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Abstract: This paper addresses an integrated framework for expansion planning of an Active Distribution Network (ADS) 
that supplies its downward Active MicroGrids (AMGs) and it participates in the upward wholesale market to sell its surplus 
electricity. The proposed novel model considers the impact of coordinated and uncoordinated bidding of AMGs and Demand 
Response Providers (DRPs) on the optimal expansion planning. The problem has six sources of uncertainty: upward 
electricity market prices, AMGs location and time of installation, AMGs power generation/consumption, ADS intermittent 
power generations, DRP biddings, and the ADS system contingencies.  The model uses the Conditional Value at Risk (CVaR) 
criterion in order to handle the trading risks of ADS with the wholesale market. The proposed formulation integrates the 
most important deterministic and stochastic parameters of the risk-based expansion planning of ADS that is rare in the 
literature on this field. The introduced method uses a four-stage optimization algorithm that uses genetic algorithm, CPLEX 
and DICOPT solvers. The proposed method is applied to the 18-bus and 33-bus test systems to assess the proposed 
algorithm. The proposed method reduces the aggregated expansion planning costs for the 18-bus and 33-bus system about 
44.04%, and 11.82% with respect to the uncoordinated bidding of AMGs/DRPs costs, respectively.  
 
Keywords: Expansion planning; active distribution system; stochastic programming; microgrids; optimization.  
 

1. Nomenclature 
Abbreviations  
ADS Active electric Distribution System 
AMG Active Micro Grid 
CHP Combined Heat and Power 
CB Coordinated Bidding 
CG Coordination Gain 
CVaR Conditional Value at Risk 
DA Day-Ahead 
DER Distributed Energy Resource 
DRP Demand Response Provider 
ESS Electrical Storage System 
MILP Mix Integer Linear Programming 
MINLP Mix Integer Nonlinear Linear 

Programming 
MU Monetary Unit 
MMUs  Million MUs 
OEPADS Optimal Expansion Planning of ADS 
PV Photovoltaic Array 
RL Responsive Load 
TES Thermal Storage System 
UB Uncoordinated Bidding 

 
 
 
 
WT 

 
 
 
 
Wind Turbine 

Sets and Indices 

݊,݉ Index for buses 

 Index for hours ݐ
 Set of feeders ܴܦܨ
ௌܺூ்ா  Set of facilities allocation sites 
݃ Set of loads 
s Scenario 
Parameters  

 Allocated capacity of AMG or DRP ܽܥ
 ிௗ Capacity of feederܽܽܥ
 ிௗ Capacity cost of feederܥܥ

ாேீு்ிௗܥ  Length dependent cost of electric feeder 
(MUs/m). 

 ை&ெ Operation and maintenance costܥ
 Present worth factor ߴ
߱ Capacity fee  
ℵ Energy fee  
Nyear Number of planning years 
Nzone Number of electric system zones 
NOS Number of operating scenario 
NCS Number of contingency scenario 
ܽ,  b Variable and fixed cost  
 Probability of contingency ߤ
 Length of feeder ܮ
k The penalty rate 
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߳ Wholesale market active or reactive 
power price 

ܲூ௫ ,ܲூ  Upper and lower limits on Involuntary 
load curtailment active power 

ܵௌ௫  ADS maximum apparent power 
ܸ
௫ , ܸ

  Maximum/minimum voltage magnitude  

Variables  

߬ Time duration of AMG/DRP contribution 
  Operational costܥ

 Benefit ܤ
ܲ,ܳ Active and reactive power 
ܲ_௨௪ௗ
௧௩  Submitted active power to wholesale 

market by the ADS 
ܳ_௨௪ௗ
௧௩  Submitted reactive power to wholesale 

market by the ADS 

 Auxiliary variable used to compute the ߞ
CVaR 

α  confidence level 
 weighting parameter for risk-aversion ߚ

attitude 
 ఈ Conditional value at risk at the αܴܸܽܥ

confidence interval 
ܲூ ,ܳூ Involuntary load curtailment for active 

and reactive power, respectively 
ܸ Voltage amplitude  
 Voltage angle ߠ
ܻ Admittance of line 
 Equality and inequality constraints ܪ,ܵ
 Revenue of AMGs or DRPs ܸܧܴ

Binary variables 

 Installation decision variable ܫ
 

2. Introduction 
Recently, Distributed Energy Resources (DERs) have 

been widely integrated into power systems planning and 
operations paradigms based on the fact that the DER-based 
systems are mainly MicroGrids (MGs) [1].  

A microgrid can be introduced as a system, which 
includes DERs such as Combined Heat and Power (CHP), 
solar Photovoltaic Array (PV), small Wind Turbine (WT), 
Electrical Storage System (ESS), and Responsive Load (RL); 
in a way that it has at least one controllable energy source [2]. 
From the point of view of the electric distribution system, the 
downward Active MG (AMG) can be considered as a 
controllable element that is connected to its main grid and it 
can transact energy with the distribution system [2]. Further, 
an Active electric Distribution System (ADS) can transact 
electrical energy with the downward AMGs and upward 
electricity market.  

The Optimal Expansion Planning of ADS (OEPADS) 
consists of determining the optimal parameters of the energy 
resource and network capacity, location, and the time of 
installation. The OEPADS must consider the stochastic 
behaviour of the wholesale market prices and intermittent 
electricity generation facilities, downward AMGs power 
generation/consumption scenarios, reliability criteria, 
dynamic interdependency of electric and heat systems and 
cost-benefit analysis [3].  

