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Abstract—This paper presents a comprehensive sensitivity 

analysis to identify the uncertain parameters which significantly 
influence the decision-making process in distributed generation 
(DG) investments and quantify their degree of influence.  
To perform the analysis, a DG investment planning model  
is formulated as a novel multi-stage and multi-scenario 
optimization problem. Moreover, to ensure tractability and make 
use of exact solution methods, the entire problem is kept as a 
mixed-integer linear programming optimization. A real-world 
distribution network system is used to carry out the analysis. The 
results of the analysis generally show that uncertainty as well as 
operational variability of the considered parameters have 
meaningful impacts on investment decisions of DG. The degree of 
influence varies from one parameter to another. But, in general, 
ignoring or inadequately considering uncertainty and variability 
in model parameters has a quantifiable cost. Hence, the analysis 
made in this paper can be very useful to identify the most 
relevant model parameters that need special attention in 
planning practices.  
 

Index Terms—distributed generation, investment planning, 
distribution network systems, uncertainty. 

I. NOMENCLATURE 

A. Sets and Indices 
푘/Ω  Index/Set of DG alternatives of the same 

type 
푚,푛/Ω     Indices/Set of nodes 
푝/Ω      Index/Set of DG types 
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푠/Ω ,푤/Ω  Indices/Sets of scenarios and snapshots, 
respectively 

푠푠/Ω  Index/Set of substations  
푡/훺  Index/Set of planning stages (t = 1, 2… T) 
E  Existing DG  
N  New DG  
SS  Substation  
T  Planning horizon 

B. Parameters 
푏  Susceptance of line 푛 − 푚 (p.u.) 
푑 , , ,  Electricity demand at each node (MW) 
퐸푅 , ,퐸푅 ,   Emission rate of a new or existing generator 

(tons of CO2/MWh) 
푓  Flow limit of line 푛 −푚 (MW) 
푔  Conductance of line 푛 −푚 (p.u.) 
푖 Interest rate 
퐼퐶 ,  Installation cost of DG (€) 
퐼푛푣퐿푖푚    Available annual budget for investment (€) 
푀퐶 , , 푀퐶 ,   Maintenance cost of new and existing DGs 

(€), respectively 
푀  Big-M parameter corresponding to line 푛 −

푚 
푁  Number of nodes  
푁  Number of substations 
푂퐶 , , 푂퐶 ,   Operation cost of new and existing DGs 

(€/MWh), respectively 
푉  Nominal voltage of the system (V) 
휂 ,  Lifetime of DG (years) 
휆 , ,  Emission price (€/tons) 
휆 , ,  Average cost of electricity (€/MWh) 
휋  Weight associated to representative snapshot 

w (hours) 
휌        Probability of scenario s 
휎 , , ,  Price of purchased electricity (€/MWh) 
휐 , ,  Penalty for unserved energy (€/MWh) 
휑 DG penetration limit factor (%) 

C. Variables and Functions 
 푓 , , ,  Power flow through feeder 푛 − 푚 
푔 , , , , , ,푔 , , , , , Power generated by existing and new DG 
푔 , , ,  Power purchased from upstream (grid) 
푢 , , ,  Utilization indicator variable (1 if an existing 

generator is utilized; 0 otherwise) 
푥 , , ,  Binary investment variable for DG 
푧  Binary variable associated to line 푛 −푚 (1 if 

the line is connected; 0 otherwise) 

Impacts of Operational Variability and Uncertainty on 
Distributed Generation Investment Planning:  

A Comprehensive Sensitivity Analysis 
Sérgio F. Santos, Desta Z. Fitiwi, Student Member, IEEE, Abebe W. Bizuayehu,  

Miadreza Shafie-khah, Member, IEEE, Miguel Asensio, Javier Contreras, Fellow, IEEE,  
Carlos M. P. Cabrita, and João P. S. Catalão, Senior Member, IEEE 

mailto:catalao@ubi.pt).
mailto:(cabrita@ubi.pt).
mailto:Javier.Contreras@uclm.es).


1949-3029 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSTE.2016.2624506, IEEE
Transactions on Sustainable Energy

2 
 

퐸퐶 ,퐸퐶  Expected cost of energy generated by 
existing and new DGs (€) 

퐸퐶  Expected cost of purchased energy (€) 
퐸푀퐶 , 퐸푀퐶  Expected cost of emissions for existing and 

new DGs (€) 
퐸푁푆퐶  Expected cost of unserved energy (€) 
퐼푛푣퐶  Amortized NPV investment cost of DG (€) 
푀푛푡퐶 , 푀푛푡퐶  Annual maintenance cost of new and 

existing DGs, respectively (€) 
훿 , , ,  Unserved power (MW) 
∆푉 , , ,  Voltage deviation at each node (kV) 
휃 , , ,  Voltage angle difference between nodes 푛 −

푚 (radians) 

II. INTRODUCTION 
RIVEN by techno-economic and environmental factors, 
nowadays, there is a global drive to integrate more 
distributed energy resources (DERs) in power systems, 

particularly at the distribution level. These typically include 
distributed generation (DG), storage technologies, and demand 
side management [1]. Especially, the scale of DG sources 
(mainly, renewables such as wind and solar) integrated in 
many distribution networks is steadily increasing. This trend is 
more likely to continue in the years to come due to the advent 
of emerging solutions such as active management of 
distribution networks [2], [3], which are expected to alleviate 
existing technical limitations, and facilitate smooth integration 
of DGs. The favorable agreement of countries in the recent 
climate change conference in Paris (COP21) is also expected 
to accelerate the integration of renewable energy sources 
(RESs). As a result, the level of electricity demand covered by 
energy coming from RESs is expected to dramatically 
increase, and such energy sources will play a significant role 
in distribution systems.  

As a result, the issue of DG investment planning (DGIP) is 
becoming critical. This is especially more relevant in the case 
of insular network systems because new regulations are put in 
place to reduce the heavy dependence of such systems on 
fossil fuels for energy production. Tapping available energy 
resources (wind, solar, hydro, etc.) is inevitable to meet not 
only the increasing demand for electricity but also 
environmental constraints and renewable energy source (RES) 
integration targets set forth either globally or locally through 
Government initiatives. 

However, the intermittent nature of most of these RESs 
(particularly, wind and solar) makes their integration in 
distribution networks a more challenging task. This is because 
such resources introduce significant operational variability and 
uncertainty to the system. Hence, the development of efficient 
methods and tools is mandatory to realize an optimal or a cost-
efficient integration of such DGs and minimize their side 
effects.  

In addition, the increasing level of DG integration in 
distribution systems is already leading to substantial changes 
in the traditional role of distribution systems, which has 
predominantly been to carry power unidirectionally from 
substations to consumers in a radial scheme. In other words, 
distribution network systems are slowly evolving from passive 
to active networks [2]. This paradigm shift will make sure that 
they are adequately equipped with the necessary, flexible and 

intelligent tools which have the capability to minimize the 
underlining challenges of integrating DERs in such network 
systems, and, hence, pave the way to high level integration of 
DERs, RES-based DGs in particular. The advent of modern-
day technological advances (such as smart grid technologies 
with state-of-the-art control and protection mechanisms) 
combined with conventional power system management 
systems (such as active and reactive power management tools) 
will make active networks effectively materialize [4]. 

