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Abstract—This paper presents a comprehensive sensitivity
analysis to identify the uncertain parameters which significantly
influence the decision-making process in distributed generation
(DG) investments and quantify their degree of influence.
To perform the analysis, a DG investment planning model
is formulated as a novel multi-stage and multi-scenario
optimization problem. Moreover, to ensure tractability and make
use of exact solution methods, the entire problem is kept as a
mixed-integer linear programming optimization. A real-world
distribution network system is used to carry out the analysis. The
results of the analysis generally show that uncertainty as well as
operational variability of the considered parameters have
meaningful impacts on investment decisions of DG. The degree of
influence varies from one parameter to another. But, in general,
ignoring or inadequately considering uncertainty and variability
in model parameters has a quantifiable cost. Hence, the analysis
made in this paper can be very useful to identify the most
relevant model parameters that need special attention in
planning practices.

Index Terms—distributed generation, investment planning,
distribution network systems, uncertainty.

I. NOMENCLATURE

A. Sets and Indices

k/QF Index/Set of DG alternatives of the same
type

m,n/Q" Indices/Set of nodes

p/QP Index/Set of DG types
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s/Q5,w/QY Indices/Sets of scenarios and snapshots,
respectively

ss/Q5S Index/Set of substations

t/0t Index/Set of planning stages (t = 1, 2... T)

E Existing DG

N New DG

SS Substation

T Planning horizon

B. Parameters

bpm Susceptance of line n — m (p.u.)

dpswt Electricity demand at each node (MW)

ER}y, ERp ) Emission rate of a new or existing generator
(tons of CO/MWh)

-max Flow limit of line n — m (MW)

Inm Conductance of line n — m (p.u.)

i Interest rate

1C}), Installation cost of DG (€)

InvLim, Available annual budget for investment (€)

MCJy, MCy Maintenance cost of new and existing DGs
(€), respectively

Mym Big-M parameter corresponding to line n —
m

N, Number of nodes

N Number of substations

0Cply, 0CF, Operation cost of new and existing DGs
(€/MWh), respectively

Vominal Nominal voltage of the system (V)

Npk Lifetime of DG (years)

AEME Emission price (€/tons)

Aswe Average cost of electricity (€/MWh)

Ty Weight associated to representative snapshot
w (hours)

Ds Probability of scenario s

Ossswt Price of purchased electricity (€/MWh)

Vgt Penalty for unserved energy (€/MWh)

10 DG penetration limit factor (%)

C. Variables and Functions

frmswit Power flow through feeder n — m
IpiensweIpknswPower generated by existing and new DG

g3 st Power purchased from upstream (grid)

Up ot Utilization indicator variable (1 if an existing
generator is utilized; 0 otherwise)

Xpjent Binary investment variable for DG

Znm Binary variable associated to line n —m (1 if

the line is connected; 0 otherwise)
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ECE,ECN Expected cost of energy generated by
existing and new DGs (€)
ECSS Expected cost of purchased energy (€)

EMCE, EMCY  Expected cost of emissions for existing and
new DGs (€)

Expected cost of unserved energy (€)
Amortized NPV investment cost of DG (€)
Annual maintenance cost of new and

existing DGs, respectively (€)

ENSC;
InvCy
MntCN, MntCE

Onswit Unserved power (MW)
AVpswe Voltage deviation at each node (kV)
Onmsw.t Voltage angle difference between nodes n —

m (radians)

II. INTRODUCTION

RIVEN by techno-economic and environmental factors,

nowadays, there is a global drive to integrate more

distributed energy resources (DERs) in power systems,
particularly at the distribution level. These typically include
distributed generation (DG), storage technologies, and demand
side management [1]. Especially, the scale of DG sources
(mainly, renewables such as wind and solar) integrated in
many distribution networks is steadily increasing. This trend is
more likely to continue in the years to come due to the advent
of emerging solutions such as active management of
distribution networks [2], [3], which are expected to alleviate
existing technical limitations, and facilitate smooth integration
of DGs. The favorable agreement of countries in the recent
climate change conference in Paris (COP21) is also expected
to accelerate the integration of renewable energy sources
(RESs). As a result, the level of electricity demand covered by
energy coming from RESs is expected to dramatically
increase, and such energy sources will play a significant role
in distribution systems.

As a result, the issue of DG investment planning (DGIP) is
becoming critical. This is especially more relevant in the case
of insular network systems because new regulations are put in
place to reduce the heavy dependence of such systems on
fossil fuels for energy production. Tapping available energy
resources (wind, solar, hydro, etc.) is inevitable to meet not
only the increasing demand for electricity but also
environmental constraints and renewable energy source (RES)
integration targets set forth either globally or locally through
Government initiatives.

However, the intermittent nature of most of these RESs
(particularly, wind and solar) makes their integration in
distribution networks a more challenging task. This is because
such resources introduce significant operational variability and
uncertainty to the system. Hence, the development of efficient
methods and tools is mandatory to realize an optimal or a cost-
efficient integration of such DGs and minimize their side
effects.

In addition, the increasing level of DG integration in
distribution systems is already leading to substantial changes
in the traditional role of distribution systems, which has
predominantly been to carry power unidirectionally from
substations to consumers in a radial scheme. In other words,
distribution network systems are slowly evolving from passive
to active networks [2]. This paradigm shift will make sure that
they are adequately equipped with the necessary, flexible and

intelligent tools which have the capability to minimize the
underlining challenges of integrating DERs in such network
systems, and, hence, pave the way to high level integration of
DERs, RES-based DGs in particular. The advent of modern-
day technological advances (such as smart grid technologies
with state-of-the-art control and protection mechanisms)
combined with conventional power system management
systems (such as active and reactive power management tools)
will make active networks effectively materialize [4].

Generally, the broad-range transformations in distribution
networks are largely expected to effectively address current
limitations of integrating DERs. As a result, the highly needed
benefits of DERs, extensively discussed in [1] and [5], will be
optimally exploited. In this regard, previous works on
investment planning of DGs in distribution systems such as
[6], [7] highlight the multi-faceted benefits of DGIP. In
particular, the work in [7] demonstrate that “investment in DG
is an attractive distribution planning option for adding
flexibility to an expansion plan, mainly by deferring network
reinforcements”. Other wide-range benefits of DGs have been
extensively discussed in [8]-[12]. As mentioned earlier, the
integration of DG in distribution systems comes with certain
challenges [13]-[15]. For example, if DGs are not properly
planned and operated, they can pose considerable technical
problems such as reduced voltage quality and stability.
However, these are expected to be adequately mitigated in
active distribution networks [7].

From a modeling perspective, DGIP has been carried out in
previous works jointly with distribution network expansion
planning [16]-[22] or independently [6], [7], [23], [24]. Either
way, the decision variables encompass the type of DG, its
capacity and location as well as the time of investment when a
dynamic planning scheme is adopted as in [6], [16], [17],
[20]-[24]. In the context of micro-grid or autonomous/insular
systems, the prospects of DG planning, scheduling and
operation have been gaining attention. Authors in [25] present
a community-based long-term planning tool for RESs in
insular systems with an ultimate objective of maximizing
social welfare perceived by the community. The work in [26]
proposes a methodology for siting and sizing of DGs from a
micro-grid context, and the resulting problem is solved using
the prospects of particle swarm optimization and genetic
algorithm methods.

