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Abstract 

Economic generation scheduling (EGS) is a non-convex optimization problem for allocating 

optimal generation among the committed units that can meet given real-world practical limits 

such as ramp rate limits, prohibited operating zones, valve loading effects, multi-fuel options, 

spinning reserve and transmission system losses at the minimum fuel cost. Moreover, 

considering environmental issues results in an environmental/economic generation scheduling 

(EEGS) problem that is a multiobjective optimization model with two non-commensurable 

and contradictory objectives. In this paper, a novel method has been presented in order to 

minimize production cost and emission of the steam power plants in short term periods. The 

obtained results showed that the proposed method can be used in short-term decision making 

of steam power plants which will be absolutely effective in long-term emission target oriented 

strategies. A framework is proposed for solving single objective EGS and multiobjective 

EEGS problems considering the aforementioned constraints. The problem is solved by a new 

meta-heuristic optimization called Ray Optimization (RO) to determine the optimal power 

generation. The performance of the proposed algorithm is investigated by applying it to solve 

diverse test systems having non-convex solution spaces. Numerical results have been 

comprehensively compared with some of the most recently published research works in the 

area in order to validate the results and confirm the potential of the proposed approach. The 

obtained results show the application of the proposed framework and effectiveness of the 

solutions. 

Keywords: Optimal generation scheduling; fuel cost; emission; multiobjective optimization; 

ray optimization. 
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Nomenclature 

ap, bp, cp, 
ep, fp 

coefficients of pth generator’s 
fuel cost function 

Pp0 power of pth generator in the 
previous hour 

Bgp, B0p, 
B00 

transmission power loss factors Pp,min, 
Pp,max 

lower and upper limits of the 
generators output power 

b unit vector that’s direction is 
perpendicular to the line that 
connects the origin to the current 
position 

PF1, PF2 penalty factors of POZs and spinning 
reserve constraints violations 

Cp fuel cost of  pth generator ($/h) PLoad total load power 
CV1,CV2 amount of POZs and spinning 

reserve constraints violations 
PLoss transmission loss power 

DRp, URp ramp down and up limits of the 
pth generator 

, Zp LBP ,

, Zp UBP  

lower and upper limits of the zth 
prohibited zone 

d unit vector that shows direction 
of current movement vector 

stoch a number between 0 and 1 showing 
probability of stochastic nature of 
algorithm 

Ep NOx emission amount of the pth 
generator 

Sp spinning reserve of pth generator 

FFuel, 
FEmission 

total fuel cost and total emission 
amount of the generators 

SR system required spinning reserve 
Sp,max maximum spinning reserve 

contribution of  pth generator 
Ft total fitness function with 

considering penalty values 
s, a Parameters for finding the next 

movement length 
cF  value of cth objective function in 

the δth Pareto-optimal solution 
T total multiobjective fitness function 

value 
GB position of the so far best agent ToL maximum tolerance for transmission 

loss convergence in power balance 
equation 

LBi best position of the ith agent t unit vector that shows direction of 
next movement vector 

l stands for 2D&3D group number u stands for the fuel option 
m number of variables Vij jth variable of the ith agent’s 

movement vector 
maxit maximum number of iterations Vi,l ith agent’s movement vector that 

belongs to lth group 
mp number of Pareto-optimal 

solutions 
w weighting factor 

NG number of the generating units wc weight factor of the cth objective 
function 

POZ
pN  number of prohibited zones of 

pth generating unit 
Xij jth variable of the ith agent’s position 

Npop population size ,maxlX ,

,minlX  
maximum and minimum limits of 
variables that belongs to lth 
component of the movement vector 

nd, nt refraction index of the lighter and 
darker materials 

p ,
p , p

, p , p  

coefficients of pth generator emission 
function 

n unit vector that shows direction 
of the line that connects the 

  set of generators which have POZs 

p  scaling factor 
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origin to the current position 
k
iO  ith agent’s origin point’s position 

in kth iteration 
,   radiation and refraction angles 

Pp output power of the pth generator c
  membership function of cth objective 

function in the δth Pareto-optimal 
solution 

PGS power of the generator connected 
to the slack bus 

ξ, λ unit vectors which are perpendicular 
to each other in the new coordinate 
system 

 

1. Introduction 

Today's consciousness is to produce electricity not only at the least possible cost, but also 

at the minimum level of gaseous pollution [1]. The main reason for this perception is the 

increased awareness about environmental protection and the passage of the clean air act 

amendments of 1990. Various kinds of solutions have been proposed for reducing gaseous 

emissions. For instance, substitution of pollutant thermal units with cleaner and more efficient 

ones, installation of emission control devices, modification of boiler burners, switching to low 

emission fuels and emission dispatch [2]. The first three options are long term solutions 

require significant investment cost. Although switching to low emission fuels may reduce 

emissions, but however because of the price and availability of low emission fuels it is not an 

attractive strategy [3]. To cope with this problem, economic and emission based generation 

scheduling (EEGS) is becoming more and more desirable [3]. This model satisfies emission 

quotas without any needs to fuel switching. 

Because of the non-convex characteristics of cost function, emission function and 

physical constraints of generating units, the EEGS problem is a nonlinear, non-convex and 

non-differentiable optimization problem. 

As indicated in [4] and [5], due to the physical limitations such as vibrations in a shaft 

bearing, a thermal or hydro generating unit cannot operate in the certain operating regions 

which are called prohibited operating zones (POZs). In addition, the ramp rate limits are the 

other limitation forcing the units to operate between two sequential hours [6]. Besides, in the 
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multivalve steam turbine based generating units, the input-output curve is a non-convex curve 

[7, 8]. Actually, the valve-point effect present ripples in the cost function curve. Also, some 

generation units, especially those units supplied with the mixture of fuel sources, are dealt 

with the problem of determining which the most economical fuel to burn [9]. Moreover, 

power system is always facing unexpected events such as forced outage of generating units 

and load forecasting errors. Therefore, spinning reserve must be considered for generating 

units to keep power system ability to respond to these events [5]. In this regard, when the 

above-mentioned practical concerns of EGS and EEGS problems are considered, a complex 

nonlinear and non-convex problem is formed that need to be solved. 

1.2. Literature review 

Nonlinear equation systems play a vital role in science and engineering. Metaheuristic 

optimization methods are techniques designed for solving nonlinear equations more quickly 

when classic methods are too slow, or for finding an approximate solution when classic 

methods fail to find any exact solution. Some of this systems typically have more than one 

root [10], some’s solution is a subset of data like feature selection problem (exploring the data 

in order to eliminate irrelevant, noisy and redundant ones from them) [11] and some are 

handling more than one object, simultaneously. There has been found ways based on heuristic 

methods to solve any of this problems like Fuzzy Neighbourhood-based Differential 

Evolution with Orientation (FNODE) [10], to effectively and reliably find the multiple roots 

of Nonlinear equation systems simultaneously, ϵ-constrained method [12] for multiobjective 

problems. 

