 0-1 optimization variables are 
introduced, and the objective function is solved through the MILP solver intlinprog in MATLAB [32-34].

We define the rest of power needed after V2V to be the difference between total charging power and total V2G power. When it 
is positive, candidate EVs that accept energy from other EVs are chosen according to the ranking of their priority for charging 
service  as defined in section III-C. When it is negative, candidate EVs that discharge energy to other EVs are chosen {𝑁 𝑐

𝑡,𝑖}
according to the ranking priority for V2G service  as defined in section III-C. The rest of EVs will be served by charging or {𝑁 𝑑

𝑡,𝑖}
V2G piles through transactions between the aggregator and the grid. In this study, no other priorities than those defined in (30) and 
(31) are considered.

Each EV at the aggregator may be one of the possible status:  charging, V2G, or idle. Theoretically, an EV could receive energy 
from another EV in the aggregator for V2G service (V2V), or a charging pile. When there is no enough piles for EVs in the 
aggregator even after V2V is considered, or the total power that will be exchanged with distribution network in current time slot 
do not meet constraints (26) and (27), EVs with lower priority cannot be served by a charging/discharging pile, and the status of 
the EV in current time slot is idle, no matter what service it orders originally.

The solution algorithm is given in Fig. 3. The optimal possible scheme can be found through 2 steps: 1) choosing V2V candidates. 
2) Find the optimal scheme by solving the 0-1 knapsack problem. In step 1, EVs served by V2V are decided by the serving priority 
of each EV and constraints (24)-(29) (shaded module in Fig. 3). The constraints include users’ satisfaction , which represents 𝐺%
the users’ benefit, and , which represents the distribution network’s benefit. Finally, the aggregator's profit F,  and 𝑀𝑑𝑎𝑦% 𝐺%

 are calculate and output.𝑀𝑑𝑎𝑦%
If the no. of charging piles or V2G piles are not enough for ordering, we use MILP solver intlinprog in MATLAB to find the 

optimal scheduling scheme with the maximum profit. In this step, no charging or V2G priority is considered in order to give EVs 
with lower priorities chances to be served. If no scheme that meets constraints (26) and (27) are available, the nonlinear constraints 
will be loose to find the maximum F and minimum violation of constraints of (26) and (27) considering the practicability of the 
scheduling algorithm. The actual  and G% will be recorded and considered in aggregators’ upgrade decision in the future.𝑀𝑑𝑎𝑦%
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IV.SIMULATION RESULTS

A. EVs’ parameters and statistics of EVs’ driving behavior
We assume that there are 300 EVs and 2 aggregators in the study area. 
300 EVs are randomly chosen from 9 different manufactures and their parameters for the simulation are given in Table I. Two 

aggregators, Aggregator 1 in commercial area and Aggregator 2 in residential area, are chosen in order to study EVs’ scheduling 
at different time period. The location of the two aggregators and the rate of the charging and discharging piles are shown in Table 
II. Among them, the charging and discharging rate is controlled by the aggregator. When EV is connected to the charging and 
discharging pile, the aggregator can optimize the charging and discharging rate according to the current load of the grid and the 
EV users’ ordering information.

The model and scheduling strategy proposed in our study can be applied in all kinds of commuting situations. However, in order 
to highlight the performance correlation between the two aggregators, we especially perform the simulation and analysis with a 
travel behavior as given in Fig. 4 [35,36].

According to the law of large numbers, when the amount of EVs arriving at the aggregator for charging and discharging service 
is large enough, their arriving time follows the normal distribution, as shown in Fig. 6. 

Statistics of the decommissioning time of EV batteries for different types of EVs are given in Table III. We simulate the driving 
behaviors and V2G behaviors of 300 EVs of each day for a period of 5 years. Aggregators’ optimal scheduling schemes are 
calculated every 15 minutes. 

The IEEE-13 distribution system is taken as the test system to study the interaction between aggregators and the distribution 
system. Aggregators purchase electricity from the grid at real time price.

According to the average residential electricity price in China, we define that the mean value of the price is 0.5 Yuan/kWh, and 
the service fee collected by aggregators is assumed to be 0.2 times the 24-hour forecasted price. Policy award or penalty accrues 
when the load level is higher than 0.8, and it is 0.4 Yuan/kWh. We assume that the forecasted price is accurate. 

