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1   Introduction 

 
The deregulated environment of the electricity sector, such as the one in mainland Spain and 

Portuguese systems, has induced the creation of mechanisms to encourage competition. In this 

framework, the main goal of deregulation is to assure a clear decoupling between generation, 

electricity sales and network operations. 

Hydro energy is currently one of the most important renewable energies in the Portuguese 

system [1]. Hydro units are fast units compared to coal-fired units and liquefied natural gas 

units [2]. Also, hydro units produce less pollution than competing technologies, being 

considered favourable options for electricity generation at intermediate, peak and base loads [3]. 

Managing the available water in reservoirs in the best way possible, safeguarding its future 

use, provides self-scheduling and represents a significant advantage for hydro generating 

companies in face of competition. Taking into account this self-schedule, a hydro company 

submits optimal offers to the market. Hence, in a deregulated environment, short-term hydro 

scheduling represents a crucial tool to support bidding decisions [4]. 

The market environment typically is composed of a variety of submarkets to facilitate trade 

between consumers and power producers, such as the pool and the bilateral contracts markets 

[5]. The pool market is particularly relevant to our problem. 

The pool is composed of the day-ahead market, the balancing market and the adjustment 

market [6]. Most of the energy is negotiated in the day-ahead market, so the other two 

markets provide the final tuning of the traded energy. The pool is based on purchase bids and 

sale offers by consumers and generating companies, respectively. 

As a consequence of the market power of some producers, two types of generating 

companies can be determined: price-makers [7, 8] and price-takers [9–11]. If a perfectly 

competitive market is assumed, the generating companies are considered as price-takers. 
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Price-takers accept market prices without being able to change them [12]. The bidding 

process in those markets can be seen in [13, 14]. If an oligopolistic market is assumed, the 

bidding decisions made by participants with market power influence prices [15]. Bid 

optimization models for those markets can be seen in [16]. 

A novel stochastic mixed-integer linear programming (SMILP) approach is proposed in 

this paper for solving the short-term optimal scheduling and trading in the day-ahead pool 

market of a price-maker hydro producer. The effect on market prices is modelled by using 

stochastic residual demand curves. The proposed approach contains continuous and binary 

variables, and allows making decisions considering parameter uncertainty explicitly. 

Uncertainties are modelled by considering sets of scenarios to describe the residual demand 

curves, where optimal bids (quota, price) are selected for each scenario. The proposed 

approach is optimized for sets of scenarios using the amount of power supplied by each unit 

facing the 24-hours residual demand curves of every scenario. 

The proposed SMILP approach efficiently solves the stochastic optimization problem of a 

price-maker hydro producer in cascaded configuration including the head change effect. The 

cascaded configuration, stochasticity and price-maker objective function are not considered in 

[17]. A price-maker formulation is considered in [18, 19], but power generation is assumed to 

be linearly dependent on water discharge. Also, a deterministic residual demand curve is 

considered in [20], while in our paper it is modelled as stochastic.  

The new contributions of the paper are threefold: 

(i) to assess the impact of a hydro system on market prices based on sets of scenarios that 

describe the residual demand curves; 

(ii) to construct the supply curves for the day-ahead market, thus providing a production 

strategy to maximise profits for a price-maker hydro producer; 

(iii) to analyze a realistic case study, based on a Portuguese hydro system in cascaded 

configuration. 
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Nomenclature 

 ,  set and index of residual demand curve scenarios 

kK ,  set and index of hours in the considered time horizon 

jJ ,   set and index of reservoirs/plants owned by the hydro producer 

sS ,   set and index of steps of the residual demand curve 

rR,  set and index of the volume intervals 

iI ,  set and index of the breakpoints of the unit performance curves 

mM j ,   set and index of reservoirs upstream to reservoir j 

j   feasible operating region of plant j 

jm
 

time required for the water discharged/spilled from reservoir m to reach reservoir j, 

in hours 

   probability of scenario    

)( ,, kk q residual demand curve, expressing the market price as a stepwise monotonically 

decreasing function, for scenario   in period k, of the price-maker quota 

kq ,  hydro producer’s quota for scenario   in period k 

)( , ,~ kjv tr   piecewise linear approximation of the power generation function for a parametric 

number of water volumes, rv~  

kjp ,,   power generation of plant j for scenario   in period k 

minmax, jj pp  power generation limits of plant j 

sk ,,   price matching step s of the residual demand curve for scenario   in period k 