Over recent years, different aspects of OEPADS have 
been studied and the literature can be categorized into the 
following categories. The first category proposes models for 
device capacity selection, allocation and performance 
evaluation. The second category introduces different solution 
techniques and the third category considers new models and 
heuristic solution methods for the OEPADS. 

An integrated model that considers the impact of 
coordinated and uncoordinated bidding of AMGs and 
Demand Response Providers (DRPs) on the optimal 
expansion planning is less frequent in the literature.  

Wua et al. [3] proposed a bi-level robust planning 
model for active management elements including on-load tap 
changers, electrical storage system, capacitor bank, and static 
reactive power compensation. The uncertainty of WTs and 
PVs was modelled and the problem was solved by column 
and constraint generation algorithm. 

Bahrami et al. [4] proposed a decentralized algorithm 
for energy trading considering uncertainties of the generation 
and load parameters. The problem was formulated as a bi-
level optimization problem and the case study showed that 
the algorithm helped the load aggregators and generators by 
increasing their profit by 23.34% and 15.2% on average, 
respectively. 

Moradijoz et al. [5] proposed a probabilistic bi-level 
optimization problem that the master level optimized the 
planning phase; meanwhile, the slave level optimized the 
operation problem. The slave level was modelled as a two-
stage model and at the first stage of the slave level, an optimal 
power flow was performed and at the second level of slave 
problem, the network reliability was optimized. 

Samper et al. [6] presented a risk-based optimization 
approach that used evolutionary particle swarm optimization. 
A return-per-risk index was proposed to assess expansion 
investments an efficient synergy between the expected return 
and the risk of investments by performing Monte Carlo 
simulations was achieved.   

Zare et al. [7] proposed a chance-constrained 
programming approach to deal with the uncertain renewables 
and loads. A robust formulation was proposed for the chance 
constraints that guaranteed the robustness of the expansion 
plans against all uncertainty distributions. Linearization 
techniques were also devised to eliminate the nonlinearities 
of the proposed formulation. 

Bahrami et al. [8] introduced a decentralized 
algorithm to solve a DRP-based optimal power flow problem. 
A minimization formulation of aggregated generation cost of 
the suppliers and the discomfort cost of the consumers was 
proposed. The results confirmed the effect of the proposed 
method on reducing the loading of the transmission lines.  

Amjady et al. [9] presented an adaptive robust 
planning model that considered the uncertain nature of loads 
and power productions of DERs. The AC power flow 
equations were considered and a tri-level decomposition 
algorithm was used to solve the problem.  

Wang et al. [10] introduced a Mix Integer Linear 
Programming (MILP) optimization algorithm for energy 
hubs that considers the coupling of electricity and gas loads. 
The components of the energy hub include WTs, PVs, heat 
pump, ESSs, Thermal Storage Systems (TESs). The proposed 
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algorithm uses a process to minimize the energy costs and 
carbon emissions in the 20 years planning horizon. 

Moradi et al. [11] introduced an optimization method 
for the planning problem of large-scale CHP units that 
utilized the piecewise linearization technique to linearize the 
formulated nonlinear problem in the electric system 
contingencies. The formulated problem utilizes the MILP 
algorithm and the results reveal a 33% reduction in total costs.  

Rastgou et al. [12] proposed an expansion-planning 
algorithm for the electric distribution system considering 
uncertainties of load and wholesale market price. The 
introduced method used harmony search method to optimize 
the formulated problem and the outputs of the proposed 
method were compared with the genetic algorithm and 
particle swarm optimization method.  

Weber et al. [13] proposed a mixed-integer 
optimization algorithm to find the optimal combinations of 
energy resource and network systems for an eco-town in the 
United Kingdom. The model minimized costs and the CO2 
environmental emissions. 

Soderman et al. [14] determined the optimal 
configuration and device capacity of energy resource system. 
The algorithm minimized the investment and operational 
costs. The MILP optimization algorithm explored the 
optimality of the system topology and facilities. 

Bahrami et al. [15] presented the data centres’ problem 
of choosing utility companies and scheduling workload for 
the DRPs. The interaction among data centres as a many-to-
one matching game with externalities was modelled. 
Simulation results showed that the data centres costs were 
reduced by 18.7% with the proposed algorithm. 

Bracco et al. [16], presents a MILP solution algorithm 
of CHP-based systems for Arenzani in Italy that optimizes 
investment and operating costs. The proposed model used a 
multi-objective function that minimized capital, operating 
costs, and CO2 emissions.  

Ref. [3-16] did not consider AMGs and DRPs 
coordinated bidding impact on the OEPADS problem. The 
ADS can pay capacity and energy fees to the AMGs and 
DRPs to encourage them to coordinate their biddings with the 
ADS. The ADS can sell the surplus electricity of its system 
and AMGs/DRPs to the upward wholesale market and 
maximizes its benefits. Thus, the DERs and electrical 
network expansion-planning algorithm that considers WTs, 
PVs, ESSs, and AMGs/DRPs coordinated bidding is less 
frequent in the previous researches. The present research 
introduces an OEPADS algorithm that uses the MINLP 
model. The main contributions of this paper can be 
summarized as:  

 The proposed fourth-level algorithm considers 
the impacts of coordinated bidding of downward 
AMGs and DRPs on OEPADS, 

 The integrated model of expansion planning 
considers the CHPs, electrical network, 
renewable energy resources, electrical storage 
systems, reactive power compensation devices, 
and DRPs,  

 The proposed stochastic algorithm models the 
six sources of uncertainty: upward electricity 
market price, AMGs location and time of 
installation, AMGs power 
generation/consumption, ADS intermittent 

power generation, DRP biddings, and 
contingencies, 

 The model encounters the Conditional Value at 
Risk (CVaR) criterion to explore the trading 
risks of ADS with the wholesale market, 

 The problem explores the coordination of system 
resources in the normal and contingent 
conditions.  