Generally, the broad-range transformations in distribution 
networks are largely expected to effectively address current 
limitations of integrating DERs. As a result, the highly needed 
benefits of DERs, extensively discussed in [1] and [5], will be 
optimally exploited. In this regard, previous works on 
investment planning of DGs in distribution systems such as 
[6], [7] highlight the multi-faceted  benefits of DGIP. In 
particular, the work in [7] demonstrate that “investment in DG 
is an attractive distribution planning option for adding 
flexibility to an expansion plan, mainly by deferring network 
reinforcements”. Other wide-range benefits of DGs have been 
extensively discussed in [8]–[12]. As mentioned earlier, the 
integration of DG in distribution systems comes with certain 
challenges [13]–[15]. For example, if DGs are not properly 
planned and operated, they can pose considerable technical 
problems such as reduced voltage quality and stability. 
However, these are expected to be adequately mitigated in 
active distribution networks [7].  

From a modeling perspective,  DGIP has been carried out in 
previous works jointly with distribution network expansion 
planning [16]–[22] or independently [6], [7], [23], [24]. Either 
way, the decision variables encompass the type of DG, its 
capacity and location as well as the time of investment when a 
dynamic planning scheme is adopted as in [6], [16], [17], 
[20]–[24]. In the context of micro-grid or autonomous/insular 
systems, the prospects of DG planning, scheduling and 
operation have been gaining attention. Authors in [25] present 
a community-based long-term planning tool for RESs in 
insular systems with an ultimate objective of maximizing 
social welfare perceived by the community. The work in [26] 
proposes a methodology for siting and sizing of DGs from a 
micro-grid context, and the resulting problem is solved using 
the prospects of particle swarm optimization and genetic 
algorithm methods.  

Due to the inherent uncertainty and variability, stochastic 
programming has been used in operation and planning of 
distribution systems [27]–[31]. Authors in [27] propose a 
stochastic model for a bidding strategy in the day-ahead 
market of microgrids in the presence of energy storage 
systems, RES-based and conventional DGs. A stochastic 
energy management of microgrids, consisting of conventional 
and RES-based DGs as well as price-sensitive loads, is 
proposed in [28]. Similarly, the work in [29] presents a 
stochastic operation model to coordinate vehicle-to-grid 
services with energy trading in the presence of conventional 
and wind type DGs. Reference [30] develops a stochastic 
DGIP model based on a mixed integer linear programming 
(MILP) framework. Uncertainties related to energy price, 
electricity demand, wind and solar PV power outputs are 
accounted by forming and dividing the corresponding duration 
curves.  

D
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A DG allocation problem in radial distribution networks is 
solved using genetic algorithm in [32]. Here, uncertainty due 
to forecasting errors in load and generation is modeled using a 
fuzzy approach. A dynamic expansion planning of distribution 
systems with DGs is proposed in [33], and a relatively new 
meta-heuristic algorithm is employed to solve the resulting 
problem. Uncertainty and operational variability are not 
accounted for in this work. The use of non-exact methods such 
as the meta-heuristic solution methods used in [26], [32], [33] 
do neither guarantee global optimality nor a measure to the 
global optimal solution. Since DG includes intermittent energy 
sources, the planning model should adequately take into 
account the uncertainty and variability introduced as a result, 
including that of electricity demand. In this respect, variability 
in load [6], [7], [16], [17], [20]–[23], [32] and [34], electricity 
prices [6], [7], [16], [17], [23], wind power output [17], [23], 
[25], [32], solar power output [23], [25], [32], fuel prices [23], 
demand growth [6], [7], and DG failures [18] are among 
several sources of uncertainties which have been given some 
attention in distribution planning works in the literature.  
As it can be observed, dealing with the demand variability 
seems to be considered in many works in the literature (often 
with 3 to 5 demand levels) while the others are largely ignored 
or represented in an overly simplified manner. 

The compound effect of all these relevant uncertainty and 
variability issues requires designing new methods and tools in 
order to have an optimal or a cost-efficient integration of DGs. 
To guide the development of such methods and tools, it is 
necessary to investigate first the impact of variability and/or 
uncertainty of different model parameters on DG investment 
decisions, which is the main objective of this work. Framed in 
this context, this paper presents a comprehensive sensitivity 
analysis carried out to meet the aforementioned objective. The 
ultimate goal is to identify those parameters which influence 
the decision-making process and quantify their degree of 
influence. To perform the analyses, a DGIP model, formulated 
as a multi-stage and multi-scenario optimization problem, is 
used. In addition, to ensure tractability and make use of exact 
solution methods, the entire problem is formulated as a mixed 
integer linear programming (MILP) optimization. The 
resulting DGIP problem minimizes the net present value of 
investment, operation and maintenance, unserved energy and 
emission costs taking into account a number of technical and 
economic constraints. Note that the problem here is 
formulated from the distribution system operator’s (DSO) 
point of view and with a particular focus on insular networks. 
In such networks, where there does not often exist a functional 
market, in addition to managing the network system, the DSO 
may own and operate some utility-based DGs, and/or oversee 
DG investments to keep reliability, stability and power quality 
in the system at the required levels. 

The main contributions of this work include: 
 An improved multi-stage and multi-scenario DGIP 

mathematical formulation; 
 A comprehensive sensitivity analysis to investigate 

the effect of uncertainty and operational variability on 
DG investment solution. 

The rest of the paper is organized as follows. In Section III, 
terminologies, approaches for management of uncertainty and 
operational variability including their definitions are briefly 

described. In the subsequent section, the mathematical 
formulation and description of the DGIP model are presented. 
Section V discusses the results of the case studies. The last 
section draws some conclusions and implications based on the 
outcome of the case study. 

III. UNCERTAINTY AND VARIABILITY IN DGIP 

A. Terminology 
The terminologies uncertainty and variability are often 

incorrectly used interchangeably in the literature despite the 
fact that they are different. Variability, as defined in [35], 
refers to the natural variation in time of a specific uncertain 
parameter, whereas uncertainty refers to “the degree of 
precision with which the parameter is measured” or predicted. 
We follow these terminologies in our paper when referring to 
operational variability and uncertainty, which are introduced 
by model parameters. For example, wind power output is 
characterized by both phenomena; its hourly variation 
corresponds to the variability while its partial unpredictability 
(i.e. the error introduced in predicting the wind power output) 
is related to uncertainty. The schematic illustration in Fig. 1 
clearly distinguishes both terminologies. As demonstrated in 
this figure, the hourly differences in wind power outputs are 
due to the natural variability of primary energy source (wind 
speed); whereas, the likelihood of having different power 
outputs at a given hour is a result of uncertainty (partial 
unpredictability) in the wind speed.      

Other terminologies used in this paper are snapshot and 
scenario. A snapshot refers to an hourly operational situation. 
Alternatively, it can be understood as a demand—generation 
pattern at a given hour. A scenario, on the other hand, denotes 
the evolution of an uncertain parameter over a given time 
horizon (often yearly). For example, the hourly variations of 
wind power production and electricity consumption 
collectively form a group of snapshots; whereas, the annual 
demand growth (which is subject to uncertainty) and RES 
power output uncertainty are represented by a number of 
possible storylines (scenarios) [36].  

B. Sources of Uncertainty and Variability in DGIP 
The various sources of uncertainties in DGIP are related to 

the variability and randomness of operational situations. There 
are some other uncertainties mostly related to the long-term 
price, rules, regulations and policies, etc. They can be 
generally categorized as random and nonrandom uncertainties 
[37]. The random ones are also known as high-frequency 
uncertainties because they correspond to situations that occur 
repeatedly, and hence, possess historical data. In general, they 

 
Fig. 1. Illustration of variability and uncertainty in wind power output 
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can be characterized by probability distribution functions 
(PDFs), estimated by fitting the historical data. Such 
uncertainties have a profound impact on the operation of 
power distribution systems. Demand variability is one 
example in this category. On the other hand, nonrandom 
uncertainties do not occur repeatedly or they are 
characterized by low frequency situations; so they can hardly 
be statistically represented. A good example here is budget 
available for investment.  