Due to the inherent uncertainty and variability, stochastic
programming has been used in operation and planning of
distribution systems [27]-[31]. Authors in [27] propose a
stochastic model for a bidding strategy in the day-ahead
market of microgrids in the presence of energy storage
systems, RES-based and conventional DGs. A stochastic
energy management of microgrids, consisting of conventional
and RES-based DGs as well as price-sensitive loads, is
proposed in [28]. Similarly, the work in [29] presents a
stochastic operation model to coordinate vehicle-to-grid
services with energy trading in the presence of conventional
and wind type DGs. Reference [30] develops a stochastic
DGIP model based on a mixed integer linear programming
(MILP) framework. Uncertainties related to energy price,
electricity demand, wind and solar PV power outputs are
accounted by forming and dividing the corresponding duration
curves.
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A DG allocation problem in radial distribution networks is
solved using genetic algorithm in [32]. Here, uncertainty due
to forecasting errors in load and generation is modeled using a
fuzzy approach. A dynamic expansion planning of distribution
systems with DGs is proposed in [33], and a relatively new
meta-heuristic algorithm is employed to solve the resulting
problem. Uncertainty and operational variability are not
accounted for in this work. The use of non-exact methods such
as the meta-heuristic solution methods used in [26], [32], [33]
do neither guarantee global optimality nor a measure to the
global optimal solution. Since DG includes intermittent energy
sources, the planning model should adequately take into
account the uncertainty and variability introduced as a result,
including that of electricity demand. In this respect, variability
in load [6], [7], [16], [17], [20]-[23], [32] and [34], electricity
prices [6], [7], [16], [17], [23], wind power output [17], [23],
[25], [32], solar power output [23], [25], [32], fuel prices [23],
demand growth [6], [7], and DG failures [18] are among
several sources of uncertainties which have been given some
attention in distribution planning works in the literature.
As it can be observed, dealing with the demand variability
seems to be considered in many works in the literature (often
with 3 to 5 demand levels) while the others are largely ignored
or represented in an overly simplified manner.

The compound effect of all these relevant uncertainty and
variability issues requires designing new methods and tools in
order to have an optimal or a cost-efficient integration of DGs.
To guide the development of such methods and tools, it is
necessary to investigate first the impact of variability and/or
uncertainty of different model parameters on DG investment
decisions, which is the main objective of this work. Framed in
this context, this paper presents a comprehensive sensitivity
analysis carried out to meet the aforementioned objective. The
ultimate goal is to identify those parameters which influence
the decision-making process and quantify their degree of
influence. To perform the analyses, a DGIP model, formulated
as a multi-stage and multi-scenario optimization problem, is
used. In addition, to ensure tractability and make use of exact
solution methods, the entire problem is formulated as a mixed
integer linear programming (MILP) optimization. The
resulting DGIP problem minimizes the net present value of
investment, operation and maintenance, unserved energy and
emission costs taking into account a number of technical and
economic constraints. Note that the problem here is
formulated from the distribution system operator’s (DSO)
point of view and with a particular focus on insular networks.
In such networks, where there does not often exist a functional
market, in addition to managing the network system, the DSO
may own and operate some utility-based DGs, and/or oversee
DG investments to keep reliability, stability and power quality
in the system at the required levels.

The main contributions of this work include:

e An improved multi-stage and multi-scenario DGIP
mathematical formulation;

e A comprehensive sensitivity analysis to investigate
the effect of uncertainty and operational variability on
DG investment solution.

The rest of the paper is organized as follows. In Section III,
terminologies, approaches for management of uncertainty and
operational variability including their definitions are briefly

A Uncertainty

-

Variability

— Scenario 1
----- Scenario s
o Snapshot in scenario s
« Snapshot in scenario 1

Wind power output

L e e B e B e e e e e
Operational snapshots (hours)

Fig. 1. Illustration of variability and uncertainty in wind power output

described. In the subsequent section, the mathematical
formulation and description of the DGIP model are presented.
Section V discusses the results of the case studies. The last
section draws some conclusions and implications based on the
outcome of the case study.

III. UNCERTAINTY AND VARIABILITY IN DGIP

A. Terminology

The terminologies uncertainty and variability are often
incorrectly used interchangeably in the literature despite the
fact that they are different. Variability, as defined in [35],
refers to the natural variation in time of a specific uncertain
parameter, whereas uncertainty refers to “the degree of
precision with which the parameter is measured” or predicted.
We follow these terminologies in our paper when referring to
operational variability and uncertainty, which are introduced
by model parameters. For example, wind power output is
characterized by both phenomena; its hourly variation
corresponds to the variability while its partial unpredictability
(i.e. the error introduced in predicting the wind power output)
is related to uncertainty. The schematic illustration in Fig. 1
clearly distinguishes both terminologies. As demonstrated in
this figure, the hourly differences in wind power outputs are
due to the natural variability of primary energy source (wind
speed); whereas, the likelihood of having different power
outputs at a given hour is a result of uncertainty (partial
unpredictability) in the wind speed.

Other terminologies used in this paper are snapshot and
scenario. A snapshot refers to an hourly operational situation.
Alternatively, it can be understood as a demand—generation
pattern at a given hour. A scenario, on the other hand, denotes
the evolution of an uncertain parameter over a given time
horizon (often yearly). For example, the hourly variations of
wind power production and electricity consumption
collectively form a group of snapshots; whereas, the annual
demand growth (which is subject to uncertainty) and RES
power output uncertainty are represented by a number of
possible storylines (scenarios) [36].

B. Sources of Uncertainty and Variability in DGIP

The various sources of uncertainties in DGIP are related to
the variability and randomness of operational situations. There
are some other uncertainties mostly related to the long-term
price, rules, regulations and policies, etc. They can be
generally categorized as random and nonrandom uncertainties
[37]. The random ones are also known as high-frequency
uncertainties because they correspond to situations that occur
repeatedly, and hence, possess historical data. In general, they
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can be characterized by probability distribution functions
(PDFs), estimated by fitting the historical data. Such
uncertainties have a profound impact on the operation of
power distribution systems. Demand variability is one
example in this category. On the other hand, nonrandom
uncertainties do not occur repeatedly or they are
characterized by low frequency situations; so they can hardly
be statistically represented. A good example here is budget
available for investment.

A well-developed DGIP tool should therefore encompass
a methodology which effectively and efficiently takes into
account both types of uncertainties. Exhaustive modeling of
all sources of uncertainty and variability may not only be
computationally unaffordable but also inefficient.
Identifying the most relevant sources of uncertainty and
variability for the target problem is a crucial step that should
not be overlooked.