The following sections of this paper are organized as 
follows: The modelling and formulation of the OEPADS 
problem is introduced in Section 3. In Section 4, the solution 
algorithm is presented. In section 5, the simulation results for 
different scenarios are presented. Finally, the conclusions are 
included in Section 6. 

3. Problem Modelling and Formulation 
The ADS is equipped with different energy resources 

consists of CHPs, gas –fired boilers, PVs, WTs, and ESSs as 
well as Reactive Power Compensation Facilities (RPCF) such 
as fixed capacitor banks. There is not any heat transmission 
system and all of the heating loads must be supplied by CHPs 
and boilers. The ADS operator commits its CHP systems and 
boilers to supply the downward heat and electricity loads and 
it can purchase electricity from the upward wholesale market. 
The electricity surplus of each AMG can be sold to the ADS 
main grid. Further, the ADS can pay capacity and energy fees 
to its downward AMGs and DRPs to encourage them to 
coordinate their biddings with the ADS; in a way that the 
ADS can maximize his/her profit. Thus, the ADS may have 
an extra active/reactive power generation capacity that can 
sell its surplus active/reactive power to the upward electricity 
market. Hence, the OEPADS problem must consider the 
coordinated bidding of AMGs/DRPs procedure in investment 
practices. The OEPADS must minimize the investment and 
operation cost; meanwhile, it must maximize the reliability of 
provided services for the downward loads [3].  

 
3.1. Uncertainty Characterization 

The OEPADS problem has six sources of uncertainty: 
upward electricity market price, AMGs location and time of 
installation, AMGs power generation/consumption, ADS 
intermittent power generation, DRP biddings, and 
contingencies.   

Considering the inherent uncertainties associated with 
the above parameters, stochastic programming is utilized in 
this paper and each uncertain parameter is modelled as a 
stochastic process. As a result, the objective function is 
transformed into a random variable, and for its evaluation, the 
expected value is utilized. The stochastic process is presented 
by different scenarios. The scenario generation is done by 
sampling of white noises in the fitted models. Auto 
Regressive Integrated Moving Average (ARIMA) models for 
the purpose of generating scenarios for stochastic processes 
[17]. However, from a computational viewpoint, solving such 
problems are time-consuming to be solved or irresolvable. 
Hence, the scenario reduction method must be applied. The 
forward selection algorithm proposed in [18] is used to reduce 
the scenarios.  
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3.2. Assumptions 
The ADS forecasts day-ahead wholesale pool market 

prices. The ADS will only submit its bids if its estimation 
shows that the entire volume of the submitted bid will be 
purchased by the Independent System Operator (ISO). Any 
deviation from the submitted values of active and reactive 
power markets will be penalised by the ISO. The operational 
cost of ESS is modelled as Eq. (1): 

(ܵܵܧݐܲ)ܵܵܧܥ = |ܵܵܧݐܲ|ܵܵܧݐܽ +  (1) ܵܵܧݐܾ

The cost of RPCF is modelled as Eq. (2): 

തܳ)ܨܥܴܲݐܥ ݐ
(ܨܥܴܲ = ோிݐܽ . തܳ ݐ

ܨܥܴܲ  (2) 

where, തܳ ݐ
ܨܥܴܲ  is the discrete value of each RPCF step, and 

ܽோி is the fixed cost of RPCF.  
The OEPADS problem is formulated as a four-stage 

stochastic program. At the first stage, the ADS forecast 
wholesale electricity market prices; meanwhile, it estimates 
the location, capacity and time of installation of the 
downward AMGs facilities and the volume of electricity 
exchanges with the AMGs and DRPs. Then it optimizes the 
location, capacity and time of installation of its facilities for 
different wholesale market, AMGs location and capacity 
scenarios. At the second stage, the bidding scenarios of 
AMGs and DRPs is generated and the scenario reduction 
procedure is performed. Then the feasibility of estimated 
AMGs and DRPs biddings are evaluated and the coordinated 
bidding of AMGs/DRPs are recognized. At the third stage, 
the optimal scheduling of ADS energy resources is 
determined. At this stage, the ADS uses the estimated hourly 
electric and heat loads, coordinated bidding of AMGs’ and 
DRP, and intermittent power generation to determine the 
optimal generation schedules of its resources, electricity 
transactions with wholesale market and AMGs/DRPs. At the 
fourth stage, the involuntary load shedding, corrective DRPs 
and AMGs electricity interruptions are determined for each 
contingency scenario. 

 
3.3. First Stage Problem Formulation 

An optimal OEPADS must minimize total investment 
costs and the aggregated operation costs; meanwhile, it must 
maximize the system reliability. The objective function of 
OEPADS problem can be proposed as (3). 

The uncertainties of the AMGs’ location and capacity 
scenarios and wholesale electricity market scenarios are 
described as the probability of the NOS parameter.  

The objective function is decomposed into five groups: 
1) the investment plus aggregated operation costs of CHP, 
electric feeder, PV, switching device (SW), WT, ESS, boiler, 
and RPCF, 2) the involuntary load shedding interruption cost, 
3) the electricity purchased costs, 4) the costs of DRPs, 5) the 
benefit of active power sold to the upward electricity market, 

and 6) the benefit of reactive power transactions with upward 
electricity market. 