skf ,,   fraction of the producer’s quota for residual demand curve step s 

max
,, skf    maximum producer quota for the selected residual demand curve step s for scenario 

  in period k 

sku ,,   binary variable equal to 1 if step s is the last step required to obtain quota kq ,  for 

scenario   in period k , and equal to 0 otherwise 
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min
,, skq  summation of power blocks from step 1 to step s-1 of the residual demand curve for 

scenario   in period k 

kja ,  reservoir j inflow during period k 

kjv ,,    reservoir j storage for scenario   at end of period k 

minmax, jj vv   water storage limits of reservoir j 

0,jv     initial storage of reservoir j 

Kjv ,     final storage of reservoir j 

kjt ,,    plant j discharge for scenario   during period k 

minmax, jj tt   limits on water discharge of plant j 

kjs ,,   spillage of water by reservoir j for scenario   during period k 

kjw ,,    decision to commit plant j for scenario   during period k 

jR     discharge ramping limit of plant j 

jUS   plant j start-up cost 

kjy ,,     binary variable equal to 1 if plant j is starting-up for scenario   at beginning of 

period k 

kjz ,,     binary variable equal to 1 if plant j is shutting-down for scenario   at beginning of 

period k 

kg ,',  binary variable linking the offers for scenarios   and '   in hour k 

rkjd  , , ,  binary variable choosing the right curve according to the reservoir j volume for 

interval r ( 1 , , , rkjd  if rjkjrj HvH  , , ,1 ,   ) 

ikjm  , , ,  binary variable assuring the limits of the water discharged of plant j between the 

breakpoint i and i+1 in period k ( 1 , , , ikjm  if ijkjij TtT  , , ,1 -  ,    or 

1   , , ,  ijkjj, i TtT  ) 

ikj  , , ,   weight of breakpoint i for plant j for scenario   during period k 

i ,jT   plant j discharge at breakpoint i 
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rijP  , ,  plant j power output at breakpoint i for interval r 

rjP  ,   maximum power difference between intervals R and r 

rjH  ,   reservoir j volume for interval r 

A   matrix of constraints 

x   vector of decision variables 

c    vector of coefficients for the linear term  
minmax ,bb  superior and inferior limit vectors on constraints 

minmax ,xx  superior and inferior limit vectors on decision variables 

 

2   Price-maker hydro scheduling problem 

 
In the majority of electricity markets generating companies make decisions according to the 

ones made by the other companies. However, there are few generating companies able to 

exercise market power, meaning that a perfect competition model cannot be achieved [21–

23]. According to the rules set forth by the Iberian Electricity Market (MIBEL), the price-

maker producer condition is applied when a company has a market quota higher than 10%, 

measured in terms of electricity generated within the MIBEL [24]. Such producer is able to 

strategically manage his flexible hydro plants in the short term, in order to manipulate market 

prices and maximize profit [18]. The flexibility of the hydro plants is a crucial feature because 

they can be started and stopped, and output levels can be changed, almost instantaneously. 

Another feature that confers market power for the producer is his relative size, i.e., the hydro 

producer can exercise market power by manipulating prices through capacity withholding 

[25]. Besides, in [18] it is stated that when hydro generators have market power they would 

tend to allocate more hydro production to off-peak hours than to peak hours, in order to 

provoke price spikes. By doing so, they can exploit competitors’ capacity constraints, 

reducing their own supply and driving up the market price when demand is at the peak [26]. 
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Accordingly, the optimal bidding of a price-maker hydro producer, and, consequently, the 

market price for a given hour, is determined by the so-called residual demand curve that 

defines the market price as a monotonically non-increasing function of the producer’s quota 

[27]. This curve is obtained by subtracting the quantity offered by the competitors from the 

total demand for each hour. Thus, the market price is obtained as a function of the quantity 

that the price-maker company offers to the day-ahead market. 