For example, consider two uncertain parameters: wind
power output and emission price. Even if both are subject to
uncertainty and variability, the degree of variation or
uncertainty of one is totally different from the other.
Apparently, the variability and uncertainty of wind power
output are a lot higher than that of emission price. Hence,
one would expect the former to have a higher influence on the
planning outcome compared to the latter.

In this paper, the variability due to intermittent DG power
outputs (mainly wind and solar) and demand are captured by
considering a sufficiently large number of hourly operational
states, also known here as “snapshots”. The hourly data may
be historical or generated from individual or joint PDFs of
uncertain parameters. To ensure problem tractability, the
hourly snapshots are then reduced by means of k-means
clustering, which leads to a substantially lower number of
representative snapshots compared to the original set of data.
This means each of the selected snapshots, representing a
group of similar operational situations, is assigned a weight «,,
proportional to the number of operational situations in its
group. For instance, the wind power output profile in Fig. 1
has two profiles for the sample hours. Each day throughout the
planning horizon has such profiles of its own. This means that
for a horizon of three years long the number of snapshots per
scenario is equal to 3x8760. Such number of operational
snapshots in each year and scenario are clustered into a
predefined number of snapshot groups. In addition to the
characterization of the RES power output uncertainty via
scenarios (as in Fig. 1), the uncertainty regarding the evolution
of the system (emission price, demand growth, etc.) is also
represented by a number of scenarios (or storylines) unfolding
as time passes by. Combinations of all these scenarios then
form the final set of scenarios (as in Fig. 2) that are used in the
analysis.

The schematic representation in Fig. 2 illustrates the multi-
stage and multi-scenario DGIP modeling framework and the
expansion solution structure (i.e. X;’s). At each stage of the
planning horizon, we obtain a single and robust expansion
strategy which is good enough for all scenarios [36], [38].
Note that while operational variables depend on each scenario
and snapshot, the investment decision variables only depend
on the time stage index. This means that the investment
solution obtained should satisfy all conditions in every

®)

Fig. 2. A schematic representation of (a) possible future scenarios’
trajectories with multiple scenario spots along the planning horizon, (b) a
decision structure at each stage.

scenario, making the solution robust against any realization of
the considered scenarios. It should be noted here that the
robustness of the solution is directly related with the level of
details of wuncertainty and variability characterization.
Generally, the higher the numbers of snapshots and scenarios
considered are, the more robust the solution is. However, there
is always a threshold beyond which adding more snapshots
and scenarios does not significantly change the solution but
increases unnecessary computational burden. If the scenarios
considered in the planning are carefully selected to be
representative enough of all possible uncertainty realizations,
then, the robustness and reliability of the solution can be more
guaranteed.

In this work, the evolution of carbon dioxide (CO,) price
and electricity demand growth are captured through a
predefined number of scenarios, each with a certain degree of
realization p,. For the sake of simplicity, all scenarios are
assumed to be equally probable. The effects of other sources
of uncertainty such as fuel prices, and tariffs of energy
generated by various DGs (both conventional and renewable
power generation units) are then analyzed via sensitivity
analysis.

IV. PROBLEM FORMULATION

This work focuses on investigating how sensitive DG
investment decisions are with respect to variations of selected
uncertain parameters. This is relevant for identifying the
parameters with the highest influence on DG investment so as
to design a DGIP model by adequately factoring the variability
and the uncertainty of the most relevant parameters.
Eventually, this helps to ensure an optimal integration of DG
in network systems.

A DGIP problem is naturally dynamic because the solution
has to explicitly provide the necessary information regarding
when DG investments are needed. Regarding the planning
horizon and decision stages, on account of the dynamic nature
of the problem, a more realistic approach would be to
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Fig. 3. Illustration of cost components within and outside the planning
horizon
formulate the problem with multiple decision stages (i.e.
multi-year decision framework) while accounting for all
possible future scenarios. However, to ensure tractability, the
numbers of stages and scenarios are usually limited.

In this work, the DGIP problem is formulated as a multi-
stage and multi-scenario optimization model within a given
planning window (horizon). This modeling framework
assumes that there are n probable future storylines (or
scenarios) each associated with a probability of realization pg
that stochastically represents relevant sources of uncertainties.

A. Objective Function

The resulting DGIP model, a MILP optimization problem,
minimizes the sum of net present value (NPV) of four cost
terms as in (1). Here, the binary investment and utilization
variables as well as the operational variables such as generated
power, flows, etc. constitute the set of decision variables of the
optimization.

The first term in (1), TIC , represents the total NPV of the
investment costs of DG, constituting conventional and various
renewable energy sources, under the assumption of a perpetual
planning horizon [39]. In other words, “the investment cost is
amortized in annual installments throughout the lifetime of the
installed DG”, as is done in [17]. The second term TOMRC
corresponds to the total sum of NPV: (i) operation,
maintenance and reliability (OMR) costs throughout the
planning stages, and (ii) the OMR costs incurred after the last
planning stage. Note that the costs in (ii) rely on the OMR
costs of the last planning stage and a perpetual planning
horizon is assumed when spreading these costs after the last
planning stage. To further clarify this, consider the illustrative
example in Fig. 3. It is understood that investments are made
in a specific year within the planning horizon (the second year
in this case) and the investment costs are amortized throughout
its lifetime. However, the OMR costs are incurred every year
within and after the planning horizon. To balance these cost
terms, a perpetual planning horizon, i.e. an endless payment of
fixed payments is assumed. Based on the finance theory [39],
the present value of perpetuity, which is the sum of the net
worth of infinite annual fixed payments, is determined by
dividing the fixed payment at a given period by the interest
rate i. Based on this, the OMR costs include the associated
annual costs within (part I) and outside the planning horizon
(part IT). The latter (part II) are determined by the perpetuity
of the costs in the last planning stage updated by net present
value factor in this case (1 + i)~3. Note that afier the lifetime
of the DG elapses, investments will be made in the same DG
with the same cost according to the assumption of a perpetual
planning horizon.

The third term TEMC in (1) corresponds to the total sum of
NPV emission costs in the system throughout the planning

stages and those incurred after the last planning stage under
the same assumptions as in the case of OMR costs. Similarly,
the last term TLC in (1) accounts for the total NPV cost of
losses.