Over the last years, a wide range of mathematical and heuristic approaches has been 

presented in the literature to solve EGS and EEGS problems. In [4], these methods classified 

into two main groups: classical methods such as integer programming [13], quadratic 

programming [14], direct search method [15], dynamic programming [16], and meta-heuristic 

methods such as genetic algorithm [7, 17], particle swarm optimization [6], Hopfield neural 
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network [9], differential evolution [18], Tabu search algorithm [19], evolutionary 

programming [20], Fuzzy adaptive chaotic ant swarm optimization [21], Fuzzy Adaptive 

Modified Particle Swarm Optimization [22], self-organizing migrating algorithm [23], 

combination of modified subgradient and harmony search [24], and cuckoo search algorithm 

[25, 26]. The main disadvantage of classical methods is that because of non-smooth and non-

convex features of the EGS problem, they cannot guarantee to reach the global or near global 

solution. Moreover, computational burden and execution time for these methods is also 

considerable. On the contrary, meta-heuristic methods can consider real-world limitations of 

the EGS problem and can solve optimization problems with any kind of complexity in a 

reasonable time. The success of the meta-heuristic methods is partly due to their natural 

capability of processing a population of possible solutions, which lets them carry out an 

expanding exploration in the search space of the optimization problem. Therefore, there have 

been great interests in these methods. Also some Hybrid methods such as hybrid differential 

evolution and dynamic programming [27], hybrid PSO and sequential quadratic programming 

[28], fuzzy adaptive PSO [29] and hybrid Hopfield neural network and quadratic 

programming [30] have been reported in the literature to solve EGS problem. 

Most of the practical engineering optimization problems are multiobjective. For example, 

an airplane design problem might require maximizing fuel efficiency and payload, while 

minimizing the weight of the structure [31]. In energy production systems, designing the wind 

turbine blade geometry in order to maximize the energy production of wind turbines and 

minimize the mass of the blade itself [32]. Multi Objective optimization algorithms like Free 

Search approach combined with Differential Evolution (MOFSDE) [33], NSGA II, MOPSO, 

and Predator-Prey [34] has been employed to economical design, considering maximum 

efficiency of heat transfer in heat exchangers which are commonly used in steam power 

plants, cooling systems, heating systems, air conditioning and petrochemical industries. With 

the increasing demand of multiobjective optimization in engineering problems, researches of 
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multiobjective optimization algorithms are necessary and valuable. In the power system 

engineering, also economic generation scheduling for thermal power plants with minimum 

emission (EEGS) [35, 36], EEGS considering market clearing of electrical energy in the 

presence of wind turbines [37], Congestion Management Using Generation Rescheduling and 

Load Shedding [38], are other multiobjective optimization problems that EEGS has been the 

target of present work. 

The EEGS problem has been studied in some research works reported in the literature. 

Especially, with the rapid development of multiobjective evolutionary algorithms, application 

of these methods has received much more attention. Tabu search [35], Niched Pareto genetic 

algorithm (NPGA) [39], nondominating sorting genetic algorithm (NSGA) [40], NSGA-II 

[41], multiobjective evolutionary algorithm (MOEA) [42], multiobjective particle swarm 

optimization [43], multiobjective stochastic search technique (MOSST) [44], strength Pareto 

evolutionary algorithm (SPEA) [45],  and fuzzy clustering-based particle swarm optimization 

(FCPSO) [36] represent the recent EEGS problem. 

In this paper, the ray optimization as a new meta-heuristic method based on Snell’s 

refraction law is proposed for solving the EGS and EEGS considering the practical 

constraints. Moreover, the above solution method for multiobjective EESG is equipped with a 

fuzzy decision making tool to consider the imprecise nature of the decision-maker’s 

judgment. So, the proposed fuzzy decision making tool offers a better judgment among the 

Pareto-optimal solutions to select the best compromise one. The technique has been applied to 

the four standard systems having non-convex solution spaces. The obtained results (for 

different cases with different complexity) were widely compared with previously presented 

techniques to demonstrate the potential of the presented approach to handle the problem. 
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In brief the main contributions and aspects of this work with respect to the published 

papers in the area are as follows: 

- Ray optimization as a new meta-heuristic method is formulated as a solution strategy 

for solving non-convex problems in power and energy systems; 

- A multi-objective generation scheduling problem is formulated and solved; 

- Using a fuzzy decision making tool the imprecise nature of the decision-maker’s 

judgment is considered; 

- To analyze the applicability of the model, four different test systems having complex 

and non-convex solution spaces are comprehensively studied. 

The organization of the paper is as follows. In Section 2, the formulation of EGS and 

EEGS problems is presented and discussed in detail. The concepts of Ray algorithm as well as 

its procedure are presented in Section 3. Section 4 describes the constraint handling strategy 

of the EGS and EEGS problems and the implementation of RO approach for solving these 

problems. Obtained numerical results and the related comparisons with those from previously 

published literature, are given in Section 5. Finally, conclusion of the paper is provided in 

Section 6. 

 

2. Problem Formulation 

2.1. EGS problem 

The EGS problem is an optimization problem to minimize operation costs while 

considering some technical constraints. In electric power systems, fuel cost of generation 

units is the main part of operation cost. The other costs are relatively small values can be 

added to the mentioned fuel cost. Typically, cost function of the generators is modeled by a 

quadratic function declared as follows: 

2
p p p p p pC a P b P c    (1) 
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Therefore, the power system operator minimizes the summation of all generating units 

cost function: 

2

1 1

( )
G GN N

Fuel
p p p p p p

p p

F C a P b P c
 

      (2) 

The presence of valve loading effects into the fuel cost function leads to more practical and 

precise modeling. However, the inclusion of valve loading effects increases the non-linearity 

and as a result the solution approach may trap in the local optima. The total fuel cost function 

with valve loading effects is modeled as follows: 

 2
,min

1

( | sin ( ) |)
GN

Fuel
p p p p p p p p p

p

F a b P c P d e P P


      (3) 

In the real-world, units may be supplied with multiple fuel types. In these cases, unlike the 

conventional units, cost function should be modeled with some piecewise functions showing 

the effects of fuel type changes. The total fuel cost function considering the valve-point 

loadings and multiple fuel options is as follows: 

  2
,min

1

| sin ( ) |)
GN

Fuel
pu pu p pu pu pu pu p p

p

F a b P c P d e P P


      if min max
pu p puP P P   (4) 

where u stands for the fuel option. 

