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Abstract—Significant wind power ramps have a remarkable
influence on the integration of wind power. Their variability and
uncertainty affects to the forecast increasing the error and reduc-
ing the reliability in the continued operation of the power system.
Ramp events are considered the main source of forecasting error
and their study is imperative for an improvement of prediction
tools. In this aspect, the first steps to achieve a study of the
influence are identifying, grouping and temporal characterizing
of the ramp events.

This paper develops a methodology for wind power ramp
events recognition in order to analyze the relationship between
these events and the accuracy of the wind power forecast system
according with two criteria: maximum forecast deviation and
mean magnitude error. The methodology is validated using real
data from the highly aggregated Spanish power system and short
time timescale forecasting values.

Index Terms—Wind power forecasting, Variability, Ramp
events

I. INTRODUCTION

Since wind power is almost not dispatchable, wind power
forecasts are a very useful tools for the operation and planning
in power systems. The importance of wind power forecasting
increases considerably when large amounts of wind power are
considered and power system interconnection is very limited,
e.g. Iberian and Ireland power systems, [1]. According to this,
the problem of accurately wind power forecasting has received
a great deal of attention in recent years. As an example, a
short-term wind power forecasting (between 1 hour and 72
hours) is considerably helpful in power system planning for
the unit commitment and economic dispatch process [2].

In spite of the fact that wind forecast models have been
improved, in both, short and long term, a considerable amount
of error is still registered in custom conditions, reaching
higher values at extreme conditions. The wind power fore-
casting models have to deal with variability and uncertainty.
Variability depends on the timescale as wind power presents
different prevailing dynamics when it is analyzed for a few
milliseconds, for several minutes or for a daily horizon. To sum

up, the aggregation level reduces considerably the variability
values.

As variability, the wind power forecast error (WPFE) dis-
tribution is strongly dependent on the wind power level. For
extreme low wind power forecast, the forecasts tend to over-
predict the actual wind power produced, whereas when the
forecast is for extreme high power levels, the forecast tends to
under-predict the actual wind power. Most of the work in this
field neglects the influence of wind forecast levels on wind
forecast uncertainty and analyses WPFEs as a whole.

With regard to the operation and planning aspects, trans-
mission system operators (TSOs) place primary emphasis on
better understanding of the impact of extreme events (e.g.,
large ramps), which can have significant influence on system
economics and reliability. With this criterion, the most impor-
tant issue is the expected maximum forecast deviation, and
not the mean forecast error, as described in [3]. The group’s
finding is because the extreme deviations may lead to load
shedding. Consequently, from a TSO view, a good criterion
will be to minimize the expected maximum forecast error.
However, this training criterion may be difficult to translate to
a function, so the minimum mean square error (MSE) could be
an acceptable criterion because it weights the large deviations
more heavily, [4]. Secondary concern is focused on uniform
wind power forecasting improvements for enhanced planning
applications.

Furthermore, to address the challenges in WPFE, it is
important to understand the three main sources of error: timing
error, magnitude error and ramp error, [5]. A timing error is
defined as an event that it is accurately predicted in magnitude,
but occurs at the wrong time. This kind of error can achieve
a considerable absolute error even when event magnitude
has been correctly forecasted. This type of error is usually
corrected for short term forecast as event is progressively
discovered. A magnitude error is defined as an event that
is forecasted to occur approximately at the right time, but
with the wrong magnitude. This can occur in two possible



ways; the forecast might be in error about the rate of change
or might be in error regarding the overall magnitude of the
event. A ramp error consists on a ramp event that is forecasted
with a different rate of change. This kind of error drives
forecast to considerable magnitude errors when wind power
reach maximum values. In summary, timing and ramp errors
are usually associated with wind power events, like extreme
ramps caused by storms or wind power curtailment, while
magnitude error is generally a consequence of timing and ramp
errors, [6].

For ramp forecasting, the detection and classification of
ramp events are an imperative. There are a lot of methods for
ramp event pattern recognition. An interesting method consists
on the application of swinging door algorithm developed by E.
H. Bristol in [7]. This algorithm is used for wind power ramp
analysis in [8] and is optimized in [9]. Another example is
achieve by R. Sevlian and R. Rajagopal, [10], where optimal
ramp detection is introduced to provide empirical statistics of
wind ramps.