TABLE I
THE INFORMATION OF 9 TYPES OF EVS

Name Type
Capacity

(Ah)
Energy 
(kWh)

Mitsubishi i-MiEV BEV 50 16
BMW i3 eDrive Range Extender BEV 94 33

Chevrolet Spark EV BEV 60 20
2014 Nissan Leaf BEV 66 30

Tesla Model-S BEV 320 60
Toyota Prius Plug-In HEV 21.5 4.4

Ford C-Max Energi SEL 2.0ATK HEV 22.6 7.6
Chevrolet Malibu Eco 2.4L PHEV 44 22

Ford Fusion Hybrid 2.0 PHEV 46 23

TABLE II
THE INFORMATION OF 2 AGGREGATORS

Name Location Charging rate Discharging rate

Aggregator 1 Commercial 0.1C,0.12C,0.15C,0.2C,
0.25C,0.3C,0.35C,0.4C

0.02C,0.05C,0.08C,0.1C,
0.12C,0.15C,0.18C,0.2C

Aggregator 2 Residential 0.1C,0.12C,0.15C,0.2C,
0.25C,0.3C,0.35C,0.4C

0.02C,0.05C,0.08C,0.1C,
0.12C,0.15C,0.18C,0.2C

Arriving at 
aggregator 1

leaving 
aggregator 1

Arriving at 
aggregator 2

leaving 
aggregator 2 

(Ending)

Last cycle Next cycleTraveling TravelingCharging/V2G Charging

Daytime Nighttime

Leaving 
aggregator 2 
(Beginning)

Fig. 4. The behavior of EVs in temporal dimension



Fig. 5.  The distribution of driving distance (a) and end of travelling time (b)

Fig. 6. The parking rate vs. time for 2 aggregators. Dashed lines are from the empirical data [35], and the red lines follow normal distribution.

TABLE III
STATISTICS OF DECOMMISSIONING TIME OF EV BATTERIES 

year 1 2 3 4 5 ≥ 6

Retired rate for total EV 26% 22% 9% 11% 15% 17%

Retired rate for BEV 17.95% 15.38% 10.26% 7.69% 10.26% 38.46%

Retired rate for HEV 63.16% 36.84% 0% 0% 0% 0%

Retired rate for PHEV 16.67% 21.43% 11.9% 19.05% 19.05% 11.9%

The IEEE-13 distribution system is taken as the test system to study the interaction between aggregators and the distribution 
system. Aggregators purchase electricity from the grid at real time price. 

According to the average residential electricity price in China, we define that the mean value of the price is 0.5 Yuan/kWh, and 
the service fee collected by aggregators is assumed to be 0.2 times the 24-hour forecasted price. Policy award or penalty accrues 
when the load level is higher than 0.8, and it is 0.4 Yuan/kWh. We assume that the forecasted price is accurate.

B. Optimization efficiency
According to subsection III-D and Fig.5, the computation burden in solving the optimal scheduling problem lies in the chosen 

of V2V candidates and the calculation of the benefit of every possible scheduling scheme to serve n EVs by m charging/discharging 
piles. We take the latter as an example to explain the computation burden. When , the no. of possible scheduling schemes 𝑛 > 𝑚
is  without considering the constraints given in (24)-(28). In order to minimize the users’ discontent, we assume 𝑛!/[𝑚!(𝑛 ‒ 𝑚)!]
that EV users will not be unplugged until their transactions with the aggregator are closed. Therefore, the computation burden of 
optimization can be substantially decreased because possible scheduling schemes of the tth time slot is based on the scheduling 
scheme of the (t-1)th time slot. For the tth moment, we only need to consider the difference caused by new joining EVs and just 
leaving EVs within the 15-minute interval. The computation burden of the first 15-minute slot is different from that of the 
subsequent 15-minute intervals. However, by carefully choosing the starting time of the optimal scheduling program of the 
aggregator, the computation burden of the first 15-minute can also be decreased substantially. According to the driving patterns, 
for aggregator 1 located in commercial area, we choose the stating time to be 0:00 when almost no EVs is in Aggregator 1, while 
for Aggregator 2 located in residential area, we choose the starting time to be 9:15 when most of EVs already leave home. 