In the EGS problem, there are two types of constraints which are considered, i.e. equality 

and inequality constraints. The equality constraint is the power balance constraint which 

means the total scheduled generation of the system must be equal to the total demand and 

active power losses of the transmission lines. The inequality constraints are minimum and 

maximum limits, prohibited operating zones, ramp-rate limit and spinning reserve of each 

generator. These constraints are concluded below. 

1) Power balance 

The total scheduled generation of the system must cover the total demand PD and the 

active power losses in transmission lines PLoss. Hence, 
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1

0
GN

g Load Loss
g

P P P


  
 

(5) 

The active power losses PLoss in Eq.(5) is calculated by Kron’s loss formula: 

0 00
1 1 1

G G GN N N

Loss g gp p p p
g p p

P P B P B P B
  

   
 

(6) 

where Bgp, B0p and B00are the loss coefficients [46]. 

2) Generation limits 

,min ,maxp p pP P P 
 

(7) 
3) POZs 

Thermal units may have the certain operating regions called POZs which cannot operate in 

and indeed causes a discontinuity in input-output performance curve. POZs of a thermal 

generating unit are defined as follows: 

1

1

,min ,

, ,

, ,max

, 2,3,...,
p

Z Z

Z

p p p LB

p POZ
p UB p p LB

p UB p p

P P P

P z N
P P P

P P P


 

   
  


 (8) 

4) Ramp-rate limits 

Consideration of ramp-rate limits affects the generation limits as follows: 

,min 0 ,max 0max( , ) min( , )p p p p p p pP P DR P P P UR   
 

(9) 
5) Spinning reserve constraints 

The spinning reserve constraints included as follows: 

1

GN

p
p

S SR



 

(10) 

,min ,maxmin[( ), ]
0

p p p
p

P P S p
S

p




 
 

  

(11) 

As contribution of generating units with POZs may result in falling into certain prohibited 

zones, therefore, these units cannot contribute to the spinning reserve provision. 

2.2. EEGS problem 

As indicated in the previous section, in real-world power generation scheduling, absolute 

minimum cost is not any more the sole criterion to be met. Nowadays, significant emission 
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control targets stated by different countries around the world, make environmental 

considerations as one of the major management concerns [47]. The EEGS is an optimization 

problem in which considering the environmental and economic issues simultaneously while 

satisfying various physical and operational constraints does generation scheduling. 

The power industry, the biggest emitter of gaseous emissions among all industries, has 

got to take the largest responsibility for emission reduction. There are various pollutants 

produced in steam power plants like COX, NOX, SOX and methane gases, but NOX and SOX 

have the largest share among these pollutant gaseous. Therefore, in most of the studies in this 

area, these two gases have been considered and inserted to the EEGS models. Among the 

various pollutants emitted by power plants, SOx and NOx are the most important gaseous 

emissions considered due to their effects on the environment. A commonly used approach for 

modeling these emissions is to use a combination of the polynomial and exponential terms 

that associate emissions with power production for each generating unit [48]: 

2 exp( )p p p p p p p p pE P P P         (12) 
In this paper, the gaseous emissions emitted by thermal units are modeled as an 

environmental cost and added to the generation cost: 

2

1 1

( exp( ))
G GN N

Emission
p p p p p p p p p p p

p p

F E P P P    
 

       
 

(13) 

where Ω is the scaling factor and determined according to (14). This factor is used to 

coordinate the objective functions in optimization problem. 

,max

,max

( )
( )

p
p

p

C P
E P

 
 

(14) 

Here, to model the relative preference of the objective functions, an appropriate weight 

value is used for each objective function. The EEGS objective function therefore becomes: 

Minimize  (1 )Fuel EmissionT w F w F      (15) 
where FFuel is the fuel cost function and FEmission is the emission function and w is the weight 

factor for showing the importance of two objective functions with respect to each other. 
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The constraints of the EEGS problem are the same as EGS problem constraints. 

In order to obtain the Pareto-optimal front, starting from zero to one increases the value of 

w. Fuzzy set is applied in this part to choose the best compromise solution among the 

obtained Pareto-optimal solution according to the preferences of power systems operator [48]. 

In this regard, a linear membership function (μc) is defined for each of the objective functions, 

i.e. FFuel and FEmission: 

 

min

max
min max

, max min

max

1

0

c c

c c
c c c c

c c
c Fuel Emission

c c

F F

F F F F F
F F

F F




 






 

     
 

 (16) 

where cF and c
  stand for the value and the membership function of the cth objective 

function in the δth Pareto-optimal solution, respectively. Also, by assuming minimization for 

all the objective functions, min
cF and max

cF  are the best (completely satisfactory) and the worst 

(clearly unsatisfactory) values of the objective function, respectively. For every non-

dominated solution δ, the membership function can be normalized as follows: 

1

c
c

c
mp

c
c

c

w

w


















 (17) 

where wc is the weight factor of the cth objective function in the EEGS problem and mp is the 

number of obtained Pareto-optimal solutions. The decision maker may select the weight 

values wc according to the importance of economic and environmental issues. The solution 

with the maximum membership function μδ is selected as the best Pareto-optimal solution or 

the final solution of the EEGS problem. 

3. Ray optimization theory 

a. Background 

Ray optimization (RO) [49] is a method that uses Snell’s refraction law of light for 

finding the global solution. According to this law, as the light travels through transparent 
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materials so-called dielectric, its path is changed by the materials refraction index. If the index 

of the refraction of the lighter and darker materials denoted by nd and nt, respectively, the 

Snell’s law can be expressed as: 

.sin( ) .sin( ).d tn n   (18) 
where as shown in Fig.1,   and   are the radiation and refraction angles, respectively. 

Therefore, by using the direction of incoming ray vector and the index of refraction of the 

materials, the direction of refracted ray vector t is achieved. 

b. Ray in a 2D (bi-dimensional) and 3D spaces 

Vector t is calculated using the direction of n, b, d, the angle between the n and d (i.e. ) 

and the index of the refraction (nd/nt). Here, n, b and d are considered as unit vectors, for the 

sake of simplicity. 