Minimize TC = TIC + TOMRC + TEMC + TLC (1)
where TIC = Ycqi(1 + i)t InvCy /i; TOMRC =
NPV of investment cost
Yiear(1 + )78 (MntCN + MntCE + ECY + ECE + ECSS + ENSC,) +
NPV of operation, maintenance and reliability costs
1+ ) T(Mnecy + MntCE + ECY + ECE + EC?S + ENSCy) /i;
Operation, maintenance and reliability costs incurred after stage T
TEMC = Yieqe(1 +0)7 (EMCN + EMCE) +
NPV ofemission costs
A+ ) T(EMCY + EMCE)/i ;and TLC =
Emission costs incurred after stage T
Yieat(1+0)7¢ Loss, + 1+ TLossy /i
NPV oflosses cost Losses cost incurved after stage T

The individual cost terms in (1) are computed as follows.
The NPV of the total costs is given by the sum of the
amortized investment costs of DG, constituting conventional
and various renewable energy sources (1.1), expected
maintenance and operation cost of new (1.2, 1.4) and existing
(1.3, 1.5) DGs, as well as the expected cost of unserved energy
which is captured by penalizing any unserved power as in
(1.6). In addition, the expected cost of emission and energy
purchased from the grid (if any) are also included in the
objective function (see equations 1.7 through 1.9). The cost of
network losses in the system, computed as in (1.10), is also
included in the objective function. Note that to keep the
problem linear, the quadratic flow function in (1.10) is
linearized using a first-order approximation (i.e. piecewise
linearization) as in [17]. In order this paper to be self-
contained, the linearized model is provided in Appendix B.
Here, five piecewise linear segments are considered
throughout analysis, which is in line with the findings in [40].

Notice that equation (1.1) is weighted by the capital
i(1+0)Pk
(1+i)™k—1"
and the formulation in (1.1) ensures that the investment cost of
each DG is considered only once in the summation. For
example, suppose an investment in a particular DG is made in
the fourth year of a five-year planning horizon. This means the
DG will be available during the fourth and the fifth years
because of the logical constraint in (8). Hence, the binary
variables associated to this DG in those years will be 1 while
the rest will be zero i.e. x};,,, = {0,0,0,1,1}. In this particular
case, only the difference (x,[,kn4 Xprn3) equals 1 while the
remaining ones are all zero, i.e. (Xpnt — Xpne—1) = 0,Vt #
4, and hence the investment cost is considered only once.

InvCl = Z Z Z (;(j:)_n?zpk

recovery factor Besides, x,,, ,,ois defined to be zero,

N
p,k (xp,k,n,t

neqan keQk peQp (1 '1)
—Xpknt-1) 3 VEEQ!
MntC) = Z Z Z MCp)y Xpynss VEEQS (12)
neQn keQk pe QP
MntCE = Z Z Z MCE Ul e, s VEE Q! (13)

neQm keQk pe QP
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Ee = Z Ps Z Tw Z Z OCIIJ\{k gg,k,n,s,w,t;

SeEQS  weQW neQn keQk peQpP (1 -4)
vt € Q!
ECthzpsZ Z ZO kgpknswt'
SeQS  weQW neqn keQk peQp (1-5)
vt € Q!
ENSC, = Z Z Ds Z Ty Usp tOns e 3 VE € QF (1.6)
neQ"seQs  weQW
EMCL!V
zzps Z nwz Z Zlfl\uzltERngpknswt' (17)
SEQS  weQW neqQn ke Qk pe QP
vt € Qf
EMCE
= Z Ps Z T Z Z Afl\\fflt EREk gg,k,n,s,w,t; (18)
seqQs  weQVY neQm™ keQk pe QP
vt € Q!
Equs = Z Ps Z Ty Z Ass,s,w,tgggs,w,t VEE Q! (1.9)
seQs  weQV SSEQSS
Loss,
2
= Zps Z Ty Z Aswt b (fnm's'w't) ; (1.10)
SeQS weaw nmenn nommal* nm)

vt € Ot

Equations (1.2) and (1.3) stand for the annual maintenance
costs of candidate and existing DGs, respectively. These cost
components are multiplied by the corresponding binary
variables to determine whether each DG is being utilized or
not. Note that the binary investment variable is also used for
this purpose because there is no economic explanation or
justification as to why it cannot be utilized immediately after
an investment is made on a given asset. For the case example
given above, the DG will incur maintenance costs in the last
two years. For existing generators, binary variables are used to
indicate their respective utilizations.

The operation costs given by (1.4) and (1.5) for candidate
and existing DGs, respectively, depend on the amount of
power generated for each scenario, snapshot, stage and DG
type. Therefore, these costs represent the expected costs of
operation. Similarly, the penalty term for the unserved power,
given by (1.6), is dependent on the scenarios, snapshots and
time stages. Equation (1.6) therefore gives the expected cost of
unserved energy. The expected emission costs of candidate
and existing generators are given by (1.7) and (1.8),
respectively.

B. Constraints

i) Load balance constraints
The load balance at each node is given by equation (2).

E N SS
E E (gn,p,k,s,w,t + gn,p,k,s,w,t) + E Ysssw,t
keQk peQP SSEQSS
+ Sn,s,w,t - fnm,s,w,t
nmeQm (2)
+ E fmn,s,w,t = dn.S.W.t ;
n,meqQn

Vs € Q%; vt e Ot

ii) Investment limits
In real problems, there always exist financial constraints;

therefore, the maximum allowable budget for investment in
DGs for a given year is limited by (3).

N N N i .
Z Z Z ICp,k (xp,k,n,t - xp,k,n,t—l) = InUlet'

neQ keQk peQP

G)
vt e Qf

iii) Generation capacity limits

The minimum and maximum capacity limits of existing and
candidate generators are represented by (4) and (5),
respectively. Note that the binary variables also appear here
and multiply these bounds. This is to make sure that the power
generation variable is zero when the generator remains either
unutilized or unselected for investment. In the case of
intermittent power source, the lower generation limits
Iprswmin A4 gy minis often set to 0 while the
corresponding upper limits are set equal to the actual power
output of the DG corresponding to the level of primary energy
source (wind speed and solar radiation, for instance). Hence,
the upper bound in this case depends on the operational state
(i.e. the snapshot) and the scenario.

ug,k,n,tgg,k,s,w,min = gg,k,n,s,w,t S ug,k,n,tgg,k,s,w,max ;
vn e Q% Vp € OP; Vs € Q5;Vw € Q¥;Vk € OF; vt € OF
xg,k,n,tgg,k,s,w,min < gg,k,n,s,w,t < xg,k,n,tgg,k,s,w,max ;
vn € Q% Vp € OP; Vs € Q5;Yw € Q¥;Vk € OF; vt € Q!

4)
)

iv) Unserved power limit

The upper and lower limits of the unserved power are given
by (6). Normally, the maximum unserved power one can have
at a certain node is the demand at that node. However, the
upper bound may be superfluous because, under normal
circumstances, when a sufficiently large penalty factor is used
in the objective function, the unserved power variable will
tend to be very close to zero by optimality.

0 <6nswe <duswt;
vn € Q% Vs € Q5;Yw € Q%;; vVt € Qf

(6)

v) DG penetration level limit

Mainly due to technical reasons, there can be a maximum
penetration level of DG integration (or, equivalently saying,
the maximum percentage of demand covered by DG power).
This is ensured by adding the constraints in (7).

E N .
Z Z Z (gp,k,n,s,w,t + gp,k,n,s,w,t) = (pdn,s,w,t'

neQm peQP kenk
Vs € Q%;vw e Q¥; vt € Qf

()

vi) Logical constraints.