C. Analysis of simulation results
The rules in designing the optimal scheduling model of the aggregator are explained in detail in previous sections. In this section, 

we will discuss the effect of changing conditions (the Aggregator’s facility level and V2V technology) on the “benefits” of three 
parties under the proposed optimal scheduling model. In this section, we give the benefits of three parties under 14 different 
scenarios, also analysis and implication are given based on the results as follows:

 Effect of EV users’ driving behavior and profit-pursuing nature on service type in 2 aggregators. Through simulation, we 
show that, services ordered at aggregators are mainly decided its location. 

 Effect of Aggregator’s facility level on users’ satisfaction and DR capability. The objective of an Aggregator’s optimal 
scheduling is to maximize its benefit under the premise of meeting the requirement of thresholds of EV users’ benefit and 
distribution network’s benefit. An aggregator benefits from the service fee, charging/discharging price differences with EV 
users and distribution system, and the revenue from participating DR. These 3 items are related to EV users’ satisfaction 
and distribution system’s benefit. In the simulation, the effect of changing of aggregator’s facility and technological level, 
which is decided by the Aggregator’s investment, on the benefits of EV users and distribution system is analyzed.  

 Profit of aggregator group. EV users’ charging load and V2G energy show temporal and locational correlation, which 
further affect the performances of aggregators at different areas. Simulation suggests that investment in aggregator group 
as a preferable mode.

a) Effect of EV users’ driving behavior and profit-pursuing nature on service type in 2 aggregators
According to the statistics from the simulation result, without V2V technology, Aggregator 1 and 2 need at least 154 and 189 

piles respectively in order to fully satisfy all EV users’ needs. Therefore, we compare the benefit or satisfaction of each party in 
14 scenarios: 

Scenario 1-7: Both Aggregator 1 and 2 have 100, 130, 140, 150, 160, 180 and 190 piles respectively. V2V technology is adopted 
in both aggregators; Scenario 8-14: Both Aggregator 1 and 2 have 100, 130, 140, 150, 160, 180 and 190 piles respectively. V2V 
technology is not adopted in both aggregators.

Simulation results show that 15.3% of EVs orders charging services and 57% orders V2G services at Aggregator 1. The 
remaining 27.7% of EVs were not scheduled at the aggregator due to lack of economic motivation and high remaining SOC. In 
other words, their charging cost cannot be recovered from the V2G process due to higher charging price in their previous charging 
order. For Aggregator 2, 99% percent of EVs orders charging services, while 1% of EVs doesn’t join the aggregator due to an idle 
time of over 24h. This result is due to users’ driving habits and low electricity price at night.

50

EV 60 EV 120 EV 180 EV 240 EV 300
0

-50EV
's 

pr
of

it 
(￥

)

-100
EV’s profit from aggregator 1
EV’s profit from aggregator 2

Fig. 7. EVs’ profit in Aggregator 1 and Aggregator 2 in one random day.

Fig. 7 gives profits of 300 EVs in Aggregator 1 and 2 in one random simulation day. For some EVs, their profit is negative 
because of the purchase of charging service in Aggregator 1 during the time period of high tariff. 

b) Effect of Aggregator’s facility level on users’ satisfaction and DR capability

i) Analysis on users’ satisfaction



Fig. 8. Satisfaction of the whole EV user group with Aggregator 1 and Aggregator 2 in each scenario

The users’ satisfaction under 14 scenarios are given in Fig. 8. The distance of each dot to the center represents the satisfaction 
of each EV. The overall satisfaction G% is given in number on top of each subplot. A smoother circle indicates a higher overall 
satisfaction of all users. In Fig. 8, for cases with ≥160 piles, whether adopting V2V technology only affects the satisfaction of 
Aggregator 2. This is because with ≥160 piles, even without V2V technology, Aggregator 1 already possesses enough piles to meet 
the needs of EVs.



We can also find in Fig. 8 that the users’ satisfaction for Aggregator 1 is affected by both the number of piles and the adoption 
of V2V technology; however, that for Aggregator 2 cannot be effectively increased by the adoption of V2V technology because 
99% of EVs orders charging service in Aggregator 2. Therefore, the V2V technology cannot be utilized effectively at Aggregator 
2.