Place of Fig.1 

Place of Table 1 

By using (18), t is expressed in terms of n, d and  as follows: 

2
2

2. 1 .sin .( ( . ). )d d

t t

n nt n d d n n
n n

    
 

(19) 

In tracing a ray in a 2D space, d, t, n are placed in z=0 plane. The ray tracing in a 3D 

spaces is a special state of ray tracing in 2D spaces that occurs in a plane with an arbitrary 

orientation. In a 3D space, n and d are stated in a new coordinate system as: 

* * * *(1,0), ( . , . )n d d d    (20) 

where ξ* and λ* are normalized vectors that are perpendicular to each other (see  

 

Table 1). These vectors state n and d in the new 2D space. Consequently, by calculating 

* * *
1 2( , )t t t  in a 2D space, t in a 3D space is obtained as: 
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* * * *
1 2. .t t t    (21) 

c. Optimization procedure 

The RO, like other meta-heuristic methods has a number of agents including the variables 

of the optimization problem. This part, provides the step-by-step implementation process of 

the RO. 

Step 1: Initialization and save bests 

The initial positions of the agents in the search space are determined randomly using 

Eq.(22). Then the objective function is evaluated for each agent and the position of the best 

agent is saved as the global best and the position of each agent is saved as its local best. 

,min ,max ,min.( ).ij j j jX X rand X X    (22) 

Step 2: First movement 

The variables vector must be divided into two variables and three variables groups. Then 

each group moved to its new position in 2D or 3D spaces using Eq.(23) as the first movement. 

1 2. .ijV rand    (23) 
where Vij is the jth variable of the ith agent and it may belong to a 2D or 3D group. 

Step 3: Refinement of the movement vectors and update bests. 

Now by adding the movement vector of each agent, they move to their new position, but 

there is a possibility of boundary violation, so the movement vector of the violating agent 

must be refined. Now, a vector with a length equal to 0.9 times of the length between the 

position of current agent and the boundary intersection caused by the prior movement vector 

and with the same direction is selected as the new movement vector. After motion refinement, 

the 2D and 3D groups of agents must be joined together. Then the goal function of agents 

evaluated and the so-far best agent at this stage is selected as the global best and for each 

agent, the so-far best position by this stage, is selected as its local best. 
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Step 4: Origin making 

After the first motion, the new point to which each particle must be moved, need to be 

determined. This point that is named origin is determined as: 

( ). ( ).
2.

k i
i

maxit k GB maxit k LBO
maxit

  
  (24) 

Step 5: Next movement based on Snell’s law 

The normal vector n is selected as a vector whose direction is from origin to the current 

position of the agent. Now, the direction of the new movement vector can be created because 

n and incoming ray vector, d, which is the last movement vector, are obtained based on 

Eq.(19). This is a normalized vector and it requires a logical coefficient. Thus the final form 

of the movement vector after finding the new direction is given by: 

, , , ,. ( ).i l i l i l i lV V norm X O   (25) 

where ,i lX , ,i lV  , ,i lO and ,i lV are the agent's current position, normalized movement vector, 

the origin and refined movement vector of the agent i, respectively, that belong to group l. 

Place of Fig.2 

Fig.2 represents how a 2D agent moves to the origin (origin supposed fixed during the search 

for simplicity in representation) according to Snell’s law. 

Provided that origin and its current position become the same, accordingly the direction of the 

normal cannot be achieved. In order to solve this problem, the direction of the movement can 

be attained using the next equation: 

,1
,

,

. .0.001.
( )

k
i lk

i l k
i l

V
V rand

norm V
 

 
(26) 

where Vk
i,l is the movement vector of the iteration k that belongs to group l of the agent i, and 

Vk+1
i,l  is the movement vector of the iteration (k+1). 
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Step 6: Next movement based on stochastic nature. 

For adding a stochastic nature to find the best answer, a random change is added to the 

movement vector. In this regard, a random number is determined by stoch to decide about the 

determination of the movement vector by Snell’s law and/or Eq.(27). 

( 1) 1 2. .k
ijlV rand     (27) 

where Vijl
(k+1) is the component j of the group l that belongs to the agent i in iteration (k+1). 

Though, the following equation is used to refine the length of this vector: 

( 1) '
1

( 1) ' . . .
( )

k
k il

il k
il

V aV rand
norm V s




  (28) 

in which a is calculated as follows: 

2
,max ,min

1

2 for two variablegroups
( )

3 for three variable groups

q

l l
l

a X X q


 
    

 
  (29) 

In this equation, for effective search, a is divided into smaller parts. 

Interested readers may refer to [49] for further details. 

Step 7: Check search termination criterion. 

If the iterations aren’t finished, return to step 3. 

 

4. RO-based EEGS 

The pseudo code of the proposed RO-based solution methodology for EGS and EEGS 

problems is summarized as follows: 

Level 1: Initialization 

Step 1. Initialization. Generate a random array of agents in the search space. 

Step 2. Agents ranking. Balance generation with load power and losses by handling slack 

generator power, then evaluate the goal function for the agents based on Fuel cost and 

emission amount. Then penalize the agents those violate the POZs and spinning 

reserve by converting the constrained EGS and EEGS problems into the unconstrained 

one with penalty factors PF1 and PF2 [4]: 
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CV1 stands for slack generator (usually the first generator) power violation from its 

limits and CV2 stands for units spinning reserve violation. T is the goal function 

without considering slack generator limits and spinning reserve. 

The ramp rate limits constraint is handled on lower and upper limits of the generators’ 

power (the powers change from their older state is limited). At the end save the 

agent’s global best and the local bests in the memory. This step is illustrated in Fig.3. 

Place of Fig.3 

Step 3. First movement. Divide the solution vectors into 2-variable and 3-variable groups 

to move in the 2D and 3D spaces. Then Move all groups according to (23). 

Step 4. Refinement the solution vectors. If there is any generation boundary violation in a 

group, refine it. 

Step 5. Rebuild the agents. Mix the 2D and 3D groups and rebuild the agents. 

Step 6. Update the memory. Do the same as step 2 for constraint handling, evaluating goal 

function and updating bests. 

Level 2: Search 

Step 1. Calculating origin point. Determine the point that each particle must be moved to, 

by (24). 

Step 2. Next movement. Split the particles to 2D and 3D groups and Find the next 

movement vector for each group of particles utilizing the Snell’s refraction law, or 

stochastic nature with probability of stoch, then move the agents to the new positions. 

Step 3. Refinement the solution vectors. If there is any boundary violation in a group, 

refine it. 
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Step 4. Rebuild the agents. Mix the 2D and 3D groups and rebuild the agents. 

Step 5. Update the memory. Do the same as step 2 for constraint handling. Then evaluate 

fitness function for the new agents and update the global best and the local bests. 

Level 3:  stop search 

Step 1. Repeat search level steps until the max iteration reached. 

Finally, the flowchart of the proposed RO-based solution methodology for EEGS problem 

is depicted in Fig.4. 