A well-developed DGIP tool should therefore encompass 
a methodology which effectively and efficiently takes into 
account both types of uncertainties. Exhaustive modeling of 
all sources of uncertainty and variability may not only be 
computationally unaffordable but also inefficient. 
Identifying the most relevant sources of uncertainty and 
variability for the target problem is a crucial step that should 
not be overlooked.  

For example, consider two uncertain parameters: wind 
power output and emission price. Even if both are subject to 
uncertainty and variability, the degree of variation or 
uncertainty of one is totally different from the other. 
Apparently, the variability and uncertainty of wind power 
output are a lot higher than that of emission price. Hence, 
one would expect the former to have a higher influence on the 
planning outcome compared to the latter.  

In this paper, the variability due to intermittent DG power 
outputs (mainly wind and solar) and demand are captured by 
considering a sufficiently large number of hourly operational 
states, also known here as “snapshots”. The hourly data may 
be historical or generated from individual or joint PDFs of 
uncertain parameters. To ensure problem tractability, the 
hourly snapshots are then reduced by means of k-means 
clustering, which leads to a substantially lower number of 
representative snapshots compared to the original set of data. 
This means each of the selected snapshots, representing a 
group of similar operational situations, is assigned a weight 휋  
proportional to the number of operational situations in its 
group. For instance, the wind power output profile in Fig. 1 
has two profiles for the sample hours. Each day throughout the 
planning horizon has such profiles of its own. This means that 
for a horizon of three years long the number of snapshots per 
scenario is equal to 3x8760. Such number of operational 
snapshots in each year and scenario are clustered into a 
predefined number of snapshot groups. In addition to the 
characterization of the RES power output uncertainty via 
scenarios (as in Fig. 1), the uncertainty regarding the evolution 
of the system (emission price, demand growth, etc.) is also 
represented by a number of scenarios (or storylines) unfolding 
as time passes by. Combinations of all these scenarios then 
form the final set of scenarios (as in Fig. 2) that are used in the 
analysis.   

The schematic representation in Fig. 2 illustrates the multi-
stage and multi-scenario DGIP modeling framework and the 
expansion solution structure (i.e. Xi’s). At each stage of the 
planning horizon, we obtain a single and robust expansion 
strategy which is good enough for all scenarios [36], [38]. 
Note that while operational variables depend on each scenario 
and snapshot, the investment decision variables only depend 
on the time stage index. This means that the investment 
solution obtained should satisfy all conditions in every 

scenario, making the solution robust against any realization of 
the considered scenarios. It should be noted here that the 
robustness of the solution is directly related with the level of 
details of uncertainty and variability characterization. 
Generally, the higher the numbers of snapshots and scenarios 
considered are, the more robust the solution is. However, there 
is always a threshold beyond which adding more snapshots 
and scenarios does not significantly change the solution but 
increases unnecessary computational burden. If the scenarios 
considered in the planning are carefully selected to be 
representative enough of all possible uncertainty realizations, 
then, the robustness and reliability of the solution can be more 
guaranteed.  

In this work, the evolution of carbon dioxide (CO2) price 
and electricity demand growth are captured through a 
predefined number of scenarios, each with a certain degree of 
realization 휌 . For the sake of simplicity, all scenarios are 
assumed to be equally probable. The effects of other sources 
of uncertainty such as fuel prices, and tariffs of energy 
generated by various DGs (both conventional and renewable 
power generation units) are then analyzed via sensitivity 
analysis. 

IV. PROBLEM FORMULATION 
This work focuses on investigating how sensitive DG 

investment decisions are with respect to variations of selected 
uncertain parameters. This is relevant for identifying the 
parameters with the highest influence on DG investment so as 
to design a DGIP model by adequately factoring the variability 
and the uncertainty of the most relevant parameters. 
Eventually, this helps to ensure an optimal integration of DG 
in network systems.  

A DGIP problem is naturally dynamic because the solution 
has to explicitly provide the necessary information regarding 
when DG investments are needed. Regarding the planning 
horizon and decision stages, on account of the dynamic nature 
of the problem, a more realistic approach would be to 

 

1S

2S

Sn

 
Fig. 2. A schematic representation of (a) possible future scenarios’ 
trajectories with multiple scenario spots along the planning horizon, (b) a 
decision structure at each stage. 
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formulate the problem with multiple decision stages (i.e. 
multi-year decision framework) while accounting for all 
possible future scenarios. However, to ensure tractability, the 
numbers of stages and scenarios are usually limited.  

In this work, the DGIP problem is formulated as a multi-
stage and multi-scenario optimization model within a given 
planning window (horizon). This modeling framework 
assumes that there are n probable future storylines (or 
scenarios) each associated with a probability of realization 휌  
that stochastically represents relevant sources of uncertainties. 

A. Objective Function 
The resulting DGIP model, a MILP optimization problem, 

minimizes the sum of net present value (NPV) of four cost 
terms as in (1). Here, the binary investment and utilization 
variables as well as the operational variables such as generated 
power, flows, etc. constitute the set of decision variables of the 
optimization. 

The first term in (1), 푇퐼퐶 ,  represents the total NPV of the 
investment costs of DG, constituting conventional and various 
renewable energy sources, under the assumption of a perpetual 
planning horizon [39]. In other words, “the investment cost is 
amortized in annual installments throughout the lifetime of the 
installed DG”, as is done in [17]. The second term 푇푂푀푅퐶 
corresponds to the total sum of NPV: (i) operation, 
maintenance and reliability (OMR) costs throughout the 
planning stages, and (ii) the OMR costs incurred after the last 
planning stage. Note that the costs in (ii) rely on the OMR 
costs of the last planning stage and a perpetual planning 
horizon is assumed when spreading these costs after the last 
planning stage. To further clarify this, consider the illustrative 
example in Fig. 3. It is understood that investments are made 
in a specific year within the planning horizon (the second year 
in this case) and the investment costs are amortized throughout 
its lifetime. However, the OMR costs are incurred every year 
within and after the planning horizon. To balance these cost 
terms, a perpetual planning horizon, i.e. an endless payment of 
fixed payments is assumed. Based on the finance theory [39], 
the present value of perpetuity, which is the sum of the net 
worth of infinite annual fixed payments, is determined by 
dividing the fixed payment at a given period by the interest 
rate 푖. Based on this, the OMR costs include the associated 
annual costs within (part I) and outside the planning horizon 
(part II). The latter (part II) are determined by the perpetuity 
of the costs in the last planning stage updated by net present 
value factor in this case (1 + 푖) . Note that after the lifetime 
of the DG elapses, investments will be made in the same DG 
with the same cost according to the assumption of a perpetual 
planning horizon. 

 The third term 푇퐸푀퐶 in (1) corresponds to the total sum of 
NPV emission costs in the system throughout the planning 

stages and those incurred after the last planning stage under 
the same assumptions as in the case of OMR costs. Similarly, 
the last term 푇퐿퐶 in (1) accounts for the total NPV cost of 
losses. 