An investment already made at time stage ¢ cannot be
reversed or divested in the subsequent time stages; hence, the
asset should be available for utilization immediately after the
investment is made. Such constraints can be realized using (8).

xpkn t = xg,k,n,t—l ; (8)
vn € Q% vp € QP;vw € O¥; vVt € QF

vii) Network model constraints

As mentioned earlier, integrating DGs could in some cases
result in technical problems in the system such as congestion,
voltage rise and stability issues. Therefore, if these issues are
deemed critical, it may be desirable to include network
constraints so that power flows and node voltages remain
within their respective permissible ranges.
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To this end, a linearized network model, first proposed in
[41] in the context of transmission expansion planning and
further extended to distribution network system planning in
[42], is used here. In distribution systems, since active power
flow dominates the apparent power flow, reactive power flow
can be neglected. Hence, without loss of generality, only the
active power flow through a given line, given by (9), can be
considered. Equation (10) ensures that the flow through the
distribution lines do not exceed their corresponding thermal
capacities.

My (Zpm — 1) < fnm,s,w,t

- {Vnominal (AVn,s,w,t - AVm,s,w,t)gnm

- Vnzominalbnmgnm,s,w,t (9)
< IVInm(1 - an);
vn,m e Q% Vs € Q5;Vvw € Q¥; vt € Qf
—fam” Zpm < fnm,s,w,t < Zynfam s (10)

vn,m € Q™ Vs € Q5;Yw € Q¥; vt € Qf

Note that the voltage at each node is assumed to be equal to
Viom + AV, Where AV, ¢, . stands for the voltage deviation
at each node which is bounded as —& * Vyyminas < AVpswe <
€ * Vyominat- For the analysis throughout this paper, the
tolerance factor ¢ is set to 0.05, and the voltage magnitude and
angle at all substations are set to  1.05V,,mina; and O,
respectively.

viii) Radiality constraints

The traditional radiality constraint in (11) [43], along with
the load balance equation, gives the necessary condition for a
distribution network to be radial and connected. The analysis
in this paper considers a radial network, and does not include
grid expansion or switching. Therefore, equation (11) is
sufficient to keep the radiality of the network and ensure that
all nodes are connected.

Znm = Nn - NSS; Vss € Q%

n,menn

(11)

V. CASE STUDY DESCRIPTION

A. System Data

The system considered in the study is a real-life insular
distribution network in Sao Miguel Island, Azores, Portugal.
In this system, currently, there is no electricity market, and
there is no energy imported (purchased) from the transmission
grid. The system has a peak demand of 702 MW, and
information about existing generators is shown in Table I. The
investment limit in each year is set to 120 M€. The average
cost of electricity A, , used for estimating cost of losses is
assumed to be the average of all marginal costs of power
production of DGs.

In this system, various DG types with capacities ranging
from 1 to 30 MW are considered as candidates for investment
(see in Table II). These fall into small- to medium-scale DG
categories according to the capacity-based classification of
DGs in [44]. The installation and maintenance costs of each
DG are either directly obtained from [44]and [45] or estimated
using the so-called six-tenths rule [46], which establishes a
relationship between cost and quantity (in this case, installed
capacity). This method reflects the economy of scale that
exists in DGIP, i.e. the higher the installed capacities of DGs

of the same type, the lower the costs per installed kW get. The
hourly series (historical data) of wind speed and solar
radiation at various locations of the island are obtained from
publicly available databases [47], [48], respectively. The
correlation among the hourly wind speed and solar radiation
series is approximately -0.13. The geographical coordinates
where these data are taken from include (37.790,-25.385),
(37.778,-25.489), (37.866,-25.816), (37.797,-25.170),
(37.717,-25.505), (37.823,-25.487), (37.772,-25.375) and
(37.782,-25.661). Then, the wind (WD) and solar photovoltaic
(PV) power production series used in the simulations are
determined by plugging the wind speed and the radiation data
in the corresponding power curve expressions.

The DGIP problem is coded in GAMS 24.0 and solved
using CPLEX 12.0. All simulations are carried out in HP Z820
Workstation with E5-2687W processor, clocking at 3.1 GHz.

B. Scenario Definition

Defining scenarios is in itself a complex problem, which
requires exhaustive research and sufficient knowledge of the
evolution of the system under consideration. Because of this,
the number and the nature of scenarios are mostly predefined,
and, to do this, planners often rely on expert knowledge. In
this work, three scenarios (storylines) are defined in
connection to the possible evolutions of two relevant uncertain
parameters over the planning horizon, namely, electricity
demand growth and emission price. Table III shows the three
evolutions of demand growth, denoted as Low, Moderate and
High, having an equal degree of realization. Similarly, the
emission price is represented by three equally probable
storylines (scenarios), as depicted in Table III. Out of these
individual scenarios, assuming the two uncertain parameters
are independent, we can get nine different combinations,
which form the new set of scenarios used in the simulations.
With this as a base-case, sensitivity analyses are carried out to
study the impact of several system parameters other than
these, which involve some degree of uncertainty, on DG
investment decisions. These parameters include interest rate,
DG penetration limit, solar PV and wind power output
uncertainty, generator availability, electricity tariffs and fuel
prices.

C. Impact of Network Inclusion/Exclusion on DGIP Solution

To assess the impacts on the DGIP solution, the formulated
problem is solved with and without network. The former
considers the entire network system but the latter assumes that
the electricity demand is aggregated and connected to a
hypothetical node and all generators are assumed to be
connected to this node. One of the main differences lies in the
network losses which are only accounted for when considering
the network. However, since distribution networks span over a
small geographical area, the feeders and distribution lines are
usually short. Therefore, in properly designed distribution
networks, power losses are negligible and, hence, they are not
expected to significantly change DG investment planning
solution. This argument has been experimentally verified by
running simulations with and without a network on two insular
networks (the distribution networks of Sdo Miguel Island
described before and La Graciosa Island presented in [49]). In
both cases, the DGIP results with and without a network are
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very similar, only differing in one DG investment. Moreover,
the differences in total investment cost throughout a three-year
planning horizon are 2.2 and 3.5%, respectively.

Generally, excluding the network slightly results in
overinvestment. This is because neglecting the network would
naturally mean neglecting the voltage constraints. As a result,
this would lead to an increase in the size of DG integrated to
the system that would otherwise be impossible when
considering the network due to voltage rise issues. In the
systems studied, the increase in DG investments as a result of
not considering the network is negligible. Moreover, the cost
of losses in both test cases is too small (accounting for less
than 0.02 % of the total system cost) to have an impact on the
solution. Based on these results, the sensitivity analysis here is
carried out without considering the network. This is not
expected to affect the analysis work since the main aim of the
work here is to identify the parameters that significantly
influence DGIP solutions. It should be clearly understood that
the work in this paper is not to make investment decisions; it
should rather be understood as an important step that provides
relevant input to the development of robust planning tools.
The exclusion of network (i.e. collapsing the whole system
into one node) reduces the computation burden and helps one
to increase the level of details of other relevant issues such as
uncertainty and variability of uncertain parameters. It should
however be noted that the aforementioned findings may
largely depend on the size and type of system considered.