In this paper, a methodology of ramp event detection and
classification is proposed. The purpose of this methodology
is the classification of ramps to achieve a comparison of the
influence of ramp events in the forecast error. Real measured
WPFE are evaluated taking into account ramping rates over
multiple timescales. The available data include hourly WPFE
and wind power production for the Spanish power system. The
considered timescales include short-term forecasting from 1
hour lead time to 24 hours lead time. Ramp Rate Percentage
(RRP) is selected for ramp event classification. The final
objective is to propose a correction factor in the forecast
according with the evolution of the error in the different groups
of ramp events.

The contributions of this paper are stated below:

1) An heuristic methodology to measure the accuracy of a
WPF system under the influence of ramps, in both cri-
teria: maximum forecast deviation and mean magnitude
error;

2) Probabilistic analysis performance to relate events and
weather conditions with extreme wind power forecast
errors based in their ramp rate and their duration;

3) The proposed methodology could be scaled to individual
wind farms and different levels of aggregation as CDF
and ramp duration are used in the classification of ramps.
To sum up, forecast timescale could also be adapted;

4) A detailed analysis of a case of study in Spain comparing
different ramp rates and durations.

The rest of the paper is structured as follow: in section II
the methodology is described highlighting its two parts, ramps
detection, grouping and classification. The steps are detailed
and the main instructions for each step are proposed. Then,
the methodology is applied to real data and their results are
illustrated in section III. Finally, conclusions are proposed in
section IV.

II. METHODOLOGY

The first stage for the analysis of the influence of the ramp
events in the forecast error is the recognition of the patterns of
the ramp events. Once ramp event pattern is extracted, these
events must be grouped according with its severity which has
an added difficulty in its forecast. Since this classification
divides the variability of the events, their influence can be
studied using duration, direction and severity parameters.

The methodology proposed is based on the premises previ-
ously named and the search of the computational and structural
simplicity. Swinging door algorithm is selected as recognition
pattern method for ramp event due to its favorable attributes of
robustness and easy implementation, [8]. On the other hand,
ramp rate percentage (RRP) is chosen as severity classification
of the ramp events. The RRP sorts ramps rates and ramp
events using their exact values through cumulative distribution
functions (CDF), [11].

This methodology is divided into two sections, the pattern
recognition and its classification, and the calculation of ramp
rates and parameters for error characterization during ramp
events. In this aspect the methodology has a total of five steps
developed as follows:

1) Step 1: Swinging door algorithm: The swinging door
algorithm (SDA) is applied in order to obtain the main
pattern of the ramp events. This algorithm contributes to
avoid insignificant fluctuations during a ramp event with a
marked trend and to combine similar consecutive ramps in
the same event with a simple and robust algorithm. This
method has a good performance in discerning insignificant
changes and filtering. Another advantage of its use is the data
compression. The compression rate is controlled by the only
tuneable parameter of the algorithm, ε. This parameter can
vary from 0 to 1 pu. With a value of 0 the resulting data
series are the same as the original series, and no compression
is achieved. The higher value of ε, the higher compression
results. more information about the method may be consulted
in [8]. In figure 1, a SDA algorithm is applied for a wind
power generation time series (red line).

2) Step 2: Relative extremes detection: Since SDA pro-
duces time series with variable step depending on epsilon
value, extreme values could be neglected for some iterations.
These extremes are very important for a correct character-
ization of ramp events. Figure 1 shows some iteration, as
hours 5-8, hours 24-27 and hours 36-39, where several relative
maximums have been neglected using SDA and must be
included in the final series for a proper recognition of the
ramp events.

In order to include these extremes in the time series of
ramp events, SDA series must be processed to find relative
maximums and minimums not included in this series. The
process includes the evaluation of the periods of the SDA to
distinguish two cases:

• Iterations with their extremes values matching the values
at the beginning and at the end of the iteration. In this
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Figure 1. Comparison of original serie, SDA serie and SDA with extreme
values.

case there is neither minimum nor maximum to include
in the final series. No action is taking place.

• Iterations with one extreme value matching the value at
the beginning or at the end of the iteration. In this case
the extreme value is included in the series.

Once relative extremes are included in the time series, ramp
events are properly characterized for all their duration.

3) Step 3: Ramp events grouping: This definition of ramp
must include all the aspects of the ramp and is based on
the change direction, magnitude, and duration of wind power
output. In this aspect, a ramp event could be characterized by
some parameters:

• Magnitude. The variation in power produced during the
ramp event.