 
푀푖푛푖푚푖푧푒 푇퐶 = 푇퐼퐶 + 푇푂푀푅퐶 +  푇퐸푀퐶 + 푇퐿퐶 (1) 

 
where 푇퐼퐶 = ∑ (1 + 푖) 퐼푛푣퐶 /푖

   

; 푇푂푀푅퐶 =

∑ (1 + 푖) (푀푛푡퐶 +푀푛푡퐶 + 퐸퐶 + 퐸퐶 + 퐸퐶 + 퐸푁푆퐶 )
  ,      

+

(1 + 푖) 푀푛푡퐶 +푀푛푡퐶 + 퐸퐶 + 퐸퐶 + 퐸퐶 + 퐸푁푆퐶 /푖
,            

; 

푇퐸푀퐶 = ∑ (1 + 푖)  (퐸푀퐶 + 퐸푀퐶 )
  

+

(1 + 푖) (퐸푀퐶 + 퐸푀퐶 )/푖
     

 ; and 푇퐿퐶 =

∑ (1 + 푖)  퐿표푠푠
  

+ (1 + 푖) 퐿표푠푠 /푖
     

. 

 
The individual cost terms in (1) are computed as follows. 

The NPV of the total costs is given by the sum of the 
amortized investment costs of DG, constituting conventional 
and various renewable energy sources (1.1), expected 
maintenance and operation cost of new (1.2, 1.4) and existing 
(1.3, 1.5) DGs, as well as the expected cost of unserved energy 
which is captured by penalizing any unserved power as in 
(1.6). In addition, the expected cost of emission and energy 
purchased from the grid (if any) are also included in the 
objective function (see equations 1.7 through 1.9). The cost of 
network losses in the system, computed as in (1.10), is also 
included in the objective function. Note that to keep the 
problem linear, the quadratic flow function in (1.10) is 
linearized using a first-order approximation (i.e. piecewise 
linearization) as in [17]. In order this paper to be self-
contained, the linearized model is provided in Appendix B. 
Here, five piecewise linear segments are considered 
throughout analysis, which is in line with the findings in [40].  

Notice that equation (1.1) is weighted by the capital 
recovery factor ( ) ,

( ) , . Besides, 푥 , , , is defined to be zero, 
and the formulation in (1.1) ensures that the investment cost of 
each DG is considered only once in the summation. For 
example, suppose an investment in a particular DG is made in 
the fourth year of a five-year planning horizon. This means the 
DG will be available during the fourth and the fifth years 
because of the logical constraint in (8). Hence, the binary 
variables associated to this DG in those years will be 1 while 
the rest will be zero i.e. 푥 , , , = {0,0,0,1,1}. In this particular 
case, only the difference (푥 , , , − 푥 , , , ) equals 1 while the 
remaining ones are all zero, i.e. (푥 , , , − 푥 , , , ) = 0,∀푡 ≠
4, and hence the investment cost is considered only once.  

퐼푛푣퐶 =
푖(1 + 푖) ,

(1 + 푖) , − 1 퐼퐶 , (푥 , , ,
∈

− 푥 , , , )  ;∀푡 ∈ Ω  
(1.1) 

푀푛푡퐶 = 푀퐶 , 푥 , , ,
∈

;  ∀푡 ∈ Ω  (1.2) 

푀푛푡퐶 = 푀퐶 , 푢 , , ,
∈

 ; ∀푡 ∈ Ω   (1.3) 

 
Fig. 3. Illustration of cost components within and outside the planning 
horizon 
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퐸퐶 = 휌 휋 푂퐶 , 푔 , , , , ,
∈

;  

∀푡 ∈ Ω  
(1.4) 

퐸퐶 = 휌 휋 푂퐶 ,
∈

푔 , , , , ,  ;
∈

 

∀푡 ∈ Ω  
(1.5) 

퐸푁푆퐶 = 휌 휋 휐 , , 훿 , , ,
∈

 ;∀푡 ∈ Ω  (1.6) 

퐸푀퐶
= 휌 휋 휆 , , 퐸푅 , 푔 , , , , ,

∈

;  

∀푡 ∈ Ω  

(1.7) 

퐸푀퐶
= 휌 휋 휆 , , 퐸푅 , 푔 , , , , ,

∈

; 

∀푡 ∈ Ω  

(1.8) 

퐸퐶 = 휌 휋 휆 , , , 푔 , , ,
∈

 ;∀푡 ∈ Ω  (1.9) 

퐿표푠푠

= 휌 휋 휆푠,푤,푡
푔푛푚

푉푛표푚푖푛푎푙∗푏푛푚
2 푓푛푚,푠,푤,푡

, ∈

 ;  

∀푡 ∈ Ω  

  (1.10) 

Equations (1.2) and (1.3) stand for the annual maintenance 
costs of candidate and existing DGs, respectively. These cost 
components are multiplied by the corresponding binary 
variables to determine whether each DG is being utilized or 
not. Note that the binary investment variable is also used for 
this purpose because there is no economic explanation or 
justification as to why it cannot be utilized immediately after 
an investment is made on a given asset. For the case example 
given above, the DG will incur maintenance costs in the last 
two years. For existing generators, binary variables are used to 
indicate their respective utilizations. 

The operation costs given by (1.4) and (1.5) for candidate 
and existing DGs, respectively, depend on the amount of 
power generated for each scenario, snapshot, stage and DG 
type. Therefore, these costs represent the expected costs of 
operation. Similarly, the penalty term for the unserved power, 
given by (1.6), is dependent on the scenarios, snapshots and 
time stages. Equation (1.6) therefore gives the expected cost of 
unserved energy. The expected emission costs of candidate 
and existing generators are given by (1.7) and (1.8), 
respectively.  

B. Constraints 

i) Load balance constraints 
The load balance at each node is given by equation (2). 

(푔 , , , , , + 푔 , , , , , ) + 푔 , , ,
∈

+ 훿 , , , − 푓 , , ,
, ∈

+ 푓 , , ,
, ∈

≥ 푑 , , ,     ; 

∀푠 ∈ Ω ;∀푡 ∈ Ω  

(2) 

ii) Investment limits 
In real problems, there always exist financial constraints; 

therefore, the maximum allowable budget for investment in 
DGs for a given year is limited by (3). 

퐼퐶 , (푥 , , , − 푥 , , , )
∈

≤ 퐼푛푣퐿푖푚 ;  

∀푡 ∈ Ω  
(3) 

iii) Generation capacity limits 
The minimum and maximum capacity limits of existing and 

candidate generators are represented by (4) and (5), 
respectively. Note that the binary variables also appear here 
and multiply these bounds. This is to make sure that the power 
generation variable is zero when the generator remains either 
unutilized or unselected for investment. In the case of 
intermittent power source, the lower generation limits 
푔 , , , ,  and 푔 , , , , is often set to 0 while the 
corresponding upper limits are set equal to the actual power 
output of the DG corresponding to the level of primary energy 
source (wind speed and solar radiation, for instance). Hence, 
the upper bound in this case depends on the operational state 
(i.e. the snapshot) and the scenario.   
푢 , , , 푔 , , , , ≤ 푔 , , , , , ≤ 푢 , , , 푔 , , , ,  ; 
∀푛 ∈ Ω ;∀푝 ∈ Ω ;∀푠 ∈ Ω ;∀푤 ∈ Ω ;∀푘 ∈ Ω ; ∀푡 ∈ Ω  

(4) 

푥 , , , 푔 , , , , ≤ 푔 , , , , , ≤ 푥 , , , 푔 , , , ,  ;  
∀푛 ∈ Ω ;∀푝 ∈ Ω ;∀푠 ∈ Ω ;∀푤 ∈ Ω ;∀푘 ∈ Ω ; ∀푡 ∈ Ω  

(5) 

iv) Unserved power limit 
The upper and lower limits of the unserved power are given 

by (6). Normally, the maximum unserved power one can have 
at a certain node is the demand at that node. However, the 
upper bound may be superfluous because, under normal 
circumstances, when a sufficiently large penalty factor is used 
in the objective function, the unserved power variable will 
tend to be very close to zero by optimality. 