Since EVs order services in both aggregators according to their SOC and economic motivations, operations of Aggregator 1 and 
Aggregator 2 are interacted. For example, V2V technology improves the number of EVs scheduled in Aggregator 1. Since EVs in 
Aggregator 1 are mainly discharging load, the initial SOC of an EV when it arrives at Aggregator 2 will be decreased, which 
increases the difficulty in Aggregator 2’s scheduling. Therefore, the adoption of V2V technology in both aggregators reduces 
users’ satisfaction for Aggregator 2, as users’ satisfaction of 100-140 piles cases given in Fig. 8.

We also change  and  to analyze the users’ satisfaction of Aggregator 1 and Aggregator 2.𝑤1,𝑖 𝑤2,𝑖
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Fig. 9. Satisfaction of the whole EV user group with Aggregator 1 and Aggregator 2 in each scenario under different coefficients. (a) users’ satisfaction of 
Aggregator 1 (Aggregator 1 without V2V), (b) users’ satisfaction of Aggregator 1 (Aggregator 1 with V2V), (c) users’ satisfaction of Aggregator 2 (Aggregator 1 

without V2V) and (d) users’ satisfaction of Aggregator 2 (Aggregator 1 with V2V)

Fig.9 shows how the effect of different weight combination in (15) and (16) on users’ satisfaction. Through fig.9, the 
following conclusions could be drawn:

 Aggregator 1 has enough piles ( 150 piles in this case): users’ SOC requirement will always be met, therefore, increasing ≥
piles doesn’t increase users’ satisfaction, and the higher  is, the higher users’ satisfaction. With or without V2V doesn’t 𝑤1
make change.

 Aggregator 1 doesn’t have enough piles (<150 piles in this case): Aggregator 1 without V2V can no longer meet the users’ 
charging and discharging need, so the users’ satisfaction drops. Fig.9(a) shows that, in 100-pile case, different weight 
combinations have similar users’ satisfaction. With V2V, cases with fewer piles (<150) give similar users’ satisfaction as 
those with more piles ( 150).≥

 Aggregator 2 has enough piles ( 180 piles in this case): Since in Aggregator 2, 99% of EV order charging service, ≥
therefore V2V has no effect in improving users’ satisfaction. The higher  is, the higher users’ satisfaction. During night 𝑤1
hour, no incentive-based DR program is available, therefore, the economic satisfactions of EV users under different weight 
combinations are the same. Therefore, the difference of users’ satisfaction with the changing of  is fewer comparing to 𝑤1
Fig.9(a). 



 Aggregator 2 doesn’t have enough piles (<180 piles in this case): If an EV discharges more in Aggregator 1, it needs to 
charge more in Aggregator 2 at night. Therefore, when there are no enough piles in Aggregator 2, with the increase of , 𝑤1
the users’ satisfaction drops. That is why in Fig.9(c) and (d), different pattern from that in Fig.9(a) and (b) show with the 
increase of . 𝑤1

ii) The performance of aggregators’ participation in DR

The evaluation of the DR capability of Aggregator 1 and 2 by  is given in Table IV. Fig. 10 and Fig. 11 give the DR 𝑀𝑑𝑎𝑦%
curves of Aggregator 1 and 2 under different scenarios. Fig. 11 shows the total economic benefit of aggregator 1 and 2. 

Benefits of aggregators from the same kind of services, for example, charging service at both aggregators, are negatively 
correlated, while benefits of aggregators from different services are positively correlated. Under market environment and real time 
pricing scheme, the charging price at night is lower due to lower load demand. When an EV arrives at Aggregator 2, its initial SOC 
is smaller than any other time during the day. Therefore, the majority of EVs in Aggregator 2 order charging service. EVs’ 
participation in V2G at Aggregator 1 results in more charging load at Aggregator 2. The benefit of Aggregator 2 from charging 
service will increase. On the contrary, if an EV charges less in Aggregator 2, the charging load in Aggregator 1 will increase and 
the discharging load will decrease due to the facility limit in the aggregator. As a result, Mday% will be lower, and Aggregator 1’s 
income from peak load shifting will decrease. Therefore, Aggregator 1 and 2 should operate cooperatively to seek the maximization 
of the overall benefit of two aggregators.