The price-maker hydro scheduling problem can be formulated as a non-linear optimization 

problem with linear constraints, because the profit is the result of the market price multiplied 

by the quota of the price-maker. To overcome the difficulty of having a non-linear 

optimization problem, several linearizing methods can be adopted to define the residual 

demand curves, such as: 1) polynomial approximation; 2) piecewise linear approximation;  

3) stepwise approximation [27]. The method adopted in this work is characterized by a 

stepwise approximation since it is the way bids are made in most pool-based electricity 

markets. Moreover, the stepwise approximation provides a closer agreement between 

expected and resulting prices, as stated in [27]. According to [21], the number of steps to 

describe a residual demand curve is small for fairly small changes in the quota, e.g., a 

variation of 20% in the quota commonly results in no more than 10 steps. This provides a 

convenient framework for the construction of the mentioned curves. 

Fig. 1 shows a typical residual demand curve. This curve is presented as a pair (quota, 

price) [28], where it is possible to control the total energy in each step through binary 

variables, sku , .  

The problem of developing the optimal offering strategies for a generating company takes 

place in a day-ahead market, consisting of 24 hourly auctions. Although the 24 hourly 

auctions are cleared simultaneously, the result of each auction is based only on the energy 

offers that have been accepted for that hour at the corresponding marginal price [29]. 
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The residual demand curves of a price-maker producer can be determined: 1) by market 

simulation or 2) employing forecasting techniques [30]. The hourly residual demand curves 

are considered as known data, as in [28]. 

Uncertainty is modelled in this paper by a set of scenarios for the hourly residual demand. 

The number of scenarios affects the shape of the offer curves decided by the proposed 

approach. A small number of scenarios may not be enough to describe the uncertainty 

throughout the decision-making horizon. In [22], eleven scenarios were considered since the 

variation in the objective function is not relevant for a larger number of scenarios. This proves 

that the accuracy with which the day-ahead market uncertainty can be represented tends to 

saturate when the number of scenarios considered increases. Hence, in order to provide a 

good representation of the producer’s interaction within the electricity market, in this paper 

ten demand residual scenarios are considered for each hour. Indeed, considering a large 

number of residual demand curve scenarios may result in high CPU times or even 

intractability, due to the overwhelming need of having binary variables for its modeling. 

Scenario reduction techniques are only advisable for eliminating scenarios with very low 

probability and bundle scenarios that are very close [31] while keeping, as much as possible, 

the stochastic properties of the original one [32].  

The hydro producer must settle on the hourly offer curves that should be submitted to the 

day-ahead market to maximise profit [23]. Deciding the location of the intersection points 

between residual demand curve scenarios and the offer curve allows selecting the appropriate 

bids, which should be increasing both in quota and in price. All scenarios of a particular hour 

are connected by a set of increasing constraints. Fig. 2 shows three residual demand curve 

scenarios and the corresponding supply curve built through ( kq , , sk ,, ) pairs. According to 

Fig. 2, each residual demand curve scenario,  , must have one, and only one, corresponding 

pair ( kq , , sk ,, ) that must be located in the residual demand curve. 
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3. SMILP formulation of a price-maker hydro producer 

 
The problem can be stated as to find out the optimal price-quota combination that maximises 

the total profits of the price-maker hydro producer in the day-ahead market. 

3.1 General SMILP approach 

The general formulation for a SMILP problem can be defined as: 

 max 








1
 )( xcxF T  (1)  

                                            subject to: 

 maxmin xxx   (2) 

 maxmin bxAb   (3)  

 Jjx j integer  (4)  

The market clearing price is considered, in our paper, as a linear function of the producer’s 

quota. Each power production function is approximated through three preset values, rjH  , , of 

the storage. Also, for each water volume, the kjkj qp  , , , ,       relation is characterized by a 

piecewise linear approximation with four breakpoints, as will be detailed later on. 

3.2 SMILP non-linear problem formulation 

The concept of residual demand curve, that defines market clearing price as a 

monotonically non-increasing function of the producer’s quota, can be used. Hence, the 

operation of a hydro producer acting as a price-maker can be mathematically modelled 

following the formulation of section 3.2 as: 

       
  














 

1 1
 , ,

1
 , , , )(Maximize

K

k
kj

J

j
jkkk ySUqq  (5)  

                               subject to: 

     KkJjp jkj  ,,, , ,   (6)  
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     Kkpq
J

j
kjk 



,
1

 , , ,   (7)  

The first term in (5) is related to the profit of the price-maker hydro producer, while the 

second term is related to the start-up costs associated with each plant j. This first term is  

non-linear, since the profit results from multiplying the price by the quota. The set of 

constraints (6) allows modelling the features of the hydro units, such as, the start-up and 

shutdown procedures, discrete hydro unit-commitment constraints, ramp rates, minimum and 

maximum power output constraints, and also the head effects, using an improved linearization 

method as in [17]. The set of constraints (7) expresses the price-maker quota as the total 

power production of its units for each hour. 