 
The CHP, ESS, PV, WT and boiler costs can be 

written as: 

The feeder costs can be presented as a function of its 
capacity and length: 

The interruption cost is a function of power that is 
involuntary interrupted and Customer Damage Function 
(CDF): 

Active power balance constraint of ADS can be 
written as: 

 
Reactive power balance constraint is written as: 

The energy purchased costs can be presented as: 

The electric network constraints consist of electric 
device loading constraints and the load flow constraints.  

 
3.4. Second Stage Problem Formulation 

At the second stage, the bidding scenarios of AMGs 
and DRPs is generated and the scenario reduction procedure 
is performed.  

ଵܼ ݊݅ܯ =   ܾݎ × ቌ
ுܥ) × ுܫ + ிௗܥ × ிௗܫ + ܥ × ܫ +

ௌௐܥ × ௌௐܫ + ௐ்ܥ × ௐ்ܫ + ாௌௌܥ × ாௌௌܫ + ܥ × (ܫ
ோிܥ × ோிܫ + ூܥ + ௨௦ܥ + ோܥ ௧௩_ௌௗܤ−

ௐௌெ ோ௧௩_ௌௗܤ−
ௐௌெ

ቍ
ேைௌே௭ே௬

 

 
S. t: ଵܵ(ݔ, ,ݕ (ݖ = ,ݔ)ଵܪ         , 0 ,ݕ (ݖ ≤ 0 

                                               
(3) 

 

 
 

ݎ݁݀݁݁ܨܥ = ܮ × (ݎ݁݀݁݁ܨܲܣܥܥܥ × ݎ݁݀݁݁ܨܽܽܥ   
ܴܦܨ

+ ݎ݁݀݁݁ܨܶܪܩܰܧܮܥ )                                     (5) 
 

ܥܫܥ =  ߤ) × ܦܧܪܵܲ × ܨܦܥ
ܱܵܶܰܥܰ

)                              (6)  

ܵܦܣܲ  = −ܲ݀ܽܮ

݃

+   ܲܺ

ܧܶܫܵܺ

     −        ݏݏܮܲ

∀ܺ ∈ ݏܴܧܦ} ∪ ݏܴܲܦ ∪  (7)                                           (ݏܮܫ
 

ܺܥ = ߴ ∗(ܺܶܵܧܸܰܫܥ +  ܾݎ × ߬ܺ × ܯ&ܱܥ 
ܺ

ܧܶܫܱܵܺܵܰ

) 

∀ܺ ∈ ܲܪܥ} ∪ ݎ݈݁݅ܤ ∪ ܵܵܧ ∪ ܸܲ ∪ܹܶ
∪    (4)                                         {ܨܥܴܲ

݁ݏℎܽܿݎݑܲܥ = ܵܦܣܲ × ݁ݒ݅ݐܿܣ݀݁ݏℎܽܿݎݑܲ߳   
+ ܵܦܣܳ

× ݁ݒ݅ݐܴܿ݁݀݁ݏℎܽܿݎݑܲ߳                                   (9) 

ܵܦܣܳ  = − ݀ܽܮܳ

݃

+   ܳܺ

ܧܶܫܵܺ

     − ݏݏܮܳ  

∀ܺ ∈ {DERs ∪  RPCFs∪ DRPs)                              (8)     

௨௦ܥ = ܲௌ × ߳௨௦ௗ௧௩   
+ ܳௌ

× ߳௨௦ௗோ௧௩                                   (9) 
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Then the feasibility of estimated AMGs and DRPs 
biddings are evaluated. The AMGs/DRPs might be 
dispatchable by paying an appropriate capacity and energy 
fee. The ADS maximizes the expected profit of AMGs and 
DRPs. The objective function of the second stage problem 
can be written as Eq. (10). 

 
Eq. (11) denotes that the AMG benefit can be 

formulated as its revenue of electricity sold to ADS minus its 
electricity generation costs. Further, the DRP benefit consists 
of the revenue of electricity sold to ADS minus its costs.  

The second stage objective function is subjected to 
AMGs facilities loading constraints and DRPs estimated 
constraints. 

 
3.5. Third Stage Problem Formulation 

 At the third stage problem, the optimal operational 
coordination of the ADS resources is explored. The third 
stage objective function minimizes the expected value of cost 
and penalties; meanwhile, it maximizes the benefit of active 
and reactive power that is sold to the wholesale market.  

Further, the objective function minimizes the CVaR 
that is defined at the α confidence level (ܴܸܽܥఈ) to control 
the risk that is defined as the expected value of the profit 

smaller than the (1−  quantile of the profit distribution–(ߙ
[19]. Eq. (15) comprises three terms: the first term 
corresponds to the sum of the expected costs minus profits of 
ADS, the second term is the penalties of the active and 
reactive power mismatches, and the third term is the CVaR 
multiplied by the factor ߚ  that is a weighting parameter 
determines the risk-aversion attitude. A risk-neutral attitude 
corresponds to  ߚ = 0 , while a risk-averse attitude would 
correspond to ߚ > 0. The constraints of this stage can be 
categorized as follows. 

1) Supply-demand balancing constraints: 

The supply-demand constraints must be considered for each 
interval of simulation. 

 
2) Steady-state security constraints: 

The apparent power flow limit of the lines and voltage limit 
of the buses can be written as: 

 
The third problem objective function is constrained by 

device loading and AC load flow constraints. 
 

3.6. Fourth Stage Problem Formulation 
At the fourth stage problem, the involuntary load 

shedding, corrective DRPs and AMGs interruptions are 
determined for each contingency scenario. 
 