TABLE IV
  UNDER DIFFERENT SCENARIOS𝑀𝑑𝑎𝑦%

Number of 

piles
190 180 160 150 140 130 100

No V2V 45.33% 45.52% 46.06% 46.41% 46.65% 46.04% 39.54%

V2V 45.33% 45.52% 46.09% 46.36% 46.64% 46.79% 46.09%

The charging/discharging facilities decide is one of factors that decide aggregators’ DR capability. According to Fig. 10, DR 
capacity of aggregator 1 and 2 (aggregator group), no matter without V2V or with V2V, decreases as the number of piles decreases.

When Aggregator 1 has enough piles (Fig. 11(a)), V2V has no effect on both aggregators’ DR capability. When there is no 
enough pile for aggregator 1 and 2 (Fig. 11(b)), V2V’s effect during daytime increases as the number of piles decreases, as shown 
by the shaded areas. DR during nighttime, as the complement to the DR in daytime, only varies little (areas in green) along the 
changes of the facilities, because almost only V2G services are ordered at Aggregator 1 in residential area, and V2V cannot be 
performed effectively. 

Aggregators’ DR capability is also affected by the no. of EV’s it attracts to come for services. In our study, we assume that 
aggregators secure their customers by improving EV’s satisfaction for services in aggregators.  

Fig. 12 gives the comparison of aggregators’ DR capability with and without DR program. Without DR program, no 
award/penalty for V2G/charging is performed when loading level of the system is above 0.8. Real time tariff is taken for both 
cases.

Since the main responsibility of EV is as a travelling tool and participating in DR is only for making extra money. 
Therefore, in our study, EVs driving behavior and parking behavior won’t be changed and follow the distributions given by 
Fig. 4-9 for cases with or without DR program. Without DR award, EVs earn less through V2G, and EVs’ satisfaction to 
V2G service in Aggregator 1 decreases. When other aggregators in the same area could provide better V2G prices or awards, 
aggregator 1 will lose its customers to its competitors, and its DR capability will be damaged. In Fig. 12, DR capability of 3 
scenarios are given. We assume that EV users with a satisfaction lower than a given threshold will go to other aggregators. 
2 different thresholds, 70% and 80%, are chosen. When there is no DR, and with consideration of loss of EV customers, the 
drop of Aggregator 1’s DR capability increase as the increase of EV users’ satisfaction threshold. When no loss of customer 
is considered, Aggregator 1’s DR capability is as the same as that of simulation with DR program.

c) Profit of aggregator group

The profit of 2 aggregators, the income of DR ( ) for Aggregator 1 and Aggregator 2 without and with V2V are given in 𝜇𝑀𝑑𝑎𝑦%

Fig. 13, Table V and Table VI, respectively.
In Fig. 13, the profit of Aggregator 1 (green line) is greater than that of Aggregator 2 (purple line), while the DR income of 

Aggregator 1 (dark blue bar) is less than that of Aggregator 2 (light blue bar). The total profit of the aggregator group increases 
with V2V when for 100-140 piles cases when no enough piles in aggregator 1 and 2, due to the increase of DR capability of both 
aggregators by adopting V2V.



500

0

-250

250

0:00 6:00 12:00 18:00 24:00

-500

Aggregator 1 
mainly 

Aggregator 2 
mainly 

Aggregator 2 
mainly 

(a)

190 piles
180 piles

160 piles
150 piles

140 piles
130 piles

100 piles

190 piles
180 piles

160 piles
150 piles

140 piles
130 piles

100 piles

D
em

an
d 

R
es

po
ns

e 
(k

W
)

500

0

-250

250

0:00 6:00 12:00 18:00 24:00

-500

Aggregator 1 
mainly 

Aggregator 2 
mainly 

Aggregator 2 
mainly 

(b) 190 piles
180 piles

160 piles
150 piles

140 piles
130 piles

100 piles

190 piles
180 piles

160 piles
150 piles

140 piles
130 piles

100 piles

D
em

an
d 

R
es

po
ns

e
(k

W
)

Fig. 10. DR by 2 aggregators. (a) without V2V, and (b) with V2V
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TABLE V
 OF AGGREGATOR 1 AND AGGREGATOR 2 𝜇𝑀𝑑𝑎𝑦%