Place of Fig.4 

5. Numerical results 

In this section, in order to assess the efficiency of the proposed RO-based solution 

method for EGS and EEGS problems, it is applied to five case studies. In this studies, error 

tolerance value in Fig.3 has been taken as 31 10ToL   . RO parameters total number of 

population has been taken as 100npop  , index of the refraction as / 0.5d tn n , constant 

parameter in Eq.(28) as 7.5s   and stochastic nature probability has been taken as 

0.35stoch . The maximum iteration number for five test cases is considered as 2000, 3000, 

100, 100 and 200, respectively. 

Place of Table 2 

5.1. Description of the test cases 

The characteristics of the five test cases are presented in Table 2. Here, Case I and Case II 

are considered for testing the proposed method to solve EGS problem. In addition, Case III, 

Case IV and Case V are used to examine the proposed RO method to solve bi-objective EEGS 

problem. 

Case I: In this case a 10-generator network is considered. The cost functions of fuel 

consumption of these units include both valve loading effects and multi-fuel option. Total 

load power of the system is 2700 MW [50]. 
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Case II: The system considered in this case, is a thirteen generating units network with the 

ramp rate limits, POZs and valve loading effects. Moreover this case comprises spinning 

reserve constraints. Here, 5 generation units out of thirteen ones include POZs, and the 

remaining 8 units provide the required spinning reserve. Total load power of this system is 

2520 MW, and the system contributes in the provision of a required spinning reserve of at 

least 180 MW. In this case, transmission losses also considered. System’s data is reported in 

[51]. 

Case III: The IEEE 30-bus 6-generator network with NOx emission and total load power of 

283.4 MW is considered in this case. System’s data containing cost and emission functions 

coefficients and the generators output power limits are reported in [52]. 

Case IV: The system used in this case, is the same 6 units system used in Case III, but here 

transmission losses considered also. Transmission loss coefficients for this system are 

obtained from [52]. 

Case V: In the last case study, a little complex system with ten generators with valve loading 

effects and NOx emission is considered. The data of this system is reported in [1]. 

Place of Table 3 

5.2. EGS test cases 

In this part, the computational results of the best, average, and the worst fuel costs among 

the 30 trial runs of solutions for EGS problem of the systems of Case I and Case II, are 

presented. For the sake of results comparison, the achieved results from several recently 

published EGS and EEGS solution methods are also represented in these Tables. It is worthy 

of being mentioned that results of the other optimization methods have been directly quoted 

from their respective references. 

The results of RO method for Case I in comparison of the results of other algorithms, 

including TSA [19], improved GA with multiplier updating (IGA-MU) [50], PSO [19], hybrid 
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harmony search (HHS) [53], modified harmony search algorithm (MHSA) [4] and real coded 

GA (RGA) [54] are provided in Table 3. The RO provided a solution with 624.0922 $/h better 

than TSA, IGA-MU, PSO and RGA, except HHS and MHSA. Besides, the best, average and 

worst solution of RO for this case, is presented in Table 4 in comparison of stochastic weight 

trade-off PSO (SWT_PSO) [55], differential evolution (DE) [54], DSPSO-TSA [19], 

conventional GA with multiplier updating (CGA-MU) [50] and the methods reported in Table 

3. The resulted average and worst solutions compared with the other reported methods, shows 

the reliable performance of the proposed RO in most of runs. According to Table 3 and Table 

4, the proposed RO method is effective in solving EGS problem with valve loading effects 

and multi-fuels. 

Place of Table 4 

Place of Table 5 

In Table 6 and 7, the results of the application of RO for Case II are reported. As can be 

seen from these tables, the RO result is acceptable and comparable with the other methods. 

According to Table 6, all of the system constraints including generators' ramp rate limits, 

POZs and spinning reserve of system are satisfied. In Table 7, there just MHSA [4] has a 

better worst solution than RO among reported methods, which shows reliable performance of 

this method in multiple runs. 

The aforementioned results and comparisons through the different test cases reveal the 

capability of RO method to solve practical EGS problems. 

In order to investigate POZs impress over the solution provided by RO, another run has 

been done, without considering POZs but the results were as with as considering POZs. As it 

can be seen from Fig.6, in this special case the provided generations by RO when considering 

POZs, are far from the POZs. Besides that, the results without considering POZs showed that 

the RO provided solution for Case II is not restricted by POZ constraint. Among the works 

reported in Table 6, just the generation of P2 provided by GA [42] has stuck to POZ boundary 
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305.0000 MW. So it can be said the solution provided by GA [42] for Case II, is restricted by 

POZ constraint. 

Place of Fig.5 

Place of Table 6 

Place of Table 7 

Place of Fig.6 

Place of Table 8 

Place of Fig.7 

Place of Table 9 

5.3. EEGS test cases 

In the EEGS two competing objectives are simultaneously solved to obtain the Pareto-

optimal solutions. In this paper for obtaining the best compromise solution, we select 

0.5cw   for both objectives. In other words, the same importance is considered for the 

economic and emission aspect in the EEGS problem. 

The obtained Pareto-optimal solutions, with increasing the value of w starting from 0 

towards 1 with 0.1 intervals and solving the EEGS for Case III, are presented in Table 8 

illustrated in Fig.7. According to the results of Fig.7, the solutions found for different values 

of w are uniformly distributed and completely covered the whole Pareto front. In this case, the 

best compromise solution is obtained at 0.4w   with the cost of 610.2756 $/h and the 

emission of 0.2004 ton/h. Out of them, two non-dominated solutions that represent the best 

cost ( 1w  ) and best emission ( 0w  ) are given in Table 9, as compared with the solutions 

reported using LP [56], SPEA [45], MOSST [44], NPGA [39], NSGA [40], NSGA-II [41], 

SBF [57], FCPSO [36], and EC [48]. As can be seen from Table 9, the fuel cost given by RO 
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for the economic dispatch problem ( 1w  ), is the same as EC [48] method (600.1114 $/h) 

and it is less than those of other methods reported in Table 9. Also for the emission dispatch 

problem ( 0w  ), RO gives the same minimum emission amount that reported in Table 9 

(0.1942 ton/h), with a better fuel cost than other methods (638.261 $/h). The obtained Pareto-

optimal front of RO for Case IV is shown in Fig.8. Results of RO for this case are presented 

in Table 10. The best compromise solution that is extracted by fuzzy decision making, for this 

case is obtained at 0.4w   with the fuel cost of 615.5268 $/h and the emission value of 

0.2007 ton/h. The best fuel cost and best emission of RO for Case IV are compared with those 

of other methods in Table 11. As can be seen, for the economic dispatch problem ( 1w  ) of 

Case IV, between 36 methods those are reported in Table 11, total fuel cost obtained from RO 

(605.8582 $/h) is better than other methods except EC [48] and MHSA [4]. Also the obtained 

best emission value ( 0w  ) of RO for this case is competitive with those of the previously 

reported approaches. 