ଶܼ ݔܽܯ = ܾݎ௦ × ெீܤ] + [ோܤ
ேைௌ

 

ܵ. :ݐ ܵଶ(ݔ, ,ݕ (ݖ = ,ݔ)ଶܪ         , 0 ,ݕ (ݖ ≤ 0 
(10) 

ܩܯܣܤ = ܴܩܯܣܸܧ −
ܶܰܩܰ

 (ܩܯܣܲ)ܥ
(11) 

ܩܯܣܸܧܴ = ݐ߱
ܩܯܣ × ݐܽܥ

ܩܯܣ + ∑ ℵܩܯܣݐ ×

ܩܯܣݐܲ × ܩܯܣݐ߬ + ∑ ℵ′ݐ
ܩܯܣ × ݐܳ

ܩܯܣ ×  (12)  + ܩܯܣݐ߬

ݏܴܲܦܤ =  ݏܴܲܦܸܧܴ − (ܴܲܦܲ)ܥ
ܶܰܩܰ

 
(13) 

ܴܲܦܸܧܴ = ݐ߱
ܴܲܦ × ݐܽܥ

ܴܲܦ

+  ℵܴܲܦݐ × ܴܲܦݐܲ × ܴܲܦݐ߬

+  ℵ′ݐ
ܴܲܦ × ݐܳ

ܴܲܦ ×  ܴܲܦݐ߬

(14) 

 

ଷܼ ݊݅ܯ = ܾݎ × ைாௌௌܥ+ைܥ+ைுܥ) + ைோிܥ+ோܥ+௨௦ܥ+ைܥ ௧௩ೄܤ−
ௐௌெ

ேைௌ

ோ௧௩ೄܤ−
ௐௌெ

ெீ௦ܤ− ோ௦ܤ− + (ܾݎ × ௧௩ݕݐ݈ܽ݊݁ܲ + ܾݎ × ோ௧௩ݕݐ݈ܽ݊݁ܲ
ேைௌ

)

+ ߚ ൬ߞ −
1

1 − ߙ
 ௦ܾݎ × ௦ߟ

ேைௌ

௦ୀଵ
൰ 

S. t: ܵଷ(ݕ,ݔ, (ݖ = ,ݕ,ݔ)ଷܪ         , 0 (ݖ ≤ 0 

௧௩ݕݐ݈ܽ݊݁ܲ = ቊ
k × ܳோୣୟୡ୲୧୴ୣ       ݂݅ หݏܥ ߮ௌห ≤ ୫୧୬߮ ݏܥ ௌ

0                         ݂݅ หݏܥ ߮ௌห ≥ ୫୧୬ௌ߮ ݏܥ ௌ߮ ݏܥ    = ܲ_௨௪ௗ
௧௩

ට൫ ܲ_௨௪ௗ
௧௩ ൯ଶ + ܳ_௨௪ௗ

௧௩ ଶ
 

                                               

(15) 

 

(16) 

⎩
⎪⎪
⎨

⎪⎪
⎧ ( ௧ܲ

ு + ௧ܲ
ெீ+ ௧ܲ

ோ+ ௧ܲ
ௐ்+ ௧ܲ

)−

ߟாௌௌ .ܲாௌௌ +( ௧ܲ
ோ + ௧ܲ

ூ)

−| ܸ௧|. | ܸ௧|. | ܻ|. ௌߠ)ݏܿ − (ௌߠ = 0,

 

(17) 

⎩
⎪
⎨

⎪
⎧ (ܳ௧ாோ௦) + (ܳ௭௧ூ)

+| ܸ௧|. | ܸ௧|. | ܻ|. ௌߠ)݊݅ݏ − (ௌߠ = 0,
       

 

  (18) 
ට ܲ௧

ௌଶ(ܸ, (ߜ + ܳ௧ௌଶ(ܸ, (ߜ
≤ ܵ௧ௌ௫  ݐ∀,݉∀,݊∀,      

  (19) ܸ௧
 ≤ ห ܸ௧ ห ≤ ܸ௧

௫   ݐ∀,݊∀,       
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The objective function of the fourth stage problem can 
be written as: 

At the fourth stage problem, the optimization problem 
minimizes the total interruption costs of systems in 
contingent conditions by switching of tie switches. If the 
electrical system resources are not adequate to supply the 
electrical load, then the load shedding procedure is performed. 
The constraints of the fourth stage problem consist of AC load 
flow, device-loading constraints. The involuntary load 
shedding constraints are presented as Eq. (21) and Eq. (22). 

4. Solution Algorithm 
The proposed MINLP model of OEPADS has a large 

state space that involves thousands of non-convex, non-linear 
discrete and continuous variables in the expansion-planning 
horizon. A four-stage optimization algorithm is proposed and 
Fig. 1 shows the flowchart of the proposed OEPADS 
algorithm. For the first stage optimization problem, a Genetic 
Algorithm (GA) with variable fitness functions is used. A list 
of suitable candidates is selected for the first generation of the 
chromosomes and for the implementation of operational 
constraints; a penalty factor representation is used. The 
behaviour of each GA operator is modified by changing its 
parameter values. The details GA algorithm and its mutation 
and crossover operators are presented in [20].  At this stage, 
it is assumed that the installed facilities are working at their 
maximum capacity and the capacity installation variables are 
presented as the continuous variables. Further, the first stage 
problem uses the monthly load curves.  

For the second stage problem and for risk control, the 
confidence level used to calculate ܴܸܽܥఈ  is ߙ = 0.95. The 
model is linearized and implemented using CPLEX 10.2 
under GAMS. All of the second stage decision variables are 
assumed as a linear parameter and a linearization algorithm is 
adopted. 