FROM DR OF 7 SCENARIOS (WITHOUT V2V) (DARK BLUE BAR IN FIG.14)
Number of piles 190 180 160 150 140 130 100

Aggregator 1 28.07 28.36 29.53 30.35 30.77 30.60 23.94

Aggregator 2 62.59 62.67 62.58 62.47 62.53 61.48 55.13

TABLE VI
 OF AGGREGATOR 1 AND AGGREGATOR 2 𝜇𝑀𝑑𝑎𝑦%

FROM DR OF 7 SCENARIOS (WITH V2V) (LIGHT BLUE BAR IN FIG.14)
Number of piles 190 180 160 150 140 130 100

Aggregator 1 28.08 28.36 29.56 30.42 31.40 32.30 35.45

Aggregator 2 62.59 62.67 62.61 62.30 61.86 61.26 56.72

V. CONCLUSIONS

In this paper, an optimal scheduling strategy of an EV aggregator considering triple level benefits of EV users, aggregator and 
distribution grid has been proposed, which is crucial for the sustainable development of aggregators, the integration of large scale 
EVs and the adoption of DR programs. The operation of two aggregators, Aggregator 1 in a commercial area and Aggregator 2 in 
a residential area, and 300 EVs of different manufactures are studied under different facility and technology levels.  

Several conclusions can be deduced as listed below through a synthetic consideration of the simulation results.
1) For the same group of EV users, due to the mobility and the temporal statistics of EVs driving behaviors, services ordered at 

aggregators located at different areas (commercial or residential) are different. For example, more V2G service is ordered in 
Aggregator 1 at the commercial area, while almost only charging service is ordered in Aggregator 2 at the residential area. 
Moreover, the improvement of service quality and benefit of Aggregator 1, for example satisfying the needs for V2G of more 
EV users, will increase the difficulty of the scheduling at Aggregator 2. 

2) The requirement of the facility level (no. of piles) of aggregators at the commercial area are lower than that in the residential, 
because more V2G services are ordered during the daytime, which can be performed by V2V technology. Aggregators’ 
capability for demand response, aggregators’ benefit, and users’ satisfaction increase as the no. of piles increases, but the rate 
of increase slows down as the no. of piles increases.

3) Conceptually, V2V technology acts as backup batteries equipped at aggregators, but with lower investment requirements 
compared with purchasing backup batteries. The effectiveness of V2V for the improvement of aggregators’ DR capability, 
users’ satisfaction and aggregators’ benefit are related to the facility level of and the position of aggregators. With enough 
piles, V2V is no longer effective for the abovementioned improvement. Especially, for the simulation case in the paper, the 
improvement of service by V2V in Aggregator 1 brings negative impact on the performance of Aggregator 2. 

4) Aggregator’s DR capability is also affected by the volume of EVs it can secure. When no DR program is available, EV users’ 
satisfaction for V2G revenue will be lower. However, the aggregator’s DR capability will be damaged only when customers 
with lower satisfaction are attracted and taken away by aggregators with higher prices for V2G. 

In final words, this study proposes models of benefits of three parties and an optimal scheduling strategy of aggregators 
considering benefits of three parties. The outcomes from the simulation could provide useful insights on the effect of aggregators’ 
facility and technology levels on the benefits of each party and different operational modes under various application scenarios. 



Given the fact that the benefits of distribution network integrated large amount EVs are evaluated by aggregator’s load 
shifting capability through DR program in this paper, the influences caused by electricity consumption patterns, daily 
weather classification [37-39], the aggregator’s revenue in wholesale market [40-42] and transmission expansion planning 
[43] are not taken into account yet. In addition, the incentive-based DR program [44-48], another popular way for flexible 
loads to participate the operation of power grid and multi-carrier energy system that can impact the satisfaction of EV owners 
in different aspects, will be further studied in the future work. 
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APPENDIX

A.1 Approximation and Linearization of constraint (27)  

The nonlinear constraint  can be simplified and linearized by the following transformation and approximation:𝑀𝑑𝑎𝑦% ≥ 𝑀