3.3 SMILP linear problem formulation 

The previous optimization problem cannot be solved directly using standard software, since 

the problem is non-linear, discontinuous and large-scale. 

Therefore, it is assumed that the residual demand curves can be expressed as stepwise 

curves, whose step size is connected to the size of the energy block at given prices.  

An equivalent formulation of the problem based on SMILP is presented in this paper, using 

continuous and binary variables. 

3.3.1   Objective function 

The problem can be defined as: 

         
   














 

1 1
 ,,

1 1

min
 ,, , , , , ,, )(Maximize

K

k
jk

n

s

J

j
jsksksksk ySUquf

k

 (8)  

The objective function expresses the price-maker hydro producer profit in the day-ahead 

market. The producer’s revenues, for hour k, are approximated by a stepwise function using 

binary variables, as shown in Fig. 1. The binary variables are employed to define each step s 

of the stepwise function corresponding to the residual demand curve. 

 

 



11 

3.3.2   Price-maker constraints 

These constraints are defined as in [28], given by: 

      Kkpq
J

j
kjk 



,
1

 , ,,   (9)  

      Kkqufq
S

s
skskskk 



,)(
1

min
,,,,,,,   (10)  

The set of constraints (9) are identical to (7). The set of constraints (10) determines the 

value of the hydro producer’s quota, kq , , in every hour, depending on the variables skf ,,  

and sku ,, . The minimum quota for step s is defined by the parameter min
,, skq  (note that 

0min
1,, kq ,  k), whereas the nonnegative continuous variables skf ,,  express the additional 

fraction of step s that is filled. Step s can only be used if step s - 1 is fulfilled.  

              KkJjfuf sksksk  ,,0 max
,,,,,,   (11)  

In (11) the lower bound assumes nonnegative values  for skf ,, , whereas the upper  

bound does not exceed the maximum producer quota for the selected residual demand  

curve step s for period k; if step s is not selected 0,, sku , then the upper bound of skf ,,  is 

zero and 0,, skf  . 

              SsKku
S

s
sk 



,,1
1

,,   (12)  

In (12) the summation of the binary variables that represents each step s of the residual 

demand curve for an hour k is equal to one. This means that one variable sku ,,  only is active 

in each hour, selecting the optimal step that is added to the producer’s quota. If 1,, sku  then 

only step s is selected for hour k. 

3.3.3   Market offer constraints 

In order to develop offering strategies as non-decreasing curves it is needed that all the 

residual demand curve scenarios are considered for each hour. This implies that each offer 
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curve is completely defined by a set of pairs of scenarios   and ' , with '  , 

establishing a link between different scenarios. The difference between   and '  is 

explained as the relative position of two possible residual demand curve scenarios,   and ' , 

where all possible combinations among them is given by 2/)1(  . 

The following conditions are imposed, for each pair of offers ( ' , ), to ensure that an 

increasing bid is submitted to the market: 

              KkgMqq k
q

kk  ,' ,,',,',   (13)  

              KkMgqq q
kkk  ,' ,)1( ,',,,'   (14)  

SsKkgMuu k
p

S

s
sksk

S

s
sksk 



,,' ,,',
1

,,',,'
1

,,,,    (15)  

SsKkMguu p
k

S

s
sksk

S

s
sksk 



,,' ,)1( ,',
1

,,,,
1

,,',,'    (16)  

Constraints (13)–(16) are compatible with the case of residual demand curves that intersect, 

such as the ones depicted in Fig. 2. These constraints have been adopted from [7, 23]. 

According to Fig. 2, each residual demand curve scenario,  , must have one (and only one) 

corresponding pair ( kq , , sk ,, ) that must be located in the residual demand curve. 

The variable kg ,',  is a binary variable, qM  and pM  are a large quota and a large price, 

respectively. If 0,', kg  , constraints (13) and (15) are enforced, whereas if 1,', kg  , 

constraints (14) and (16) are active. 