• Duration. Time period during which the ramp event is
produced.

• Ramp rate. Defined as the ramp intensity. The ramp rate
event value is obtained using equation 1.

Rval =
P (t+ ∆t)− P (t)

∆t
(1)

where P (t) is the wind power output at time t; P (t+∆t)
is the wind power output at time t+∆t; ∆t is the duration
of the ramp; Rval is the defined value of change rate in
wind power output.

• Timing. A time instance related to the ramp occurrence.
In this step the consecutive ramp events with the same

direction are grouped to obtain the cumulative ramp rate for
every event. This cumulative ramp rate value corresponds to
the mean ramp during the event. Furthermore, this cumulative
ramp events offer a proper delimitation for the study of WPFE
in every event.

4) Step 4: CDF and RRP calculation: The featured se-
lection technique is based in the CDF curve to identify the
severity of the ramp rate. This technique allows a proper

scalbility between different cases, for both: amount of data
and aggregation level. The RRP values are calculated from the
CDF of the ramp values in the ramp events and are defined as
the percentage of ramps below this value. 1% RRP and 99%
RRP are important values to define in wind power variability
as are used to indicates the range of extreme ramps for a case,
1% RRP for positive ramps and 99% for negative ramps,[11].
The selected values of RRP could be defined depending on
the case of analysis. In studies with a great amount of data
the resolution could be adjusted to 1% or less, while a typical
case is the use of decades (10%) resolution.

5) Step 5: Ramp events influence analysis: Once ramp
events are correctly defined, the error value is studied for
every event. In the field of time series prediction in general,
the prediction error is defined as the difference between
the measured and the predicted value. Therefore, since we
consider separately each forecast horizon, the prediction error
for the lead time k is defined as

e(t+ k|t) = P (t+ k)− P̂ (t+ k) (2)

It often is convenient to introduce the normalized prediction
error as presented in equation 3.

ε(t+ k|t) =
1

Pinst
(P (t+ k)− P̂ (t+ k)) (3)

where Pinst is the installed capacity.
According with these definitions of the error and the ramp

events characterization, there are some parameters to be con-
sidered in order to study the influence of ramps in WPFE. The
variation of error, ∆e(t|t + k) or ∆e, during the ramp event
is, for example, an interesting parameter for being analyzed. It
represents the change of error, equation 4, and the ramp error
as well.

∆e(t|t+ k) = ε(t+ k)− ε(t) (4)

The study of these parameters could be undertaken in
different ways. For a proper analysis of maximum forecast
error, a probabilistic analysis is proposed with different ramp
rates and duration values. This analysis is performed with the
error distribution using boxplots for the ranges of RRP and
different duration. Outliners are avoided to represent the main
trend of the error with ramp rate and duration.

III. RESULTS

A. Data and parameters description

The methodology described in II is evaluated for highly
aggregated wind power using data of wind power generation
for the Peninsular Spanish power system. These data include
wind power generation with and without curtailments, and
wind power forecast for timescales from 1 hour lead time to
24 hours lead time from 2010 to 2013. This dataset allows to
perform complete study for short-term forecast.



B. WPF system accuracy under mean magnitude error crite-
rion

In order to assess the quality of the WPF under the mean
magnitude error criterion for these data we have considered
two parameters, recommended in [12] to regard and to com-
pare the performance of a prediction model in a general
framework:

• Normalized Mean Absolute Error (NMAE)
• Normalized Mean Squared Error (NMSE)

These measures are given per time step and their values are
calculated as presented in equations 5 and 6.

MAE(k) =
1

N

N∑
t=1

|e(t+ k|t)| (5)

MSE(k) =

N∑
t=1

(e(t+ k|t))2

N − p
(6)

Statistically, the value of MAE is associated with the first
moment of the prediction error, and hence these are measures
which are directly related to the produced energy. The values
of MSE and RMSE are associated with the second order
moment, and consequently to the variance of the prediction
error.

Figure 2 shows NMAE and NMSE values for the different
timescales in the described data. The forecast quality parame-
ters present an important increase from 1 to 6 hours forecast,
and after that the increase is smooth until 24 hours forecast.
The changes between years are due to the different variability
and the year production.