Moreover, the effect of network congestion on DG

TABLE 1
DATA FOR EXISTING GENERATORS
Generator Alterna  Installed OCpk ICp.k MCp.k ERpk
type, p tive, k capacity (€/MWh) (M€) (M€) (tons
(MW) /MWh)
1 Hydro Hydro  4.07 7.0 NA 0.38 0.0121
2 Geothermal ~GEOT  24.0 5.0 NA 1.20 0.0165
3 HFO-T* HFO 98.0 145.4 NA 0.01 0.5600
4 Wind WD 0 10.0 17.0 NA 0.80 0.0276
* Heavy fuel oil turbine
TABLE 11
DATA FOR CANDIDATE GENERATORS
Generator  Alternati  Installed  OCpx ICpk MCpik ERpk
type, p ve, k capacity  (€/MWh M€) (M€) (tons/MW
Mw) ) h)
1 Solar PV 1 1.0 40 3.00 0.06 0.0584
2 Solar PV2 1.5 40 3.83 0.08 0.0584
3 Solar PV 3 2.0 40 4.55 0.09 0.0584
4 Solar PV 4 2.5 40 520 0.10 0.0584
5 Solar PV 5 3.0 40 580 0.12 0.0584
6  Solar PV 6 4.0 40 6.89 0.14 0.0584
7  Solar PV 7 6.0 40 879 0.17 0.0584
8  Solar PV 8 10 40 11.94 0.24 0.0584
9  Wind WD 1 1.0 17 2.64 0.05 0.0276
10 Wind WD 2 2.0 17 4.00 0.08 0.0276
11 Wind WD 3 5.0 17 693 0.14 0.0276
12 Wind WD 4 10 17 10.51 0.21 0.0276
13 CGT** CGT 1 30 145.4 27.00 0.01 0.5600
14 Biomass BM 1 20 20 80.00 3.00 0.0276
** Combustion gas turbine
TABLE IIT
DEMAND GROWTH AND COz PRICE SCENARIOS
CO2 price scenarios
Demand growth scenarios (€/ton of CO2)
Stages  Low Moderate High Low Moderate High
TO 0% 0% 0% 5 5 5
Tl 2% 5% 10% 7 12 20
T2 5% 10% 20% 10 18 30
T3 7% 15% 30% 13 25 45

investment decision is not accounted for when the network is
neglected. Nonetheless, since DGs are placed close to the
consumption points, it can be fairly assumed that congestion is
less likely to occur. Other network constraints (such as voltage
and angle-related ones) can be easily managed by placing
some power system elements (such as reactive power sources
and storage systems) at the most appropriate places.

VI. RESULTS AND DISCUSSION

The analysis results with regards to the sensitivity of
investment decisions on DGs with variations of selected
system parameters are presented and discussed as follows.

A. Demand Growth and CO; Price

The total investment cost for every combination of demand
growth and emission price scenarios are shown in Table IV,
along with the corresponding overall system costs as in Table
V. We can see in these tables that DG investments are more
sensitive to emission price uncertainty than to demand growth
even if this may be case dependent. The DG investment
decisions corresponding to each scenario and time stage are
given in Table A.1 of Appendix A.

B. Interest Rate

The evolution of interest rate remains uncertain, and hence
it is subject to change at any time in the future. To see its
effect on DG investment decisions, it is changed by holding
other parameters at their base case values. Generally,
investments in DG fall as the interest rate increases. This is
illustrated in Fig. 4, where one can clearly observe the
decreasing trends of investment in DG (renewables, in
particular). Their share in the total energy produced also
follows a similar trend. This is in line with financial theory
which states that higher interest rates deter investments
because this raises the expected rate of return of an
investment, which does not incentivize investments. As an
example, an interest rate of 2% results in investments in all
candidate DGs of wind and solar types except PV1 and PV2
(see in Table II); whereas, for an interest rate of 12%, the
investments made only include PV7, PV§ and all wind type
DGs. The huge difference here highlights how sensitive the
investment decisions can be with respect to the interest rate.

C. DG Penetration Level Factor

DG penetration level factor is defined as the percentage of
electricity demand met by DG power at a certain instant. This
factor is another relevant parameter that affects the investment
decisions of DGs. Intuitively, one may ponder that the higher
the value of this factor, the higher the incentive for integrating
more renewables, and, therefore, the higher the DG
investments. But this holds only up to a certain threshold,
beyond which there seems to be few or no new investments
made. Fig. 5 clearly reflects this phenomenon. In the case
study presented in this paper, the threshold value of the
penetration level seems to be 40%. Below this level,
investments made in DG steadily increase with the penetration
level from almost no investments at 10% to seven investments
at 40%. However, this is not the case for higher penetration
levels. Even if the penetration level is set beyond 40%, no new
investments are justified.
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As can be seen in Fig. 5, the impact of DG penetration level
on emissions and expected system costs is also significant. As
expected, the increase in DG investments is offset by a higher
decrease in operation and emission costs, leading to
decreasing trends of the expected system cost and the
emissions with increasing penetration level. Beyond 40%, the
rate of changes in both curves is however insignificant. This
may be the maximum technical penetration limit of variable
energy sources in the absence of energy storage and
appropriate reactive power compensation mechanisms put in
place to counter the negative effects of integrating variable
generation such as voltage and grid stability issues. To
maintain a healthy operation of the system, high production
levels of RES-based DGs need to be curtailed. The curtailment
rate and level increase with the size of variable power capacity
installed in the system. Hence, in this situation, further
investment on such resources (beyond 40%) may not be
justified because doing so does not lead to further reduction in
system costs.

Alternatively, Fig. 6 shows the variation of DG investments
with respect to the DG penetration level factor. The results in
this figure also strengthen the fact that DG investments show
some variations with an increasing level of this factor. The
level of emissions gets lower as the DG penetration factor is
increased up to a certain level (around 40%), beyond which
the change is insignificant. This is indicative of the effect of
increasing investments in DGs up to this level, which is in line
with the previous statement.

As shown in Fig. 5, the DG penetration level can go as high
as 70% on an instantaneous basis. However, managing high
penetration levels of variable energy sources (often higher
than 25% or so) is quite challenging. Especially, a 50% or
more penetration level of variable energy sources may not be
possible in the absence of adequate storage systems, reactive
power compensation mechanisms and/or smart-grid solutions
which help to maintain the power quality and system stability
at standard levels. This is particularly the case in most insular
systems. In the system considered in the present analysis, the
actual wind and solar energy share is in the range of 23% and
27% (see Fig. 4) but instantaneous penetration levels can
reach 60-70% (see Fig. 5) without jeopardizing the system’s
overall integrity. Depending on the operational situations of
the system, this may be possible on certain occasions and
impossible on others. Overall, in the absence of energy storage
systems and/or other enabling mechanisms, the results in Fig.
5 also support the fact that the highest possible penetration
level is around 40% (with the exception of a few instantaneous
occasions). In many insular systems (for instance, Cape Verde,
Ten Mile Lagoon -Australia, Crete - Greece) and
interconnected systems (for instance, Portugal, Spain and
Denmark), instantaneous wind penetration levels of 50% or
higher have been regularly happening.