Place of Table 10 

Place of Table 11 

Place of Fig.8 

Place of Fig.9 

Place of Fig.10 

Place of Table 12 

Place of Table 13 

Fig.9 shows the Pareto-optimal front of RO for Case V. this case is a little complex test case 

and in order to obtain an even Pareto-optimal front for this case, the weighting factor w is 

varied with non-equal intervals between 0 and 1. The best compromise solution for this case 

by fuzzy decision making, is obtained at 0.72w   with total fuel cost of 51.12959 10  $/h and 
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total emission of 4087.52 lb/h. Among the obtained non-dominated solutions in the Pareto-

optimal set, two non-dominated solutions that represent the best cost and best emission are 

compared with those of MHSA [4] and DE [1] algorithms in Table 12. It is obvious that fuel 

cost given by RO for economic dispatch ( 1w  ) is less than those of both algorithms. Also 

for emission dispatch problem ( 0w  ) of Case V, RO gives better emission than of both 

methods (i.e. bold numbers). The best compromise solution of RO for EEGS problem of Case 

V, is compared with MODE [1], MHSA [4], SPEA2 [1], PDE [1], NSGA-II [1] and GSA [58] 

algorithms in Table 13. As can be seen, the results achieved by RO algorithm, are 

considerably better than other methods reported in Table 13. And also comparison of the 

computing time of the methods in Table 13 shows that RO finds a better solution in a 

competitive time. In order to illustrate the RO fast performance, another run with less 

population has been done. In this scenario, the number of max iteration has been selected to 

be 50 iterations, to terminate within a time lower than other methods. This run took about 

1.39 sec to find a solution with 1.13014 × 105 $/h cost and 4082.26 lb/h emission which is 

still better than the reported works and faster computing time. When the RO algorithm has 

been applied to Case V, the changes of the total fuel cost and total emission amount are 

depicted in Fig.10 for economic dispatch ( 1w  ), emission dispatch ( 0w  ) and best 

compromise solution ( 0.72w  ). In this case because of complexity, the weight value w isn’t 

varied uniformly with 0.1 intervals, in order to get a plain Pareto front. 

 

6. Conclusion 

In this paper, a new optimization method based on Snell’s refraction law called Ray 

optimization has been used for EGS and multiobjective EEGS problem, considering practical 

constraints of real-world power systems including valve loading effects, ramp rate limits, 

POZs, multi-fuel options, transmission losses and spinning reserve. Ray Optimization which 

is a multi-agent method considers agents as rays of light. Based on the Snell’s light refraction 
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law when light travels from a lighter medium to a darker medium, it refracts and it’s direction 

changes. This behaviour helps the agents to explore the search space in the early stages of the 

optimization process and to make them converge in the final stages. This law is the main tool 

of the Ray Optimization algorithm to find the near to optimal answer. In the EEGS problem, 

the RO method has tried to reach the best result for each value of weighting coefficient w. in 

the solution transaction, the weight factor w has been changed between 0 and 1. Furthermore, 

a decision making approach is used to extract the best compromise solution over the Pareto-

optimal set. The numerical results and relative comparisons with several recently published 

research works show that RO is an efficient method for solving EGS and EEGS problems 

with respect to all abovementioned practical constraints. 
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Figures 

 

 

Fig.1. Demonstration of a typical incident and refracted rays 

 

 

Fig.2. Movement of a 2D agent to the origin 
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Fig.3. Constraint handling strategy of EGS and EEGS problems 
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Fig.4. RO-based EEGS method flowchart 
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A)

B)  
Fig.5. Evolution of RO method for Case I. A) Fuel cost convergence B) generators output power convergence. 
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Fig.6. Representation of Case II units’ power constrained by POZs and the RO provided solution 
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Fig.7. Pareto-optimal front of RO method for Case III. 
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Fig.8. Pareto-optimal front of RO for Case IV. 

 

Fig.9. Pareto-optimal front of RO method for Case V. 
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Fig.10. Changes of the fuel cost and emission amount according to iteration numbers for Case V. A) 0w  . B) 

1w  . C) 0.72w  . 
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Tables 

 
 

Table 1 
The designed elements of the new coordinate system 
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Table 2 
The values used for tuning RO parameters 

parameter value 
ToL 1× 10-3 
npop 100 
nd/nt 0.5 
s 7.5 
stoch 0.35 

 

 

 
 

Table 3 
The characteristics of the five test systems 

 
EGS test systems 

 
EEGS test systems 

Case I Case II Case III Case IV Case V 
Number of units 10 13  6 6 10 
Transmission losses       
Valve loading effects       
Ramp rate limits       
POZs       
Multi-fuel       
Spinning reserve       
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Table 4 
The results of the application of RO for Case I. 

 
TSA [19] 

 
IGA-MU [50] 

 
PSO [19] 

 
HHS [53] 

 
MHSA [4] 

 
RGA [54] 

 
RO 

P (MW) FT P (MW) FT P (MW) FT P (MW) FT P (MW) FT P (MW) FT P (MW) FT 

P1 219.4959 2  219.1261 2  225.5792 2  218.25 2  218.5895 2  220.9376 2  217.5902 2 
P2 206.7093 1  211.1645 1  208.2240 1  211.66 1  211.4642 1  212.6096 1  207.5031 1 
P3 291.3532 1  280.6572 1  278.8078 1  280.72 1  280.6562 1  283.5811 1  283.9859 1 
P4 237.6731 3  238.4770 3  238.0062 3  239.63 3  239.2362 3  240.0089 3  238.5645 3 
P5 279.2478 1  276.4179 1  282.4136 1  278.53 1  279.8499 1  282.8920 1  285.1790 1 
P6 237.3793 3  240.4672 3  239.6464 3  239.63 3  239.7738 3  240.4739 3  240.1769 3 
P7 277.9598 1  287.7399 1  285.4269 1  288.58 1  287.7299 1  292.9792 1  292.4011 1 
P8 238.9435 3  240.7614 3  239.1045 3  239.63 3  240.4457 3  240.1989 3  236.4145 3 
P9 429.9256 3  429.3370 3  425.5856 3  428.51 3  426.3877 3  406.9988 3  425.0234 3 
P10 281.3126 1  275.8518 1  277.2121 1  274.86 1  275.8668 1  279.3199 1  273.1127 1 

 Total 
cost ($/h) 624.3078   624.5178   624.3046   623.739   623.834   624.5081   624.0922  

 

 

 
 

Table 5 
Best, average and worst cost for Case I. 