3.3.4   Hydro constraints 

Hydro constraints are presented hereafter: 

              KkJjtp kjvkj r  ,,0)( ,,~,,    (17)  

In (17), power generation, kjp ,, , is related to the water discharge and the characteristics of 

the reservoir. To avoid the non-linearities a piecewise linear approximation of the power 

generation function is desirable. An enhanced linearization method is considered taking into 



13 

account the head change effect. This method corresponds to: 1) an extension of [9] in order to 

slightly generalize its approach to a parametric number of water volumes, and 2) a more 

accurate assessment of the power production upper bound through a convex combination 

method considering both volumes and discharges [17]. Three fixed values rjH  ,  of the storage 

are implemented. The kjkj qp  , , , ,       relation is denoted by a linear piecewise approximation 

with four breakpoints for each water volume. 

              kjkj
Mm

kmkmkjkjkj ststavv
j

jmjm ,,,,,,,,,1,,,, )(   


    

                                                                                            KkJj  ,,  (18)  

              KkJjvvv jkjj  ,,max
,,

min   (19)  

              KkJjtwttw jkjkjjkj  ,,max
,,,,

min
,,   (20)  

              KkJjRttRt jkjkjjkj   ,,,,1,,,,   (21)  

Eq. (18) is related to the water balance equation for each reservoir. In (19), the inferior and 

superior water storage bounds are defined. In (20), the same happens for water discharge.  

The binary variable, kjw ,, , is equal to 1 if plant j is on-line in hour k, and 0 otherwise.  

Also, constraints on discharge ramp rates are implemented in (21), which might be a 

consequence of environment or navigational impositions. 

              KkJjpwppw jkjkjjkj  ,,max
,,,,

min
,,   (22)  

              KkJjs kj  ,,0,,   (23)  

              KkJjwwzy kjkjkjkj   ,,1,,,,,,,,   (24)  

              KkJjzy kjkj  ,,1,,,,   (25)  

In (22), the inferior and superior bounds on power generation are defined. Eq. (23) defines 

a non-negative value for water spillage. Eqs. (24) and (25) model the starting-up and shutting-

down of hydro plants. 



14 

                     KkJjTt
zi

ikjijkj 


,,0  , , ,,, ,   (26)  

              KkJjw
zi

kjikj 


,,0 ,, , , ,    (27)  

              KkJjm ikjikj  ,,0 , , , , , ,    (28)  

              1   :,,,1  , ,, , , ,  liZlKkJjmm lkjikj   (29)  

              KkJjd
Rr

rkj 


,,1 , , ,   (30)  

             KkJjdPPp
zi

rkjrjikjrijkj 


,,0)1(    , , , , , , , , ,, ,    (31)  

              KkJjdHv
Rr

rkjrjkj 


 ,,0  , , ,1 ,, ,   (32)  

              KkJjdHv
Rr

rkjrjkj 


,,0  , , ,,, ,   (33)  

Constraints (26)–(33) complete the model (8)–(25) by approximating the function of power 

production (17) with a parametric number of water volumes. Constraints (26)–(29) express 

the plant j discharge during period k. According to (28), ikj  , , ,  can only be nonzero if the 

related binary variable, ikjm  , , , , is equal to one. Note that 10  , , ,  ikj . Eq. (30) establishes 

the logical value of the d variables responsible for determining volumes intervals.  

Eq. (31) expresses the power generation kjp ,,  for volume interval r. Constraints (32) and 

(33) define, for every hour k, the two opposite water volumes of the interval where the 

calculated volume kv lies. 

 KkJjvv Initial
jj  ,,0, ,   (34)  

              KkJjvv Final
jKj  ,,, ,   (35)  

In (34) and (35), the initial, Initial
jv , and final, Final

jv , reservoir levels are imposed. 
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4   Case study 

 
The SMILP approach has been tested on a Portuguese hydro system in cascaded configuration 

with three reservoirs. Table 1 shows the hydro data. The modelling was carried out in 

MATLAB environment and solved using CPLEX 12.1, considering a 3.47-GHz dual 

processor with 48 GB RAM. 