D. Fuel Prices and Electricity Tariffs

The impact of fuel prices and electricity tariffs of renewable
generators are also analyzed by varying the levels of these
parameters. The results of this sensitivity analysis are
summarized in Table VI. As it can be seen in this table, DG
investment decisions are very sensitive to fuel prices. For
example, when the fuel price is considered to be 30% lower

TABLE IV
IMPACT OF DEMAND GROWTH AND COz PRICE UNCERTAINTY ON DG
INVESTMENTS

CO:z price scenarios

TIC (M€) Low Moderate High
Demand Low 38.462 46.220 54.540
growth Moderate 38.462 46.996 64.245
scenarios High 38.462 53.078 64.757
TABLE V

VARIATION OF OBJECTIVE FUNCTION VALUE WITH DEMAND GROWTH
AND CO; PRICE SCENARIOS

CO:z price scenarios

TC M€) Low Moderate High
Demand Low 246.111 283.029 338.211
growth Moderate 289.224 336.038 406.261
scenarios High 375.187 442.091 543.606
= 27% ~~Wind and solar [ 180
S energy share 160
s = ~TIC
G £26% 140
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g 2 100
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Fig. 4. Impact of interest rate on DG investments and energy production
from wind and solar sources.

than that of the base case, it becomes less attractive to invest
on DG (especially solar photovoltaics). But a fuel price 30%
higher results in more investments in PV.

In addition to fuel prices, electricity tariffs also play a
significant role in the decision-making process, particularly in
the context of DG investment planning. In general terms, the
price of electricity generated from wind or solar DG highly
depends on the initial level of capital invested on these DG
technologies. Once the investments are made, operation costs
are normally very low. Nowadays, the capital costs of the
main components pertaining to these technologies are
continuously falling, with a learning rate of more than 20%
per annum. This trend will most likely be sustained [45],
resulting in a dramatically lower final cost of electricity (tariff)
generated from such resources.

The effects of variations in PV energy tariffs on DG
investments are especially investigated in this work. As shown
in Table VI, when solar PV generators are considered to be as
competitive as wind power generators, i.e. with a tariff of
€20/MWh, more investments in PV are made compared to the
base case. On the other hand, if the electricity tariff of energy
coming from PV turns out to be twice that of the base case
(€80/MWh), the number of investments made in solar PV
declines.

However, this is not likely to happen given the current
learning rate of solar PV technology. It is also worth
mentioning that the planning solution in the case of +100%
tariff for PV energy is exactly the same as the solution in the -
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Fig. 5. Variations of emissions, investment and expected system costs
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Fig. 6. Variation of DG investments with penetration level and their effect
on total CO2 emissions.

30% fuel price case, which shows the importance of energy
tariff arrangement by the regulatory body.

The crowding of investment decisions in the first stage in
Table VI may be due to two reasons. The first reason could be
because of the absence of investment constraints related to
financial and logistic matters. The second reason could be
because of the relatively higher net present value of operation,
maintenance and emission costs in the first stage when
compared with that of any other stage. This, along with the
first reason, may justify more investments to be made in the
first stage rather than in any one of the subsequent stages.

E. Wind and Solar Power Output Uncertainty

To analyze the effect of uncertainty in wind and solar power
outputs, two scenarios are created for each. One scenario is
taken to be above the average hourly profile (roughly 30%
higher than that of the base case), and the other one is taken
below the average profile (approximately 30% lower than that
of the base case) in each case. The results of the analysis are
summarized in Table VII. One can observe that when the B-
wind scenario is considered, the number of investments on
wind type DGs becomes lower than these of the base case (see
in Table VI). This is because of the lower yield of wind
resources. In contrast, more investments are made on wind
type DGs when the A-wind scenario is considered. The
sensitivity of investments in solar PVs with respect to the
uncertainty of PV outputs is even higher, as can be seen in this
table. Note that the reasons mentioned before in the case of
Table VI could explain the crowding of investments in the
first stage in Table VIIL.

10

F. Demand and RES Power Output Variability

As stated earlier, the natural variation with time that exists
in some of the system parameters such as demand and
renewable energy source (RES) outputs leads to a large
number of operational situations, adding extra complexity to
the DGIP problem. Because of this, a significantly reduced
number of snapshots are usually considered in such problems.
For example, demand variability is commonly represented by
a load duration curve, which is then aggregated into three to
five load blocks. Unfortunately, this may compromise the
quality of solution obtained. In light of this, we investigate
how the reduction of operational situations, via clustering,
affects the DG investment solution. To do this, we make use
of the standard k-means clustering algorithm, a popular
clustering analysis method in data mining, to obtain different
number of data clusters (aggregates). The representative
snapshot in each cluster is assumed to be the mean of the
snapshots grouped together. For different number of clusters,
the investments made, along with total cost and average
simulation time, are summarized in Table VIII.

According to the results in this table, there seems to be a
tendency to overinvest when the snapshots are further reduced.
This may be due to an overestimation of the operation costs,
which triggers more investments. Basically, investments are
justified if the net reduction in operation costs (which may
include cost of energy production, emission and losses) is
higher than or equal to the overall investment costs. Based on
this, if the operation costs are artificially overstated for some
reason such as clustering inaccuracy, the net reduction in
operation costs may seemingly be high, leading to the
justification of more investments. However, it should be
noted that this may not always be the case, i.e. a lower number
of clusters may not necessarily be associated with an
overestimation of operation costs. Depending on how the
representative snapshots in all clusters are taken, the operation
costs may be overestimated or underestimated, resulting in
overinvestment or underinvestment, respectively.

Another important observation from Table VIII is that
clustering the hourly operational snapshots in a year shows
little impact on the investment solution beyond a certain
threshold (which lies somewhere in the range of 300 and 400).
This reflects that as far as the initially large number snapshots
are clustered into 300 or more and the representative snapshots
are carefully selected, the investment outcomes may not be
influenced by clustering operational situations but
significantly facilitate the solution process.