 

 

 

 

 

 

 

 

 

 

Method Best cost ($/h) Worst cost ($/h) Average cost ($/h) 

CGA-MU [50] 624.7193 633.8652 627.6087 
IGA-MU [50] 624.5178 630.8705 625.8692 
PSO [19] 624.3045 625.9252 624.5054 
TSA [19] 624.3078 635.0623 624.8285 
DSPSO-TSA [19] 623.8375 623.8625 623.9001 
HHS [53] 623.739 - - 
RGA [54] 624.5081 624.5088 624.5079 
DE [54] 624.5146 624.5458 624.5246 
RCGA [59] 623.8281 623.8814 623.8495 
SWT-PSO [55] 623.8274 626.4755 624.1246 
MHSA [4] 623.8340 625.1302 624.0412 
RO 624.0922 627.1189 625.2564 
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Table 6 
The results of the application of RO for Case II. 

Output power of Generators (MW) DE [51] MHSA [4] GA [51] HDE [51] RO 

 P1 628.0117 628.3080 628.4311 628.3290 598.5458 
 P2 300.2498 300.2387 305.0000 299.3286 299.1849 
 P3 348.2995 299.7709 302.6497 304.5139 299.1545 
 P4 159.0591 159.9158 158.9094 159.7930 159.7261 
 P5 159.7318 159.7459 160.4743 159.8114 159.1135 
 P6 159.7324 159.7519 159.7312 159.8572 158.9151 
 P7 159.7330 159.7773 160.1004 159.9505 159.5829 
 P8 147.6877 109.9736 159.6400 109.8658 158.8117 
 P9 160.7340 159.8171 109.6715 159.7405 156.5171 
 P10 77.29379 114.8350 114.5156 114.8171 114.7714 
 P11 115.6040 114.8483 116.2229 115.7702 114.2686 
 P12 55.01118 98.90760 92.08722 94.97113 92.26748 
 P13 91.19282 92.86890 92.43267 92.40933 92.32242 
Reserve power (MW) 198.3218 187.084 198.3218 190.8761 180.0662 

Transmission losses (MW) 42.3412 38.9448 39.8664 39.1582 43.18139 

 Total fuel cost  ($/h) 24819.32 24585.361 24632.42 24591.76 24610.216 

 

 

 
 

Table 7 
Best, average and worst cost for Case II. 

 

 

 

 

 

 

Algorithm Best cost ($/h) Worst cost ($/h) Average cost ($/h) 
HDE [51] 24591.76 25074.90 24739.53 
Self-tuning HDE [51] 24560.08 24872.44 24706.63 
MHSA [4] 24585.36 24711.30 24638.36 
DE [51] 24819.32 25656.40 25217.64 
GA [51] 24632.42 25188.59 24874.93 
RO 24610.22 24765.11 24692.37 
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Table 8 
Total fuel cost and emission amount for different values of w (Case III). 

 

 

 
 

Table 9 
Comparison of the best fuel cost and emission amount for Case III. 

Different Methods 
W=1.0 (Best Fuel cost)  W=0.0 (Best emission) 
TFC ($/h) TEA (ton/h)  TFC ($/h) TEA (ton/h) 

LP [56] 606.314 0.22330  639.600 0.19424 
SPEA [45] 600.15 0.2215  638.51 0.1942 
MOSST [44] 605.889 0.22220  644.112 0.19418 
NPGA [39] 600.259 0.22116  639.182 0.19433 
NSGA [40] 600.572 0.22282  639.231 0.19436 
NSGA-II [41] 600.155 0.22188  638.269 0.19420 
FCPSO [36] 600.1315 0.2223  638.3577 0.1942 
FSBF [57] 600.1141 0.222  638.2835 0.1942 
EC [48] 600.1114 0.2221  638.2703 0.1942 
RO 600.1114 0.2221  638.261 0.1942 

 

 

 

 

 

 

 

 

 

w 
Generators output power (MW) 

Total fuel cost ($/h)  Total emission (ton/h) 
P1 P2 P3 P4 P5 P6 

 0 40.6131 45.9125 53.8018 38.3044 53.8018 50.9664 638.2613 0.1942 
 0.1 36.5429 43.4439 53.8771 46.9715 53.8753 48.6892 628.3793 0.1947 
 0.2 32.8143 41.2678 53.9367 54.7691 53.9382 46.674 620.7457 0.1960 
 0.3 29.3624 39.3263 53.9682 61.9172 53.9499 44.8759 614.8118 0.1980 
 0.4 26.1867 37.5963 53.9483 68.4451 53.9679 43.2556 610.2756 0.2004 
 0.5 23.2316 36.0358 53.8853 74.5803 53.8850 41.7820 606.7963 0.2033 
 0.6 20.4658 34.6139 53.7572 80.3664 53.7587 40.4381 604.1946 0.2065 
 0.7 17.8790 33.3155 53.5527 85.9020 53.5509 39.1999 602.3188 0.2099 
 0.8 15.4448 32.1193 53.2708 91.2431 53.2707 38.0513 601.0615 0.2137 
 0.9 13.1477 31.0108 52.9007 96.4604 52.9007 36.9797 600.3432 0.2178 
 1 10.9720 29.9763 52.4314 101.620 52.4286 35.9717 600.1114 0.2221 
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Table 10 

Obtained best fuel cost, best emission and best compromise solution of RO for Case IV. 

Output power (MW) Emission dispatch 
( 0w  ) 

Economic dispatch 
( 1w  ) 

Best compromise 
solution ( 0.4w  ) 

 P1 41.0789 12.5225 25.3014 
 P2 46.352 28.6735 37.3308 
 P3 54.4217 58.1623 56.4985 
 P4 39.015 99.1127 68.6705 
 P5 54.4254 52.0955 54.8383 
 P6 51.4874 35.3174 43.2731 
Power losses (MW) 3.3802 2.4987 2.5126 

Total fuel cost ($/h) 645.8519 605.8582 615.5268 

Total emission (ton/h) 0.1942 0.2206 0.2007 

 

 

 
 

Table 11 
Comparison of best fuel cost and emission amount for Case IV. 