Table 1: Hydro data 

# 
min
jv  

(hm3) 

max
jv  

(hm3) 
0,jv  

(hm3) 

min
jp  

(MW) 

max
jp  

(MW) 

min
jt  

(m3/s) 

max
jt  

(m3/s) 

1 0 9.90 7.92 0 174.00 111.67 335.00 

2 0 13.50 10.80 0 191.00 110.00 330.00 

3 0 26.40 21.12 0 240.00 140.00 408.89 

 

Final storage in the reservoirs is assumed identical to the initial value. The targets on 

storage can be determined by medium-term horizons [33]. The start-up costs of the hydro 

units are assumed to be given by 5.2max  jj pUS , and forbidden zones are taken into 

account using (20). The time horizon considered is one day, since we model a day-ahead 

market. The residual demand curves are expressed as stepwise functions with 5 steps. The 

total number of scenarios for the residual demand curves is 10. 

Fig. 3 shows the residual demand curves scenarios at hours 1, 5, 6, 12, 16 and 23. The 

optimal solution corresponds to the specific points that define the optimal offering strategies 

to submit in the day-ahead market for each residual demand curve.  

In order to prove the efficiency of the SMILP approach, a comparison with another 

approach (called AP.1) is provided. The AP.1 approach also considers water discharges in 

forbidden zones, discharge ramping constraints and units start/stops, but the power generation 

is considered to be depending linearly on water discharge, thus disregarding head 

dependency. 
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Table 2 summarizes the dimensions of the two optimization problems. 

Table 2: Optimizing characteristics of each approach 

# AP.1 SMILP 

Constraints 11760 24720 

Continuous variables 3600 7200 

Binary variables 4440 9480 
    

The optimal storages of the reservoirs are presented in Fig. 4 for scenario 1. The optimal 

discharges of the plants are presented in Fig. 5. A different behaviour is likely to be verified in 

Fig. 4 for the first and second reservoirs, as the AP.1 approach ignores the head change effect. 

Indeed, the water storage in the first reservoir is higher for the proposed approach, increasing 

the head variation between consecutive reservoirs.  

The comparison of SMILP with AP.1 approach results, shown in Fig. 4, reveals the 

influence of considering the head change effect in the behavior of the reservoirs. The 

upstream reservoir should operate at a suitable high storage level in order to benefit the power 

generation efficiency of its associated plant, due to the head change effect. Hence, the storage 

trajectory of the upstream reservoir is pulled up using the SMILP approach. Instead, the 

storage trajectory of the last downstream reservoir is pulled down using the SMILP approach, 

thereby improving the head for the immediately upstream reservoirs. 

The results in Fig. 5 are consistent with those in Fig. 4. Hence, even if the average water 

discharge is equal for both approaches, the average storage and the average quota are higher 

with the SMILP approach, as shown in Table 3. 

Table 3: Computational results for both approaches 

Approach Average Discharge  
(%) 

Average Storage  
(%) 

Average Market 
Clearing Price 

(€/MWh) 

Average Quota 
(MW) 

AP.1 65.25 69.94 28.67 398.37 

SMILP 65.25 70.11 24.38 485.72 
 

Table 4 provides the maximum achievable profit for each approach.  
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Table 4: Expected total profits for both approaches 

Approach Expected Total Profit (€) CPU Time (s) MIP Gap (%) 

AP.1 246946 384 0.99 

SMILP 261129 542 0.99 
 

Higher quota and reservoir storage (Table 3) reveal that head effect modeling provides 

better results than linear power generation functions. Optimal profit results in Table 4 do 

indicate that head effect modeling leads to higher profits. However, please note that this might 

not be valid in some cases. Particularly, a price-maker hydro producer might seek to 

maximise profit by withholding production (and thus reducing quota) and/or spilling water 

(thus reducing storage) in order to provoke price spikes, according to [34]. 

The expected total profit for the SMILP approach is 5.74% higher than the one obtained 

with the AP.1 approach, while the CPU time is still acceptable as well as the MIP Gap.  

The CPLEX 12.1 solver used on a large scale problem provides the MIP Gap parameter to 

improve its performance. The MIP Gap is a good parameter of optimality used as 

convergence criteria. In [35], the MIP Gap is computed by: 

              
|integerbest |10

|integerbest nodebest |Gap MIP 10


   (36)  

In (36), a small enough positive constant is included to ensure that this criterion can be used 

for the case where the best integer objective takes null value. 

Fig. 6 shows the profit results versus CPU time for the SMILP approach. The proposed 

approach finds a near-optimal solution relatively fast and spends the remaining time verifying 

the solution. A feasible solution is found when the gap among the best integer objective and 

the objective of the best node remaining is within a predefined tolerance, considered to be 1% 

in this paper.  