0 ≤ 훿 , , , ≤ 푑 , , ,  ;  
∀푛 ∈ Ω ;∀푠 ∈ Ω ;∀푤 ∈ Ω ; ;  ∀푡 ∈ Ω  (6) 

v) DG penetration level limit 
Mainly due to technical reasons, there can be a maximum 

penetration level of DG integration (or, equivalently saying, 
the maximum percentage of demand covered by DG power). 
This is ensured by adding the constraints in (7). 

(푔 , , , , , + 푔 , , , , , )
∈

≤ 휑푑 , , , ;  

∀푠 ∈ Ω ;∀푤 ∈ Ω ; ∀푡 ∈ Ω  
(7) 

vi) Logical constraints. 
An investment already made at time stage t cannot be 

reversed or divested in the subsequent time stages; hence, the 
asset should be available for utilization immediately after the 
investment is made. Such constraints can be realized using (8). 

푥 , , , ≥ 푥 , , ,   ; 
∀푛 ∈ Ω ;∀푝 ∈ Ω ;∀푤 ∈ Ω ; ∀푡 ∈ Ω   

(8) 

vii) Network model constraints 
As mentioned earlier, integrating DGs could in some cases 

result in technical problems in the system such as congestion, 
voltage rise and stability issues. Therefore, if these issues are 
deemed critical, it may be desirable to include network 
constraints so that power flows and node voltages remain 
within their respective permissible ranges.  
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To this end, a linearized network model, first proposed in 
[41] in the context of transmission expansion planning and 
further extended to distribution network system planning in 
[42], is used here. In distribution systems, since active power 
flow dominates the apparent power flow, reactive power flow 
can be neglected. Hence, without loss of generality, only the 
active power flow through a given line, given by (9), can be 
considered. Equation (10) ensures that the flow through the 
distribution lines do not exceed their corresponding thermal 
capacities. 
푀 (푧 − 1) ≤ 푓 , , ,

− 푉 ∆푉 , , , −∆푉 , , , 푔
− 푉 푏 휃 , , ,
≤  푀 (1− 푧 );  

∀푛,푚 ∈ Ω ;∀푠 ∈ Ω ;∀푤 ∈ Ω ; ∀푡 ∈ Ω  

(9) 

−푓 푧푛푚 ≤ 푓 , , , ≤ 푧푛푚푓 ;  
∀푛,푚 ∈ Ω ;∀푠 ∈ Ω ;∀푤 ∈ Ω ; ∀푡 ∈ Ω  (10) 

Note that the voltage at each node is assumed to be equal to 
푉 + ∆푉푛,푠,푤,푡  where ∆푉 , , ,  stands for the voltage deviation 
at each node which is bounded as −휀 ∗ 푉 ≤ ∆푉 , , , ≤
휀 ∗ 푉 . For the analysis throughout this paper, the 
tolerance factor 휀 is set to 0.05, and the voltage magnitude and 
angle at all substations are set to  1.05푉  and 0, 
respectively. 

viii) Radiality constraints 
The traditional radiality constraint in (11) [43], along with 

the load balance equation, gives the necessary condition for a 
distribution network to be radial and connected. The analysis 
in this paper considers a radial network, and does not include 
grid expansion or switching. Therefore, equation (11) is 
sufficient to keep the radiality of the network and ensure that 
all nodes are connected.     

푧
, ∈

= 푁 − 푁  ;   ∀푠푠 ∈ Ω푠푠 (11) 

V. CASE STUDY DESCRIPTION 

A. System Data 
The system considered in the study is a real-life insular 

distribution network in São Miguel Island, Azores, Portugal. 
In this system, currently, there is no electricity market, and 
there is no energy imported (purchased) from the transmission 
grid.  The system has a peak demand of 70.2 MW, and 
information about existing generators is shown in Table I. The 
investment limit in each year is set to 120 M€. The average 
cost of electricity 휆 , ,  used for estimating cost of losses is 
assumed to be the average of all marginal costs of power 
production of DGs.  

In this system, various DG types with capacities ranging 
from 1 to 30 MW are considered as candidates for investment 
(see in Table II). These fall into small- to medium-scale DG 
categories according to the capacity-based classification of 
DGs in [44]. The installation and maintenance costs of each 
DG are either directly obtained from [44] and [45] or estimated 
using the so-called six-tenths rule [46], which establishes a 
relationship between cost and quantity (in this case, installed 
capacity). This method reflects the economy of scale that 
exists in DGIP, i.e. the higher the installed capacities of DGs 

of the same type, the lower the costs per installed kW get. The 
hourly series (historical data) of wind speed and solar 
radiation at various locations of the island are obtained from 
publicly available databases [47], [48], respectively. The 
correlation among the hourly wind speed and solar radiation 
series is approximately -0.13. The geographical coordinates 
where these data are taken from include (37.790,-25.385), 
(37.778,-25.489), (37.866,-25.816), (37.797,-25.170), 
(37.717,-25.505), (37.823,-25.487), (37.772,-25.375) and 
(37.782,-25.661). Then, the wind (WD) and solar photovoltaic 
(PV) power production series used in the simulations are 
determined by plugging the wind speed and the radiation data 
in the corresponding power curve expressions.  

The DGIP problem is coded in GAMS 24.0 and solved 
using CPLEX 12.0. All simulations are carried out in HP Z820 
Workstation with E5-2687W processor, clocking at 3.1 GHz. 

B. Scenario Definition 
Defining scenarios is in itself a complex problem, which 

requires exhaustive research and sufficient knowledge of the 
evolution of the system under consideration. Because of this, 
the number and the nature of scenarios are mostly predefined, 
and, to do this, planners often rely on expert knowledge. In 
this work, three scenarios (storylines) are defined in 
connection to the possible evolutions of two relevant uncertain 
parameters over the planning horizon, namely, electricity 
demand growth and emission price. Table III shows the three 
evolutions of demand growth, denoted as Low, Moderate and 
High, having an equal degree of realization. Similarly, the 
emission price is represented by three equally probable 
storylines (scenarios), as depicted in Table III. Out of these 
individual scenarios, assuming the two uncertain parameters 
are independent, we can get nine different combinations, 
which form the new set of scenarios used in the simulations. 
With this as a base-case, sensitivity analyses are carried out to 
study the impact of several system parameters other than 
these, which involve some degree of uncertainty, on DG 
investment decisions. These parameters include interest rate, 
DG penetration limit, solar PV and wind power output 
uncertainty, generator availability, electricity tariffs and fuel 
prices. 

C. Impact of Network Inclusion/Exclusion on DGIP Solution 
To assess the impacts on the DGIP solution, the formulated 

problem is solved with and without network. The former 
considers the entire network system but the latter assumes that 
the electricity demand is aggregated and connected to a 
hypothetical node and all generators are assumed to be 
connected to this node. One of the main differences lies in the 
network losses which are only accounted for when considering 
the network. However, since distribution networks span over a 
small geographical area, the feeders and distribution lines are 
usually short. Therefore, in properly designed distribution 
networks, power losses are negligible and, hence, they are not 
expected to significantly change DG investment planning 
solution. This argument has been experimentally verified by 
running simulations with and without a network on two insular 
networks (the distribution networks of São Miguel Island 
described before and La Graciosa Island presented in [49]). In 
both cases, the DGIP results with and without a network are 
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very similar, only differing in one DG investment. Moreover, 
the differences in total investment cost throughout a three-year 
planning horizon are 2.2 and 3.5%, respectively.  