At the third stage, the facilities capacity installation 
alternatives are changed to their corresponding available 
capacity. Then for the fixed set of installation alternatives, the 
second stage problem optimizes the coordination of system 
resources based on the detailed AC load flow model. The 
third stage optimization problem is a MINLP. The MINLP 
model is solved by the GAMS software, using the DICOPT 
solver. It iteratively invokes the CONOPT3 and CPLEX 
solvers for non-linear and mixed-integer programming 
solutions, respectively [21].  

At the fourth stage problem, the optimization problem 
explores the optimal operation of systems in contingent 
conditions. A GA is considered for the fourth stage 
optimization problem [20]. 

5. Simulation Results  
Two systems were used to assess the proposed 

OEPADS algorithm. The 18-bus and 33-bus test systems 
were considered.  

Table 1 presents the optimization input data for the 
18-bus test system. Fig. 2 (a) and (b) depict the 18-bus and 
33-bus tests system, respectively. For the first case study, the 
capacity of CHPs of 18-bus test system was assumed constant 
for the planning horizon and the impacts of coordinated 
bidding of AMGs/DRPs on OEGADS procedure was 
assessed.  

However, for the second case study, the capacity of 
CHPs of 33-bus system was considered as a decision variable. 
The algorithm codes were developed in MATLAB and 
GAMS and the simulation was carried out on a PC (Intel Core 
2, 2.93 GHz, 4 GB RAM). 

 
5.1. The 18-bus test system 

The 18-bus test system, data wind turbine and solar 
panel data are presented at [22-23]. Three sets of scenarios 
were generated for the wholesale market prices, solar 
irradiation, and wind speed of each year of planning. Then the 
scenario reduction procedure was performed. The ADS must 
simulate the feasibility and optimality of the probable AMGs’ 
power transactions. 

Two cases are considered to classify the results: 
Case 1- The AMGs and DRPs did not coordinate their 

bidding (Uncoordinated Bidding (UB)), 
Case 2- The AMGs and DRPs coordinated their 

bidding (Coordinated Bidding (CB)). 
The Coordination Gain (CG) criteria in order to 

compare case 1 and case 2, which is calculated based on Eq. 
(23).  

 Fig. 3 shows the expected generation of AMGs and 
the expected energy traded with ADS by the AMGs and DRPs 
in UB and CB strategies. According to Fig. 3, AMGs and 
DRPs tend to be more committed in CB in order to maximize 

Table 1 The optimization input data for the 18-bus test 
system 

Value Parameter 

5 Planning horizon year 

12.5 Discount rate (%) 

0.9 Load power factor 

3 Load growth rate of (%) 

4500 Number of solar irradiation scenarios 

5000 Number of wind turbine power generation 
scenarios 

500 Number of upward market price scenarios 

40 Number of solar irradiation reduced scenarios 

45 Number of wind turbine power generation 
reduced scenarios 

5 Number of upward market price reduced scenarios 

 

ܩܥ =
ݐ݂݅ݎܲ − ݐ݂݅ݎܲ

ݐ݂݅ݎܲ
   (23) 

 

ସܼ ݊݅ܯ = ܼଷ + ܾݎ × ܾݎ × ܲூ
ேௌேைௌ

×  ܨܦܥ
 
S. t: ܵସ(ݕ,ݔ, (ݖ = ,ݕ,ݔ)ସܪ         , 0 (ݖ ≤ 0 

                          

(20) 

(21) ܲூ × ூܫ ≤ ܲூ ≤ ܲூ௫ × ூܫ     

(22) ܳூ = ൫ܲூ൯× ඨ
1

ூ߮ݏܿ
− 1                        
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their aggregated profit. Total expected power generation of 
AMGs/DRPs in uncoordinated and coordinated cases are 
1203.03 kWh and 1431.05 kWh, respectively that shows 
18.95% increase in the coordinated case. 

Fig. 4 (a) and (b) show the effect of risk-aversion on 
the coordinated bidding of AMGs/DRPs and the sum of the 
uncoordinated bidding for hours 8 and 18. The coordinated 
bidding strategy considerably changes the bid volume of 
AMGs and DRPs. The effect of risk-aversion on coordinated 
bidding and the sum of the uncoordinated bidding, implying 
that risk-averse bids are always less than or equal to risk-
neutral bids.  

Fig. 4 (c) and (d) depict the optimal topology of the 
18-bus system for the 5th year of the expansion planning 
horizon and for =0 and =1, respectively. 

The expected profit of AMGs and DRPs for the 
uncoordinated and coordinated bidding strategies were 
4.1826 MMUs and 6.2415 MMUs, respectively. The CG is 
49.22% that indicates the impact of coordinated bidding of 
AMGs/DRPs on their profit. 

Fig. 5 (a) and (b) shows the sum of bidding power of 
ADS for uncoordinated and coordinated bidding of 
AMGs/DRPs for the worst-case scenario of electricity 
generation of DERs, respectively. For the uncoordinated 
bidding of AMGs/DRPs, the ADS has very limited surplus 
electricity that it can transact with wholesale market. 
However, for the coordinated bidding of AMGs/DRPs, the 
ADS can sell its surplus electricity to the wholesale market. 

Table 2 depicts the optimal outputs of OEPADS for 
the 18-bus test system for =1. The expected benefits of 
electricity sold to the wholesale market were 8.2145 MMUs 
and 0.02154 MMUs for =1 and =0, respectively. The total 
investment and operational costs of the 18-bus system for the 
coordinated and uncoordinated bidding of AMGs/DRPs and 
for =1 take on a value 138.3132 MMUs and 247.1854 
MMUs that means the coordinated bidding of AMGs/DRPs 
reduces the OEPADS costs about 44.04%. 