                              (A-1)𝑀𝑑𝑎𝑦% =
𝑀𝑒 ‒ 𝑀𝑎

𝑀𝑒
≥ M⇒𝑀𝑎 ≤ Thres

         

where ;  is calculated by the base load profile, which is known. M is a known constant, given 𝑀𝑎 = 1
𝑇∑𝑇

𝑡 = 0[
𝐿𝑡 ‒ 𝐿 + 𝑃𝐷𝑅,𝑡 ‒ 𝑃𝐷𝑅 

𝐿 + 𝑃𝐷𝑅
]

2
𝑀𝑒

by the distribution system.  .Thres = (1 ‒ M)𝑀𝑒
According to the design given by (1)-(5),  can be calculated by the  of previous 95 time slots (  and the 𝑀𝑎 𝑃𝐷𝑅,𝑡 𝑡 =‒ 𝑇~ ‒ 1)

current time slot ( ). 𝑡 = 0

𝑀2
𝑎 =

1
𝑇{[ ‒ 1

∑
𝑡 =‒ 𝑇

[𝐿𝑡 ‒ 𝐿 + 𝑃𝐷𝑅,𝑡 ‒ 𝑃𝐷𝑅 

𝐿 + 𝑃𝐷𝑅 ]
2]

(𝐿𝑇 ‒ 𝐿 + 𝑃𝐷𝑅,0 ‒ 𝑃𝐷𝑅 

𝐿 + 𝑃𝐷𝑅 )
2} +

≈ C + 𝑓(𝑃𝐷𝑅,0)
 (A-2)

where  .  is the approximation of  by using  of the same moment in the C =
1
𝑇[∑ ‒ 1

𝑡 =‒ 𝑇[
𝐿𝑡 ‒ 𝐿 + 𝑃𝐷𝑅,𝑡 ‒ 𝑃𝐷𝑅

' 

𝐿 + 𝑃𝐷𝑅
]

2] 𝑃𝐷𝑅
' 𝑃𝐷𝑅 𝑃𝐷𝑅,0

previous day and the known  of previous T time slots (there are T+1 time slots in total). Therefore, C is known.  𝑃𝐷𝑅,𝑡 𝑓(𝑃𝐷𝑅,0) =

.(𝐿𝑡 ‒ 𝐿 + 𝑃𝐷𝑅,0 ‒ 𝑃𝐷𝑅 

𝐿 + 𝑃𝐷𝑅 )2

In the following, we use x to represent , and a, b, d, and e to represent other known parts in (A-2) to simplify the deduction. 𝑃𝐷𝑅,0

Let , , , and , thena = ∑𝑇 ‒ 1
𝑡 = 0𝑃𝐷𝑅,𝑡 b = 𝐿𝑡 ‒ (𝐿 +

a
𝑇 + 1) d =

1
𝑇 + 1 e = (𝐿 +

a
𝑇 + 1)



                   (A-3)

𝑓(𝑥) = (𝐿𝑇 ‒ 𝐿 + 𝑥 ‒
a + 𝑥
𝑇 + 1

𝐿 +
a + 𝑥
𝑇 + 1

)
2

          = (𝐿𝑇 ‒ (𝐿 +
a

𝑇 + 1) + (1 +
1

𝑇 + 1)𝑥

(𝐿 +
a

𝑇 + 1) +
1

𝑇 + 1𝑥 )
2

          = (b + (1 + d𝑥)
e + d𝑥 )

2

Let , thenK = Thres2 ‒ C

                          (A-4)𝑀𝑎 ≤ Thres⇒(𝑀𝑎)2 ≤ Thres2⇒
b + (1 + d𝑥)

e + d𝑥 ≤ K
                                       (A-5)b + (1 + d𝑥) ≤ (e + d𝑥)K

                                    (A-6)d(K ‒ 1)𝑥 ≥ b ‒ eK⇒𝑥 ≥
b ‒ eK

d(K ‒ 1)

Then the DR power of the aggregator at the current scheduling moment should meet the following constraint:
                                          (A-7)𝑃𝐷𝑅,0 ≥

b ‒ eK
d(K ‒ 1)

Therefore, since the loads at the aggregator of the previous T time slots are already known, the non-linear constraint (27) 
can be simplified to be a linear one given by (A-7).
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