Generally, excluding the network slightly results in 
overinvestment. This is because neglecting the network would 
naturally mean neglecting the voltage constraints. As a result, 
this would lead to an increase in the size of DG integrated to 
the system that would otherwise be impossible when 
considering the network due to voltage rise issues. In the 
systems studied, the increase in DG investments as a result of 
not considering the network is negligible. Moreover, the cost 
of losses in both test cases is too small (accounting for less 
than 0.02 % of the total system cost) to have an impact on the 
solution. Based on these results, the sensitivity analysis here is 
carried out without considering the network. This is not 
expected to affect the analysis work since the main aim of the 
work here is to identify the parameters that significantly 
influence DGIP solutions. It should be clearly understood that 
the work in this paper is not to make investment decisions; it 
should rather be understood as an important step that provides 
relevant input to the development of robust planning tools. 
The exclusion of network (i.e. collapsing the whole system 
into one node) reduces the computation burden and helps one 
to increase the level of details of other relevant issues such as 
uncertainty and variability of uncertain parameters. It should 
however be noted that the aforementioned findings may 
largely depend on the size and type of system considered.  

Moreover, the effect of network congestion on DG 

investment decision is not accounted for when the network is 
neglected. Nonetheless, since DGs are placed close to the 
consumption points, it can be fairly assumed that congestion is 
less likely to occur. Other network constraints (such as voltage 
and angle-related ones) can be easily managed by placing 
some power system elements (such as reactive power sources 
and storage systems) at the most appropriate places. 

VI. RESULTS AND DISCUSSION 
The analysis results with regards to the sensitivity of 

investment decisions on DGs with variations of selected 
system parameters are presented and discussed as follows. 

A. Demand Growth and CO2 Price 
The total investment cost for every combination of demand 

growth and emission price scenarios are shown in Table IV, 
along with the corresponding overall system costs as in Table 
V. We can see in these tables that DG investments are more 
sensitive to emission price uncertainty than to demand growth 
even if this may be case dependent. The DG investment 
decisions corresponding to each scenario and time stage are 
given in Table A.1 of Appendix A. 

B. Interest Rate 
The evolution of interest rate remains uncertain, and hence 

it is subject to change at any time in the future. To see its 
effect on DG investment decisions, it is changed by holding 
other parameters at their base case values. Generally, 
investments in DG fall as the interest rate increases. This is 
illustrated in Fig. 4, where one can clearly observe the 
decreasing trends of investment in DG (renewables, in 
particular). Their share in the total energy produced also 
follows a similar trend. This is in line with financial theory 
which states that higher interest rates deter investments 
because this raises the expected rate of return of an 
investment, which does not incentivize investments. As an 
example, an interest rate of 2% results in investments in all 
candidate DGs of wind and solar types except PV1 and PV2 
(see in Table II); whereas, for an interest rate of 12%, the 
investments made only include PV7, PV8 and all wind type 
DGs. The huge difference here highlights how sensitive the 
investment decisions can be with respect to the interest rate. 

C. DG Penetration Level Factor 
DG penetration level factor is defined as the percentage of 

electricity demand met by DG power at a certain instant. This 
factor is another relevant parameter that affects the investment 
decisions of DGs. Intuitively, one may ponder that the higher 
the value of this factor, the higher the incentive for integrating 
more renewables, and, therefore, the higher the DG 
investments. But this holds only up to a certain threshold, 
beyond which there seems to be few or no new investments 
made. Fig. 5 clearly reflects this phenomenon. In the case 
study presented in this paper, the threshold value of the 
penetration level seems to be 40%. Below this level, 
investments made in DG steadily increase with the penetration 
level from almost no investments at 10% to seven investments 
at 40%. However, this is not the case for higher penetration 
levels. Even if the penetration level is set beyond 40%, no new 
investments are justified.  

TABLE I  
DATA FOR EXISTING GENERATORS 

 Generator 
type, p 

Alterna
tive, k 

Installed 
capacity 
(MW) 

OCp,k 
(€/MWh) 

ICp,k 
(M€) 

MCp,k 

(M€) 
ERp,k     
(tons 
/MWh) 

1 Hydro Hydro 4.07 7.0 NA 0.38 0.0121 
2 Geothermal GEOT 24.0 5.0 NA 1.20 0.0165 
3 HFO-T* HFO 98.0 145.4 NA 0.01 0.5600 
4 Wind WD 0 10.0 17.0 NA 0.80 0.0276 

* Heavy fuel oil turbine 

TABLE II 
DATA FOR CANDIDATE GENERATORS 

 Generator 
type, p 

Alternati
ve, k 

Installed 
capacity 
(MW) 

OCp,k 
(€/MWh
) 

ICp,k 
(M€) 

 

MCp,k 

(M€) 
 

ERp,k     
(tons/MW
h) 

1 Solar PV 1 1.0 40 3.00 0.06 0.0584 
2 Solar PV 2 1.5 40 3.83 0.08 0.0584 
3 Solar PV 3 2.0 40 4.55 0.09 0.0584 
4 Solar PV 4 2.5 40 5.20 0.10 0.0584 
5 Solar PV 5 3.0 40 5.80 0.12 0.0584 
6 Solar PV 6 4.0 40 6.89 0.14 0.0584 
7 Solar PV 7 6.0 40 8.79 0.17 0.0584 
8 Solar PV 8 10 40 11.94 0.24 0.0584 
9 Wind WD 1 1.0 17 2.64 0.05 0.0276 
10 Wind WD 2 2.0 17 4.00 0.08 0.0276 
11 Wind WD 3 5.0 17 6.93 0.14 0.0276 
12 Wind WD 4 10 17 10.51 0.21 0.0276 
13 CGT** CGT 1 30 145.4 27.00 0.01 0.5600 
14 Biomass BM 1 20 20 80.00 3.00 0.0276 

** Combustion gas turbine 
 

TABLE III 
DEMAND GROWTH AND CO2 PRICE SCENARIOS 

Stages 

Demand growth scenarios 
CO2 price scenarios 

(€/ton of CO2) 

Low Moderate High Low Moderate High 
T0 0% 0% 0% 5 5 5 
T1 2% 5% 10% 7 12 20 
T2 5% 10% 20% 10 18 30 
T3 7% 15% 30% 13 25 45 
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As can be seen in Fig. 5, the impact of DG penetration level 
on emissions and expected system costs is also significant. As 
expected, the increase in DG investments is offset by a higher 
decrease in operation and emission costs, leading to 
decreasing trends of the expected system cost and the 
emissions with increasing penetration level. Beyond 40%, the 
rate of changes in both curves is however insignificant. This 
may be the maximum technical penetration limit of variable 
energy sources in the absence of energy storage and 
appropriate reactive power compensation mechanisms put in 
place to counter the negative effects of integrating variable 
generation such as voltage and grid stability issues. To 
maintain a healthy operation of the system, high production 
levels of RES-based DGs need to be curtailed. The curtailment 
rate and level increase with the size of variable power capacity 
installed in the system. Hence, in this situation, further 
investment on such resources (beyond 40%) may not be 
justified because doing so does not lead to further reduction in 
system costs.   

Alternatively, Fig. 6 shows the variation of DG investments 
with respect to the DG penetration level factor. The results in 
this figure also strengthen the fact that DG investments show 
some variations with an increasing level of this factor. The 
level of emissions gets lower as the DG penetration factor is 
increased up to a certain level (around 40%), beyond which 
the change is insignificant. This is indicative of the effect of 
increasing investments in DGs up to this level, which is in line 
with the previous statement. 