G. Generator Availability

It is understood that a generator can only produce power
when it is available. There are two main factors which affect
generator’s availability: unplanned (forced) and planned
(scheduled) outages. Such outages may also condition DG
investment solution. Especially, more investments can be
expected if, by chance, generator outages partially or fully
coincide with relatively high production times of DG
candidates. For example, if outages essentially occur during
sunny hours, more investments could be made on solar PV
candidate generators to fill in the generation gap left behind as
a result of the outages. However, the chance of this happening
can be very low since both processes are independent.
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TABLE VI
IMPACT OF FUEL PRICE AND DG TARIFFS ON DG INVESTMENT DECISIONS

Changes in PV

Changes in fuel price energy tariff

Stages +0% -30% +30% -50% +100%
PV7, PV7,
Wogi WDI, | PVS, pvs, | wpl,
I T1 WD2’ WD2, WDI1, WDI1, WD2,
.“Ve.s“;‘e“‘d wps. | WP3. | w2, WD2, | WD3,
‘“IW”;D é“ wpa | WD4 | wD3, WD3, | WD4
sotar DG WD4 WD4
T2 PV7 PV8 PV6 - PV8
T3 - - PV5 PV6 -
TC (M€) 364 312 412 358 372
Total expected emissions
(x 1000 tons of COs) 268.8 296.4 | 256.5 263.1 296.4
TABLE VII
IMPACT OF WIND AND SOLAR PV POWER OUTPUT UNCERTAINTY ON DG
INVESTMENT DECISIONS
Scenarios Time stages
T1 2 |13 |mcave)  |rc ve)
Below PV8,WD2, _
Wind average (B) |WD3,WD4 PV7 44.81 412
Scenarios Above PV8, WD1,WD2,
average (A) |WD3,WD4 i i 38.46 339
Below PV8, WD1,WD2,
Solar average (B) [WD3,WD4 i 38.46 373
Scenarios Above PV8, WD1,WD2,
average (A) |WD3,WD4 PV7 [PV6 47.00 360
TABLE VIII
IMPACT OF SNAPSHOT AGGREGATION ON DG INVESTMENT DECISIONS
TIC (M€) Average
simulation
Number of Stage 1 Stage 2 Stage 3 time
snapshots (T1) (T2) (T3) TC (M€) (seconds)
Peak demand 47.849 6.691 5.118 - -
100 38.462 8.533 6.082 359.45 2
300 38.462 8.533 6.082 360.66 4
324 *[17] 38.462 8.533 6.082 362.98 6
500 38.462 8.533 6.082 361.56 7
1000 38.462 8.533 6.082 362.37 21
2000 38.462 8.533 6.082 363.09 60
4000 38.462 8.533 0.000 363.55 210
6000 38.462 8.533 0.000 363.70 420
8760 38.462 8.533 0.000 363.80 720

* Snapshots are reduced according to the method in the reference

In the particular example presented earlier, the effects of
forced outages of geothermal and hydro power units on the
solution are analyzed. The availability series of these units are
generated using a binomial distribution function, assuming
generator outage rates of 15% and 10%, respectively. Note
that these rates consider both types of outages.

When generating the series, an average off-time of 4 hours
is factored in for both generator types. Given this input
information, the DGIP problem is solved and its solution
includes PV8 and all wind DG candidates in the first stage,
PV7 in the second stage, and PV6 in the third stage with a
total investment cost of 53.08 M€. This solution differs from
that of the base case by one investment (i.e. PV6). But, in
general, more investments could be justified if the generator
outages occur during/around the peak hours of renewable
power productions.

VII. CONCLUSIONS

This paper has presented comprehensive experimental
analyses to determine the sensitivity of DG investments with
variations of several uncertain parameters. The aim of such

analyses has been first to investigate the effect of variability
and uncertainty in model parameters on the investment
decisions of DGs, and second to identify the parameters that
have the highest degree of influence on DG investments. The
results of our analyses generally showed that both uncertainty
and variability have a meaningful influence on DG investment
decisions. In fact, the degree of influence varies from one
parameter to another. Numerical results from the case study
show that generator outages have little or no impact on the
RES-based DG investments; whereas, uncertainty in CO; and
fuel prices, interest rate and RES power outputs significantly
influence investment decisions especially in variable energy
sources. In particular, it has been found out that uncertainty in
CO; and fuel prices as well as the interest rate seem to
dramatically condition decisions compared to the uncertainty
in demand growth and RES power outputs. A thorough
investigation on the number of clusters of the hourly
operational snapshots in a year shows that the clustering
process results in little impact on the investment solution
beyond a certain threshold (somewhere in the range of 300
and 400). This reflects that as far as the initially large number
snapshots are clustered into 300 or more, and the
representative snapshots are carefully selected, the results may
not be influenced by clustering operational situations but
significantly facilitate the solution process.

In general, the results revealed that ignoring or inadequately
considering uncertainty and variability in model parameters
has a quantifiable cost. Based on the extensive analysis, a
stochastic modeling of uncertainty related to emission and fuel
prices, interest rate, RES power outputs and demand growth is
very critical for obtaining robust investment decisions. The
comprehensive analysis performed in this work can help
planners to properly weigh the effect of ignoring or
considering the uncertainty and/or variability of one or more
model parameters. Accordingly, a realistic planning tool
considering all relevant sources of uncertainty and/or
variability and solution methodologies can be developed,
which leads to high quality and robust investment solutions.

APPENDIX A: DETERMINISTIC INVESTMENT SOLUTIONS

A deterministic DGIP model can be formed by allowing the
DG investment variables (in the presented model) to be
scenario-dependent, i.e. by assuming a given scenario happens
with certainty. The investment solution of each scenario is
presented in Table A.1. As it can be seen, the DG investments
are particularly sensitive to the variation of CO» price. Note
that, in Table A.1, T; (where i€{1,2,3}) denotes the time stage
in which the corresponding DG is installed.

APPENDIX B: PIECEWISE LINEARIZATION

Notice that (1.10) contains quadratic flow term. For the
sake of simplicity, the indices are dropped here. This quadratic
term is linearized using a first-order approximation as:

L

fn =) @L= )™ Ay, B.1)
=1

fom = fim — fom (B.2)

o 2 0 fy 2 0 B3)
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TABLE A.1

DG INVESTMENT DECISIONS FOR EACH SCENARIO AND STAGE

Scenarios DGs
Demand | CO> PV4 | PV5 | PV6 | PV7 | PV8 | WDI | WD2 | WD3 | WD4
growth price
Low Low 0 0 0 0 Tl Tl Tl Tl Tl
Moderate | Low 0 0 0 0 Tl T1 Tl T1 Tl
High Low 0 0 0 0 Tl Tl Tl Tl Tl
Low Moderate | 0 0 0 Tl T1 Tl T1 Tl
Moderate | Moderate [ 0 0 0 Tl T1 Tl T1 Tl
High Moderate | 0 0 Tl Tl Tl Tl Tl
Low High 0 0 T2 | Tl Tl Tl Tl Tl Tl
Moderate T2 | Tl Tl Tl Tl Tl Tl
High T2 | Tl Tl Tl Tl Tl Tl

L
frim * fam = Z Afnm,l (B4)
=1
Afnm,l = Afnm,l+1 ; VI<L (B.5)

where (B.1) represents the piecewise approximation of the
quadratic flow variable by considering L segments. In order to
use only the first quadrant of the quadratic curve (which is
advantageous in terms of reducing problem complexity [40]),
the flow variable is decomposed into its forward (positive) and
reverse (negative) auxiliary flow variables as in (B.2). Note
that both of these variables cannot be nonzero at the same time
and are non-negative as enforced by (B.3). Eq. (B.4) ensures
that the sum of the step-size flow variables Af,,,,; is equal to
the flow. Eq. (B.5) guarantees a successive filling of the
partitions.
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