C. WPF system accuracy under maximum error criterion and
ramp rate influence

The methodology described in section II is applied to this
data. The methodology starts using SDA to the original series.
The value of epsilon is fixed at 0.002 pu with a balance
between the compression percentage and the details of the
events. The compression percentage at the end of step 1 is
about 30.3%. Then relative extremes are found to improve
the characterization of the events. This step increases the
percentage of data and the compression percentage rises to
41.4%. These remaining data is grouped resulting 6524 ramp
events during the 4 years measurement period. In step 4 the
events are sorted obtainig its CDF and the ranges of RRP
are selected in decades. Finally, ramp error and remaining
magnitude error are studied for every RRP range. The results
for every parameter in different timescales are described as
follows.

Figure 3 shows the probabilistic results of the ramp error for
every range of RRP using statistical box-plots, [13] in different
timescales, 1 hour, 6 hours, 12 hours and 24 hours. There
are remarkable distribution error changes between 1 hour and
6 hours due to the important error increase showed in the
NMAE and NMSE. In contrast, the changes between 6, 12
and 24 hours timescales are no relevant. The ramp error during
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Figure 2. Forecasting error parameters in pu

extreme ramp events — RRP 0-10 for upward ramps and 90-
100 RRP for downward ramps — have in most of the cases the
same direction as ramp rate during the event. Only 5.8 % of
the cases in 0-10 RRP and 6.7 % in 90-100 RRP have different
direction. For the rest of RRP ranges the error distribution, in
both directions, is more symmetrical and extreme errors are
restricted to specific cases.

An extensive comparison for extreme ramp events is showed
in figures 4 and 5. In these figures, mean and quantile values
are showed for every forecast horizon. In the case of extreme
upward ramps — figure 4 — the mean values are all positive
and for forecast horizons above 6 hours the mean error is
constant slightly below 0.02 pu. 25% quantile values are also
positive. For downward ramps — figure 5 — results are similar
but more symmetrical as 75% quantile values are slightly
above 0 pu These facts indicate that, in most of the cases,
the forecast system is conservative, especially during extreme
events, for both directions, upward and downward ramps. The
results also quantify the maximum error deviation according
with the extreme ramps. Summarizing, the accuracy of the
forecast system for extreme ramps in two criteria: maximum



Figure 3. Comparison of error distribution for different timescales.
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Figure 4. Error distribution with extreme upward ramps (0-10 RRP).

forecast deviation and mean magnitude error.

D. Ramp duration influence

The error distribution for different event durations with 3
hours, 12 hours and 24 hours timescale are showed in the
figures 6, 7 and 8, respectively. The duration ranges have
been selected to include a similar number of events (aprox.
150-200 events) in every range. The distribution is positively
unbalanced for upward ramp events (< 50RRP ). In contrast,
the distribution is almost balanced for downward ramp events
(> 50RRP ). The unbalance increases as ramp event duration
increases in most of the cases. Low duration (< 3hours)
influence is retricted to medium RRP values for all the forecast
horizons. In the case of extreme upward ramps (0− 10RRP )
the duration has little influence for ramp events with more than
3 hours duration for all timescales. The influence of duration
increases as ramp rate reduces.
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Figure 5. Error distribution with extreme downward ramps (90-100 RRP).

Figure 6. Comparison of error distribution with different RRP and duration
for 3h timescale.

To sum up, for ramp duration over 3 hours, its influence in
WPFE is restricted to medium RRP for both, upward (20 −
40RRP ) and downward (60− 80RRP ) ramps.

IV. CONCLUSIONS

This paper proposes and studies a methodology for ramp
events recognition and classification, and the evaluation of
WPFE during these events. The implemented method achieves
a considerable compression without loss of desire details in
the events. The pattern recognition of the ramp events allows
its classification and temporal limitation for the evolution
of forecast error in the course of the events. In addition,
the accuracy of the forecast could be studied according to
maximum forecast error criterion, highlighting these values
during extreme ramps which are very important from TSO
point of view.



Figure 7. Comparison of error distribution with different RRP and duration
for 12h timescale.

Figure 8. Comparison of error distribution with different RRP and duration
for 24h timescale.

The proposed methodology has been applied to real data
from a highly aggregated system with detailed short term
forecast. The results obtained offer a general overview of
ramp influence in forecast error through different cases of
ramp rates and ramp event duration. A conservative forecast
is observed in the results and specially for extreme upward
ramps. The ramp influence results and its error distribution
for ramp events could be feedbacked to the forecast system to
reduce the WPFE.
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