Different Methods 

w=1 (Best Fuel cost)  w=0 (Best emission) 

TFC 
($/h) 

TEA 
(ton/h) 

PLoss 
(MW)  TFC 

($/h) 
TEA 
(ton/h) 

PLoss 
(MW) 

BB-MOPSO [60] 605.9817 0.2201 2.5620  646.4847 0.1941 3.5370 
MO-DE/PSO [61] 606.0073 0.2208 2.5550  646.0243 0.1941 3.5350 
EC [48] 605.8363 0.2208 2.4600  646.2203 0.1942 3.6200 
BBO [62] 606.2600 0.2187 2.4654  642.9250 0.1942 3.4990 
FSBF [57] 607.5081 0.2196 3.1900  645.3981 0.1942 3.0300 
NSBF [57] 607.5901 0.2211 3.3100  647.7413 0.1944 2.9200 
MOCASO [63] 607.8500 0.2227 3.0500  644.2700 0.1932 3.0500 
PSO [64] 607.7800 0.2198 3.3100  645.2300 0.1942 3.1100 
MOPSO-II [64] 607.7900 0.2193 3.3300  644.7400 0.1942 3.0900 
PSO [65] 607.8400 0.2192 3.2900  642.9000 0.1942 3.0800 
MOPSO [66] 608.1000 0.2227 3.0500  644.2700 0.1935 3.0500 
MOCPSO [66] 607.7600 0.2221 3.0500  663.3100 0.1908 3.0500 
MODE [67] 606.4160 0.2221 2.6034  643.5190 0.1942 3.3699 
GA [42] 607.7800 0.2199 3.3200  645.2200 0.1942 3.1100 
NSGA [40] 607.9800 0.2191 3.4600  638.9800 0.1947 2.9700 
NPGA [39] 608.0600 0.2207 3.3700  644.2300 0.1943 3.1400 
NSGA-II (1)[68] 611.8392 0.2215 5.0200  646.9075 0.1944 5.2100 
NSGA-II (2) [41] 607.8010 0.2189 3.3000  644.1330 0.1941 3.1000 
NSGA-II(3) [69] 613.6759 0.2223 5.9500  648.7090 0.1942 6.0400 
NSGA-II/CAO [69] 613.5488 0.2205 5.9500  650.7343 0.1942 6.1900 
MNSGA-II [70] 608.1248 02199 3.4658  645.4787 0.1942 3.3313 
MNSGA-II + DCD [70] 608.1283 0.2199 3.4548  645.3998 0.1942 3.2894 
MNSGA-II + DCD + CE [70] 608.1247 0.2198 3.4709  645.6472 0.1942 3.3173 
CMOPSO [61] 606.0472 0.2204 2.5600  645.9985 0.1941 3.5170 
SMOPSO [61] 605.9909 0.2206 2.5970  648.5035 0.1942 3.4950 
TV-MOPSO [61] 606.4028 0.2197 2.6040  642.7938 0.1942 3.3920 
ɛ-GA [71] 606.4533 0.2028 2.3200  642.8976 0.1882 4.0800 
SPEA [45] 607.8600 0.2176 3.3200  644.7700 0.1943 3.0000 
DE [72] 608.0658 0.2193 3.4180  645.0850 0.1942 3.0403 
MBFA [73] 607.6700 0.2198 3.2600  644.4300 0.1942 3.2800 
FCPSO [73] 607.7860 0.2201 3.3500  642.8964 0.1942 3.0900 
MA θ-PSO [62] 605.9984 0.2206 2.5562  649.2070 0.1942 3.5330 
HSA [68] 606.2858 0.2148 1.7500  647.4345 0.1951 2.2600 
CSS [52] 605.9865 0.2204 2.5417  645.6639 0.1941 3.2915 
MHSA [4] 605.6440 0.2203 2.5638  645.6172 0.1941 3.5190 
RO 605.8582 0.2206 2.4987  645.8519 0.1942 3.3802 
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Table 12 
Comparison of the best fuel cost and the best emission for Case V. 

output power (MW) 
MHSA [4] 

 
DE [1] 

 
RO 

Best fuel cost 
( 1w  ) 

Best emission 
( 0w  ) 

Best fuel cost 
( 1w  ) 

Best emission 
( 0w  ) 

Best fuel cost 
( 1w  ) 

Best emission 
( 0w  ) 

 P1 55.0000 55.0000  55.0000 55.0000  54.4870 55.0000 
 P2 80.0000 80.0000  79.8063 80.0000  79.3060 79.9970 
 P3 106.0998 82.0444  106.8253 80.5924  100.8430 80.6940 
 P4 100.3628 80.8657  102.8307 81.0233  97.9080 80.8710 
 P5 82.6482 160.0000  82.2418 160.0000  83.2320 160.0000 
 P6 82.8328 240.0000  80.4352 240.0000  85.0050 240.0000 
 P7 300.0000 293.1646  300.0000 292.7434  299.8880 292.4880 
 P8 340.0000 300.4258  340.0000 299.1214  339.0110 295.4280 
 P9 470.0000 395.2394  470.0000 394.5174  470.0000 394.8770 
 P10 470.0000 394.7599  469.8975 398.6383  469.3710 395.0620 

Total fuel cost ($/h) 111491.954 116410.358  111500 116400  111014.4 116005.9 

Total emission (lb/h) 4566.955 3932.192  4581.00 3923.40  4515.91 3906.534 

 

 

 
 

Table13 
Comparison of the best compromise solution for Case V. 

Unit MODE [1] MHSA [4] SPEA 2 [1] PDE [1] NSGA-II [1] GSA [58] RO 
(maxit = 200) 

RO 
(maxit = 50) 

 P1 (MW) 54.9487 54.4132 52.9761 54.9853 51.9515 54.9992 55.0000 54.9999 
 P2 (MW) 74.5821 70.6736 72.8130 79.3803 67.2584 79.9586 80.0000 79.8867 
 P3 (MW) 79.4294 97.0719 78.1128 83.9842 73.6879 79.4341 84.3498 84.1302 
 P4 (MW) 79.4294 86.4019 83.6088 86.5942 91.3554 85.0000 82.9006 83.5377 
 P5 (MW) 80.6875 138.0141 137.2432 144.4386 134.0522 142.1063 141.8027 143.0821 
 P6 (MW) 136.8551 162.4903 172.9188 165.7756 174.9504 166.5670 161.6252 162.9784 
 P7 (MW) 172.6393 283.6421 287.2023 283.2122 289.4350 292.8749 298.0125 296.2670 
 P8 (MW) 283.8233 311.5283 326.4023 312.7709 314.0556 313.2387 314.5186 311.8496 
 P9 (MW) 316.3407 439.0945 448.8814 440.1135 455.6978 441.1775 427.0716 428.3075 
 P10 (MW) 448.5923 440.7168 423.9025 432.6783 431.8054 428.6306 431.0606 431.2747 

 Cost ( × 105 $/h) 1.1348 1.1329 1.1352 1.1351 1.1354 1.1349 1.12959 1.13014 

 Emission (lb/h) 4124.9 4153.3 4109.1 4111.4 4130.2 4111.4 4087.52 4082.26 
CPU time (s) 3.82 - 7.53 4.23 6.02 - 5.61 1.39 
 

 