 

 

5.2 The 33-bus test system 
The 33-bus test system data is presented at [24]. For 

this case study, the capacity of CHPs of 33-bus system was 
considered as a decision variable. Table 3 shows the CHP 
technical characteristics, installation and operation costs. 

Fig. 6 shows the expected generation of AMGs and the 
expected energy traded with ADS by the AMGs and DRPs in 
UB and CB strategies. According to Fig. 3, AMGs and DRPs 
tend to be more committed in CB in order to maximize their 
aggregated profit. Total expected power generation of 
AMGs/DRPs in uncoordinated and coordinated cases are 
1910.03 kWh and 2264.71 kWh respectively that shows 
18.56% increase in the coordinated case. 

Fig. 7 (a) and (b) show the effect of risk-aversion on 
the coordinated bidding of AMGs/DRPs and the sum of the 
uncoordinated bidding for hours 6 and 19. The coordinated 
bidding strategy considerably changes the bid volume of 
AMGs and DRPs. The Fig. 7 (c) and (d) depict the optimal 
topology of the 33-bus system for the 5th year of the 
expansion planning horizon and for =0 and =1, 
respectively. 

The expected profit of AMGs and DRPs for the 
uncoordinated and coordinated bidding strategies were 
4.1826 MMUs and 6.2415 MMUs, respectively. The CG is 
49.22% that indicates the impact of coordinated bidding of 
AMGs/DRPs on their profit. 

Fig. 8 (a) and (b) show the sum of bidding power of 
ADS for uncoordinated and coordinated bidding of 
AMGs/DRPs for the worst-case scenario of electricity 
generation of DERs, respectively. For the uncoordinated 
bidding of AMGs/DRPs, the ADS has very limited surplus 
electricity that it can transact with wholesale market. 
However, for the coordinated bidding of AMGs/DRPs, the 
ADS can sell its surplus electricity to the wholesale market. 

Table 4 depicts the optimal outputs of OEPADS for 
the 33-bus test system for =1. The expected benefits of 
electricity sold to the wholesale market were 17.2416 MMUs 
and 2.1936 MMUs for =1 and =0, respectively. The total 
investment and operational costs of the 33-bus system for the 

Table 2 The optimal outputs of OEPADS for the 18-bus 
test system for =1. 

Costs (MMUs) 
Feeders installation costs 9.2651 

Transformer and ESS installation costs 19.6514 
ENSCs 0.4921 

CHP operation costs  18.2174 
PVA installation and maintenance costs 3.9215 

Feeder and EES operation costs  9.8417 
Expected benefit of electricity sold to the 

wholesale market 
8.2145 

CHP installation costs 19.5641 
Energy loss costs 0.9814 

Wind turbine installation costs 3.7145 
Electricity purchased from upward network 

costs  
32.1784 

Expected AMGs/DRP coordinated bidding 
costs for ADS 

6.2415 

Expected AMGs benefits  4.8711 
Expected DRPs benefits 1.3704 

 

Table 4 The optimal outputs of OEPADS for the 33-bus 
test system for =1. 

Costs (MMUs) 
Feeders installation costs 17.5698 

Transformer and ESS installation costs 39.5412 
ENSCs 0.9815 

CHP operation costs  57.1235 
PVA installation and maintenance costs 5.62314 

Feeder and EES operation costs  12.5417 
Expected benefit of electricity sold to the 

wholesale market 
17.2416 

CHP installation costs 76.2351 
Energy loss costs 0.9814 

Wind turbine installation costs 3.7891 
Electricity purchased from upward network 

costs  
59.1264 

Expected AMGs/DRP coordinated bidding 
costs for ADS 

11.9817 

Expected AMGs benefits  7.9563 
Expected DRPs benefits 4.0254 
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coordinated and uncoordinated bidding of AMGs/DRPs and 
for =1 take on a value 314.717 MMUs and 356.914 MMUs 
that means the coordinated bidding of AMGs/DRPs reduces 
the OEPADS costs about 11.82%. 

According to Table 2 and Table 4, the OEPADS 
reduces the aggregated total costs for the 18-bus and 33-bus 
systems about 44.04%, and 11.82% with respect to the 
uncoordinated bidding of AMGs/DRPs scenario costs, 
respectively. Further, the ADS expected benefits of electricity 
sold to the wholesale market are about 8.2145 (MMUs), and 
17.2416 (MMUs) for the 18-bus and 33-bus test systems, 
respectively. It means that the ADS can gain benefit from the 
coordinated biddings of AMGs/DRPs. 

Table 5 shows the number of continuous and discrete 
variables and the number of equations for different case 
studies. The number of equations for the 33-bus test system 
is 2015914 that indicate the curse of dimensionality and the 
maximum CPU time required to solve the scenarios was 
about 5325 seconds for the 33-bus test system.   

 

 

6. Conclusion 
This paper presented an algorithm for expansion 

planning of an active distribution system that supplies its 
downward AMGs and it participates in the upward wholesale 
market to sell its surplus electricity. The energy resources of 
ADS were CHPs, small wind turbines, photovoltaic systems, 
electric storage, and gas-fired boilers. The proposed method 
considered the impacts of AMGs and DRPs coordinated on 
the expansion-planning problem and minimized investment, 
operational and emission cost; meanwhile, maximized the 
system reliability.  