As shown in Fig. 5, the DG penetration level can go as high 
as 70% on an instantaneous basis. However, managing high 
penetration levels of variable energy sources (often higher 
than 25% or so) is quite challenging. Especially, a 50% or 
more penetration level of variable energy sources may not be 
possible in the absence of adequate storage systems, reactive 
power compensation mechanisms and/or smart-grid solutions 
which help to maintain the power quality and system stability 
at standard levels. This is particularly the case in most insular 
systems. In the system considered in the present analysis, the 
actual wind and solar energy share is in the range of 23% and 
27% (see Fig. 4) but instantaneous penetration levels can 
reach 60-70% (see Fig. 5) without jeopardizing the system’s 
overall integrity. Depending on the operational situations of 
the system, this may be possible on certain occasions and 
impossible on others. Overall, in the absence of energy storage 
systems and/or other enabling mechanisms, the results in Fig. 
5 also support the fact that the highest possible penetration 
level is around 40% (with the exception of a few instantaneous 
occasions). In many insular systems (for instance, Cape Verde, 
Ten Mile Lagoon -Australia, Crete - Greece) and 
interconnected systems (for instance, Portugal, Spain and 
Denmark), instantaneous wind penetration levels of 50% or 
higher have been regularly happening. 

D. Fuel Prices and Electricity Tariffs 
The impact of fuel prices and electricity tariffs of renewable 

generators are also analyzed by varying the levels of these 
parameters. The results of this sensitivity analysis are 
summarized in Table VI. As it can be seen in this table, DG 
investment decisions are very sensitive to fuel prices. For 
example, when the fuel price is considered to be 30% lower 

than that of the base case, it becomes less attractive to invest 
on DG (especially solar photovoltaics). But a fuel price 30% 
higher results in more investments in PV. 

In addition to fuel prices, electricity tariffs also play a 
significant role in the decision-making process, particularly in 
the context of DG investment planning. In general terms, the 
price of electricity generated from wind or solar DG highly 
depends on the initial level of capital invested on these DG 
technologies. Once the investments are made, operation costs 
are normally very low. Nowadays, the capital costs of the 
main components pertaining to these technologies are 
continuously falling, with a learning rate of more than 20% 
per annum. This trend will most likely be sustained [45], 
resulting in a dramatically lower final cost of electricity (tariff) 
generated from such resources. 

The effects of variations in PV energy tariffs on DG 
investments are especially investigated in this work. As shown 
in Table VI, when solar PV generators are considered to be as 
competitive as wind power generators, i.e. with a tariff of 
€20/MWh, more investments in PV are made compared to the 
base case. On the other hand, if the electricity tariff of energy 
coming from PV turns out to be twice that of the base case 
(€80/MWh), the number of investments made in solar PV 
declines. 

However, this is not likely to happen given the current 
learning rate of solar PV technology. It is also worth 
mentioning that the planning solution in the case of +100% 
tariff for PV energy is exactly the same as the solution in the -

TABLE IV 
IMPACT OF DEMAND GROWTH AND CO2 PRICE UNCERTAINTY ON DG 

INVESTMENTS 

TIC (M€) 
CO2 price scenarios 

Low Moderate High 
Demand 
growth 
scenarios 

Low 38.462 46.220 54.540 
Moderate 38.462 46.996 64.245 
High 38.462 53.078 64.757 

TABLE V 
VARIATION OF OBJECTIVE FUNCTION VALUE WITH DEMAND GROWTH 

AND CO2 PRICE SCENARIOS 

TC (M€) 

CO2 price scenarios 

Low Moderate High 
Demand 
growth 
scenarios 

Low 246.111 283.029 338.211 
Moderate 289.224 336.038 406.261 
High 375.187 442.091 543.606 

 

Fig. 4. Impact of interest rate on DG investments and energy production 
from wind and solar sources. 
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30% fuel price case, which shows the importance of energy 
tariff arrangement by the regulatory body. 

The crowding of investment decisions in the first stage in 
Table VI may be due to two reasons. The first reason could be 
because of the absence of investment constraints related to 
financial and logistic matters. The second reason could be 
because of the relatively higher net present value of operation, 
maintenance and emission costs in the first stage when 
compared with that of any other stage. This, along with the 
first reason, may justify more investments to be made in the 
first stage rather than in any one of the subsequent stages.     

E. Wind and Solar Power Output Uncertainty 
To analyze the effect of uncertainty in wind and solar power 

outputs, two scenarios are created for each. One scenario is 
taken to be above the average hourly profile (roughly 30% 
higher than that of the base case), and the other one is taken 
below the average profile (approximately 30% lower than that 
of the base case) in each case. The results of the analysis are 
summarized in Table VII. One can observe that when the B-
wind scenario is considered, the number of investments on 
wind type DGs becomes lower than these of the base case (see 
in Table VI). This is because of the lower yield of wind 
resources. In contrast, more investments are made on wind 
type DGs when the A-wind scenario is considered. The 
sensitivity of investments in solar PVs with respect to the 
uncertainty of PV outputs is even higher, as can be seen in this 
table. Note that the reasons mentioned before in the case of 
Table VI could explain the crowding of investments in the 
first stage in Table VII. 

F. Demand and RES Power Output Variability 
As stated earlier, the natural variation with time that exists 

in some of the system parameters such as demand and 
renewable energy source (RES) outputs leads to a large 
number of operational situations, adding extra complexity to 
the DGIP problem. Because of this, a significantly reduced 
number of snapshots are usually considered in such problems. 
For example, demand variability is commonly represented by 
a load duration curve, which is then aggregated into three to 
five load blocks. Unfortunately, this may compromise the 
quality of solution obtained. In light of this, we investigate 
how the reduction of operational situations, via clustering, 
affects the DG investment solution. To do this, we make use 
of the standard k-means clustering algorithm, a popular 
clustering analysis method in data mining, to obtain different 
number of data clusters (aggregates). The representative 
snapshot in each cluster is assumed to be the mean of the 
snapshots grouped together. For different number of clusters, 
the investments made, along with total cost and average 
simulation time, are summarized in Table VIII.  

According to the results in this table, there seems to be a 
tendency to overinvest when the snapshots are further reduced. 
This may be due to an overestimation of the operation costs, 
which triggers more investments. Basically, investments are 
justified if the net reduction in operation costs (which may 
include cost of energy production, emission and losses) is 
higher than or equal to the overall investment costs. Based on 
this, if the operation costs are artificially overstated for some 
reason such as clustering inaccuracy, the net reduction in 
operation costs may seemingly be high, leading to the 
justification of more investments.  However, it should be 
noted that this may not always be the case, i.e. a lower number 
of clusters may not necessarily be associated with an 
overestimation of operation costs. Depending on how the 
representative snapshots in all clusters are taken, the operation 
costs may be overestimated or underestimated, resulting in 
overinvestment or underinvestment, respectively. 

Another important observation from Table VIII is that 
clustering the hourly operational snapshots in a year shows 
little impact on the investment solution beyond a certain 
threshold (which lies somewhere in the range of 300 and 400). 
This reflects that as far as the initially large number snapshots 
are clustered into 300 or more and the representative snapshots 
are carefully selected, the investment outcomes may not be 
influenced by clustering operational situations but 
significantly facilitate the solution process. 