The SMILP approach terminates with a solution of 261129 €, which has a MIP Gap of 

0.99%. A MIP gap whose value is less than 1% can be considered acceptable for a large-scale 

optimization problem, as stated in [36]. If a MIP Gap of 0.6% were considered, for instance, 
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the SMILP approach would take 1924 seconds to obtain a solution of 261983 €. This 

translates into a profit increase of only 0.327%, for a considerable CPU time increase of 

255%. Hence, a further decrease in the MIP Gap parameter pushes the solver to find a better 

solution, but much longer CPU times only yield slightly higher benefits. 

To assess the effectiveness of the SMILP approach over a deterministic approach, the value 

of the stochastic solution (VSS) has been determined. VSS is given by: DPSP zzVSS  , 

where SPz  is the expected profit of the stochastic problem and DPz  is the expected profit 

obtained from the problem where decisions variables are fixed to those resulting from the 

associated deterministic problem, i.e., from the problem in which stochastic processes are 

changed by their respective expected values [37].  

Aiming for a fair and unambiguous comparison, constraints (13)–(16) are not considered in 

this comparison. In other words, we disregard the construction of robust supply curves that 

take into account all residual demand curve scenarios, i.e., the absence of these constraints 

only considers the optimal point associated to each scenario  . Thus, each optimal point 

corresponds to a possible producer’s offering strategy. Besides, if two scenarios belong to the 

same bundle at a time, i.e., are identical, the corresponding operating decisions should be 

identical too, ensuring the principle of non-anticipativity. Therefore, the VSS is given by: 

VSS = 282377 – 267180 = 15197 €, i.e., VSS (%) = 5.69%. 

Note that 267180 € is the average profit achieved for the optimizer of the deterministic 

problem. Thus, the solution achieved using the SMILP approach is noticeably better than the 

one achieved by a deterministic approach. 

The average hourly production is shown in Fig. 7, and the respective average market-

clearing prices are shown in Fig. 8. The average production is equal to the sum of the products 

of quota and probability in each scenario  . According to Fig. 7 and Fig. 8, it is possible to 

verify that the market-clearing prices do not generally follow the variation pattern of the quota 

of the price-maker producer, meaning that market power is being implemented. This variation 
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pattern can be employed as a monitoring variable to measure market power. 

Fig. 9 shows the offer curves developed for the day-ahead market, with and without the 

head change effect. The SMILP approach implies higher quotas for the same price values. 

Hence, the SMILP approach provides substantially better solutions, within a reasonable CPU 

time, for head-sensitive price-maker hydro producers with cascaded configurations.  

 
5   Conclusions 

 
A generation scheduling problem for a price-maker hydro producer has been studied to find 

out the optimal combination of price and quantity bids that maximises the producer’s total 

profits in the day-ahead market. The model is thoroughly tested on a case assuming a realistic 

hydro system in cascaded configuration in Portugal. The potential market power of a price-

maker hydro producer has been analysed. Main results include short-term offering strategies 

and the resulting market clearing prices, as well as the optimal reservoir storage and plant 

discharge trajectories, using a novel stochastic mixed-integer linear programming approach 

that considers sets of scenarios to describe the residual demand curves. The proposed 

approach assures significantly better results, for head-sensitive price-maker hydro producers 

with cascaded configurations, guaranteeing also an acceptable CPU time. 
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Figure captions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1. Typical residual demand curve [25]. 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Fig. 2. Supply curve built through (qω,k , λω,k,s) pairs. 
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Fig. 3. Residual demand curves scenarios at hours 1, 5, 6, 12, 16 and 23. 
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Fig. 4. Optimal reservoir storages for scenario 1. The results of the proposed approach are denoted by a  

solid line, whereas the AP.1 approach results are denoted by a dashed line. 

 

  

  

  
 

Fig. 5. Optimal plant discharges for scenario 1. The results of the proposed approach are denoted by a  

solid line, whereas the AP.1 approach results are denoted by a dashed line. 
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Fig. 6. Solutions versus CPU time. 

 

 

 

 

 
Fig. 7. Average hourly production. 

 

 

 

 

 
Fig. 8. Average market-clearing prices. 
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Fig. 9. Offering strategies for the day-ahead market, with and without head change effect. The results with the proposed 

approach are denoted by a solid line, whereas the AP.1 approach results are denoted by a dashed line. 

 