The model used the CVaR criterion in order to handle 
the trading risks of ADS with the wholesale market. The 
proposed formulation integrated the most important 
deterministic and stochastic parameters of the risk-based 
expansion planning of ADS that is rare in the literature on this 
field. 

The conclusion can be summarized as follows: 
 The problem model had six sources of uncertainty: 

upward electricity market price, AMGs location and time 
of installation, AMGs power generation/consumption, 
ADS intermittent power generation, DRP biddings, and 
the ADS system contingencies.   

 A four-stage optimization algorithm was proposed. At the 
first stage, the ADS optimized the location, capacity and 
time of installation of its facilities for different wholesale 
market scenarios and AMGs location and capacity 
alternatives. At the second stage, the bidding scenarios of 

AMGs and DRPs was generated and the scenario 
reduction procedure is performed. Then the feasibility of 
estimated AMGs and DRPs biddings were evaluated and 
the coordinated bidding of AMGs/DRPs was recognized. 
At the third stage, the optimal scheduling of ADS energy 
resources was determined. At this stage, the model 
utilized the CVaR criterion in order to handle the trading 
risks of ADS with the wholesale market. At the fourth 
stage, the involuntary load shedding, corrective DRPs and 
AMGs interruptions were determined for each 
contingency scenario. 

 Two test systems were considered by different 
configurations, electrical and heating loads, and 
operational paradigms. The OEPADS reduced the 
aggregated total costs for the 18-bus and 33-bus system 
about 44.04%, and 11.82% with respect to the 
uncoordinated bidding of AMGs/DRPs scenario costs, 
respectively. Further, the ADS expected benefits of 
electricity sold to the wholesale market were about 8.2145 
(MMUs), and 17.2416 (MMUs) for the 18-bus and 33-bus 
test systems, respectively. It means that the ADS can gain 
benefit from the coordinated biddings of AMGs/DRPs. 

In conclusion, the adoption of the proposed OEPADS 
includes AMGs/DRPs coordinated biddings allows 
increasing significantly the ADS benefits and the reliability. 
The authors are investigating the use of other heuristic 
optimization method to speed up the calculation of the 
OEPADS procedure. 
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4. Appendix A 

 

 
 

  

 

 

Fig. 1. The proposed OEPADS algorithm 
 

 
Table 3 The CHP technical characteristics, installation and operation costs 
DG 
type 

Maximum 
output 
power
max( )P kW  

Installation 
Fixed cost 

(MUs) 

Installation 
variable 

cost 
(MUs/kVA) 

Operation 
Fixed cost 
(MUs/kW) 

Operation 
variable 

cost 
(MUs/kWh) 

1 330 63283.5 350 0.2588 1.0853 
2 844 166584.5 550 0.2373 1.0569 

 



11 
 

 
 
 
 

 
 
 
 
 
 
 
 

 
(a) Modified 18-bus test system 

 

(b) Modified 33-bus test system 

Fig. 2. Case study test systems 
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(a) Expected allocated power of AMGs/DRPs (UB) 

 
(b) Expected power generation of AMGs/DRPs (UB) 

 
(c) Expected allocated power of AMGs/DRPs (CB) 

 
(d) Expected power generation of AMGs/DRPs (CB) 

Fig. 3. Expected allocated power of 18-bus system AMGs/DRPs and expected active power generation of AMGs/DRPs in the 
two cases 
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(a) Sum of bidding curves of AMGs/DRPs in hour 8 

 
(b) Sum of bidding curves of AMGs/DRPs in hour 18 

 
(c) The optimal topology of 18-bus system for =0, coordinated bidding of AMGs/ DRPs and for the 5th year of the 

expansion planning horizon 

 
(d) The optimal topology of 18-bus system for =1, coordinated bidding of AMGs/ DRPs and for the 5th year of the 

expansion planning horizon 
Fig. 4. Sum of bidding curves of AMGs/DRPs in different hours and the topology of 18-bus system for different values of  
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(a) Sum of bidding power of ADS for uncoordinated bidding of AMGs/DRPs 

 
(b) Sum of bidding power of ADS for coordinated bidding of AMGs/DRPs 

Fig. 5. Sum of bidding curves of 18-bus ADS for different values of   without and with AMGs/DRPs coordinated 
bidding for the scenario of electricity generation of DERs  

 

 



15 
 

 

 
(a) Expected allocated power of AMGs/DRPs (UB) 

 
(b) Expected power generation of AMGs/DRPs (UB) 

 
(c) Expected allocated power of AMGs/DRPs (CB) 

 
(d) Expected power generation of AMGs/DRPs (CB) 

Fig. 6. Expected allocated power of 33-bus system AMGs/DRPs and expected active power generation of AMGs/DRPs in the 
two cases  
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(a) Sum of bidding curves of AMGs/DRPs in hour 6 

 
(b) Sum of bidding curves of AMGs/DRPs in hour 19 

 
(c) The topology of 33-bus system for =0, coordinated bidding of AMGs/ DRPs and for the 5th year of the expansion planning 

horizon 

 
(d) The topology of 33-bus system for =1, coordinated bidding of AMGs/ DRPs and for the 5th year of the expansion planning 

horizon 
Fig. 7. Sum of bidding curves of AMGs/DRPs in different hours and the topology of 33-bus system for different values of  
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(a) Sum of bidding power of ADS for uncoordinated bidding of AMGs/DRPs 

 
(b) Sum of bidding power of ADS for coordinated bidding of AMGs/DRPs 

Fig. 8. Sum of bidding curves of 33-bus ADS for different values of  without and with AMGs/DRPs coordinated bidding 
 