G. Generator Availability 
It is understood that a generator can only produce power 

when it is available. There are two main factors which affect 
generator’s availability: unplanned (forced) and planned 
(scheduled) outages. Such outages may also condition DG 
investment solution. Especially, more investments can be 
expected if, by chance, generator outages partially or fully 
coincide with relatively high production times of DG 
candidates. For example, if outages essentially occur during 
sunny hours, more investments could be made on solar PV 
candidate generators to fill in the generation gap left behind as 
a result of the outages. However, the chance of this happening 
can be very low since both processes are independent.  

Fig. 5. Variations of emissions, investment and expected system costs 
with DG penetration level factor. 
 

 
Fig. 6. Variation of DG investments with penetration level and their effect 
on total CO2 emissions. 
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In the particular example presented earlier, the effects of 
forced outages of geothermal and hydro power units on the 
solution are analyzed. The availability series of these units are 
generated using a binomial distribution function, assuming 
generator outage rates of 15% and 10%, respectively. Note 
that these rates consider both types of outages. 

When generating the series, an average off-time of 4 hours 
is factored in for both generator types. Given this input 
information, the DGIP problem is solved and its solution 
includes PV8 and all wind DG candidates in the first stage, 
PV7 in the second stage, and PV6 in the third stage with a 
total investment cost of 53.08 M€. This solution differs from 
that of the base case by one investment (i.e. PV6). But, in 
general, more investments could be justified if the generator 
outages occur during/around the peak hours of renewable 
power productions.  

VII. CONCLUSIONS 
This paper has presented comprehensive experimental 

analyses to determine the sensitivity of DG investments with 
variations of several uncertain parameters. The aim of such 

analyses has been first to investigate the effect of variability 
and uncertainty in model parameters on the investment 
decisions of DGs, and second to identify the parameters that 
have the highest degree of influence on DG investments. The 
results of our analyses generally showed that both uncertainty 
and variability have a meaningful influence on DG investment 
decisions. In fact, the degree of influence varies from one 
parameter to another. Numerical results from the case study 
show that generator outages have little or no impact on the 
RES-based DG investments; whereas, uncertainty in CO2 and 
fuel prices, interest rate and RES power outputs significantly 
influence investment decisions especially in variable energy 
sources. In particular, it has been found out that uncertainty in 
CO2 and fuel prices as well as the interest rate seem to 
dramatically condition decisions compared to the uncertainty 
in demand growth and RES power outputs. A thorough 
investigation on the number of clusters of the hourly 
operational snapshots in a year shows that the clustering 
process results in little impact on the investment solution 
beyond a certain threshold (somewhere in the range of 300 
and 400). This reflects that as far as the initially large number 
snapshots are clustered into 300 or more, and the 
representative snapshots are carefully selected, the results may 
not be influenced by clustering operational situations but 
significantly facilitate the solution process.  

In general, the results revealed that ignoring or inadequately 
considering uncertainty and variability in model parameters 
has a quantifiable cost. Based on the extensive analysis, a 
stochastic modeling of uncertainty related to emission and fuel 
prices, interest rate, RES power outputs and demand growth is 
very critical for obtaining robust investment decisions. The 
comprehensive analysis performed in this work can help 
planners to properly weigh the effect of ignoring or 
considering the uncertainty and/or variability of one or more 
model parameters. Accordingly, a realistic planning tool 
considering all relevant sources of uncertainty and/or 
variability and solution methodologies can be developed, 
which leads to high quality and robust investment solutions.  

APPENDIX A: DETERMINISTIC INVESTMENT SOLUTIONS 
A deterministic DGIP model can be formed by allowing the 

DG investment variables (in the presented model) to be 
scenario-dependent, i.e. by assuming a given scenario happens 
with certainty. The investment solution of each scenario is 
presented in Table A.1. As it can be seen, the DG investments 
are particularly sensitive to the variation of CO2 price. Note 
that, in Table A.1, 푇  (푤ℎ푒푟푒 푖휖{1,2,3}) denotes the time stage 
in which the corresponding DG is installed. 

APPENDIX B: PIECEWISE LINEARIZATION  
Notice that (1.10) contains quadratic flow term. For the 

sake of simplicity, the indices are dropped here. This quadratic 
term is linearized using a first-order approximation as: 

푓 = (2푙 − 1)
푓
퐿 ∆푓 ,  (B.1) 

푓 = 푓 − 푓  (B.2) 
푓 ≥ 0;푓 ≥ 0 (B.3) 

TABLE VI 
IMPACT OF FUEL PRICE AND DG TARIFFS ON DG INVESTMENT DECISIONS 

 Stages 
Changes in fuel price 

Changes in PV 
energy tariff 

 
+0% -30% +30% -50% +100% 

Investment 
in wind and 
solar DGs 

T1 

PV8, 
WD1, 
WD2, 
WD3, 
WD4 

WD1, 
WD2, 
WD3, 
WD4 

PV7, 
PV8, 
WD1, 
WD2, 
WD3, 
WD4 

PV7, 
PV8, 
WD1, 
WD2, 
WD3, 
WD4 

WD1, 
WD2, 
WD3, 
WD4 

T2 PV7 PV8 PV6 - PV8 
T3 - - PV5 PV6 - 

TC (M€) 364 312 412 358 372 
Total expected emissions 
(x 1000 tons of CO2) 268.8 296.4 256.5 263.1 296.4 

TABLE VII 
IMPACT OF WIND AND SOLAR PV POWER OUTPUT UNCERTAINTY ON DG 

INVESTMENT DECISIONS 

Scenarios Time stages 
TIC (M€) TC (M€) T1 T2 T3 

Wind 
Scenarios 

Below 
average (B) 

PV8,WD2, 
WD3,WD4 PV7 - 44.81 412 

Above 
average (A) 

PV8, WD1,WD2, 
WD3,WD4 - - 38.46 339 

Solar 
Scenarios 

Below 
average (B) 

PV8, WD1,WD2, 
WD3,WD4 - - 38.46 373 

Above 
average (A) 

PV8, WD1,WD2, 
WD3,WD4 PV7 PV6 47.00 360 

TABLE VIII 
IMPACT OF SNAPSHOT AGGREGATION ON DG INVESTMENT DECISIONS 

 
TIC (M€) 

TC (M€)  

Average 
simulation 
time 
(seconds) 

Number of 
snapshots 

Stage 1 
(T1) 

Stage 2 
(T2) 

Stage 3 
(T3) 

Peak demand 47.849 6.691 5.118 - - 
100 38.462 8.533 6.082 359.45 2 
300 38.462 8.533 6.082 360.66 4 
324 * [17] 38.462 8.533 6.082 362.98 6 
500 38.462 8.533 6.082 361.56 7 
1000 38.462 8.533 6.082 362.37 21 
2000 38.462 8.533 6.082 363.09 60 
4000 38.462 8.533 0.000 363.55 210 
6000 38.462 8.533 0.000 363.70 420 
8760 38.462 8.533 0.000 363.80 720 
* Snapshots are reduced according to the method in the reference 
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푓 + 푓 = ∆푓 ,  (B.4) 

∆푓 , ≥ ∆푓 ,  ;  ∀푙 < 퐿 (B.5) 
 
where (B.1) represents the piecewise approximation of the 
quadratic flow variable by considering 퐿 segments. In order to 
use only the first quadrant of the quadratic curve (which is 
advantageous in terms of reducing problem complexity [40]), 
the flow variable is decomposed into its forward (positive) and 
reverse (negative) auxiliary flow variables as in (B.2). Note 
that both of these variables cannot be nonzero at the same time 
and are non-negative as enforced by (B.3).  Eq. (B.4) ensures 
that the sum of the step-size flow variables ∆푓 ,  is equal to 
the flow. Eq. (B.5) guarantees a successive filling of the 
partitions. 
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